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Abstract: The emergence of many presymptomatic hidden transmission events significantly
complicated the intervention and control of the spread of COVID-19 in the USA during the year 2020.
To analyze the role that presymptomatic infections play in the spread of this disease, we developed
a state-level metapopulation model to simulate COVID-19 transmission in the USA in 2020 during
which period the number of confirmed cases was more than in any other country. We estimated
that the transmission rate (i.e., the number of new infections per unit time generated by an infected
individual) of presymptomatic infections was approximately 59.9% the transmission rate of reported
infections. We further estimated that at any point in time the average proportion of infected individuals
in the presymptomatic stage was consistently over 50% of all infected individuals. Presymptomatic
transmission was consistently contributing over 52% to daily new infections, as well as consistently
contributing over 50% to the effective reproduction number from February to December. Finally,
non-pharmaceutical intervention targeting presymptomatic infections was very effective in reducing
the number of reported cases. These results reveal the significant contribution that presymptomatic
transmission made to COVID-19 transmission in the USA during 2020, as well as pave the way for the
design of effective disease control and mitigation strategies.
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1. Introduction

Severe acute respiratory syndrome coronavirus 2, the causative agent of COVID-19, spreads quickly
and has established a global pandemic within a short period of time since it was first detected [1]. In
the USA, despite wide implementation of non-pharmaceutical interventions after the initial outbreak in
the spring of 2020, this disease resurged and continued spreading from mid 2020 throughout the year.
This disease caused over 20 million confirmed infections by the end of 2020, which was more than any
other countries [2–4]. A major challenge to the surveillance and control of this disease is the hidden
transmission led by people with presymptomatic infections who are in the incubation period and do
not show symptoms or mild symptoms for the moment [5–7]. It is urgent and necessary to understand
the role of presymptomatic infections in disease transmission in the USA to make effective diseases
control and mitigation strategies.

Presymptomatic infections have been discovered in many countries in the process of determining
the epidemiological traceability of confirmed cases [8–13]. Many previous studies have focused on
the contribution of presymptomatic infections to the secondary transmission, which is critical for
determining the prioritization of various surveillance and control measures [14, 15]. Clinical studies
suggested that the infectiousness of COVID-19 peaked on or before symptom onset [14]. Contact
tracing studies showed that the proportion of transmission routes formed due to presymptomatic
transmission varies greatly due to many confounding factors and could range from 6.4% to over
65% [14, 16–21]. A model-based study found that presymptomatic transmission could contribute a
value as high as 0.9 to the basic reproduction number, which accounted for 46% of the contribution to
the basic reproduction number. Therefore, presymptomatic transmission becomes a significant
contributor to secondary transmission [11]. Epidemiological models have been used to quantify the
presymptomatic transmission of COVID-19 [22, 23]. However, when quantifying the presymptomatic
transmission in the United States of America in 2020, the success of these epidemiological models are
impaired by the two following limitations. First, large-scale transmission between different states
occurs frequently due to human mobility, which is not incorporated into existing models. Second, the
disease transmission rate in different states varies due to heterogeneity in human contact, which is
also not considered in existing models. In addition to the limitations in modeling, previous studies
only focused on the presymptomatic transmission in the early stage of the COVID-19 pandemic.
During the year 2020, the USA experienced three pandemic waves which caused the largest number
of ascertained cases and deaths among all countries. Therefore, the role of presymptomatic
transmission throughout the year of 2020 needs to be more comprehensively studied.

In this study, we developed a state-level metapopulation SEPAIR model to simulate the spread of
COVID-19 in the USA from February to December in 2020 (Figure 1). This metapopulation SEPAIR
model incorporates many important factors that impact disease spread including heterogeneity in
human contact and human mobility. We quantified the contagiousness and prevalence of
presymptomatic infections during the continuous development of COVID-19 in each state [23, 24].
Subsequently, we studied the contributions of different transmission routes including presymtomatic
transmission to the spread of the disease in each state. Finally, we performed counterfactual
simulation to quantify the effect of controlling presymptomatic transmission on the COVID-19
disease spread.
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Figure 1. Metapopulation SEPAIR model. A red subpopulation with infected individuals
may spread the disease to a green uninfected subpopulation through population movement.
This allows community transmission to occur in the green (susceptible) subpopulation
after a period of time. In the SEPAIR model, there are six compartments: susceptible
(S), exposed (E), presymptomatic infectious (P), asymptomatic or mildly symptomatic
infectious (A), reported infectious (I) and removed (R). Susceptible individuals can be
infected with presymptomatic infections, asymptomatic or mildly symptomatic infections
or reported infections to become exposed individuals. After latent period Z1, an exposed
individual becomes a presymptomatic infected individual, who does not show symptoms
but is contagious. After a contagious incubation period Z2, a presymptomatic individual
becomes a reported individual, or an asymptomatic or mildly symptomatic individual. β is
the transmission rate of reported infection; m and µ represent the relative transmission rates of
presymptomatic infection and asymptomatic or mildly symptomatic infection, respectively.

2. Methods

We have developed a SEPAIR metapopulation network model based on commuting data between
different states and human mobility data to characterize the large-scale spatial transmission of COVID-
19 [25] (Figure 1). In this model, the transmission of COVID-19 throughout the day and night is
described as a discrete Markov process, as given by Eqs (A1)–(A12) in the Appendix. We divided
the population into susceptible individuals S , exposed individuals E (i.e., infected but no symptoms
and not infectious), presymptomatic cases P (i.e., infected, no symptoms but infectious), reported
cases I, asymptomatic or mildly symptomatic cases A and removed cases R. Susceptible individuals
S can be infected by presymptomatic individuals P, asymptomatic or mildly symptomatic individuals
A and reported individuals I to become exposed individuals E. βi (the initial prior range is 0.01 to
2.5) is the transmission rate of reported cases in state i, and m (the initial prior range is 0.1 to 1.0)
and µ (the initial prior range is 0.1 to 1) represent the relative transmission rates of presymptomatic
cases and asymptomatic or mildly symptomatic cases, respectively. After an average latent period Z1

(the initial prior range is 2 to 5), an exposed individual becomes a presymptomatic individual who
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is contagious but does not show symptoms. After a contagious incubation period Z2 (the initial prior
range is 2 to 5), αi (the initial prior range is 0.03 to 1), i.e., the fraction of presymptomatic individuals
in state i becomes reported individuals, and the rest of the presymptomatic individuals become mildly
symptomatic or asymptomatic cases. The incubation period contains two stages: latent period and
contagious incubation period, denoted as Z1+Z2. D (the initial prior range is 2 to 5) is the average
duration of the infectious period after which both reported individuals I and asymptomatic or mildly
symptomatic individuals A recover or die and then become removed individuals R. The priors of the
parameters in our model was taken from [24].

Here a subpopulation is defined as a pair of states in the United States of America between which
there is human mobility based on the data. Then, the 51 states and regions were divided into 1367
subpopulations. Every node in the metapopulation network represents a subpopulation and two nodes
are connected if there is human mobility between them. Here, two types of population mobility are
considered, i.e., daily commuting mobility and random visit mobility. The population mobility caused
by the relatively fixed level of work commuting is defined as the commuting population mobility. Ni j

denotes the number of people in the subpopulation who live in the state j and work in the state i. During
the daytime, they travel from the state j to the state i to participate in local transmission in the state i, and
they return to the state j at night to participate in disease transmission in the state j. Nii is the number of
individuals in the total population who both live and work in state i. They stay in state i for local disease
transmission throughout the day and night. The random flow, which comprises travel, visits, etc., is
defined as the random population mobility. The number of random visitors between subpopulations
i and j is proportional to the average number of commuters between them in our model, denoted as
θN̄i j, in which N̄i j =

(
Ni j + N ji

)
/2 and θ is an adjustable parameter [26]. The resident travel data set

encompassing 51 states and regions in the USA was taken from the Foursquare Labs Inc laboratory
where the time, duration and location of users are determined by mobile device signals [27]. The real-
time population flow data detailed the flow of people in 50 states and Washington, D.C. from February
21, 2020 to December 11, 2020. With the implementation of disease prevention and control measures,
population mobility had decreased, and interstate commuting data before the pandemic could no longer
reflect population mobility between pairs of states. We used the population mobility data from March
1, 2020 as a benchmark, and we calculated the population mobility between pairs of states following
the initiation of the disease prevention and control measures by applying the proportion of the relative
decrease in population mobility θ (the initial prior range is 0.01 to 0.3) to the data after March 15.

We calibrated the transmission model to state-level incidence data reported from February 21,
2020 to December 11, 2020 and death data reported from February 21, 2020 to December 26, 2020.
We inferred the time-varying parameters of the model by using a sequential data assimilation
technique, i.e., the ensemble-adjusted Kalman filter algorithm, which has been widely applied for the
prediction of infectious diseases such as influenza [28–30]. Compared to other particle filter methods,
it demonstrates better performance on high-dimensional systems [26, 31–33]. The details on the
implementation of the ensemble-adjusted Kalman filter algorithm can be found in previous
studies [27, 28]. In addition, we conducted counterfactual simulations to quantify the impact of
controlling presymptomatic transmission through non-pharmaceutical interventions on COVID-19
disease spread. Specifically, we first employed data ranging from February 21, 2020 to December 11,
2020 to estimate the original values of the relative transmission rates of presymptomatic cases m.
Then, we multiplied the values of m by 0.5, 0.3 and 0.1, respectively while keeping the values of other
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parameters unchanged. Using these updated values of parameters, we predicted the number of daily
new reported cases. Here, we quantify the effect of controlling presymptomatic transmission on the
COVID-19 disease spread for the United States of America and five representative states.

3. Results

3.1. Model calibration

We first inferred the parameters of the SEPAIR metapopulation model based on the
ensemble-adjusted Kalman filter algorithm. The inferred epidemiological parameters for the period
from February 21, 2020 to December 11, 2020 are shown in Table 1. Note that these parameters
changed over time. We used the inferred parameters to calculate the basic reproduction number
Rt = αβD + (1 − α)µβD + mβZ2, which was the largest eigenvalue of the next-generation
matrix [24, 34]. We further calculated the effective reproduction number
Re = (αβD + (1 − α)µβD + mβZ2) S

N for the study period from February 21, 2020 to December 11,
2020. The effective reproduction number gradually decreased from 4.45 (95% CI: [4.24–4.67]) at the
beginning of 2020 to 1.35 (95% CI: [1.28–1.43]) at the end of the year. However, as of December 11,
2020 except for Hawaii, Indiana, Minnesota, Montana, Oklahoma, Wyoming and Vermont, the
effective reproduction number was still larger than 1 for all states, which indicated that the COVID-19
in the USA continued under the current disease control measures. We further found that, during our
study period, the average transmission rate of the presymptomatic infections was 59.94% (95% CI:
[58.08%–61.72%]) the average transmission rate of reported cases (Table 1). Moreover, the average
transmission rate of the asymptomatic or mildly symptomatic cases was 30.52% (95% CI:
[29.73%–31.68%]) the average transmission rate of reported cases. We also obtained that the average
incubation period was about 7.944 days (95% CI: [7.794–8.076]), and that the average contagious
incubation period during which an individual is infectious but without symptoms was as long as 4.285
days (95% CI: [4.223–4.314]). Since the presymptomatic infections were difficult to identify, the high
contagiousness and long incubation period of presymptomatic infection in individuals with
SARS-CoV-2 made the prevention and control of COVID-19 rather challenging [35, 36].

Table 1. The inferred epidemiological parameters from February 21, 2020 to December 11,
2020.

Parameter Median (95% CI)
Average reporting rate (α) 0.460 (0.456, 0.464)
Average transmission rate (β) 0.554 (0.552, 0.555)
Latent period (Z1, days) 3.659 (3.571, 3.753)
Contagious incubation period (Z2, days) 4.285 (4.223, 4.314)
Infectious period (D, days) 3.951 (3.820, 4.041)
The relative transmission rate of presymptomatic cases (m) 0.599 (0.580, 0.617)
The relative transmission rate of asymptomatic or mildly symptomatic cases (µ) 0.305 (0.297, 0.317)
Mobility factor (θ) 0.152 (0.147, 0.159)
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3.2. Prevalence of presymptomatic infections

To evaluate the efficacy of the mitigation and control measures, we estimated the prevalence of
presymptomatic infections in the ongoing spread of COVID-19 during the study period. Here, we
measured the numbers of active infections in the classes of presymptomatic infections, reported
infections and asymptomatic or mildly symptomatic infections. Nationwide, the estimated number of
presymptomatic infections had three peaks during 2020, which appeared simultaneously with the
three pandemic waves (Figure 2(a)). The number of active presymptomatic infections was
consistently more than that in other classes during the study period. At the time of the first peak, the
number of presymptomatic infections was even about 11.2371 times (95% CI: [10.8051–11.6691])
the number of reported infections. In the autumn and winter seasons of the pandemic, the number of
presymptomatic infections continued on an upward trend and reached about 1663883 (95% CI:
[1619093–1708671]) on December 11. The average proportion of presymptomatic infections among
all active infections continued to exceed 50%, and peaked at 68.87% (95% CI: [68.03%–69.71%]) in
the initial stage of the pandemic in spring (Figure 2(b)). We further studied five representative states,
i.e., California (CA), Texas (TX), Florida (FL), Illinois (IL) and New Jersey (NJ), which had large
numbers of reported infections and were located in different parts of the USA. The number of
presymptomatic infections in California, Texas and Florida had three clear peaks during the three
pandemic waves. However, the numbers of presymptomatic infections in Illinois and New Jersey did
not have a peak during the second pandemic wave. The numbers of presymptomatic infections in
Illinois and New Jersey indicated pronounced peaks in the spring, with values of about 42402 (95%
CI: [41121–43684]) and 166481 (95% CI: [162062–170899]) (Figure 2(a)). The numbers of
presymptomatic infections in Texas and Florida revealed pronounced peaks in early July during the
second pandemic wave. Texas reached 103566 (95% CI: [100757–106374]), and Florida reached
60841 (95% CI: [58897–62786]) (Figure 2(a)).

California, the state with the most reported cases in the nation, saw three peaks of presymptomatic
infections in early April, mid-July and winter, reaching 33049 (95% CI: [31473–34526]), 46253 (95%
CI: [44946–47559]) and 222416 (95% CI: [215327-229506]), respectively (Figure 2(a)). Although the
number of presymptomatic infections varied by state, presymptomatic infections still constituted the
largest proportion among all classes of active infectious cases; it reached the highest proportion during
the spring pandemic wave which is similar to the situation of the whole country (Figure 2(b)).

3.3. Contribution of presymptomatic transmission to disease spread

In our metapopulation SEPAIR model, susceptible individuals can be infected by active infections
and become the exposed individuals. To quantify the contribution of presymptomatic transmission to
daily new infections, we measured the expected number of susceptible individuals infected by active
infections in different classes (i.e., presymptomatic infections, reported infections and asymptomatic
or mildly symptomatic infections), as well as their corresponding proportions every day. Nationwide,
the proportion of daily new infections from presymptomatic transmission consistently exceeded 52%
during the study period (P/(P+A+I)), which implies that presymptomatic infection was a crucial and
stable source of daily new infections, and that the existing disease control measures were uneffective
in reducing presymptomatic transmission (Figure 3(a)). Nationwide, the proportion of daily new
infections from presymptomatic transmission before mid-June was far greater than that from active
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Figure 2. (a) The number of active infections nationwide (National) and in California
(CA), Texas (TX), Florida (FL), Illinois (IL) and New Jersey (NJ). The red curve represents
the mean of the number of presymptomatic infections, and the area between dotted lines
is the 95% confidence interval. The green curve represents the mean of the number of
reported cases, and the area between dotted lines is the 95% confidence interval. The blue
curve represents the mean of the number of asymptomatic cases or mildly symptomatic
cases, and the area between dotted lines is the 95% confidence interval. (b) Proportion
of presymptomatic infections among active infections. The red curve represents the mean
proportion of presymptomatic infections, and the area between dotted lines is the 95%
confidence interval.
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infections in other classes, peaking at 71.87% (95% CI: [70.35%–73.39%]) on March 22, 2020.
Among all of the states, this proportion ranged from 66.47% (95% CI: [64.57%–68.37%]) in
Tennessee to 82.05% (95% CI: [80.66%–83.33%]) in New York on that day. Nationwide, this
proportion declined after the spring pandemic wave, reaching its minimal value of 51.88% (95% CI:
[50.18%–53.69%]) on November 16, 2020 (Figure 3(a)). Among all of the states, this proportion
ranged from 47.61% (95% CI: [45.87%–49.34%]) in Wisconsin to 74.54% (95% CI:
[71.84%–77.24%]) in Vermont on that day (Figure 3(b)). On that day besides Vermont, New
Hampshire had a significantly larger proportion of infections from the presymptomatic transmission
than their surrounding states, i.e., 73.25% (95% CI: [70.70%–75.80%]). From March 24 to November
16, New York was the state with the largest decline in this proportion, as it decreased from 82.05%
(95% CI: [80.66%–83.33%]) to 51.66% (95% CI: [50.00%–53.33%]), while the states of Vermont,
Hawaii and Maine had only slight changes in this proportion. This result may be due to the
differences in population mobility among these states.

To quantify the contribution of presymptomatic transmission to disease spread, we also studied the
contribution of the presymptomatic transmission of COVID-19 to the effective reproduction number.
According to the next generation matrix method [34], the mβZ2

S
N part of the effective reproduction

number Re = (αβD + (1 − α)µβD + mβZ2) S
N was completely caused by presymptomatic transmission.

We used this to measure the contribution of presymptomatic transmission to the effective reproduction
number. The effective reproductive number contributed by presymptomatic transmission in New
Jersey and Illinois exhibited peaks as high as 7.07 (95% CI: [6.70–7.44]) and 5.17 (95% CI:
[4.85–5.49]) respectively, exceeding the national peak of 4.45 (95% CI: [4.24–4.67]) which occured
in the spring pandemic wave (Figure 4(a)). The contribution of presymptomatic transmission to the
effective reproduction number for Texas and Florida also reached peaks of 4.40 (95% CI: [4.11–4.68])
and 4.71 (95% CI: [4.40–5.01]), respectively, and exhibited another small peak in July and June,
respectively, after declining for several months. The effective reproduction number associated with
presymptomatic infection exceeded 1 again, reaching 1.61 (95% CI: [1.52–1.70]) and 1.61 (95% CI:
[1.51–1.70]) for Texas and Florida, respectively. This finding implies that presymptomatic
transmission is one of the major factors leading to the summer pandemic wave.

We further measured the effective reproduction number contributed by the transmission of reported
infections and asymptomatic or mildly symptomatic infections, and we measured the contribution
proportion of different transmission routes to the effective reproduction number, particularly the
presymptomatic transmission, transmission by reported infections and transmission by asymptomatic
or mildly symptomatic infections respectively. We found that, during the study period,
presymptomatic transmission contributed more than 50% in the early stage of the pandemic, as
averaged over 200 independent simulations (Figure 5). Nationwide, the contribution proportion of
presymptomatic transmission peaked in April at 66.28% (95% CI: [64.51%–68.05%]). Analyzing by
state, California, Texas, Florida, Illinois and New Jersey also peaked in contributions in April. When
the contribution proportion of presymptomatic transmission reached the national peak on April 9,
2020, this proportion ranged from 60.91% (95% CI: [59.07%–62.76%]) in New Mexico to 72.58%
(95% CI: [70.78%–74.34%]) in Michigan. The contribution proportion declined with the
development of this disease, but the minimum still reached 51.43% (95% CI: [49.70%–53.16%]) on
November 14, 2020, which still played a significant role in the continuous spread of the pandemic.
Analyzing by state, on that day, the contribution proportion ranged from 49.51% (95% CI:
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Figure 3. (a) Proportion of daily new infections from active infections for different classes.
The red curves represent the mean proportions infected by presymptomatic infections, with
the area between dotted lines being the 95% confidence interval. The green curves represent
the mean proportions infected by reported cases, with the area between dotted lines being
the 95% confidence interval. The blue curves represent the mean proportions infected by
asymptomatic cases or mildly symptomatic cases, with the area between dotted lines being
the 95% confidence interval. (b) Estimated spatial variation in the proportions of daily new
infections from the presymptomatic transmission.
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Figure 4. Effective reproduction number contributed by presymptomatic transmission, which
is Rp = (mβZ2) S

N .

[47.79%–51.23%]) in California to 69.20% (95% CI: [67.19%–71.20%]) in Vermont (Figure 6). The
average contribution proportion of Vermont and Maine located in the northeast, was 56.17% which
was significantly larger than their surrounding states. In 2020, the state with the largest decline in
contribution proportion from presymptomatic transmission was New Jersey, which decreased from
71.46% (95% CI: [69.66%–73.26%]) to 50.42% (95% CI: [48.70%–52.15%]), and the state with the
smallest decline was Washington D.C. which decreased by 0.77% (95% CI: [–0.79%–2.32%]).

3.4. Counterfactual simulation by controlling presymptomatic transmission

Our results show that presymptomatic transmission constituted a stable and crucial contributor to
the COVID-19 disease spread throughout the entire study period. Measures to control
presymptomatic transmission through non-pharmaceutical interventions, such as keeping social
distance and restricting the opening of public places, would prevent and control the disease
spread [19, 37–43]. To quantify the effect of controlling presymptomatic transmission on the
COVID-19 disease spread, we performed a counterfactual simulation on the number of daily cases by
multiplying the daily relative transmission rate parameters of presymptomatic infection by 0.5 times,
0.3 times and 0.1 times, respectively, while maintaining other parameters to be the same as their
original values. Nationwide, the daily number of newly reported infections was significantly reduced
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Figure 5. Contribution of different transmission routes to the effective reproduction
number. Red boxes represent the contribution of presymptomatic transmission to the effective
reproduction number, blue boxes represent the contribution of transmission by reported
infections to the effective reproduction number and green boxes represent the contribution of
transmission by asymptomatic or mildly symptomatic infections to the effective reproduction
number. The boxes show the median and interquartile of 500 simulations, and whiskers show
the maximum and minimum values.

and there was a major decline for the pandemic waves in summer and winter (Figure 7). Specifically,
if the relative transmission rate of presymptomatic infections is changed to half, three-tenths or
one-tenth of the original value, as of December 11, the cumulative number of reported infections was
reduced by 9,700,762 (95% CI: [8,830,504–10,860,945]), 13,043,612 (95% CI:
[12,482,191–13,493,424]) or 14,297,830 (95% CI: [14,096,437–14,653,129]), respectively, which
means that 60.79% (95% CI: [55.34%–68.06%]), 81.74% (95% CI: [78.22%–84.56%]) or 89.60%
(95% CI: [88.34%–91.83%]) of the cumulative number of reported infections will be avoided,
respectively. For the five representative states, the daily number of newly reported infections will also
be significantly reduced although there will be some variation. If the relative transmission rate of
presymptomatic infections is changed to half of the original value, as of December 11, the number of
cumulative reported infections will be reduced by 90.13% (95% CI: [87.89%–91.64%]), 89.07%
(95% CI: [85.37%–90.73%]), 62.98% (95% CI: [56.77%–70.41%]), 91.38% (95% CI:
[90.14%–92.77%]) and 90.88% (95% CI: [87.96%–91.98%]) for California, Texas, New Jersey,
Illinois and Florida, respectively. If the presymptomatic transmission is more strictly controlled and
the relative transmission rate of presymptomatic infections is three tenths of the original value, the
number of cumulative reported infections will be reduced by 95.71% (95% CI: [94.96%–96.31%]),
95.89% (95% CI: [94.05%–96.48%]), 83.67% (95% CI: [80.01%–86.36%]), 96.42% (95% CI:
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Figure 6. Estimated spatial variation in the proportions of contribution of different
transmission routes to the effective reproduction number.

[95.62%–96.91%]) and 96.10% (95% CI: [95.57%–96.98%]) for California, Texas, New Jersey,
Illinois and Florida, respectively. Further, if the relative transmission rate of presymptomatic infection
is only one tenth of the original value, the number of cumulative reported infections will be reduced
by 97.83% (95% CI: [97.58%–98.03%]), 98.11% (95% CI: [97.55%–98.40%]), 92.20% (95% CI:
[90.79%–92.97%]), 98.11% (95% CI: [97.99%–98.32%]) and 98.27% (95% CI: [98.07%–98.62%])
for California, Texas, New Jersey, Illinois and Florida, respectively. The pronounced reduction in the
number of daily infections suggests the importance of implementing non-pharmaceutical
interventions aiming at controlling presymptomatic transmission.

4. Discussion

We developed a metapopulation SEPAIR network model that incorporates deterministic and
stochastic spread based on population mobility data to investigate the dynamical characteristics of
presymptomatic COVID-19 transmission in the USA in 2020. Unlike previous studies, our model
inference system could capture the characteristics of the spatiotemporal dynamics of presymptomatic
transmission during the ongoing disease spread in the USA. We found that the virus was highly
infectious even in the presymptomatic stage during which its transmission rate reached 59.94% (95%
CI: [58.08%–61.72%]) the transmission rate of reported infections. Second, hidden transmission in
the presymptomatic stage had a significant impact on the ongoing disease transmission. The
contagious incubation period was about 4.29 days (95% CI: [4.22–4.33]) .We found that the average
proportion of infected individuals in the presymptomatic stage was consistently over 50% of all
infected individuals. The contribution of presymptomatic transmission to daily new infections
consistently exceeded 52% and the contribution of presymptomatic transmission to the effective
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Figure 7. The counterfactual simulation model results obtained by controlling
presymptomatic transmission. The brown cross represents the daily number of newly
reported cases observed. The red curve represents the simulation of the daily number
of newly reported cases by controlling the relative transmission rate of presymptomatic
infections to 0.5 times the original value. The blue curve represents the simulation of
the daily number of newly reported cases by controlling the relative transmission rate of
presymptomatic infections to 0.3 times the original value. The green curve represents
the simulation of the daily number of newly reported cases by controlling the relative
transmission rate of presymptomatic infections to 0.1 times the original value.

reproduction number consistently exceeded 50% nationwide. Further, the current level of
non-pharmacological interventions was insufficient to control the ongoing spread of the pandemic. If
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the relative transmission rate of presymptomatic infection was reduced to be 0.5 times, 0.3 times or
0.1 times the original values in our model, respectively, 60.79% (95% CI: [55.34%–68.06%]), 81.74%
(95% CI: [78.22%–84.56%]) and 89.60% (95% CI: [88.34%–91.83%]) of the reported infections
would be avoided as of December 11. This result suggests that, in the formulation and
implementation of prevention and control measures, it is necessary to increase the screening of people
who do not show symptoms, and timely test and isolate presymptomatic cases [44]. It is therefore
critical to take measures that can effectively reduce the risk of presymptomatic transmission, such as
social distancing, wearing masks and vaccinations [45].

There are several advantages in the study. First, we leverage both the data of mobility among
counties and the data of all counties to quantify presymptomatic transmission in our method. Our
results are more reliable than those obtained by simply using the data of locations. Second, the data
assimilation algorithm used in our study is efficient for high dimensional models. Therefore it can be
applied in models characterizing the COVID-19 transmission throughout the United States of America.

There are also some limitations of this work. First, due to the lack of relevant data, in our model,
we treat asymptomatic cases as a special case of mildly symptomatic cases and model it with the
presymptomatic stage, which allowed us to roughly quantify the prevalence and contribution of
presymptomatic transmission [23]. Second, characteristics such as age structure, gender, comorbidity
and contact patterns are not considered in our model, even though they may play a significant role in
disease transmission [46–48]. Lastly, we assume in our model that all reported cases are symptomatic
and all symptomatic cases have been reported. However, this is a simplification for modeling and not
always the case. Some reported cases may be asymptomatic if detected through contact tracing, and
some symptomatic cases may not be reported.
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Availability of data

(1) Case information data set. This data set contains the number of daily confirmed cases and daily
deaths in the 50 states of the USA and Washington, DC from February 21, 2020 to December 11,
2020. The data was taken from Johns Hopkins University, and it can be downloaded from https:
//datahub.io/core/covid-19. (2) A data set of commuting between states in the USA. It was taken from
the commuter flow data of the five-year U.S. Census survey from 2011 to 2015
(https://www.census.gov/data/tables/2015/demo/metro-micro/commuting-flows-2015.html). This data
set is available in [25], which recorded the number of commuters between counties. From this data
set, we collected the state-level population commuting data for model calibration before the
announcement of extensive control measures on March 15, 2020. (3) Resident travel data set of 51
states and regions in the USA. The data set was taken from the Foursquare Labs Inc laboratory in
which the time, duration and location of users are determined by mobile device signals [27]. (4)
Population data set. This data set contains the total population of each state in the USA and the age
composition data of the population, which can be obtained from USAFacts (https://usafacts.org/) .
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et al., Neuropilin-1 is a host factor for SARS-CoV-2 infection, Science, 370 (2020), 861–865.
https://doi.org/10.1126/science.abd3072

Mathematical Biosciences and Engineering Volume 21, Issue 1, 861–883.

http://dx.doi.org/https://doi.org/10.1073/pnas.2019716118
http://dx.doi.org/https://doi.org/10.1038/s41586-020-2554-8
http://dx.doi.org/https://doi.org/10.1038/s41586-020-2554-8
http://dx.doi.org/https://doi.org/10.1126/science.abb3221
http://dx.doi.org/https://doi.org/10.1126/science.abe8372
http://dx.doi.org/https://doi.org/10.1073/pnas.1708856115
http://dx.doi.org/https://doi.org/10.1126/sciadv.abd6370
http://dx.doi.org/https://doi.org/10.1175/1520-0493(2001)129<2884:AEAKFF>2.0.CO;2
http://dx.doi.org/https://doi.org/10.1073/pnas.1208772109
http://dx.doi.org/https://doi.org/10.1101/2021.02.15.21251777
http://dx.doi.org/https://doi.org/10.1109/78.978374
http://dx.doi.org/https://doi.org/10.1175/2008MWR2529.1
http://dx.doi.org/https://doi.org/10.1073/pnas.1415012112
http://dx.doi.org/https://doi.org/10.1098/rsif.2009.0386
http://dx.doi.org/https://doi.org/10.1126/science.abd3072


878

36. S. Sanche, Y. T. Lin, C. Xu, E. Romero-Severson, N. Hengartner, R. Ke, High contagiousness
and rapid spread of severe acute respiratory syndrome coronavirus 2, Emerg. Inf. Dis., 26 (2020),
1470. https://doi.org/10.3201%2Feid2607.200282

37. S. Lai, N. W. Ruktanonchai, L. Zhou, O. Prosper, W. Luo, J. R. Floyd, et al., Effect of non-
pharmaceutical interventions to contain COVID-19 in China, Nature, 585 (2020), 410–413.
https://doi.org/10.1038/s41586-020-2293-x

38. M. Chinazzi, J. T. Davis, M. Ajelli, C. Gioannini, M. Litvinova, S. Merler, et al., The effect of
travel restrictions on the spread of the 2019 novel coronavirus (COVID-19) outbreak, Science, 368
(2020), 395–400. https://doi.org/10.1126/science.aba9757

39. H. Tian, Y. Liu, Y. Li, C. H. Wu, B. Chen, M. U. Kraemer, et al., An investigation of transmission
control measures during the first 50 days of the COVID-19 epidemic in China, Science, 368 (2020),
638–642. https://doi.org/10.1126/science.abb6105

40. B. F. Maier, D. Brockmann, Effective containment explains subexponential growth
in recent confirmed COVID-19 cases in China, Science, 368 (2020), 742–746.
https://doi.org/10.1126/science.abb4557

41. J. Zhang, M. Litvinova, Y. Liang, Y. Wang, W. Wang, S. Zhao, et al., Changes in contact
patterns shape the dynamics of the COVID-19 outbreak in China, Science, 368 (2020), 1481–
1486. https://doi.org/10.1126/science.abb8001

42. M. U. Kraemer, C. H. Yang, B. Gutierrez, C. H. Wu, B. Klein, D. M. Pigott, et al., The effect of
human mobility and control measures on the COVID-19 epidemic in China, Science, 368, (2020),
493–497. https://doi.org/10.1126/science.abb4218

43. J. Dehning, J. Zierenberg, F. P. Spitzner, M. Wibral, J. P. Neto, M. Wilczek, V. Priesemann,
Inferring change points in the spread of COVID-19 reveals the effectiveness of interventions,
Science, 369 (2020), eabb9789. https://doi.org/10.1126/science.abb9789

44. M. Du, Contact tracing as a measure to combat COVID-19 and other infectious diseases, Am. J.
Infect. Control, 50 (2022), 638–644. https://doi.org/10.1016/j.ajic.2021.11.031

45. S. Liu, T. Yamamoto, Role of stay-at-home requests and travel restrictions in
preventing the spread of COVID-19 in Japan, Transp. Res. Part A, 159 (2022), 1–16.
https://doi.org/10.1016/j.tra.2022.03.009

46. N. G. Davies, P. Klepac, Y. Liu, K. Prem, M. Jit, R. M. Eggo, Age-dependent effects in
the transmission and control of COVID-19 epidemics, Nat. Med., 26 (2020), 1205–1211.
https://doi.org/10.1038/s41591-020-0962-9

47. A. James, M. J. Plank, R. N. Binny, A. Lustig, K. Hannah, S. Hendy, N. Steyn, A structured model
for COVID-19 spread: Modelling age and healthcare inequities, Math. Med. Biol., 38 (2021),
299–313. https://doi.org/10.1093/imammb/dqab006

48. E. A. Undurraga, G. Chowell, K. Mizumoto, COVID-19 case fatality risk by age and gender in a
high testing setting in Latin America: Chile, March–August 2020, Infect. Dis. Poverty, 10 (2021),
1–11. https://doi.org/10.1186/s40249-020-00785-1

Mathematical Biosciences and Engineering Volume 21, Issue 1, 861–883.

http://dx.doi.org/https://doi.org/10.3201%2Feid2607.200282
http://dx.doi.org/https://doi.org/10.1038/s41586-020-2293-x
http://dx.doi.org/https://doi.org/10.1126/science.aba9757
http://dx.doi.org/https://doi.org/10.1126/science.abb6105
http://dx.doi.org/https://doi.org/10.1126/science.abb4557
http://dx.doi.org/https://doi.org/10.1126/science.abb8001
http://dx.doi.org/https://doi.org/10.1126/science.abb4218
http://dx.doi.org/https://doi.org/10.1126/science.abb9789
http://dx.doi.org/https://doi.org/10.1016/j.ajic.2021.11.031
http://dx.doi.org/https://doi.org/10.1016/j.tra.2022.03.009
http://dx.doi.org/https://doi.org/10.1038/s41591-020-0962-9
http://dx.doi.org/https://doi.org/10.1093/imammb/dqab006
http://dx.doi.org/https://doi.org/10.1186/s40249-020-00785-1


879

49. R. Verity, L. Okell, I. Dorigatti, P. Winskill, C. Whittaker, N. Imai, et al., Estimates of the severity
of coronavirus disease 2019: A model-based analysis, Lancet Infect. Dis., 20 (2020), 669–677.
https://doi.org/10.1016/S1473-3099(20)30243-7

Appendix

A. SEPAIR model

The daytime metapopulation SEPAIR model is expressed as follows:
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Similarly, the nighttime metapopulation SEPAIR model is expressed as follows:
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Nn
j −
∑

k Ik j (t + dt1)

∑
k, j

N̄k j (A.9)
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Ii j(t + 1) = Ii j (t + dt1) + α j
Pi j (t + dt1)

Z2
dt2 −

Ii j (t + dt1)
D

dt2 (A.10)

Ai j(t + 1) = Ai j (t + dt1) +
(
1 − α j

) Pi j (t + dt1)
Z2

dt2 −
Ai j (t + dt1)

D
dt2

+θdt2
Ni j

Nn
j

∑
k, j

N̄ jk
∑

l Alk (t + dt1)
Nn

k −
∑

l Ilk (t + dt1)

−θdt2
Ai j (t + dt1)

Nn
j −
∑

k Ik j (t + dt1)

∑
k, j

N̄k j (A.11)

Nn
i (t) =

∑
k

Nki (A.12)

where S i j, Ei j, Pi j, Ii j, Ai j and Ni j are the numbers of susceptible individuals, exposed cases,
presymptomatic cases, reported cases and asymptomatic or mildly symptomatic cases, as well as the
total population living in state j and working in state i respectively. Z1, D, µ, θ, m and Z2 represent the
latent period (non-infectious), the average duration of infection, the relative transmission rate of
asymptomatic or mildly symptomatic cases, the adjustment parameter for population mobility, the
relative transmission rate in the presymptomatic stage and the contagious incubation period in the
presymptomatic stage (asymptomatic but contagious) respectively. dt1 and dt2 represent the duration
of day and night, which are 8 hours and 16 hours, respectively. Since we assumed that the reported
individuals are not allowed to travel to the state where they work, in the daytime, S i j number of
susceptible individuals who work in state i can only be infected by Iki number of reported individuals
who live in state i, Aik number of asymptomatic or mildly symptomatic individuals who work in state i
and Pik number of presymptomatic individuals who work in state i and then become exposed
individuals. The expected numbers for those exposed individuals are βiS i j(t)

∑
k Iki(t)

Nd
i (t)

,µβiS i j(t)
∑

k Aik(t)
Nd

i (t)
and

mβiS i j(t)
∑

k Pik(t)
Nd

i (t)
, respectively. Besides population mobility due to work commuting, we also consider

random mobility. Random mobility has also been considered in the modeling of the COVID-19
transmission in previous studies [27]. Here we apply it the same way in our model. On the right-hand
side of Eq (A.1), θdt1

Ni j−Ii j(t)
Nd

i (t)

∑
k,i

N̄ik
∑

l S kl(t)
Nd

k (t)−
∑

l Ilk(t)
denotes the augmentation in number of susceptible

people due to random mobility while θdt1
S i j(t)

Nd
i (t)−

∑
l Ili(t)

∑
k,i N̄ki denotes the decrease in number of

susceptible people due to random mobility.

B. Model calibration

The SEPAIR model generates the number of daily new reported cases and daily new deaths for each
state. To map infections to deaths, we used an age-stratified infection fatality rate (IFR) and computed
the IFR for each state as a weighted average by using demographic information on local age structure
[27,49]. Data can be obtained from USAFacts (Https://usafacts.org/). To account for reporting delays,
we mapped the simulated reported infections to reported cases by using a separate observational delay
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model. In this delay model, we account for the time interval between a person transitioning from latent
infection to symptom onset (i.e., E → I) as well as for observational confirmation of that individual
infection. To estimate this delay period, we applied a gamma distribution (a = 1.85, b = 3.24, mean
= 6 days) for the confirmation of infection and a gamma distribution (a = 1.85, b = 11.35, mean = 21
days) to describe infections leading to death in the grid search method [27].

Figure B1. Model fitting for the numbers of daily new reported cases and daily new deaths
in the USA, California, Texas and Florida. The red points represent the observed values of
number of daily new reported cases, the blue points represent the observed values of number
of daily new death cases and the curve and the filled area represent the median and the 95%
confidence interval, respectively.

From Figure B1, we find that the SEPAIR model captures well the dynamics of the number of
daily new reported cases and daily new deaths in the USA in 2020. There were three waves of the
pandemic in the USA: the spring wave in April, the summer wave at the end of July and the more
violent resurgence in winter. The number of reported cases in the USA briefly declined in the initial
period due to a wide range of non-pharmaceutical interventions. However, there was a sustained
recovery beginning in mid-2020, with new reported cases exceeding 100,000 in a single day on
November 4, 2020. As of December 11, 2020, the six states with the largest numbers of reported
cases in the USA were California (CA), Texas (TX), Florida (FL), Illinois (IL), New York (NY) and
Ohio (OH); the six states with the most deaths were New York (NY), Texas (TX), California (CA),
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Florida (FL), New Jersey (NJ) and Illinois (IL). Here, we present the simulation results for California,
Texas, Florida, Illinois, New York and New Jersey in Figure B1, which shows the differences in the
positions of the peaks of pandemic waves among these states. Specifically, California, Texas and
Florida saw their first wave in the summer, and for New York and New Jersey, the first wave came in
the spring. The number of deaths in the states that ushered in the peak of the diagnosis in the spring is
very large, and it may be related to the shortage of medical resources in the early stage of the
pandemic (Figure B2).

Figure B2. Model fitting for the number of daily new reported cases and daily new deaths
in Illinois, New York, Ohio and New Jersey. The red points represent the observed values of
number of daily new reported cases, the blue points represent the observed values of number
of daily new death cases and the curve and the filled area represent the median and the 95%
confidence interval, respectively.
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