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A Padé approximation and intelligent population shrinkage chicken swarm
optimization algorithm for solving global optimization and engineering
problems

Tianbao Liu*, Yue Li and Xiwen Qin*

School of Mathematics and Statistics, Changchun University of Technology, Changchun 130012,
Jilin, China

* Correspondence: Email: liutianbao@ccut.edu.cn, qinxiwen@ccut.edu.cn.

Abstract: Bio-inspired optimization algorithms are competitive solutions for engineering design prob-
lems. Chicken swarm optimization (CSO) combines the advantages of differential evolution and par-
ticle swarm optimization, drawing inspiration from the foraging behavior of chickens. However, the
CSO algorithm may perform poorly in the face of complex optimization problems because it has a
high risk of falling into a local optimum. To address these challenges, a new CSO called chicken
swarm optimization combining Padé approximate, random learning and population reduction tech-
niques (PRPCSO) was proposed in this work. First, a Padé approximate strategy was combined to
help agents converge to the approximate real solution area quickly. Padé approximate was grounded
in a rational function aligning with the power series expansion of the approximated function within a
defined number of terms. The fitting function used in this strategy employs the above rational function
and the extreme points are calculated mathematically, which can significantly improve the accuracy
of the solution. Second, the random learning mechanism encouraged agents to learn from other good
agents, resulting in better local exploitation capability compared to traditional CSO. This mechanism
has a special idea that when it comes to selecting random individuals, it selects from the same type
of high-performing agents, rather than selecting them completely at random. Third, a new intelligent
population size shrinking strategy was designed to dynamically adjust the population size to prevent
premature convergence. It considers fitness function calls and variations in recent optimal solutions
creatively. To validate the algorithm’s efficacy, PRPCSO was rigorously tested across 23 standard test
functions and six kinds of practical engineering problems. We then compared PRPCSO with several
mainstream algorithms, and the results unequivocally established PRPCSO’s superior performance in
most instances, highlighting its substantial practical utility in real engineering applications.
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1. Introduction

1.1. Background

Meta heuristic algorithms mainly seek optimal solutions by simulating natural phenomena. This
kind of algorithm is often called the intelligent optimization algorithm. At present, algorithms of this
type are needed in a large number of fields, such as engineering design problems [1–3], machine learn-
ing and theoretical analysis [4–7] and energy saving and environmental protection [8–10]. Sometimes
people need to know what size industrial parts to choose to minimize cost, how to place trash cans in
the city to provide maximum convenience for pedestrians, and so on. These problems can be solved
quickly with the help of optimization algorithms. Depending on the source of inspiration, some re-
searchers divide them into four categories: Population-based methods, methods inspired by physical
phenomena, evolution-based strategies and methods inspired by human activities [11]. Population-
based meta-heuristic algorithms explore the search space through a population containing multiple in-
dividuals. Each individual represents a potential solution, and these individuals generate new solutions
through different update ways. Through several iterations, the agents in the population gradually con-
verge to the vicinity of the true solution. Inspired by natural selection, evolution-based meta-heuristic
algorithms search for optimal solutions by simulating the evolutionary and genetic mechanisms of
living organisms. The algorithm updates the individual through genetic operations, produces new so-
lutions and selects better offspring. Physics-based metaheuristics update individuals by simulating
physical laws and gradually approaching the true solution. Human-based metaheuristics are updating
agents by imitating human behavior. Researchers have proposed many metaheuristic algorithms like
this one by looking to nature for inspiration. They have the advantage of fast convergence and simple
computation. However, excessive pursuit of convergence speed may lead to insufficient population di-
versity and premature convergence. Of course, these challenges are also the motivation for researchers
to continuously explore and improve metaheuristic algorithms.

1.2. Literature review

The chicken swarm optimization (CSO) algorithm was initially proposed by Meng et al. [12]
in 2014. Since then, numerous scholars have made enhancements and extensions to the algorithm,
enabling its application across a broader range of disciplines. Inspired by the behavior of chickens,
the CSO algorithm incorporates three different roles in the swarm: Roosters, hens and chicks. The
rooster assumes an active role in food search within the flock while hens follow suit; meanwhile,
chicks explore their surroundings for sustenance. Each colony can be divided into groups comprising
one rooster alongside multiple hens and chicks. Different roosters adhere to varying locomotion rules
with competition arising among them based on a specific hierarchical order. Aiming at the problem
that the original CSO algorithm is easy to converge prematurely and fall into local optimum, many
people have improved the update method of agents. To address this issue, Wu et al. [13] introduced a
new CSO that incorporates a portion of roosters’ learning into the chicks’ position update equation and
introduces inertia weight and learning factor. As the most numerous individual in the population, the
performance of CSO is greatly affected by how the hens update. Therefore, Chen et al. [14] improved
the update equation of hens.

The process of chicks following hens to find food is blind. Due to the lack of autonomy, the chicks
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are easily linked by the hens and, thus, fall into local optima. To solve this problem, Wang et al. [15]
proposed to introduce a mutation strategy for chicks to enhance the population diversity and help them
get rid of the dilemma of falling into local optimum. The hens follow the lead rooster, while the chicks
follow their mother for food. When the roosters get trapped in local optima, the hens and chicks will
converge too early, reducing the effect of global optimization. Based on this problem, Verma et al. [16]
introduced Levy’s Flight strategy to solve the problems of local optimal and premature convergence.
Ahmed et al. [17] improved the search capability of CSO by applying logistic and tending to chaotic
maps to help the CSO swarm to better explore the search space. Many researchers prefer to combine
universal strategies such as Levy’s flight and chaotic map with different swarm intelligence algorithms
to improve the search effect of the algorithm. Other researchers have set their sights on improving these
strategies. Recently, Yang et al. [18] studied how to improve the probabilistic selection of chaotic
operators based on the maximum Lyapunov exponent (MLE), and added this new multiple chaotic
local operator to the slime mold algorithm (SMA) to achieve surprising results.

Aiming at the problem that the convergence speed of CSO algorithm is not satisfactory enough
and difficulty in obtaining the global optimal solution of CSO, Wang et al. [19] proposed an adap-
tive CSO algorithm with fuzzy strategy (FCSO). In the FCSO algorithm, the fuzzy system and cosine
function are integrated into the CSO algorithm simultaneously. The fusion of optimization algorithms
with machine learning techniques represents a widely explored area of research. Moldovan [20], for
instance, leveraged the CSO algorithm to enhance the performance of the support vector machine
(SVM) through hyperparameter optimization. This approach aims to achieve improved classification
accuracy and showcases the growing synergy between optimization techniques and machine learning
methods. In 2018, Mohamed [21] mapped real number vectors to integer space and used modified
CSO to improve the performance of the greedy algorithm, which achieved good results. In addition
to, some scholars have combined CSO with other swarm intelligence optimization algorithms or evo-
lutionary algorithms to make up for some shortcomings of CSO. Abbas et al. [22] combined CSO and
the bacterial foraging optimization (BFA) algorithm, and this hybrid technique effectively reduced the
computational cost and load. Torabi and Safi-Esfahani [23] combined CSO with the raven roosting
optimization (RRO) algorithm to achieve a better transition between local exploitation and global ex-
ploration. Deb and Gao [24] combined CSO and the ant lion optimization algorithm (ALO) [25] to
deal with the charger distribution problem, and the combination of CSO and ALO can improve the
accuracy of CSO, thus preventing it from falling into local optimum. Deb et al. [26] also proposed the
synergy of CSO with a new teaching-learning-based optimization (TLBO) algorithm, and proposed a
new constraint handling mechanism to improve CSO. In 2019, Zouache et al. [27] successfully applied
CSO to the field of multi-objective optimization. Since then, some scholars [28] have continuously
improved multi-objective CSO to improve algorithm performance and applied it to a lot of fields.

As previously mentioned in the CSO algorithm, roosters exhibit the highest search capability and
are succeeded by hens, the largest agent class in the population. Chicks rely on their mothers for for-
aging and lack independence. Roosters handle global exploration, while hens and chicks manage local
exploitation. However, the algorithm’s search accuracy is unsatisfactory, prone to falling into local
optima. Two reasons contribute to these issues: The hen’s search method is not optimal, leading to low
accuracy and premature convergence, and chicks’ reliance on their mothers for food results in a limited
learning scope and insufficient autonomous search ability. Consequently, chicks prematurely converge
under maternal influence, leading to local optima challenges. Addressing this urgent concern, the pa-
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per is dedicated to refining the search methods for hens and chicks. It introduces a new CSO algorithm
called chicken swarm optimization combining Padé approximation, random learning and population
reduction techniques (PRPCSO). The primary contributions of this study are outlined as follows:

1) A novel and efficient approach based on Padé approximate technique is proposed to enhance
the ability of the CSO algorithm in solving optimization problems. The fitting function used in this
strategy is different from other linear approximation or quadratic approximation methods, but with the
help of a complex nonlinear rational function, the extreme point is calculated from the mathematical
point of view to approximate, which can significantly improve the solution accuracy and development
ability of the CSO algorithm, and avoid local convergence.

2) Aiming at the problem that chicks are easy to fall into local optimum under the influence of
their mother hens, a random learning mechanism is introduced. This mechanism has a special way
of thinking when it comes to selecting random individuals. It selects from the same type of high-
performing agents (i.e., chicks), rather than selecting them completely at random. This mechanism
encourages chicks to follow their mother while learning from other good peers, preventing them from
falling into local optima.

3) This study has developed a novel intelligent population size shrinking strategy. It not only con-
siders adjusting the population size based on the number of fitness function calls but also creatively
takes into account the variations in the obtained optimal solutions over the recent iterations. The
strategy can eliminate bad and preserve good, prevent premature convergence, and reduce the amount
of computation.

The rest of this paper is organized as follows. In Section 2, the CSO algorithm is briefly reviewed.
Section 3 describes the main content and framework of PRPCSO. In Section 4, our proposed algorithm
is tested with the other four famous, excellent algorithms on 23 test functions, and the experimental
results are compared and analyzed. To investigate the application of PRPCSO to real problems, in
Section 5, six real engineering design problems are described and analyzed experimentally. Finally,
Section 6 contains the conclusions and perspectives of this work.

2. Mathematical model and basic knowledge

2.1. Principle of CSO algorithm

CSO is inspired by the foraging behavior of the flock and maps the behavior of the flock to mathe-
matics. For simplicity, the behavior of the chicken is idealized according to the following rules.

1) A chicken swarm is divided into small groups. Each group has a rooster, many hens and chicks.
2) The role identification of chickens and the division of groups are realized according to their

fitness values. Several chickens with the best fitness values are selected as roosters, and each rooster
is used as the leader of a group. Except for a few chicks with the worst fitness values, the rest were
identified as hens. The hens randomly select a group and randomly associates with some chicks in
the group.

3) The hierarchy, dominance and mother-child relationships in the population are updated every few
(G) iterations.

4) The rooster acts as a leader in the search for food. Suppose chickens steal food randomly from
each other. Chicks search for food near their mother (hens).

Suppose rNum, hNum, cNum and mNum correspond to the number of roosters, chickens, chickens
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and mother hens, respectively. For the problem of optimizing minimization, rNum chickens with the
lowest fitness value are assumed to be roosters, the worst cNum chicken is considered to be chicks and
the rest of the chickens are considered hens. mNum chickens are randomly selected as mother hens in
the hens swarm. All N chickens are represented by their positions xt

i, j, (i ∈ [1, ...,N], j ∈ [1, ...,D]) at
time t, looking for food in a search space.

2.2. The mathematics of CSO

Figure 1. The framework of CSO.

Different members of the swarm move differently. Roosters search in the following way:

xt+1
i, j = xt

i, j(1 + Randn(0, σ2)), (2.1)

σ2 =

1, i f fi ≤ fk

exp( fk− fi
| fi |+ϵ

), otherwise
, k ∈ [1,RN], k , i. (2.2)

Here Randn(0, σ2) denotes a random number generated from a Gaussian distribution with mean zero
and variance σ2. k is the index of a rooster selected at random from the roosters and fk is its corre-
sponding fitness value. ϵ is the smallest constant added to avoid a zero denominator.

Hens also compete with other chickens for food while following their mate roosters for food:

xt+1
i, j = xt

i, j +C1Rand(xt
r1, j − xt

i, j) +C2Rand(xt
r2, j − xt

i, j), (2.3)
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989C1 = exp( fi− fr1
| fi |+ϵ

)

C2 = exp( fr2 − fi)
, (2.4)

where Rand is a random number generated from a uniform distribution obeying [0,1], r1 is the index
of the mate of this hen in the group and its corresponding fitness value is fr1. In addition, an individual
randomly selected from the group of roosters and hens is r2, whose fitness value is fr2. C1 and C2

represent the influence factors of the hen’s mate and other hens on the focal hen.
The chicks are entirely dependent on the influence of their mother for locating food:

xt+1
i, j = xt

i, j + FL(xt
m, j − xt

i, j), (2.5)

where m is the index of the mother hen that the chick follows and xt
m, j is the position of the mother

hen of the ith chick (i.e., the mth hen) in the jth dimension. FL is a parameter chosen from [0,2] that
represents the influence factor of the mother hen’s position on the position of this chick.

3. The proposed optimization algorithm

3.1. Padé approximate strategy

In this section, the Padé approximate technique is introduced in order to construct an efficient in-
telligent optimization algorithm. This is a local search strategy that swiftly identifies optimal points in
the proximity of several agents through solving for extreme points in a rational function fitting manner.
This strategy contributes to enhancing the precision and efficiency of the local search carried out by
hens. The Padé approximation approximates f (x) by using the following rational function:

T (x) ≃ T[M,N](x) =
P(x)
Q(x)

=

M∑
i=0

pi(x − x0)i

N∑
i=0

qi(x − x0)i

, (3.1)

which the mathematical expression is a kind of Padé approximation. The coefficients pi and qi are
unique up to constant and are generally normalized as q0 = 1. Padé approximate technique is a pow-
erful approximate method for approximating rational functions. One of the most important advantages
is that it is not restricted to the radius of convergence of the Taylor expansion [29]. Specifically, Padé
approximate has the best convergence performance when the numerator and denominator have equal
or almost equal orders. Rational fractions can provide better approximations either within or outside
the radius of convergence. This method is the backbone of asymptotic waveform evaluation [30, 31]
and has also been widely used by researchers to calculate frequency responses in recent years due to its
extremely high efficiency and accuracy. This is the inspiration for our use of rational functions instead
of standard polynomials. Therefore, in this paper, Padé approximate technique is used to help hens to
locate excellent solutions more quickly and accurately, which improves the development ability and
solution accuracy of the CSO algorithm. We consider using the following [2,1] Padé approximation:

T (x) =
a1 + a2x2

1 + a3x
, (3.2)
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where a1, a2 and a3 are real parameters. Let T (x) be the interpolation rational function of f (x) at
abscissae xk, xk+1, xk+2. That is,



T (xk) =
a1 + a2x2

k

1 + a3xk
= f (xk)

T (xk+1) =
a1 + a2x2

k+1

1 + a3xk+1
= f (xk+1)

T (xk+2) =
a1 + a2x2

k+2

1 + a3xk+2
= f (xk+2).

(3.3)

According to Eq (3.3), it can be calculated that:

a1 =
(xk+2 − xk+1) f (xk+1) f (xk+2)x2

k + (xk − xk+2) f (xk) f (xk+2)x2
k+1 + (xk+1 − xk) f (xk) f (xk+1)x2

k+2

( f (xk+2)xk+2 − f (xk+1)xk+1)x2
k + ( f (xk)xk − f (xk+2)xk+2)x2

k+1 + ( f (xk+1)xk+1 − f (xk)xk)x2
k+2

, (3.4)

a2 =
(xk − xk+1) f (xk) f (xk+1) + (xk+2 − xk) f (xk) f (xk+2) + (xk+1 − xk+2) f (xk+1) f (xk+2)

(x2
k − x2

k+1) f (xk+2)xk+2 + (x2
k+2 − x2

k) f (xk+1)xk+1 + (x2
k+1 − x2

k+2) f (xk)xk
, (3.5)

a3 =
(x2

k+2 − x2
k+1) f (xk) + (x2

k − x2
k+2) f (xk+1) + (x2

k+1 − x2
k) f (xk+2)

(x2
k+1 − x2

k+2) f (xk)xk + (x2
k+2 − x2

k) f (xk+1)xk+1 + (x2
k − x2

k+1) f (xk+2)xk+2
. (3.6)

Combining the above formulas, the minimal of approximate curve T (x) can be attained as follows:

x∗ = −
1
a3
±

√
abs(

1
a2

3

+
a1

a2
). (3.7)

The Padé approximate operator is a local search operator that uses a curve to fit the structure of a
rational function to reach the extreme point of the curve. In the Eq (3.7), there are two solutions of
x∗, and here, the greedy idea is used to compare these two x∗ with the fitness value of the original hen
to select the best one among the three kinds of hens. The whole process is embodied in Algorithm 1,
where the hen is first updated to get xt+1 in the original CSO way with Eqs (2.3) and (2.4). Next, the
Padé approximate strategy is performed and three neighboring hens xk, xk+1, xk+2 in the hen group are
selected and the parameters a1, a2 and a3 are calculated based on the positions and fitness values of
these three hens, shown in Eqs (3.4)–(3.6). x∗ is split into two solutions H(k) and h(k). Finally, the best
one among the three (H(k), h(k) and xt+1) is selected as the output solution.

The foraging capability of hens plays a crucial role in determining the search efficiency of the
algorithm and directly influences the foraging efficiency of their offspring. Hence, integrating the Padé
approximation strategy can enhance the hen’s food-finding ability, ultimately maximizing the overall
performance of the algorithm.
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Algorithm 1 The second degree Padé approximate strategy

Require: xt
i, j

Ensure: xt+1
i, j

1: Generate random number Rand
2: for each i ∈ [rNum + 1, rNum + hNum] do
3: Calculate xt+1

i, j and f it(i) according to the Eqs (2.3) and (2.4)
4: end for
5: for each i ∈ [rNum + 1, rNum + hNum − 2] do
6: Select two agents around xi:xi+1,xi+2

7: Calculate a1,a2,a3 according to the Eqs (3.4)–(3.6)
8: Calculate H(i) = − 1

a3
+
√

abs( 1
a2

3
+ a1

a2
), h(i) = − 1

a3
−
√

abs( 1
a2

3
+ a1

a2
)

9: Let tag1 = f it(H(i)), tag2 = f it(h(i))
10: if tag1 < tag2 then
11: tag = tag1; H(i) = H(i)
12: else
13: tag = tag2; H(i) = h(i)
14: end if
15: end for
16: if tag < f it(i + 2) then
17: xt+1

i+2, j = H(i); f it(i) = tag
18: end if

return xt+1
i, j

3.2. Random learning strategy

Considering that the chicks’ search for food was completely affected by its mother, it was difficult to
escape the local optimal situation when the mother hens are in a local optimal, so this work incorporates
a random learning strategy for the process of finding food for chicks. The objective of this strategy is to
decrease the reliance of chicks on their mothers and enhance the diversity of the population. As chicks
follow mother hens for food, they also get help from well-performing agents within the same class.
This not only assists chicks in steering clear of local optima, but also ensures a progressive behavior
in chicks.

k1, k2, k3 = randperm(pop − (rNum + hNum + 1), 3) + rNum + hNum + 1, (3.8)

[∼, k] = min( f it(k1), f it(k2), f it(k3)), (3.9)

xt+1
i, j = xt

i, j + rand(xt
m, j − xt

k, j), (3.10)

where k1, k2 and k3 are three different random indexes. ∼ is a placeholder for the output parameter,
meaning that the minimum value of f it(ki) is ignored; we only need to record the index k of the
minimum value. Compare the fitness values of the chickens corresponding to the three indexes and
select the optimal chicken xk. The specific process can be seen in Algorithm 2.
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Algorithm 2 Random learning strategy

Input: xt
m, j, xt

i, j
Output: xt+1

i, j
1: Generate random number Rand
2: k = randperm(pop − (rNum + hNum + 1), 3)
3: k = k + rNum + hNum + 1
4: [∼, k] = min( f it(k1), f it(k2), f it(k3))
5: for each i ∈ [rNum + hNum + 1, pop] do
6: Calculate xt+1

i, j and f it(i) according to the Eq (3.10)
7: end for

return xt+1
i, j

The random learning strategy can reduce the dependence of the chicks on their mothers. If the
mother chickens are unfortunate enough to fall into the local optimum, this mechanism ensures that
chicks still retain the ability to escape from local extrema. Choosing the most suitable individual from
three random candidates for learning rather than following a purely random approach ensures that the
chicks’ actions progress effectively. In general, incorporating the random learning strategy can increase
the diversity of the population and overcome premature convergence.

3.3. Intelligent population size shrinkage strategy

Several swarm intelligence optimization algorithms have a common problem; that is, in the later
stage of iteration, the algorithm tends to converge, thus a large number of individuals participating
in optimization is redundant for the algorithm. Many researchers consider dynamically adjusting the
population size. For example, Yang et al. [32] proposed a new search method called a three-phase
search approach with dynamic population size (TPSDP) and added the idea of dynamic population size,
which depends on the number of iterations. Based on this, we propose a new intelligent population
size shrinkage strategy. It takes into account both the number of fitness function calls and the optimal
solution over r iterations. It endeavors to sustain a sizable population in the initial iterations, partic-
ularly when the algorithm’s obtained optimal solution exhibits substantial fluctuations. Conversely,
it diminishes the population size during later iterations when the algorithm’s optimal solution shows
minimal variability. This concept aims to safeguard the algorithm’s optimization effectiveness while
alleviating computational demands. The population size gradually decreases according to Eq (3.11).

pop =

pmax − round[ (pmax−pmin)NFE
MAXNFE∗Φι(F)+ϵ ], i f NFE < MAXNFE ∗ Φι(F)

max(pop, pmin), else
(3.11)

Φ(F) =
max(F) − mean(F)
max(F) − min(F)

. (3.12)

Here pmax and pmin are the preset population maximum and minimum population sizes, and pop is
the number of agents within the current population. F is the set of optimal solutions obtained by the
algorithm in the last r iterations, max(F) is the maximum value in the set F, min(F) is the minimum
value in the set F and mean(F) is the average value of F. Φ(F) evaluates the performance of the last r
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iterations by looking at the information provided by the maximum, minimum and average value of F
and Φ(F) is a number belonging to the range between zero and one. The value of Φ(F) is small when
the convergence of the last r iterations is fast, the value of Φ(F) converges to one when the algorithm’s
optimization process tends to converge and ι is a parameter. MAXNFE is the maximum number of
fitness function evaluations and NFE is the number of fitness function evaluations within the current
number of iterations. ϵ is the smallest constant added to avoid a zero denominator. Clearly, at the early
stage of the population iteration, the algorithm converges faster, the NFE is smaller and the population
size is reduced slowly, which is exactly what this study wants to achieve. When the algorithm reaches
the late iteration, the NFE value gets closer to MAXNFE and the convergence rate of the algorithm
slows down so that the population size approaches pmin. This mechanism of intelligently adjusting
the population size helps the algorithm to make a smooth transition between global exploration and
local exploitation. Premature convergence is avoided and the computational burden is reduced. See
Algorithm 3 for details.

Algorithm 3 Intelligent population size shrinkage strategy
Input: t, M,NFE,MAXNFE,G
Output: pop,New population after updating the number and population relationship of chickens

1: if mod(t + 1,G) == 1 then
2: F = f min(t − 5, t − 1)
3: Calculate Φ(F) according to the Eq (3.12)
4: if NFE < MAXNFE ∗ Φι(F) then
5: Calculate pop according to the Eq (3.11)
6: else
7: pop = max(pop, pmin)
8: end if
9: end if

10: Update the number and population relationship of three types of chickens in a new population
return pop

Considering the unique population relationship updating mechanism of the CSO algorithm; that
is, the population is disrupted and the order is restablished every G generations, it is possible to have
an error while the number of chickens decreases but the relationships between them do not change.
The population size shrinkage strategy is combined with the population relationship updating mech-
anism, then the population size is updated every G generations. After that, the chicken families are
redistributed to the new group to avoid the mismatch between the number of chickens and the rela-
tionship. Since the last r optimal solutions are needed in the population size reduction strategy, the
population size reduction strategy and the population relationship updating mechanism are applied
when mod(t + 1,G) == 1 after the optimal solution is found in the tth iteration.

Because the identity of the chickens and the relationship between them in the CSO algorithm are
judged by the fitness value, the worst individuals can be naturally deleted after the implementation
of the intelligent population size shrinkage strategy so that the excellent individuals can be retained.
Reducing the population size helps to avoid getting stuck in a local optimum as well as reduce the
computational effort of the algorithm. This process does not affect the accuracy of the algorithm
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because the poor performing chickens are removed.
How to balance exploration and exploitation is a very important research content for swarm intel-

ligence algorithms (SIA). Most SIA focus on global exploration in the early stage and focus on local
exploitation in the later stage, but CSO is different from it. As mentioned earlier, in CSO, roosters are
responsible for global exploration, while hens and chicks are exploited in the vicinity of their respec-
tive leaders, roosters and mother hens, respectively. In each iteration, these three types of chickens are
searching for the optimal solution at the same time, so the global exploration and local exploitation of
CSO are carried out simultaneously. The population size shrinkage strategy and the population rela-
tionship update mechanism are carried out simultaneously, so when the population size changes, the
roles of chickens in the population will be reconstructed. In the new population, agents with strong
search ability can still be selected to be responsible for global exploration, and agents with weak search
ability are responsible for local exploitation. When the algorithm enters the later stage, the number of
agents with strong ability (roosters) is greatly reduced, and the number of agents with weak search
ability (hens and chicks) is also reduced, but the hens are still the most numerous roles in all agents.
The proportion of agents responsible for global exploration and local exploitation has not changed, so
the balance between exploitation and exploration can be maintained even when the number of agents
decreases.

3.4. The framework of PRPCSO

The improvement in CSO is mainly reflected in three aspects. First, the Padé approximate operator
helps the hens seek the optimal solution faster. It helps the agents to quickly converge near the approxi-
mate true solution, so as to improve the accuracy and exploitation ability of the algorithm. Meanwhile,
due to the unique connection between hens and chicks, it also partially helps chicks in the foraging
process. Second, combination of random learning strategy can help the population to be more diverse
and help chicks avoid falling into local optima. Finally, a new intelligent population size shrinkage
strategy is proposed. When the algorithm shows a convergence trend in nearly r iterations, the poor in-
dividuals in the population were deleted. These three strategies are combined to construct the PRPCSO
of this work.

The implementation process of PRPCSO is described in Algorithm 4. Initially, the population is
initialized, then the ranks and individual relationships within the population are updated in the first
iteration. The largest number of chickens in the population, referred to as “hens”, is then updated
using the Padé approximate strategy outlined in Algorithm 1. Because the chicks completely rely
on their mother hens to find food, their position update method is combined with a random learning
strategy to avoid falling into local optimum, as shown in Algorithm 2. After updating the positions
of all three types of chickens, fitness values for each individual are evaluated. Once a preset number
of G iterations has been completed, the population undergoes shuffling and poor-performing chickens
are removed based on the population size shrinkage strategy mentioned in Algorithm 3. This process
creates a new order and individual relationships within the population. The iteration continues until
termination conditions are met and outputs global optimal solution.
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Figure 2. The framework of PRPCSO.

4. Experimental Study I: Solving benchmark functions

4.1. Experimental preparation

To evaluate the robustness of PRPCSO, it was compared with six excellent algorithms on test
functions and some engineering problems, they are CSO, grey wolf optimizer (GWO) [33], sine co-
sine algorithm (SCA) [34], ALO [25], salp swarm algorithm (SSA) [35], moth-flame optimization
(MFO) [36]. All experiments were run on MATLAB (R2021b). The portable computer used in this
work is 12th Gen Intel (R) Core (trademark) i7-12700 (20 central processing units) with @2.10 Giga
Hertz. Windows 10 operating system. All algorithms are compared after running 30 times with an
initial population of 50 and 1000 iterations. All experiments were performed with the same settings.
Finally, the performance metrics of 30 runs on the benchmark functions are obtained, which are the
mean, standard deviation (std), minimum and maximum values of various benchmark functions, which
are given in Tables 6–8, respectively. In the table, the bold font is the optimal solution, and the under-
lined font represents the sub-optimal solution.
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Algorithm 4 Pseudo code of the PRPCSO algorithm
Input: FitFunc, M, pop, pmin, dim, lb, ub, rPercent, hPercent, mPercent
Output: Global best solution, Respective position vector

1: Initialize pop chickens and enter the relevant parameters;
2: All chickens were evaluated;
3: while t < M do
4: if t == 1 then
5: Rank according to fitness values to establish order as well as individual relationships within

the group;
6: end if
7: for each i ∈ [1, pop] do
8: if i == rooster then
9: Update its location using Eqs (2.1) and (2.2);

10: else
11: if i == hen then
12: Update its location by Algorithm 1;
13: else
14: Update its location by Algorithm 2;
15: end if
16: end if
17: Evaluate the new solution;
18: end for
19: if mod(t + 1,G) == 1 then
20: Generate new populations and update chickens’ hierarchal order;
21: end if
22: end while

return Global best solution, Respective position vector

4.2. Complexity analysis

As mentioned before, pop stands for the number of agents, dim is the number of dimensions and
M is the maximum number of iterations. The computational complexity of the metaheuristic can be
defined as: O(pop · dim · M). The computational complexity of PRPCSO is O(pop · dim + (2pop ·
dim+ pop+ 2) ·M + pop · dim/G) ≈ O(pop · dim ·M). Because it is shown in Algorithm 4, it has only
one inner loop, and the algorithm needs additional fitness evaluation for H(i) and h(i) only in the Padé
approximate part. To ensure fair and unbiased experiments, pop, dim and M are kept the same for all
algorithms in this paper.

4.3. Benchmark functions

This section verifies the search capability of PRPCSO through 23 classical test functions. PRPCSO
is used to find the extrema of these 23 functions. These functions are classical problems used to test the
robustness of the algorithm and they are of various types, which facilitates researchers to investigate
the algorithm from different aspects.
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Tables 1–3 show the details of the 23 functions, where F1 to F13 are high-dimensional problems
and F14 to F23 are mixed multi-modal problems. Functions F1 to F7 are unimodal, F6 is a step
function with a minimum and is discontinuous, and F7 is a quadratic function containing noise. The
multi-modal functions are F8 to F13, whose number of locally optimal solutions grows exponentially
with the dimensionality of the problem, and it has been pointed out in [38] that this type of problem
seems to be the most difficult class of optimization algorithms. The last class is F14 to F23, which are
low-dimensional and contain few locally optimal solutions.

Table 1. Information on the seven unimodal benchmark functions.

Functions Dim Range fmin

f1(x) =
n∑

i=1
x2

i 30 [−100, 100]n 0

f2(x) =
n∑

i=1
|xi| +

∏n
i=1 |xi| 30 [−10, 10]n 0

f3(x) =
n∑

i=1
(

i∑
j−1

x j)2 30 [−100, 100]n 0

f4(x) = maxi{|xi|, 1 ⩽ i ⩽ n} 30 [−100, 100]n 0

f5(x) =
n−1∑
i=1

[100(xi+1 − x2
i )2 + (xi − 1)2] 30 [−30, 30]n 0

f6(x) =
n∑

i=1
([xi + 0.5])2 30 [−100, 100]n 0

f7(x) =
n∑

i=1
ix4

i + random[0, 1) 30 [−1.28, 1.28]n 0

(a) F1 (b) F2 (c) F3 (d) F4

(e) F5 (f) F6 (g) F7

Figure 3. Unimodal benchmark functions.
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(a) F8 (b) F9 (c) F10 (d) F11

(e) F12 (f) F13

Figure 4. Multi-modal benchmark functions.

Table 2. Information on six multimodal functions.

Functions Dim Range fmin

f8(x) =
n∑

i=1
−xisin(

√
|xi|) 30 [−500, 500]n -12569.5

f9(x) =
n∑

i=1
[x2

i − 10 cos(2πxi) + 10] 30 [−5.12, 5.12]n 0

f10(x) = −20 exp(−0.2
√

1
n

n∑
i=1

x2
i ) 30 [−32, 32]n 0

− exp(1
n

n∑
i=1

cos(2πxi)) + 20 + e

f11(x) = 1
4000

n∑
i=1

x2
i −
∏n

i=1 cos( xi√
(i)

) + 1 30 [−600, 600]n 0

f12(x) = πn {10 sin(πy1) +
n−1∑
i=1

(yi − 1)2[1 + 10 sin2(πyi+1)] 30 [−50, 50]n 0

+(yn − 1)2} +
n∑

i=1
u(xi, 10, 100, 4)

yi = 1 + xi+1
4

u(xi, a, k,m) =


k(xi − a)m xi > a

0 − a < xi < a

k(−xi − a)m xi < −a

f13(x) = 0.1{sin2(3πxi) +
n∑

i=1
xi − 1)2[1 + sin2(3πxi + 1)] 30 [−50, 50]n 0

+(xn − 1)2[1 + sin2(2πxn)]} +
n∑

i=1
u(xi, 5, 100, 4)
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(a) F14 (b) F15 (c) F16 (d) F17

(e) F18 (f) F19

(g) F20 (h) F21 (i) F22 (j) F23

Figure 5. Fixed-dimension Multi-modal benchmark functions.

Table 1 corresponds to the mathematical representation of seven unimodal benchmark functions
including function calculation formulas, dimension, the scope of the search space and the true optimal
solution. Figure 3 is a schematic diagram on its 3D space, and it can be seen that the 3D plot of each
function is concave and unimodal. Table 2 and Figure 4 correspond to the mathematical representation
and 3D image presentation of the six multi-modal benchmark functions, respectively. It is obvious
that the mathematical formulation of the multi-modal function is more complex than the mathematical
formulation of the unimodel, and its multi-modal nature can be clearly seen from Figure 4. Finally,
Table 3 and Figure 5 show fixed-dimension multi-modal benchmark functions, which have smaller
dimension and search range than the other two, and the true optimal solution is also different from them.
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Table 3. Fixed-dimension Multi-modal benchmark functions.

Functions Dim Range fmin

f14(x) = ( 1
500 +

25∑
j=1

1

j+
2∑

i=1
(xi−ai j)6

)−1 2 [−65.536, 65.536]n 1

f15(x) =
11∑
i=1

[ai −
x1(b2

i +b1 x2)
b2

i +b1 x3+x4
]2 4 [−5, 5]n 0.0003075

f16(x) = 4x2
1 − 2.1x4

1 +
1
3 x6

3 + x1x2 − 4x2
2 + 4x4

2 2 [−5, 5]n -1.0316285
f17(x) = (x2 −

5.1
4π2 x2

1 +
5
π
x1 − 6)2 2 [−5, 5]n 0.398

+10(1 − 1
8π ) cos x1 + 10

f18(x) = [1 + (x1 + x2 + 1)2(19 − 14x1 2 [−2, 2]n 3
+3x2

1 − 14x2 + 6x1x2 + 3x2
2)] × [30 + (2x1 − 3x2)2

×(18 − 32x1 + 12x2
1 + 48x2 − 36x1x2 + 27x2

2)]

f19(x) =
4∑

i=1
ci exp(−

3∑
j=1

ai j(x j − pi j)2) 4 [1, 3]n -3.86

f20(x) =
4∑

i=1
ci exp(−

6∑
j=1

ai j(x j − pi j)2) 6 [0, 1]n -3.32

f21(x) =
5∑

i=1
[(X − ai)(X − ai)T + ci]−1 4 [0, 10]n -10

f22(x) =
7∑

i=1
[(X − ai)(X − ai)T + ci]−1 4 [0, 10]n -10

f23(x) =
10∑
i=1

[(X − ai)(X − ai)T + ci]−1 4 [0, 10]n -10

4.4. Parameter setting

This section describes the parameter settings involved in the experiments. In order to ensure the
fairness of the experiment, we only set the common parameters of all algorithms (such as population
size, dimension of decision variable, maximum iteration number, etc.) without modifying the original
code of the comparison algorithm. Other unique parameters will be configured in accordance with the
settings outlined in the respective references of the algorithm. Moreover, specific parameters (ι, pmin,
r) associated with PRPCSO require testing to ascertain their optimal values for the final configuration.
For the parameter MAXNFE, it is set to 200,000 in order to meet the requirements of the number of
iterations; the other parameters of PRPCSO are kept consistent with the CSO algorithm.

During the experiment, four levels were considered for each parameter to be tested separately.
Following the principles of the Taguchi method [37], 16 distinct value schemes were delimited. Con-
sidering that these three parameters all serve the population shrinkage strategy in order to reduce the
running pressure of the algorithm, the average time of each run after running PRPCSO 30 times is
taken as the response variable (consider the F1 test function) , and the experimental results are detailed
in Table 4.
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Table 4. Parameter matrix and response variable values.

Index ι pmin r response variable values
1 0.05 26 3 0.2488
2 0.05 28 5 0.2508
3 0.05 30 7 0.2517
4 0.05 32 9 0.3016
5 0.10 26 5 0.2416
6 0.10 28 3 0.2493
7 0.10 30 9 0.2500
8 0.10 32 7 0.2537
9 0.15 26 7 0.2458
10 0.15 30 3 0.2467
11 0.15 28 9 0.2474
12 0.15 32 5 0.2528
13 0.20 26 9 0.2377
14 0.20 32 3 0.2512
15 0.20 28 7 0.2444
16 0.20 30 5 0.2503

The average response variable values (ARV) corresponding to different levels of each parameter are
shown in Table 5. The results indicate that the algorithm achieves optimal running speed when ι is set
to 0.2, pmin is set to 26 and r is set to five.

Table 5. ARV for different parameter values.

ι ARV pmin ARV r ARV

0.05 0.2633 262626 0.24350.24350.2435 3 0.2490
0.10 0.2487 28 0.2480 555 0.24880.24880.2488
0.15 0.2482 30 0.2497 7 0.2489
0.200.200.20 0.24590.24590.2459 32 0.2649 9 0.2592

4.5. Performance assessment

The test results of the PRPCSO algorithm and the other six algorithms on 23 benchmark functions
are evaluated in this section. See Tables 6–8. The performance of each algorithm on these seven
unimodal are provided in Table 6. The table results indicate GWO’s strong competitiveness in ad-
dressing unimodal problems. However, PRPCSO still demonstrates commendable performance across
five functions, excelling notably in functions F4 and F5, while securing the second-best performance
in the remaining three functions (F1, F2, F7). The optimization problems in the F8 to F13 class are
considered to be the most challenging. According to the performance analysis of these six problems in
Table 7, it is not difficult to find that the performance of our proposed algorithm is significantly better
than the other six comparison algorithms on F9–F12. In addition, the ranking of our proposed algo-
rithm on F13 also shows strong competitiveness, which proves the superiority of PRPCSO in solving
multimodal optimization problems. F14 to F23 are fixed-dimension multi-modal optimization prob-
lems. Table 8 shows that PRPCSO performs satisfactorily on 10 benchmark functions. Although other
comparison algorithms also achieve similar optimal solutions, PRPCSO achieves lower std values with
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similar solutions. This proves that the superiority of PRPCSO is not only reflected in the solution ac-
curacy but also in the solution robustness. In addition, PRPCSO shows better search ability than CSO
on all test functions, which indicates that our proposed algorithm is an effective improvement.

Unimodal functions can be used to evaluate the exploitation ability of an algorithm, and multi-
modal functions can be used to evaluate the exploration ability of an algorithm. The ability of the
algorithm to avoid local optima can be evaluated by using a multi-modal function. The experimental
performance of the PRPCSO algorithm on 23 functions shows that it is an excellent combination of
local exploitation and global exploration.

Table 6. Results of unimodal benchmark functions.

function CSO GWO SCA ALO SSA MFO PRPCSO

f1 mean 3.52E-45 1.38E-691.38E-691.38E-69 2.27E-03 5.85E-07 8.83E-09 1333.3334 2.08E-46
std 1.58E-44 3.79E-693.79E-693.79E-69 6.04E-03 4.17E-07 2.13E-09 3457.4590 4.40E-46
min 9.09E-55 1.03E-721.03E-721.03E-72 8.13E-08 9.86E-08 5.07E-09 6.46E-06 9.23E-53
max 8.52E-44 1.69E-681.69E-681.69E-68 2.45E-02 1.73E-06 1.40E-08 10000 2.12E-45

f2 mean 8.00E-39 5.70E-415.70E-415.70E-41 1.00E-05 3.81E-01 0.5653 38.0002 2.69E-39
std 1.75E-38 5.50E-415.50E-415.50E-41 1.86E-05 4.52E+01 0.8731 18.4578 4.69E-39
min 1.70E-42 3.05E-423.05E-423.05E-42 4.97E-08 1.44E-02 0.0022 10.0001 5.84E-45
max 7.89E-38 1.86E-401.86E-401.86E-40 7.65E-05 1.43E+02 3.8700 80.0000 1.95E-38

f3 mean 2035.5631 3.72E-193.72E-193.72E-19 2860.8623 2.75E+02 41.8160 13459.6012 790.1403
std 996.3636 1.54E-181.54E-181.54E-18 3010.3132 1.00E+02 29.3666 11102.5381 653.0734
min 265.2085 2.32E-252.32E-252.32E-25 167.8583 8.25E+01 5.2595 142.0716 14.7509
max 4489.5070 8.47E-188.47E-188.47E-18 11581.3715 5.24E+02 119.9813 35006.2993 2.73e+03

f4 mean 8.8512 1.34E-17 13.21308 10.6803 4.2649 52.3683 2.98e-2442.98e-2442.98e-244
std 8.6687 1.50E-17 7.2976 4.7471 3.2599 10.0618 000
min 0.0053 1.11E-18 1.7985 4.0835 0.3896 25.0419 000
max 26.3844 7.05E-17 29.5624 27.6545 12.2401 72.0400 8.94e-2438.94e-2438.94e-243

f5 mean 34.2925 26.4411 86.190379 95.1932 131.0338 24484.8673 25.734125.734125.7341
std 34.8687 0.6502 161.1930 189.8797 169.8673 40232.0860 0.62170.62170.6217
min 26.9533 25.1891 28.0691 25.6544 24.9240 17.7747 24.665624.665624.6656
max 218.8825 27.7481 647.0520 1044.0978 665.3988 90079.5694 27.278627.278627.2786

f6 mean 3.0110 0.4261 4.291645 5.00E-07 8.98E-098.98E-098.98E-09 330.0084 0.0021
std 0.5119 0.2772 0.3205 4.50E-07 1.49E-091.49E-091.49E-09 1807.5301 0.0015
min 1.9506 0.000008 3.5429 7.13E-08 5.92E-095.92E-095.92E-09 9.19E-07 2.40e-04
max 3.9455 1.253018 5.2019 1.72E-06 1.186E-081.186E-081.186E-08 9900.2500 0.0071

f7 mean 0.016057 0.00030.00030.0003 0.0196 0.0437 0.0527 6.2370 0.0058
std 0.0334 0.00020.00020.0002 0.0215 0.0189 0.0154 10.2140 0.0032
min 0.0008 0.00000.00000.0000 0.0018 0.0120 0.0181 0.0262 0.0021
max 0.1413 0.00080.00080.0008 0.1199 0.0891 0.0820 34.9651 0.0158
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Table 7. Results of multi-modal benchmark functions.

function CSO GWO SCA ALO SSA MFO PRPCSO

f8 mean -7654.4666 -6382.8472 -3926.4987 -5585.4462 -7754.1925 -8814.4881-8814.4881-8814.4881 -7424.1018
std 562.7150 695.4723 266.1356266.1356266.1356 555.6855 587.7483 705.6383 706.8838
min -8659.9485 -8284.6623 -4434.8448 -8502.9480 -8891.6091 -10590.9578-10590.9578-10590.9578 -8525.7853
max -6868.3753 -4839.1327 -3424.6095 -5417.6748 -6783.2155 -7340.6252-7340.6252-7340.6252 -6075.9664

f9 mean 0.7205 0.6116 19.4212 67.7566 47.7580 158.6928 000
std 3.9465 1.9175 25.5091 19.8224 12.4763 33.1943 000
min 0 0 3.00E-6 38.8033 18.9042 100.4905 000
max 21.6160 7.2840 116.6615 117.4048 78.6015 238.0782 000

f10 mean 6.93E-15 1.31E-14 10.6479 1.9030 1.8327 12.3331 6.09E-156.09E-156.09E-15
std 1.86E-15 2.41E-15 9.3909 0.5052 0.7939 8.5879 1.80E-151.80E-151.80E-15
min 4.44E-15 7.99E-15 0.0001 0.9329 2.15E-05 0.0010 4.44E-154.44E-154.44E-15
max 7.99E-15 1.51E-14 20.3164 3.4621 3.2844 19.9591 7.99E-157.99E-157.99E-15

f11 mean 0.0076 0.0014 0.1945 0.0121 0.0102 15.0656 0.00070.00070.0007
std 0.0270 0.0055 0.2568 0.0123 0.0113 34.2321 0.00290.00290.0029
min 0 0 2.00E-6 3.91E-05 1.82E-08 1.06E-05 000
max 0.1156 0.0229 0.8175 0.0495 0.0394 90.7379 0.01360.01360.0136

f12 mean 1.0635 0.0215 0.5964 8.8174 3.7450 8533334.23 0.00030.00030.0003
std 2.3907 0.0131 0.2191 5.5645 2.5036 46738994.7573 0.00020.00020.0002
min 0.1084 0.0057 0.3888 3.9331 0.1169 1.01E-051.01E-051.01E-05 3.79E-05
max 9.0288 0.0654 1.4304 31.8536 12.9931 256000017.7553 0.00110.00110.0011

f13 mean 3.7145 0.2961 6.6460 0.0147 0.00900.00900.0090 27337516.8500 0.0810
std 11.3556 0.2001 9.4774 0.0268 0.01340.01340.0134 104036254.2859 0.0753
min 0.9714 0.000016 2.0163 7.45E-08 4.06E-104.06E-104.06E-10 9.02E-06 0.0032
max 63.8140 0.8582 40.0867 0.1316 0.05480.05480.0548 410062760.1113 0.3172
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Table 8. Results of fixed-dimension multi-modal benchmark functions.

function CSO GWO SCA ALO SSA MFO PRPCSO

f14 mean 1.0641 1.0311 1.3949 1.2958 0.9980 1.4612 0.99800.99800.9980
std 0.3622 4.0562 0.8071 0.6457 2.45E-16 0.7701 000
min 0.9980 0.9980 0.9980 0.9980 0.9980 0.9980 0.99800.99800.9980
max 2.9821 12.6705 2.9821 3.9683 0.9980 2.9821 0.99800.99800.9980

f15 mean 0.0007 0.0050 0.0009 0.0048 0.0009 0.0015 0.00030.00030.0003
std 0.0001 0.0085 0.0004 0.0125 0.0003 0.0036 0.00010.00010.0001
min 0.0004 0.0003 0.0003 0005 0.0003 0.0006 0.00030.00030.0003
max 0.0014 0.0203 0.0014 0.0632 0.0013 0.0204 0.00070.00070.0007

f16 mean -1.0316 -1.0316 -1.0316 -1.0316 -1.0316 -1.0316 -1.0316-1.0316-1.0316
std 1.12E-10 2.98E-09 1.46E-05 4.00E-14 6.97E-15 6.77E-16 9.89E-119.89E-119.89E-11
min -1.0316 -1.0316 -1.0316 -1.0316 -1.0316 -1.0316 -1.0316-1.0316-1.0316
max -1.0316 -1.0316 -1.0315 -1.0316 -1.0316 -1.0316 -1.0316-1.0316-1.0316

f17 mean 0.3978 0.3978 0.3987 0.3979 0.3979 0.3979 0.39790.39790.3979
std 1.09e-07 5.43E-05 1.25E-03 4.67E-15 2.16E-15 0 000
min 0.3978 0.3978 0.3979 0.3979 0.3979 0.3979 0.39790.39790.3979
max 0.3978 0.3981 0.4029 0.3979 0.3979 0.3979 0.39790.39790.3979

f18 mean 3 3.000005 3.000009 3 3 3 333
std 2.17E-07 5.90E-06 1.84E-05 2.12E-13 7.82E-14 1.61E-15 9.99E-169.99E-169.99E-16
min 3 3 3 3 3 3 333
max 3 3 3.0001 3 3 3 333

f19 mean -3.8626 -3.8617 -3.8564 -3.8628 -3.8628 -3.8628 -3.8628-3.8628-3.8628
std 6.25E-04 2.64E-03 3.12E-03 8.22E-15 8.42E-15 2.71E-15 2.71E-152.71E-152.71E-15
min -3.8627 -3.8627 -3.8625 -3.8628 -3.8628 -3.8628 -3.8628-3.8628-3.8628
max -3.8593 -3.8549 -3.8539 -3.8628 -3.8628 -3.8628 -3.8628-3.8628-3.8628

f20 mean -3.2680 -3.2679 -2.8998 -3.2507 -3.2382 -3.2203 -3.2780-3.2780-3.2780
std 0.0660 0.0710 0.3329 0.0592 0.0558 0.0553 0.05430.05430.0543
min -3.3219 -3.3219 -3.2762 -3.3220 -3.3220 -3.3220 -3.3220-3.3220-3.3220
max -3.1459 -3.0866 -1.9181 -3.2031 -3.2008 -3.1376 -3.2031-3.2031-3.2031

f21 mean -9.8521 -9.3093 -2.8795 -7.3794 -7.9735 -7.1354 -10.1328-10.1328-10.1328
std 0.9466 1.9185 2.2051 3.1235 3.2141 3.1857 0.08190.08190.0819
min -10.1531 -10.1531 -7.2573 -10.1532 -10.1532 -10.1532 -10.1532-10.1532-10.1532
max -5.0551 -5.0551 -0.497295 -2.6305 -2.6305 -2.6305 -9.7140-9.7140-9.7140

f22 mean -9.6777 -10.2254 -4.3896 -8.1360 -9.0111 -8.2851 -10.0877-10.0877-10.0877
std 2.0425 0.9703 1.7626 3.0961 2.6190 3.3173 0.08240.08240.0824
min -10.4029 -10.4028 -6.8765 -10.4029 -10.4029 -10.4029 -10.4029-10.4029-10.4029
max -2.7658 -5.0876 -0.9079 -2.7519 -2.7519 -2.7659 -9.9515-9.9515-9.9515

f23 mean -10.2385 -10.2656 -4.881734 -7.4026 -9.3903 -8.3420 -10.0627-10.0627-10.0627
std 2.7342 1.4814 1.6310 3.2671 2.6545 3.1846 1.48051.48051.4805
min -10.5364 -10.5363 -8.9339 -10.5364 -10.5364 -10.5364 -10.5364-10.5364-10.5364
max -2.8659 -2.4217 -0.9432 -2.8066 -2.4773 -2.4273 -3.8354-3.8354-3.8354
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4.6. Statistical analysis

The nonparametric Friedman test [39] was used to evaluate algorithms and calculate the probability
values (p-values). This statistical test is used for multiple comparisons to determine significant differ-
ences between algorithms, and the number of trials in this paper is 30. The Friedman statistic can be
computed using the following formula:

χ2
F =

12N
k(k + 1)

[
k∑

j=1

r2
j −

k(k + 1)2

4
]. (4.1)

In this work, N and k represent the number of datasets and algorithms, respectively, which are 23
and five; r j denotes the average ranking of jth algorithm. If the p-value is below a preset significance
level (0.05 in this work), the null hypothesis is rejected and a statistically noteworthy distinction in the
performance of each algorithm can be confirmed.

Table 9 displays the outcomes of the test, where our proposed algorithm PRPCSO has the highest
average rank on 14 test functions and, in addition, achieves sub-optimal average rank on four functions
(F1, F7, F22, F23). The p-values were all ≤ 0.05 and the null hypothesis was rejected. The advantages
of PRPCSO over other algorithms are proved. In addition, the Friedman test is performed on the
ranking of these seven algorithms over 23 functions, and the overall mean ranks obtained are shown
in Figure 6. It is easy to find that PRPCSO ranks first, followed by GWO, SSA, CSO, MFO, ALO
and SCA. PRPCSO demonstrates a strong performance, while SSA and GWO also exhibit notable
competitiveness in the results.

Figure 6. Rank of multiple algorithms on 23 functions.
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Table 9. Mean ranks of tested algorithms and p-value from Friedman test for 23 benchmark
function.

function CSO GWO SCA ALO SSA MFO PRPCSO p-value

f1 2.6667 111 6.5667 5.0667 4 6.3667 2.3333 1.14E-34
f2 2.3333 1.26671.26671.2667 4 6.1667 5.2000 6.6333 2.4000 2.66E-33
f3 5.5667 111 5.3667 3.2667 2.0300 6.7667 4.0000 1.26E-32
f4 4.4333 2 5.2667 4.6667 3.6333 7 111 3.00E-31
f5 4.0000 2.6667 5.2333 4.5333 4.0667 6.2000 1.30001.30001.3000 1.52E-19
f6 5.9667 4.5667 6.7000 2 111 3.8000 3.9667 1.88E-31
f7 2.9667 111 3.8000 5.7333 5.5333 6.2000 2.7667 8.66E-28
f8 2.5667 4.6000 6.9667 5.7667 2.5000 1.26671.26671.2667 4.3333 5.65E-31
f9 1.9833 2.0667 4.2000 5.6667 5.1667 6.9333 1.98331.98331.9833 3.77E-34
f10 1.5500 2.9500 5.9333 5.3000 4.9000 5.8667 1.50001.50001.5000 6.91E-30
f11 2.5000 2.3833 5.5667 5 4.9000 5.7000 1.95001.95001.9500 1.48E-21
f12 4.8333 2.4000 4.4667 6.6667 5.7000 2.5667 1.36671.36671.3667 1.18E-28
f13 6.1667 4.7667 6.7667 2.2667 1.73331.73331.7333 2.6667 3.6333 2.26E-29
f14 3.2000 6.1667 5.9000 4.4167 3.3667 3.3667 1.58331.58331.5833 2.06E-20
f15 4.0333 3.0333 5.3667 4.3333 4.8333 5.3333 1.06671.06671.0667 3.11E-17
f16 2.2667 5.9667 7 4.7000 4.1667 1.9500 1.95001.95001.9500 3.24E-34
f17 2.5333 6.0333 6.9667 3.5833 3.7167 2.5333 2.53332.53332.5333 7.98E-32
f18 2.2333 6.4667 6.5333 4.5667 4.3333 2.1833 1.68331.68331.6833 7.23E-33
f19 5.1333 5.6333 6.9333 3.5833 3.6167 1.5500 1.55001.55001.5500 9.02E-33
f20 3.7000 3.6667 7 3.1000 5.0667 3.4833 1.98331.98331.9833 2.72E-19
f21 4.5667 3.7000 6.1333 4.7333 3.1333 3.4833 2.25002.25002.2500 2.10E-11
f22 5.3333 4.2667 6.3667 4 2.50002.50002.5000 2.8000 2.7333 1.43E-15
f23 5.3333 4.4667 6.2333 4.2333 3.3333 2.06672.06672.0667 2.3333 2.90E-17

After the above experimental analysis of 23 test functions, it can be concluded that compared with
CSO, PRPCSO has greatly improved the solution accuracy and robustness in single-modal, multi-
modal and mixed-dimensional multi-modal problems. This is due to the integration of multiple strate-
gies: First, the Padé approximation strategy helps hens to locate the optimal solution more quickly and
accurately, and also improves the solving ability of chicks. This strategy helps the algorithm to exploit
better locally. Second, the random learning mechanism is also very effective to help the chicks, which
largely avoids the agents from falling into the dilemma of local optimum. In addition, the population
size shrinkage strategy not only improves the running speed, but also ensures the balance between
global exploration and local exploitation.

5. Experimental Study II: Solving engineering problems

Benchmark function tests underscore the superior performance of PRPCSO in various straightfor-
ward problems. Nevertheless, real-world optimization challenges in diverse fields tend to be more
intricate than benchmark functions, often involving complex computational methods and constraints.
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Consequently, there is a need to assess the effectiveness of PRPCSO in addressing real-world prob-
lems. Six practical engineering problems are first introduced (schematics from [40,41]) in this section.
PRPCSO is tested and compared with the other six excellent comparison algorithms (CSO, GWO,
SCA, ALO, SSA and MFO) on these practical engineering design problems. These are the questions:
Three-bar truss design, vessel design, rolling element bearing design, tension/compression spring de-
sign, cantilever beam design and gear train design. The engineering optimization problems pose sig-
nificant challenges due to the presence of numerous intricate constraints in the solving process.

5.1. Three bar truss design problem

The first question concerns the design of the three-bar truss. The weight of the truss is minimized
by adjusting the element parameters s1 and s2. While the objective function is straightforward, the
complexity arises from three types of constraints, namely, G1, G2 and G3, corresponding to stress,
deflection and buckling constraints, respectively. The mathematical formulation of the question is
provided below and Figure 7 illustrates the schematic diagram:

min f (s) = (2
√

2s1 + s2) × V, (5.1)

s.t. G1 =

√
2s1 + s2

√
2s2

1 + 2s1s2

Q − σ ≤ 0,

G2 =
z2

√
2s2

1 + 2s1s2

Q − σ ≤ 0,

G3 =
1

√
2s2 + s1

Q − σ ≤ 0, (5.2)

where s1 ∈ [0, 1], s2 ∈ [0, 1],V = 100cm,Q = 2KN/cm2, σ = 2KN/cm2.

Figure 7. Three-bar truss design.

5.2. Pressure vessel design problem

The second problem wants to obtain the pressure vessel with the smallest possible manufacturing
cost. The object function involves four variables (s1, s2, s3, s4), and the optimization process is subject
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to four constraints (G1,G2,G3,G4). The representation of the problem is depicted in Figure 8:

min f (s) = 0.6224s1s3s4 + 1.7781s2s3
3 + 3.1661s2

1s4 + 19.84s2
1s3, (5.3)

s.t. G1 = −s1 + 0.0193s3 ≤ 0,
G2 = −s2 + 0.00954s3 ≤ 0,

G3 = −πs2
3s4 −

4
3
πs3

3 + 1, 296, 000 ≤ 0,

G4 = s4 − 240 ≤ 0, (5.4)

where s1 ∈ [0, 99]; s2 ∈ [0, 99]; s3 ∈ [0, 200]; s4 ∈ [0, 200].

Figure 8. Pressure vessel design.

5.3. Rolling element bearing design problem

The objective of the third engineering case is to maximize the dynamic load carrying capacity of
rolling element bearings. For computational convenience, the original objective function is transformed
into a minimization optimization problem by ×(−1) during the experimentation in this paper. The
representation of this problem is shown in Figure 9:

Variable x = [dm, db,Z, fi, f0,Kdmin ,Kdmax , ϵ, e, ξ],

min f (x) =

 fc · Z
2
3 · d1.8

b if db ≤ 25.4mm

3.647 fc · Z
2
3 · d1

b.4 else
,

(5.5)

s.t., G1(x) =
Φ0

2 sin−1( db
dm

)
− Z + 1 ≥ 0,

G2(x) = 2db − Kdmin(d − D) ≥ 0,
G3(x) = Kdmax(d − D) − 2db ≥ 0,
G4(x) = dm − (0.5 − e)(d + D) ≥ 0,
G5(x) = (0.5 + e)(d + D) − dm ≥ 0,
G6(x) = dm − 0.5(d + D) ≥ 0,
G7(x) = 0.5(d − dm − db) − ϵdb ≥ 0,
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G8(x) = ζBw − db ≤ 0,
G9(x) = fi ≥ 0.515,
G10(x) = f0 ≥ 0.515, (5.6)

where,

fc = 37.911 + [1.04(
1 − γ
1 + γ

)1.72(
fi(2 f0 − 1)
f0(2 fi − 1)

)0.4]
10
3

−0.3

× (
γ0.3(1 − γ)1.39

f0(1 + γ)
1
3

)(
2 fi

2 fi − 1
)0.41,

γ =
db

dm
, fi =

ri

db
, f0 =

r0

db
,

Φ0 = 2π − 2 cos−1 (d−D
2 −

3T
4 )2 + ( d

2 −
T
4 − db)2 − ( D

2 +
T
4 )2

2(d−D
2 −

3T
4 )( d

2 −
T
4 − db)

,

T = d − D − 2db, d = 160, D = 90, Bw = 30, ri = r0 = 11.033, (5.7)

with variable range

0.5(d + D) ≤ dm ≤ 0.6(d + D),
0.15(d − D) ≤ db ≤ 0.45(d − D),
4 ≤ Z ≤ 50,
0.515 ≤ fi ≤ 0.60,
0.515 ≤ f0 ≤ 0.60,
0.40 ≤ KdMin ≤ 0.50,
0.60 ≤ KdMax ≤ 0.70,
0.30 ≤ ϵ ≤ 0.40,
0.02 ≤ e ≤ 0.10,
0.60 ≤ ζ ≤ 0.85. (5.8)

Figure 9. Rolling element bearing design.
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5.4. Tension or compression spring design problem

This problem focuses on minimizing the coil weight by adjusting the variables x1, x2, x3, while
ensuring satisfaction of four constraints. The problem is formulated as follows and the representation
is shown in Figure 10:

min f (X) = (x3 + 2)x2x2
1, (5.9)

X = [x1 x2 x3] = [d D N], (5.10)

s.t. G1(x) = 1 −
x3

2x3

71785x4
1

≤ 0,

G2(x) =
4x2

2 − x1x2

12566(x2x3
1 − x4

1)
+

1
5108x2

1

≤ 0,

G3(x) = 1 −
140.45x1

x2
2x3

≤ 0,

G4(x) =
x1 + x2

1.5
− 1 ≤ 0, (5.11)

with variable range

0.05 ≤ x1 ≤ 2.00,
0.25 ≤ x2 ≤ 1.30,
2.00 ≤ x3 ≤ 15.00. (5.12)

Figure 10. Tension or compression spring design.

5.5. Cantilever beam design problem

The objective is to minimize the weight of the cantilever while adhering to constraints imposed by
five distinct block lengths. The problem is formulated as follows and the representation is shown in
Figure 11:

min f (X) = 0.0624 × (x1 + x2 + x3 + x4 + x5) × L, (5.13)
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s.t., g1(X) =
61
x3

1

+
37
x3

2

+
19
x3

3

+
7
x3

4

+
1
x3

5

− 1 ≤ 0, (5.14)

with variable range

0.01 ≤ xi ≤ 100, i = (1, 2, ..., 5). (5.15)

Figure 11. Cantilever beam design.

5.6. Gear train design problem

This question focuses on designing a gear train with the goal of minimizing the cost associated with
the gear ratios. The problem has four integer variables where Ta, Tb, Td and T f denote the number of
teeth of different gears. Tb

Ta
×

Td
T f

is ratio of transmission. The equation of the problem is given below, as
shown in Figure 12:

min f (X) = (
1

6.931
−

x3x2

x1x4
)2, (5.16)

X = [x1 x2 x3 x4] = [Ta Tb Td T f ], (5.17)

with variable range

12 ≤ x1, x2, x3, x4 ≤ 60. (5.18)

Figure 12. Gear train design.
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Table 10 presents the optimization results of seven swarm intelligence optimization algorithms
applied to six real engineering problems. The findings demonstrate that our proposed algorithm,
PRPCSO, exhibits superior performance across most engineering problems reflected in its consistently
lowest average fitness values. While GWO outperforms PRPCSO in specific scenarios such as the
pressure vessel design and rolling bearing element design problems, the proposed algorithm consis-
tently secures the second-best solution with enhanced robustness. Notably, real-world optimization
challenges often involve intricate constraints and diverse computational methods. The demonstrated
accuracy and robust performance of PRPCSO in the aforementioned tests gives us greater confidence
in it’s ability to address complex optimization problems across various real-world domains.

Table 10. Comparison of results for classical engineering problems.

function CSO GWO SCA ALO SSA MFO PRPCSO

Three-bar truss design mean 263.929 263.898 264.625 263.896 263.895 263.916 263.896263.896263.896
std 0.064 0.003 3.441 0.0003 0.001 0.039 6.09E-076.09E-076.09E-07
min 263.896 263.896 263.902 263.896 263.896 263.896 263.896263.896263.896
max 264.115 263.909 282.843 263.898 263.901 264.048 263.896263.896263.896

Pressure vessel design mean 6685.481 6122.6256122.6256122.625 6866.114 484761.218 6607.671 6318.142 6369.648
std 506.396 479.805 543.753 337653.799 604.644 528.172 330.952330.952330.952
min 5939.799 5888.117 6194.835 36746.398 5919.239 5885.3335885.3335885.333 5936.837
max 7339.426 7298.334 8531.817 1785286.904 7996.973 7319.001 7249.3707249.3707249.370

Rolling element bearing mean -83350.373 -85416.062-85416.062-85416.062 -81429.349 1.63E+21 -84461.8 -85180.2 -85413.231
design std 2949.252 88.29688.29688.296 2546.690 1.15E+21 2090.336 610.748 219.026

min -85483.173 -85525.858 -84298.256 9.69E+18 -85538.930 -85549.239 -85549.239-85549.239-85549.239
max -71839.949 -85142.181-85142.181-85142.181 -74060.956 4.30E+21 -76489.035 -83233.128 -84521.638

Tension/compression mean 0.013 0.013 0.013 1.73E+19 0.013 0.013 0.0120.0120.012
spring design std 1.05E-071.05E-071.05E-07 5.87E-05 1.5E-04 2.79E+19 0.0001 0.001 0.0005

min 1.267E-02 0.013 0.013 0.020 0.013 0.013 0.0120.0120.012
max 0.018 0.013 0.013 9.67E+19 0.0120.0120.012 0.017 0.015

Cantilever beam design mean 1.373 1.340 1.378 7.592 1.340 1.340 1.3401.3401.340
std 0.029 3.54E-05 0.016 1.614 1.33E-051.33E-051.33E-05 0.0002 3.66E-05
min 1.341 1.340 1.349 4.332 1.340 1.340 1.3401.3401.340
max 1.434 1.340 1.406 11.055 1.340 1.341 1.3401.3401.340

Gear train design mean 8.22E-11 1.25E-10 1.149E-09 0.001 1.63E-09 4.31E-09 6.31E-116.31E-116.31E-11
std 2.38E-10 2.96E-10 1.03E-09 0.003 3.28E-09 6.63E-09 1.65E-101.65E-101.65E-10
min 2.70E-12 2.70E-12 2.70E-12 1.48E-06 2.70E-12 9.93E-11 2.70E-122.70E-122.70E-12
max 9.75E-10 9.92E-10 4.50E-09 0.013 1.83E-08 2.73E-08 8.89E-108.89E-108.89E-10

6. Summary and discussion

This paper proposed a new CSO algorithm (PRPCSO). First, a new approximate technique and the
addition of the Padé approximate operator effectively improved the accuracy of the algorithm. The
random learning operator helped to reduce the possibility of chicks falling into local optima under the
influence of their mother hens. Finally, the intelligent population size shrinkage strategy was used to
eliminate some chickens with poor search capability in the later iteration of the algorithm, so as to
boost the running speed of the algorithm and prevent premature convergence. At the same time, it
ensured the balance between global exploration and local exploitation of the algorithm.

In order to evaluate the optimization ability of the algorithm, the PRPCSO algorithm was tested
on two different experiments: Test functions and engineering problems. In Experiment I, 23 different
types of functions were used to test the local exploitation and global exploration capabilities of the
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algorithm. Experimental results showed that PRPCSO algorithm has higher accuracy and stronger sta-
bility. The second set of experiments applied PRPCSO to practical engineering design, including six
practical engineering design problems such as three-bar truss design, ship design, rolling bearing de-
sign, tension/compression spring design, cantilever beam design and gear train design. In addition, the
high performance of PRPCSO in all experiments was verified by comparing six advanced optimization
algorithms. The numerical results showed that the PRPCSO algorithm exhibits better stability and so-
lution accuracy than CSO on all test problems. Among the seven algorithms, PRPCSO performed no
worse than the other algorithms. In most cases, the results of PRPCSO were satisfactory. Therefore,
PRPCSO can be considered as an effective improvement over the CSO algorithm. However, the experi-
ments also showed some shortcomings of PRPCSO, mainly reflected in the processing of single-modal
problems. GWO is a very competitive algorithm, which performed well on single-modal problems,
while PRPCSO was at the second best level on partial problems. This is also one of the problems we
need to solve in the future.

Although our improved algorithm performs well on 23 benchmark functions and six real-world
engineering problems, there is no free lunch [42], and no single algorithm performs good for all types
of functions. Our proposed algorithm still has the potential to advance, so more research directions may
be mined. Combining the strategy proposed in this work with other advanced metaheuristics algorithms
(such as GWO, dung beetle optimizer etc.) may provide more satisfactory results. In the future,
PRPCSO can find application in a broader spectrum of fields, including tasks like hyperparameter
optimization for extreme learning machines or aiding in addressing issues within recommendation
systems. Furthermore, there is potential for the development of multi-objective and many-objective
versions of PRPCSO to tackle more intricate optimization problems.
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