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Abstract: The Kalman filter based on singular value decomposition (SVD) can sufficiently reduce the 

accumulation of rounding errors and is widely used in various applications with numerical calculations. 

However, in order to improve the filtering performance and adaptability in a tightly GNSS/INS (Global 

Navigation Satellite System and Inertial Navigation System) integrated navigation system, we propose 

an improved robust method to satisfy the requirements. To solve the issue of large fluctuations in GNSS 

signals faced by the conventional method that uses a fixed noise covariance, the proposed method 

constructs a correction variable through the innovation and the new matrix which is obtained by 

performing SVD on the original matrix, dynamically correcting the noise covariance and has better 

robustness. In addition, the derived SVD form of the information filter (IF) extends its application. 

The proposed method has higher positioning accuracy and can be better applied to tightly coupled 

GNSS/INS navigation simulations and physical experiments. The experimental results show that, 

compared with the traditional Kalman algorithm based on SVD, the proposed algorithm’s maximum 

error is reduced by 45.77%. Compared with the traditional IF algorithm, the root mean squared error 

of the proposed IF algorithm in the form of SVD is also reduced by 4.7%. 

Keywords: Kalman filter; SVD; tightly coupled GNSS/INS navigation; covariance matching; 

information filter 
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1. Introduction  

The global navigation satellite system (GNSS), as the primary outdoor positioning method, has 

always attracted attention from scholars. In recent years, autonomous vehicles and unmanned transport 

equipment, which are sensitive to positioning performance, have developed rapidly at home and abroad. 

They have higher navigation and positioning performance requirements, requiring more accurate 

positioning accuracy and more robust environmental adaptability. 

With the development of differential positioning and precise single-point positioning [1–3], 

GNSS can already provide satisfactory positioning results. However, the problem is also apparent. For 

example, the receiver will fail to capture and output incorrect results or not output results when the 

satellite signal is blocked by buildings and vegetation in urban areas. As an independent closed-loop 

system, the inertial navigation system (INS) has the advantages of high autonomy and strong anti-

interference ability. After initial alignment, it can provide users with more accurate positioning results 

for a while without external input. However, due to inertial devices’ inherent characteristics, INS has 

an accumulation of errors, so the positioning accuracy decreases with time without external corrections. 

The GNSS/INS integrated system is highly complementary to each other. GNSS can correct the 

INS to prevent the accumulation of INS positioning errors, and INS can compensate for the deficiency 

that GNSS cannot position under the obstruction. It dramatically improves the performance of the 

entire positioning system. In loosely coupled GNSS/INS navigation, the GNSS receiver and the INS 

system work independently of each other, and the respective results are fused through the fusion 

algorithm [4,5]. There is a cascade between the filters, and the measurement noise is time-correlated. 

Therefore, the accuracy of the fusion result is limited [6]. Compared with loosely coupled integration, 

tightly coupled GNSS/INS navigation has a higher degree of fusion. It uses satellite receiver 

pseudorange and pseudorange rate for fusion, which has higher positioning accuracy and anti-jamming 

performance [7–9]. The deep coupled GNSS/INS has reached hardware-level integration. In addition 

to the correction of INS errors, it also involves assisting the code loop and carrier loop in the GNSS 

receiver’s baseband signal processing for signal acquisition and tracking through INS information [10]. 

Therefore, the entire system’s dynamic performance and anti-interference ability are better than those 

of the above two combinations [11,12]. 

Information fusion is the primary method of information processing in GNSS/INS integrated 

navigation. It can be roughly divided into filtering and non-linear optimization methods. The most 

representative of the filtering algorithms is the Kalman filtering algorithm under the Gaussian 

assumption and its various extended forms. The nonlinear optimization method is global optimization 

based on factor graphs. Its processing methods include the classic sum-product algorithm [13] and the 

latest incremental smoothing algorithm isam, isam2 proposed by Kaess et al. [14,15]. 

For positioning algorithms used in vehicles, there are specific prior pieces of information as well. 

We can assume that under normal circumstances, a vehicle will not have lateral or vertical velocity. 

Furthermore, zero velocity is also crucial information. When the target is at zero velocity, various states 

should remain unchanged. This can effectively constrain sensors such as IMU (Inertial Measurement 

Unit) that have cumulative divergence. In GNSS/INS fusion systems, the most commonly used zero 

velocity detection algorithms are those based on IMU measurements. These methods include 

generalized likelihood ratio testing (GLRT) [16,17]. Acceleration magnitude detection (MAG) [18] 

and angular rate magnitude detection (ARE) can also involve machine learning approaches or deep 

learning methods, such as support vector machines (SVM) [19,20] and neural networks [21–23]. 
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To ensure calculation accuracy and prevent divergence, there are two main methods: (a) The 

factorization method, i.e., reducing rounding errors and enhancing the filter’s numerical stability 

through factorization and (b) adaptive filtering algorithm, i.e., adaptively adjusting the covariance 

matrix and reducing the dependence on prior knowledge. 

The Kalman filtering algorithm of factorization has two forms: the Cholesky decomposition form 

and the singular value decomposition form. The SVD method was first proposed by Wang et al. [24]. 

The method decomposes the error covariance matrix and uses the decomposition factor to iterate. This 

method is also called the singular value decomposition-based square root Kalman filter (SVD-SRKF). 

Kulikova et al. [25] analyzed the shortcomings of the SVD-SRKF algorithm in a document published 

in 2017. The main shortcoming is that the error covariance matrix update formula is not used to reduce 

the accumulation of rounding errors. In addition, the noise matrix needs to be a Cholesky 

decomposition, which requires a rigorous matrix form. Kulikova et al. improved it and proposed the 

singular value decomposition-based Kalman filter (SVD-KF). 

Mehra divided adaptive filtering methods into four categories: Bayesian, maximum likelihood, 

correlation and covariance matching [26]. Among them, the covariance matching method is the most 

widely used. It uses the error between the current noise covariance and the theoretical covariance 

matrix to adaptively adjust the filtering process. In 1998, Mohamed et al. [27] proposed the innovation-

based adaptive estimation Kalman filter (IAEAKF) algorithm, which is based on innovations and 

utilizes maximum likelihood estimation for correction. They derived the correction process and also 

presented an equivalent form based on residuals. By correcting the noise covariance using innovations 

or residuals dynamically and without simultaneously correcting state noise and observation noise 

together, this method mitigates the impact of initialization errors and exhibits stronger interference 

resistance [28–30]. Bermudez et al. [31] used the standard deviation of an arithmetically differentiated 

small-signal segment to update the noise covariance matrix in SVD-based filter in 2020. It is also an 

adaptive method based on innovation. In 2017, Liu et al. [32] introduced a decay factor into IAEAKF 

for noise suppression in vehicle GNSS/INS integrated navigation systems. In 2019, Wei Sun proposed 

a new decay factor calculation method. In 2021, Pan et al. [33] added decay factors to the cubature 

Kalman filter (CKF) based on SVD to improve the robustness of the algorithm. The applications of 

decay factors enhance system stability and positioning accuracy and have practical value in certain 

scenarios. The Sage-Husa filter can be summarized as a Kalman filter based on covariance matching. 

It is constantly modified and adjusted in the iterative process to stabilize the filter. However, the main 

disadvantage is that the forgetting factor selection is difficult and the noise covariance is prone to be 

nonpositive definite before it becomes stable. The general solution is to adopt a suboptimal way to 

make corrections in the iterative process according to the actual situation [9,34]. The method proposed 

in our paper belongs to the algorithm based on covariance matching. 

The information filter (IF) algorithm is an equivalent form of the Kalman filtering algorithm, 

which has certain research value in some application scenarios. IF is concerned with the inverse matrix 

of the error covariance matrix rather than the matrix itself. Compared with the Kalman filter algorithm, 

the initialization of IF is more straightforward and the computational complexity of the iterative process is 

smaller. It is more appropriate to use IF for scenarios with sizeable initial error covariance [35]. In addition, 

there has been no exploration of the SVD form of IF and its adaptive performance. Therefore, research 

on the IF algorithm’s SVD form is also of great significance. 

Figure 1 shows an overall block diagram of the tightly GNSS/INS system. The input consists of 

raw data from IMU, GNSS observations, and satellite positions and velocities. The IMU data undergo 
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a low-pass filter (LPF) and are used as input for the inertial navigation system (INS) to predict the 

pseudorange and pseudorange rate. Additionally, a neural network is employed to classify the current 

motion state of the target. The fusion algorithm is Kalman filtering based on SVD. Since this algorithm 

is applied to ground vehicles, nonholonomic constraints (NHC) are applied to improve positioning 

accuracy. Zero velocity update (ZUPT) are also applied in stationary states. 

In general, the filtering form based on SVD reduces the accumulation of rounding error and has 

good filtering performance. The main contributions of this paper are reflected as follows. The Sage-

Husa filter method is used to improve the Kalman filter algorithm based on SVD. Then, the 

decomposed matrixes are used to derive the SVD form of the adaptive method and obtain a more 

robust filtering method. In response to the characteristics of commonly used filtering forms based on 

singular values, this paper employs various adaptive methods to enhance the stability of the filter. In 

addition, due to the performance improvement brought by SVD, this paper will also derive the SVD 

form of IF. This paper conducts comprehensive experiments to compare the impact of the proposed 

method and common methods on positioning accuracy. 

The structure of the article is as follows. First, it introduces how to perform zero velocity detection 

using neural networks based on IMU raw data. Second, it introduces the GNSS and INS tightly coupled 

integrated navigation model and then proposes an improved algorithm. Then, the SVD form of the IF 

is derived. Finally, the performance of the algorithm is verified by simulation and physical experiments. 

Low Pass Filter Neural Network
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pseudorange rate

Low Noise Measurements
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Figure 1. Block diagram of the tight GNSS/INS system. 

2. A zero-velocity detection based on a neural network 

Using a neural network for zero velocity determination is a binary classification task. The input 

consists of raw data from IMU measurements, which include three-axis accelerometer readings and 

three-axis gyroscope readings. The output indicates the zero-velocity state, distinguishing between 

stationary and in-motion states. The details on the network can be found in reference [21]. To 

emphasize the IMU features more effectively, a low-pass filter is applied to the data before feeding it 

into the network. This filtering aims to remove noise that could affect the network's classification. Here, 
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a second-order digital low-pass filter is chosen, which allows for minimal delay while rapidly 

attenuating information outside the cutoff frequency. 

In general, IMU data first go through the zero-velocity determination network. If the system is in 

a zero-velocity state at this moment, velocity and heading constraints are applied to maintain the 

current state. 

3. Tightly coupled GNSS/INS navigation model 

In the Kalman filter model of tightly coupled GNSS/INS integrated navigation, the state and 

measurement equation are: 

 𝑥𝑘 = 𝛷𝑘−1𝑥𝑘−1 + 𝑤𝑘−1 (1) 

 𝑧𝑘 = 𝐻𝑘𝑥𝑘 + 𝑣𝑘 (2) 

where (1) is the equation of state and the subscripts 𝑘 and 𝑘 − 1 represent moments 𝑘 and 𝑘 − 1 

respectively. State parameter 𝑥𝑘 = [𝛿𝜙, 𝛿𝑣, 𝛿𝑝, 𝜀, 𝛻, 𝑏𝑐𝑙𝑘]𝑇 , 𝛿𝜙  is the attitude error of the carrier 

coordinate system relative to the reference coordinate system. 𝛿𝑣 and 𝛿𝑝 are the velocity error and 

position error, respectively. 𝜀 is the bias of the accelerometer, 𝛻 is the bias of the gyroscope and 

𝑏𝑐𝑙𝑘 represents the clock offset and clock drift of the GNSS receiver. 𝛷𝑘 is the state transition matrix, 

which is derived from the INS error equation. The continuous-to-discrete process adopts the first-order 

approximation. Eq (2) represents the measurement equation, and the measurement vector 𝑧𝑘  is 

expressed as follows: 

 𝑧𝑘 = [
𝛿𝜌𝑘

𝛿𝜌̇𝑘
] = [

(𝜌𝐺
1 − 𝜌̂𝐼

1, 𝜌𝐺
2 − 𝜌̂𝐼

2, ⋯ )𝑇

(𝜌̇𝐺
1 − 𝜌̂̇𝐼

1, 𝜌̇𝐺
2 − 𝜌̂̇𝐼

2, ⋯ )𝑇] (3) 

where 𝜌𝐺
𝑖  and 𝜌̇𝐺

𝑖  (𝑖 = 1,2 … 𝑀 , 𝑀  is the number of visible satellites) are the pseudorange and 

pseudorange rates of the i-th satellite, respectively. 𝜌̂𝐼 and 𝜌̂̇𝐼 are the pseudorange and pseudorange 

rates predicted by the INS results. 𝐻𝑘  is the measurement matrix. 𝑤𝑘  and 𝑣𝑘  are the state noise 

vector and the measurement noise vector, respectively, and both are assumed to be Gaussian white 

noise with zero mean. Also, the covariances are represented by 𝑅𝑘 and 𝑄𝑘 [36]. 

4. Filter algorithm based on singular value decomposition 

Section 4.1 first gives the algorithm procedure of SVD-SRKF and SVD-KF and then improves 

the above two algorithms, adds constraints and proposes a more robust form. Section 4.2 derives a new 

form of IF, the SVD form of IF. 

4.1. Improved SVD-SRKF and SVD-KF 

The SVD-SRKF algorithm procedure is given below, and the detailed derivation process can be 

found in reference [24]. 

Initialization process: 

 𝑃0|0 = 𝑈𝑃0|0
𝐷𝑃0|0

2 𝑈𝑃0|0

𝑇  (4) 
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 𝑥0|0 = 𝑥0|0 (5) 

Iteration process: 

 𝐿𝑅𝐾
𝐿𝑅𝐾

𝑇 = 𝑅𝑘
−1 (6) 

 𝐿𝑄𝐾
𝐿𝑄𝐾

𝑇 = 𝑄𝑘 (7) 

 𝑥𝑘|𝑘−1 = 𝛷𝑘−1𝑥̂𝑘−1|𝑘−1 (8) 

 [
𝐷𝑃𝑘−1|𝑘−1

𝑈𝑃𝑘−1|𝑘−1

𝑇 𝛷𝑘−1

𝐿𝑄𝐾

𝑇
] = 𝑈𝑃𝑘|𝑘−1

∗ [
𝐷𝑃𝑘|𝑘−1

∗

0
] 𝑉𝑃𝑘|𝑘−1

∗𝑇  (9) 

 𝑈𝑃𝑘|𝑘−1
= 𝑉𝑃𝑘|𝑘−1

∗  (10) 

 𝐷𝑃𝑘|𝑘−1
= 𝐷𝑃𝑘|𝑘−1

∗  (11) 

 [
𝐿𝑅𝐾

𝑇 𝐻𝑘𝑈𝑃𝑘|𝑘−1

𝐷𝑃𝑘|𝑘−1

−1 ] = 𝑈𝑃𝑘|𝑘

∗ [
𝐷𝑃𝑘|𝑘

∗

0
] 𝑉𝑃𝑘|𝑘

∗𝑇  (12) 

 𝑈𝑃𝑘|𝑘
= 𝑈𝑃𝑘|𝑘−1

𝑉𝑃𝑘|𝑘

∗  (13) 

 𝐷𝑃𝑘|𝑘
= (𝐷𝑃𝑘|𝑘

∗ )
−1

 (14) 

 𝐾𝑘 = 𝑈𝑃𝑘|𝑘
𝐷𝑃𝑘|𝑘

2 𝑈𝑃𝑘|𝑘

𝑇 𝐻𝑘
𝑇𝐿𝑅𝐾

𝐿𝑅𝐾

𝑇  (15) 

 𝑥𝑘|𝑘 = 𝑥𝑘|𝑘−1 + 𝐾𝑘(𝑧𝑘 − 𝐻𝑘𝑥̂𝑘|𝑘−1) (16) 

where 𝑃 is the estimated error covariance matrix. Eqs (9)-(11) represent the error matrix prediction 

process, and Eqs. (12)–(14) are the correction process. Subscript 𝑘|𝑘 − 1 is the filter estimated result, 

and 𝑘|𝑘 is the corrected result. 𝑃0|0 and 𝑥0|0 are the initial error covariance matrix and state vector, 

respectively. 𝑥̂  indicates the predicted value of the state vector. 𝑈𝑃  and 𝐷𝑃  are expressed as the 

SVD factors of the 𝑃 matrix. 𝐷𝑃 is the diagonal matrix. 𝑈∗, 𝐷𝑃
∗  and 𝑉𝑃

∗ are the temporary factors 

generated during the SVD process, and 𝐷∗is the diagonal matrix. 𝐿𝑅 and 𝐿𝑄 are the factors obtained 

after Cholesky decomposition of the inverse matrix of 𝑅 and matrix 𝑄. 𝐾 is the Kalman filter gain. 

SVD-KF is an improvement of SVD-SRKF. It has some commonalities. The following only gives 

the key steps of the algorithm. For the specific process, please refer to reference [25]. 

The SVD-KF has the following improvements compared to SVD-SRKF: 

1. Use singular value decomposition of 𝑄𝑘−1 and 𝑅𝑘 instead of Cholesky decomposition in SVD-

SRKF. 

2. The posterior estimation error covariance matrix 𝑃𝑘|𝑘 is calculated by Eq (17). Compared with the 

calculation form in SVD-SRKF, it can guarantee symmetry and positive definiteness. 

 𝑃𝑘|𝑘 = (𝐼 − 𝐾𝑘𝐻𝑘)𝑃𝑘|𝑘−1(𝐼 − 𝐾𝑘𝐻𝑘)𝑇 + 𝐾𝑘𝑅𝑘𝐾𝑘
𝑇 (17) 
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Werries et al. [29] pointed out that it is relatively easier to obtain accurate results for the observed 

noise covariance 𝑅𝑘 in the navigation system. Based on this, assume that 𝑅𝑘 is a constant matrix. To 

improve the robustness of the system, it is hoped to adjust 𝑄𝑘 adaptively, so the above two algorithms 

will be improved throughout the rest of this section.  

    In order to obtain the form of correction, it is necessary to modify the classical forms. Mohamed 

et al. [27] proposed and derived the maximum likelihood estimation for the measurement noise 

covariance: 

 𝑄̂𝑘 = 𝐾𝑘𝛥𝑧𝑘𝛥𝑧𝑘
𝑇𝐾𝑘

𝑇 + 𝑃𝑘|𝑘 + 𝛷𝑘−1𝑃𝑘|𝑘−1
𝛷𝑘−1

𝑇  (18) 

To obtain the SVD form of the likelihood estimation, some transformations are required. Using 

the new matrix (𝑈, 𝐷 and 𝐿) to replace 𝐾 and 𝑃 in the Eq (18): 

 𝑄̂𝑘 = 𝐾𝑘𝛥𝑧𝑘𝛥𝑧𝑘
𝑇𝐾𝑘

𝑇 + 𝜉 (19) 

where 𝜉 can be expressed as 

 𝜉 = 𝑈𝑃𝑘|𝑘
𝐷𝑃𝑘|𝑘

2 𝑈𝑃𝑘|𝑘

𝑇 − 𝛷𝑘−1𝑈𝑃𝑘−1|𝑘−1
𝐷𝑃𝑘−1|𝑘−1

2 𝑈𝑃𝑘−1|𝑘−1

𝑇 𝛷𝑘−1
𝑇  (20) 

where 𝐾𝑘  is shown in Eqs (15) and 𝛥𝑧𝑘  is innovation. For the SVD-SRKF method, using 𝑄̂𝑘  to 

correct the noise covariance: 

 𝐿𝑄𝐾
𝐿𝑄𝐾

𝑇 = (1 − 𝑑𝑘−1)𝐿𝑄𝐾−1
𝐿𝑄𝐾−1

𝑇 + 𝑑𝑘−1 (diag(𝑄̂𝑘)) (21) 

where 𝐿𝑄𝐾−1
𝐿𝑄𝐾−1

𝑇  and 𝐿𝑄𝐾
𝐿𝑄𝐾

𝑇  are the Cholesky decomposition forms before and after correction. 

𝑑𝑘 = (1 − 𝑏)/(1 − 𝑏𝑘) , 𝑏 ∈ [0,1]  is expressed as the forgetting factor. The general value is 

0.95~0.99. diag(∗) means selecting the value on the diagonal of the matrix *. According to Eq (7) 

of the SVD-SRKF algorithm procedure, it involves Cholesky decomposition. Therefore, this paper 

uses a suboptimal method, which is not used 𝑄̂𝑘 directly but only modifies the diagonal covariance 

data to ensure the feasibility of decomposition. If the 𝑄̂𝑘 matrix is directly used, then it will result in 

non-positive definite. The corrected algorithm is called the singular value decomposition-based 

adaptive square root Kalman filter (SVD-ASRKF) in the rest of the article. 

Similar to the SVD-ASRKF method, the following adaptive adjustments are made to 𝑄𝑘 in the 

SVD-SRKF algorithm. 

 𝑈𝑄𝑘
𝐷𝑄𝑘

2 𝑈𝑄𝑘

𝑇 = (1 − 𝑑𝑘−1)𝑈𝑄𝑘−1
𝐷𝑄𝑘−1

2 𝑈𝑄𝑘−1

𝑇 + 𝑑𝑘−1(𝑄̂𝑘) (22) 

where 𝑑𝑘−1 and 𝑄̂𝑘 have been mentioned above. Because SVD-KF directly performs SVD on 𝑄𝑘, 

𝑄̂𝑘 is directly used for correction in Eq (22) and the suboptimal form of diagonal correction is not 

needed. The improved SVD-KF algorithm is called the singular value decomposition-based adaptive 

Kalman filter (SVD-AKF) in the rest of the article. Figure 2 shows the algorithm flowchart about the

 SVD-ASRKF and SVD-AKF. The main improved work is focused on the red box selection section 

and the black box represents the original algorithm flowchart (SVD-SRKF and SVD-KF). As shown 

above, our work focuses on dynamically correcting the covariance of measurement noise through new 

matrix (𝑈 , 𝐷  and 𝐿 ) and innovation. In order to express the main flow of tightly GNSS/INS 

integrated navigation algorithm base on SVD-ASRKF, we summarize it in Algorithm 1. 
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Figure 2. The algorithm flowchart about the comparison of SVD-ASRKF and SVD-AKF. 

Algorithm 1 The tightly coupled GNSS/INS navigation algorithm based on SVD-ASRKF 

Input: 

1:𝑈𝑃 and 𝐷𝑃 matrixes from SVD of error covariance matrix 𝑃0, initial state vector 𝑥0, 𝐿𝑅 and 𝐿𝑄 

matrixes from Cholesky decomposition of inverse noise covariance matrix 𝑅−1 and noise matrix 𝑄 

2: satellite position, pseudorange, pseudorange rate, IMU raw data 

Output: position, velocity and attitude 

1: if new GNSS data comes then 

2: using current state and satellite information to predict pseudorange and pseudorange rate and 

calculate residuals using Eq (3) 

3: obtain the Kalman gain using the SVD matrixes in Eq (15) 

4: correct state vector and obtain 𝑥̂𝑘|𝑘 

5: calculate correction about measurement noise covariance by innovation 𝛥𝑧𝑘 , 𝑈𝑃  and 𝐷𝑃 

matrixes 

6: update 𝐿𝑄𝐾
 matrix using Eq (21) 

7: update 𝑈𝑃 and 𝐷𝑃 matrix 

8: else 

9: using imu data to predict next state 

10: predict 𝑈𝑃 and 𝐷𝑃 matrix using Eq (10) and (11) 

11: end if 

12: return position, velocity and attitude 
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    The main flow of the tightly coupled navigation algorithm based on SVD-AKF is shown in 

Algorithm 2. The main different steps compared to Algorithm 1 are steps 6–10. 

Algorithm 2 The tightly coupled GNSS/INS navigation algorithm based on SVD-AKF 

Input: 

1:𝑈𝑃 and 𝐷𝑃 matrixes from SVD of error covariance matrix 𝑃0, initial state vector 𝑥0, 𝑈𝑅 and 𝐷𝑅 

matrixes from SVD of noise covariance matrix 𝑅 , 𝑈𝑄  and 𝐷𝑄  matrixes from SVD of noise 

covariance matrix 𝑄 

2: satellite position, pseudorange, pseudorange rate, IMU raw data 

Output: position, velocity and attitude 

1: if new GNSS data comes then 

2: using current state and satellite information to predict pseudorange and pseudorange rate and 

calculate residuals from Eq (3) 

3: obtain the Kalman gain using the SVD matrix 

4: correct state vector and obtain 𝑥̂𝑘|𝑘 

5: calculate correction about measurement noise covariance by innovation 𝛥𝑧𝑘, 𝑈𝑃 and 𝐷𝑃 matrix 

6: update 𝑈𝑄 and 𝐷𝑄 matrix using Eq (22) 

7: update 𝑈𝑃 and 𝐷𝑃 matrix 

8: else 

9: using imu data to predict next state 

10: predict 𝑈𝑃 and 𝐷𝑃 matrix 

11: end if 

12: return position, velocity and attitude 

The above is the improved algorithm of the SVD-SRKF and SVD-KF algorithms. In practical 

applications, to simplify the calculation, Eqs (21) and (22) are reanalyzed first. The main problems are 

the limitation of the number of iterations and the selection of the forgetting factor. For the first problem, 

when the number of iterations approaches infinity, 𝑑𝑘 approaches 1 − 𝑏. The effect of the innovation 

𝛥𝑧𝑘 decreases, and the current noise information is mainly determined by the past state. 

 𝑑𝑘 → 1 − 𝑏 (𝑘 → ∞) (23) 

The 𝑑𝑘 in Eqs (21) and (22) do not need to be iterated all the time. There are two main reasons 

for this. First, we reduce the computational overhead. Second, it is affected by the limited word length. 

Therefore, the calculation can be stopped as long as 𝑑𝑘 reaches an expected small range. Different 

forget factors might be used in various scenarios, so we use delta 𝑑𝑘 as the criteria for assessment 

and the selected delta range is less than 5.0*10-4 in this paper. In addition, the forgetting factor can be 

selected by the following methods. First, choose a relatively large forgetting factor because the initial 

matrix 𝑄 is generally accurate. Then, the forgetting factor can be adjusted according to certain criteria. 

The judgment criterion selects the magnitude of the change in the 𝑄 square error. Calculate by the 

following formula: 

 𝑒𝑘 = ∑ (𝑄̂𝑘,𝑖,𝑗𝑖,𝑗 )2 (24) 

where 𝑄̂𝑘 is the same as in (18) and 𝑖 and 𝑗 represent each element in the matrix. When error 𝑒𝑘 

is greater than the expected threshold, it indicates that the deviation of 𝑄 is large, and the forgetting 

factor can be decreased to speed up the adjustment speed. The threshold can be selected three times 

the square error of the previous state, which is 3𝑒𝑘−1. 
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In general, the adaptive adjustment of the noise matrix makes the algorithm more robust. In 

addition, the constraints on Eqs (21) and (22) save computational overhead and are more suitable for 

engineering implementation. 

4.2. IF based on singular value decomposition 

IF is the equivalent form of the Kalman filter algorithm. Compared with the Kalman filter 

algorithm, it is more suitable to use IF in scenes with less initial information. Better filtering 

performance can be obtained by deducing the SVD form of IF. 

The classical formula of IF is as follows [35]: 

 𝑃𝑘|𝑘−1
−1 = 𝐴𝑘−1 − 𝐴𝑘−1(𝑄𝑘−1

−1 + 𝐴𝑘−1)
−1

𝐴𝑘−1 (25) 

 𝑃𝑘|𝑘−1
−1 𝑥̂𝑘|𝑘−1 = (𝐼 − 𝐴𝑘−1𝑄𝑘−1)−1 (𝛷𝑘−1

−1 𝑇
𝑃𝑘−1|𝑘−1

−1 𝑥̂𝑘−1|𝑘−1) (26)                                

 𝑃𝑘|𝑘
−1 𝑥𝑘|𝑘 = 𝑃𝑘|𝑘−1

−1 𝑥̂𝑘|𝑘−1 + 𝐻𝑘
𝑇𝑅𝑘

−1𝑧𝑘 (27) 

 𝑃𝑘|𝑘
−1 = 𝑃𝑘|𝑘−1

−1 + 𝐻𝑘
𝑇𝑅𝑘

−1𝐻𝑘 (28) 

where 𝑃−1 is the inverse matrix of error matrix 𝑃, which is traditionally called the information matrix, 

and 𝐴𝑘−1 = 𝛷𝑘−1
−1 𝑇

𝑃𝑘−1|𝑘−1
−1 𝛷𝑘−1

−1 . 

First, decompose 𝑃𝑘|𝑘
−1  

 𝑃𝑘|𝑘
−1 = 𝑈𝑃𝑘|𝑘

−1 𝐷
𝑃𝑘|𝑘

−1
2 𝑈

𝑃𝑘|𝑘
−1

𝑇  (29) 

Then, we analyze the prediction process of 𝑃−1. Because 

 𝑃𝑘|𝑘−1 = 𝛷𝑘−1𝑃𝑘−1|𝑘−1𝛷𝑘−1
𝑇 + 𝑄𝑘−1 (30) 

Now, we want to solve the factors 𝑈𝑃𝑘|k-1
−1  and 𝐷𝑃𝑘|k-1

−1  from Eq (30), make an equivalent change to it 

and perform SVD on 𝑄. 

 (𝑃𝑘|𝑘−1
−1 )

−1
= 𝛷𝑘−1(𝑃𝑘−1|𝑘−1

−1 )
−1

𝛷𝑘
𝑇 + 𝑈𝑄𝑘−1

𝐷𝑄𝑘−1

2 𝑈𝑄𝑘−1

𝑇  (31) 

By substituting Eq (32), which represents the decomposition factor, into (31) and decomposing it, Eq 

(33) can be obtained. 

 (𝑃𝑘−1|𝑘−1
−1 )

−1
= (𝑈𝑃k-1|k-1

−1 𝐷
𝑃k-1|k-1

−1
2 𝑈

𝑃k-1|k-1
−1

𝑇 )
−1

= 𝑈𝑃k-1|k-1
−1 𝐷

𝑃k-1|k-1
−1

−2 𝑈
𝑃k-1|k-1

−1
𝑇   (32) 

 [
𝐷

𝑃k-1|k-1
−1

−1 𝑈
𝑃k-1|k-1

−1
𝑇 𝛷𝑘−1

𝐷𝑄𝑘−1
𝑈𝑄𝑘−1

𝑇
] = 𝑈

𝑃𝑘|k-1
−1

∗ [
𝐷

𝑃𝑘|k-1
−1

∗

0
] 𝑉

𝑃𝑘|k-1
−1

∗𝑇   (33) 

So, we can obtain that: 

 𝑈𝑃𝑘|k-1
−1 = 𝑉

𝑃𝑘|k-1
−1

∗   (34) 

 𝐷𝑃𝑘|k-1
−1 = (𝐷

𝑃𝑘|k-1
−1

∗ )
−1

  (35) 



973 

Mathematical Biosciences and Engineering  Volume 21, Issue 1, 963–983. 

Then, solve the decomposition factors 𝑈𝑃𝑘|𝑘
−1  and 𝐷𝑃𝑘|𝑘

−1 . Decompose Eq (28): 

 [
𝐷𝑃𝑘|k-1

−1 𝑈
𝑃𝑘|k-1

−1
𝑇

𝐷𝑅𝑘
−1𝑈

𝑅𝑘
−1

𝑇 𝐻𝑘

] = 𝑈
𝑃𝑘|𝑘

−1
∗ [

𝐷
𝑃𝑘|𝑘

−1
∗

0
] 𝑉

𝑃𝑘|𝑘
−1

∗𝑇   (36) 

We know that the right side of the equation is the decomposition factor we need. Which is: 

 𝑈𝑃𝑘|𝑘
−1 = 𝑉

𝑃𝑘|𝑘
−1

∗  (37) 

 𝐷𝑃𝑘|𝑘
−1 = 𝐷

𝑃𝑘|𝑘
−1

∗  (38) 

A new IF form based on SVD is obtained through the above derivation, which is called singular 

value decomposition based information filters (SVD-IF) in the rest of the article. In summary, the 

algorithm steps are shown as follows. 

Initialization process: 

 𝑃0|0
−1 = 𝑈𝑃0|0

−1𝐷
𝑃0|0

−1
2 𝑈

𝑃0|0
−1

𝑇  (39) 

 𝑄𝑘−1 = 𝑈𝑄𝑘−1
𝐷𝑄𝑘−1

2 𝑈𝑄𝑘−1

𝑇  (40) 

 𝑅𝑘
−1 = 𝐷𝑅𝑘

−1𝑈
𝑅𝑘

−1
𝑇 𝐻𝑘 (41) 

 𝑥0|0 = 𝑥0|0 (42) 

Iteration process: 

 [
𝐷

𝑃k-1|k-1
−1

−1 𝑈
𝑃k-1|k-1

−1
𝑇 𝛷𝑘−1

𝐷𝑄𝑘−1
𝑈𝑄𝑘−1

𝑇
] = 𝑈

𝑃𝑘|k-1
−1

∗ [
𝐷

𝑃𝑘|k-1
−1

∗

0
] 𝑉

𝑃𝑘|k-1
−1

∗𝑇  (43) 

 𝑈𝑃𝑘|k-1
−1 = 𝑉

𝑃𝑘|k-1
−1

∗  (44) 

 𝐷𝑃𝑘|k-1
−1 = (𝐷

𝑃𝑘|k-1
−1

∗ )
−1

 (45) 

𝑈𝑃𝑘|k-1
−1 𝐷

𝑃𝑘|k-1
−1

2 𝑈
𝑃𝑘|k-1

−1
𝑇 𝑥̂𝑘|𝑘−1 = (𝐼 − 𝐴𝑘−1𝑈𝑄𝑘−1

𝐷𝑄𝑘−1

2 𝑈𝑄𝑘−1

𝑇 )
−1

 

         (𝛷𝑘−1
−1 𝑇

𝑈𝑃k-1|k-1
−1 𝐷

𝑃k-1|k-1
−1

2 𝑈
𝑃k-1|k-1

−1
𝑇 𝑥𝑘−1|𝑘−1)                               (46) 

where 𝐴𝑘−1 is expressed as 𝐴𝑘−1 = 𝛷𝑘−1
−1 𝑇

𝑈𝑃k-1|k-1
−1 𝐷

𝑃k-1|k-1
−1

2 𝑈
𝑃k-1|k-1

−1
𝑇 𝛷𝑘−1

−1 . 

 [
𝐷𝑃𝑘|k-1

−1 𝑈
𝑃𝑘|k-1

−1
𝑇

𝐷𝑅𝑘
−1𝑈

𝑅𝑘
−1

𝑇 𝐻𝑘

] = 𝑈
𝑃𝑘|𝑘

−1
∗ [

𝐷
𝑃𝑘|𝑘

−1
∗

0
] 𝑉

𝑃𝑘|𝑘
−1

∗𝑇  (47) 

 𝑈𝑃𝑘|𝑘
−1 = 𝑉

𝑃𝑘|𝑘
−1

∗  (48) 

 𝐷𝑃𝑘|𝑘
−1 = 𝐷

𝑃𝑘|𝑘
−1

∗  (49) 

 𝑈𝑃𝑘|𝑘
−1 𝐷𝑃𝑘|𝑘

−1 𝑈
𝑃𝑘|𝑘

−1
𝑇 𝑥𝑘|𝑘 = 𝑈𝑃𝑘|k-1

−1 𝐷
𝑃𝑘|k-1

−1
2 𝑈

𝑃𝑘|k-1
−1

𝑇 𝑥̂𝑘|𝑘−1 + 𝐻𝑘
𝑇𝐷𝑅𝑘

−1𝑈
𝑅𝑘

−1
𝑇 𝐻𝑘𝑧𝑘 (50) 
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Algorithm 3 The tightly coupled GNSS/INS navigation algorithm based on SVD-IF 

Input: 

1: 𝑈𝑃−1 and 𝐷𝑃−1 matrixes from SVD of inverse error covariance matrix 𝑃0
−1、initial state vector 

𝑥0、𝑈𝑅−1 and 𝐷𝑅−1 matrixes from SVD of inverse noise covariance matrix 𝑅−1、𝑈𝑄 and 𝐷𝑄 matrix 

from SVD of noise covariance matrix 𝑄 

2: satellite position, pseudorange, pseudorange rate, IMU raw data 

Output: position, velocity and attitude 

1: if new GNSS data comes then 

2: using current state and satellite information to predict pseudorange and pseudorange rate and 

calculate residuals 

3: update 𝑈𝑃−1 and 𝐷𝑃−1 matrixes from Eq (48) and（49） 

4: correct state vector and obtain 𝑥̂𝑘|𝑘 

5: else 

6: predict 𝑈𝑃−1 and 𝐷𝑃−1 matrixes using Eq (44) and (45) 

7: using imu data to predict next state 

8: end if 

9: return position, velocity and attitude 

We summarize the GNSS/INS navigation algorithm based on SVD-IF in Algorithm 3. Through 

the SVD of the information matrix of IF, the accumulation of rounding error in the iterative calculation 

process can be alleviated in the case of limited word length, making the filtering algorithm more stable 

and the location result more accurate. 

5. Experiment 

To evaluate the performance of the method proposed in this article, this section first conducts a 

tightly coupled GNSS/INS integrated navigation simulation experiment. Then, it is applied to actual 

navigation scenarios. In the experiment, the variable’s storage width is 32 bits, where the sign bit is 1 

bit, the exponent is 8 bits and the mantissa is 23 bits. The methods that need to be simulated and 

compared are listed: 

a) KF: conventional Kalman filter 

b) SVD-SRKF: singular value decomposition-based square root Kalman filter 

c) SVD-KF: improved SVD-SRKF 

d) SVD-ASRKF: the improved SVD-SRKF proposed in this article 

e) SVD-AKF: the improved SVD-KF method proposed in this article 

f) IF: conventional information filters 

g) SVD-IF: the singular value decomposition-based IF proposed in this article 

5.1. Simulation of the integrated navigation system 

5.1.1. Experimental settings 

In the tightly coupled GNSS/INS integrated navigation simulation, 50 Monte Carlo experiments 

were carried out. The GNSS data output frequency is 2 Hz, the IMU frequency is 100 Hz and the 
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sampling time is 60 s. The simulation selects a low dynamic motion scene and the target velocity is 20 

m/s. To increase the dynamic performance of the target and make the scene more general, two 90° 

turns are made at 15 s and 45 s. The random standard variances of the accelerometer and gyroscope 

are 3 mg and 1°/h, respectively. Other initial parameters are set as shown in Table 1: 

Table 1. Initial parameter settings. 

Parameters value 

Accelerometer biases 𝑚/𝑠2 𝑎𝑋 = 0.0883, 𝑎𝑌 = −0.1275, 𝑎𝑍 = 0.0785 

Gyro biases 𝑟𝑎𝑑/𝑠 𝑔𝑋 = 𝑔𝑍 = −8.7 × 10−4, 𝑔𝑌 = 13 × 10−4 

Earth radius 𝑚 6378137 

Rotation speed of Earth 𝑟𝑎𝑑/𝑠 7.292115 × 10−5𝑟𝑎𝑑/𝑠 

Initial velocity error 𝑚/𝑠 𝛿𝑉𝑋 = 𝛿𝑉𝑌 = 𝛿𝑉𝑍 = 0.1 

Initial position error 𝑚 𝛿𝑃𝑋 = 𝛿𝑃𝑌 = 𝛿𝑃𝑍 = 10 

Initial angle error ° 𝜑𝑋 = 𝜑𝑌 = 𝜑𝑍 = 0.03 

5.1.2. Results and discussion 

Figure 3 shows the comparison results, selecting the local navigation frame (ENU). In the figure, 

the X-axis represents the sampling time in seconds and the Y-axis represents the position error in 

meters. The experimental results show that compared with the conventional Kalman filter, SVD-KF 

and SVD-SRKF both have better filtering performance. The SVD of the correlation matrix can reduce 

rounding errors and improve filtering performance. However, there is no significant difference 

between the filter performance of SVD-KF and SVD-SRKF in this simulation. 

 

Figure 3. Comparison of simulation results between the conventional KF and SVD algorithms. 

Figure 4 is the simulation result of the improved filtering form proposed in this paper. The 

experimental results show that the method proposed in this paper, due to the real-time correction of 

the state noise covariance in the iterative process, has higher accuracy and better robustness than the 

above two methods. It also has a more stable performance in turning where the target’s motion state 

changes quickly. 
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Figure 4. Comparison of simulation results for the improved filtering algorithm. 

The positioning result of SVD-IF is shown in Figure 5. It can be concluded that SVD-IF also has 

higher positioning accuracy and robustness than IF. Especially when the error matrix is large, it is more 

appropriate to use SVD-IF. 

 

Figure 5. Simulation results of the SVD-IF approach. 

5.2. Physical experiment of integrated navigation system 

5.2.1. Experimental settings 

To further prove the performance of the algorithm, a physical experiment is implemented. The 

GNSS receiver and INS use ProPak6 and IMU-FSAS, which are made by NovAtel. The GNSS receiver 

output frequency is 1 Hz, and the INS output frequency is 10 Hz. The accelerometer bias and scale 

factor of INS are 1 mg and 300 ppm, respectively. The gyro bias and scale factors are 0.75°/h and 400 

ppm, respectively. The coordinate system uses ECEF, and the reference position adopts the position 

that has been accurately calibrated. In the static experiment, the ZUPT will be closed. 

In addition to static experiments, dynamic experiments were also conducted. In this experiment, 

a GNSS reference station was set up at a fixed location. The trajectory obtained through real-time 

kinematic differential positioning is used as the reference trajectory for vehicle movement. The precise 

coordinates of the GNSS reference station are accurately known. The evaluation metrics are maximum 

and root mean squared error (RMSE). 

5.2.2. Results and discussion 

The static experiment results are as follows. 

Figure 6 compares the positioning error between the conventional Kalman filter and the SVD 
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form filter. In this figure, the X-axis represents the sampling time in seconds, and the Y-axis represents 

the position error in the ECEF. Through the experimental results, it can be concluded that the Kalman 

filter based on SVD has better performance in position accuracy. 

 

Figure 6. Comparison of the experimental results between the conventional KF and SVD algorithms. 

The positioning results about the improved filtering form are shown in Figure 7. Table 2 shows the 

detailed positioning results. The RMSE of each method on each coordinate axis is listed. The 

experimental results show that compared with SVD-SRKF and SVD-KF, the improved filtering forms 

of SVD-ASRKF and SVD-AKF have smaller positioning errors on each coordinate axis. The Z-axis 

positioning error decreased the most, with a maximum reduction of 25.7% and a minimum reduction 

of 6.8%. There is also a 3.3% reduction in the X-axis error. 

 

Figure 7. Comparison of the experimental results of the improved filtering algorithm. 

Table 2. Position RMSE comparison of different approaches in 32-bit. 

Algorithm 
 SVD-

SRKF 
 SVD-KF  

SVD-

ASRKF 
 SVD-AKF  SVD-IF  IF 

X-axis  6.04  6.01  5.82  5.81  6.07  6.37 

Y-axis  18.38  18.34  18.29  18.25  18.17  18.26 

Z-axis  1.94  1.91  1.44  1.78  1.94  2.26 

Figure 8 shows the performance comparison of IF and SVD-IF under the above experimental 

conditions. The experimental results show that SVD-IF has higher accuracy and robustness than IF. 

The specific error results are listed in Table 2. The RMSE in the X direction decreases by 4.7%. 
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Figure 8. Experimental results of the SVD-IF approach. 

The dynamic experiment results are as follows. 

Zero velocity detection on the target vehicle is performed using a neural network and the results 

are shown in Figure 9. In the figure, the detection result curve has only two values, “0” and “2”. A 

value of “0” indicates the detection of zero velocity, while a value of “2” indicates that the target is in 

motion. Due to the presence of high-frequency environmental noise and vibration noise from the 

vehicle when it is stationary, a low-pass filter is applied before the detector to enhance the detection 

rate. The experimental results demonstrate that the detection rate reaches 94.73%. 

 

Figure 9. The results of the zero-velocity detection. 

 

Figure 10. Comparison of the ground-truth trajectory and the estimated trajectory. 
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Figure 11. Comparison of the experimental results of the improved filtering algorithm. 

 

Figure 12. The visible satellite numbers. 

Analyzing the experimental results, it can be observed that when the target transitions from an 

open sky to a scene in which the GNSS signal is obstructed, the number of visible satellites decreases. 

In this case, if some of the visible satellites involved in the positioning solution exhibit significant 

observation errors, it can lead to fluctuations in the final positioning solution. The red rectangular box 

highlighted in Figures 10 and 11 represents the scenario described above, and the change in the number 

of satellites is shown in the rectangular box in Figure 12. In Figure 10, the proposed methods have 

smaller fluctuation. In addition, due to the lack of spatial error compensation for ionosphere and 

troposphere delay, the trajectories do not align very well. However, absolute positioning accuracy is 

not the primary focus of the algorithm and does not affect performance comparisons. In Figure 11, it 

can be observed that the proposed method, compared to the Kalman filtering algorithms based on 

classical SVD methods, exhibits superior positioning performance in such complex environments. As 

errors in GNSS observations, the method proposed in this paper adaptively increases the covariance 

of the measurements. This, in turn, places greater trust in the pure IMU derived results, thereby 

reducing the impact of erroneous GNSS observations. 
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Figure 13. Comparison of the experimental results of the improved filtering algorithm. 

The rectangular box highlighted in Figure 13 shows that the convergence speed of SVD-ASRKF 

is slower compared to other algorithms. There are two reasons for this. First, SVD-ASRKF uses a 

suboptimal method, which only modifies the diagonal covariance data to ensure the feasibility of 

decomposition. Second, the GNSS signal consistently fluctuates after algorithm initialization, resulting 

in slower convergence. In addition, due to the adaptive methods involve solving the correction, the 

computational workload for the adaptive form is relatively higher compared to classical methods. 

Compared to SVD-KF and SVD-SRKF in dynamic scenarios, the method proposed in this paper 

reduces the maximum values from 52.31 m and 52.41 m to 28.37 m and 30.15 m, respectively. The 

maximum values were reduced by 45.77% and 42.47%, respectively. 

6. Conclusions 

This paper proposes a more robust filtering method for different Kalman filtering forms based on 

SVD. The noise covariance matrix of SVD-SRKF and SVD-KF is modified dynamically by covariance 

matching to achieve a better filtering effect. The number of correction processes is constrained and an 

effective forgetting factor selection strategy is proposed in practical applications. In addition, the SVD 

form of IF is derived. Monte Carlo simulation experiments and physical experiments show that the 

RMSE of the proposed Kalman filtering method and SVD-IF positioning results are lower than those 

of the existing methods. This proves that the proposed method and SVD-IF positioning accuracy are 

higher and have theoretical reference and engineering value. 

To enhance the applicability of the new algorithm, further work can be conducted in the two 

following areas: (a) researching more effective adaptive methods to solve the slow convergence 

problem of SVD-ASRKF using suboptimal methods and (b) incorporating Doppler information from 

GNSS receivers into network training to improve zero velocity detection accuracy. 
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