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Abstract: Retinal vessel segmentation is very important for diagnosing and treating certain eye 
diseases. Recently, many deep learning-based retinal vessel segmentation methods have been proposed; 
however, there are still many shortcomings (e.g., they cannot obtain satisfactory results when dealing 
with cross-domain data or segmenting small blood vessels). To alleviate these problems and avoid 
overly complex models, we propose a novel network based on a multi-scale feature and style transfer 
(MSFST-NET) for retinal vessel segmentation. Specifically, we first construct a lightweight 
segmentation module named MSF-Net, which introduces the selective kernel (SK) module to increase 
the multi-scale feature extraction ability of the model to achieve improved small blood vessel 
segmentation. Then, to alleviate the problem of model performance degradation when segmenting 
cross-domain datasets, we propose a style transfer module and a pseudo-label learning strategy. The 
style transfer module is used to reduce the style difference between the source domain image and the 
target domain image to improve the segmentation performance for the target domain image. The 
pseudo-label learning strategy is designed to be combined with the style transfer module to further 
boost the generalization ability of the model. Moreover, we trained and tested our proposed MSFST-
NET in experiments on the DRIVE and CHASE_DB1 datasets. The experimental results demonstrate 
that MSFST-NET can effectively improve the generalization ability of the model on cross-domain 
datasets and achieve improved retinal vessel segmentation results than other state-of-the-art methods. 
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1. Introduction 

According to data from the World Vision Report [1] released by the World Health Organization 
in 2019, more than 418 million people suffer from eye diseases worldwide [2]. Eye diseases have 
seriously harmed human life and health. Therefore, it is necessary to prevent and screen for eye 
diseases early. 

Information regarding the morphology of retinal vessels is essential for the treatment of many eye 
diseases and has been widely used in clinical diagnoses [3]. Hence, accurately segmenting retinal blood 
vessels is very important for doctors in diagnosing and treating eye diseases. However, the vessels in 
the optic cup region are significantly thicker than those in other regions. Additionally, the blood vessels 
in the fundus image are easily mixed with the background and difficult to distinguish, which leads to 
retinal vessel segmentation being very challenging. 

Researchers have presented many retinal vessel segmentation approaches, which are broadly 
grouped into two classes: classical segmentation methods and segmentation methods based on deep 
learning. In the early years, many classical retinal vessel segmentation methods were proposed based 
on hand-crafted features (e.g., image gradient features and local texture features). For example, Soares 
et al. [4] employed the pixel intensity and two-dimensional Gabor wavelet transform responses taken 
at multiple scales as the feature vector of pixels to produce pixel-level vessel segmentation results. 
Orlando et al. [5] proposed a fully connected conditional random field method with an improved 
potential for feature extraction, which can perform fast and accurate blood vessel segmentation in 
retinal images. Nguyen et al. [6] employed a multiscale line detection framework to combine line 
detectors at varying scales to classify each pixel as either a retinal vessel or background in fundus 
images. The existing classical methods usually lack sufficiently discriminative information to 
accurately segment retinal vessels, and their performances are easily affected by the extracted hand-
crafted features. 

With the wide application of deep learning technology, retinal vessel segmentation approaches 
based on deep learning have attracted increasing attention. In 2015, Ronneberger et al. [7] proposed 
U-Net for medical image segmentation tasks. U-Net combines the encoder-decoder architecture and 
skip connections and is a well-known backbone network in the medical image segmentation 
community. Recently, researchers have presented a series of improved models based on U-Net [8]. For 
example, Wang et al. [9] proposed a dual-coded U-Net (DEU-Net), which improves the ability of the 
network to segment retinal blood vessels pixel-to-pixel. Zhang et al. [10] presented an attention guided 
network (AG-Net), which designs a filter named the attention guided filter to obtain improved 
segmentation results for fundus images. Wang et al. [3] developed a multi-scale integrated context 
network (MIC-Net) based on U-Net to fully fuse the multi-scale features from the encoder and the 
decoder to segment retinal vessels in fundus images. Wu et al. [11] designed Vesic-Net for vessel 
segmentation by embedding an initial residual convolution block into the U-type encoder-decoder 
structure. The residual convolution block is an effective strategy to resolve vanishing/exploding gradient 
problems and is widely used in various medical image analysis tasks; for example, Shin et al. [12] proposed 
a squeeze-and-excitation super-resolution residual network (SE-SRResNet) for transcranial focused 
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ultrasound simulation. 
The retinal vessel segmentation approaches based on deep learning can continuously optimize the 

model according to the real labels of the training dataset so they can achieve good segmentation 
performances. However, when deep learning-based models trained well on one public dataset are 
directly applied to another dataset, the segmentation performance of the models will greatly decrease 
due to the domain shift problem [13]. Domain shifts often exist in different medical image datasets 
and are very common in practical applications. For example, different hospitals and institutions usually 
adopt different equipment to take fundus images, which causes a domain shift problem between the 
images acquired by different equipment. Even when adopting the same equipment, the appearance of 
the image usually varies with subjects, clinical operators and other factors thus the domain shift 
problem is still persistant. Figure 1 shows an example of a domain shift. In Figure 1, the style and size 
of images between two datasets (DRIVE and CHASE_DB1) are different, which means that there is a 
domain shift between these two databases. Since a domain shift will degrade the model performance, 
the development of a valid retinal vessel segmentation model that is robust to domain shifts is necessary. 

 

(a) DRIVE                           (b) CHASE_DB1 

Figure 1. Comparison of images from different datasets. 

In this paper, we propose a novel retinal vessel segmentation method based on multi-scale features 
and a style transfer (MSFST-NET), which can improve the segmentation results and is robust to 
domain shifts. The contributions of our work are as follows: 

1) Small blood vessels in fundus images play a very important role in disease diagnoses. Ordinary 
segmentation models often use convolutions of the same size to extract features, which leads to poor 
small blood vessel segmentation. To solve this problem, we introduce the selective kernel (SK) into 
the segmentation model to learn more multi-scale feature information to improve the segmentation 
results of small vessels. 

2) A domain shift is a common phenomenon in medical images. To alleviate the problem of model 
performance degradation caused by domain shifts, we propose a style transfer module to reduce the 
style difference between the source domain dataset and the target domain dataset. 

3) To further enhance the robustness of the model, we additionally design a pseudo-label strategy 
to increase the model’s generalization ability and reduce the effect of domain shifts. 

4) To verify the effectiveness of our proposed method, we conducted a large number of 
experiments on the DRIVE and CHASE_DB1 datasets. The experimental results show that our 
proposed method is effective and superior to other advanced vessel segmentation methods. 
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2. Related work 

2.1. Retinal vessel segmentation 

Retinal vessel segmentation is used to localize blood vessels in fundus images. Early retinal vessel 
segmentation approaches are often designed by employing traditional shallow machine learning 
models, which include matching filtering and blood vessel tracking methods. Recently, with the 
development of deep learning, a large number of retinal vessel segmentation approaches have been 
presented by adopting the convolutional neural network (CNN), which achieves a superior 
performance compared to the approaches based on traditional shallow machine learning and has 
attracted increasing attention. 

The fully convolutional network (FCN), which was proposed by Long et al. [14], is a classical 
semantic segmentation approach. The FCN extends the deep neural network from the classification of 
the whole image to the classification of each pixel in the image for the first time. To gain more accurate 
results in the area of medical image segmentation, a large number of improved methods based on FCN 
have been proposed. For instance, U-Net [7] is a deep convolutional network constructed by improving 
the original skip connection part of an FCN. Subsequently, many more advanced network models have 
been proposed based on U-Net (e.g., attention U-Net [15] and U-Net++) [16]. Attention U-Net 
introduces an attention gate mechanism into U-Net to reduce the redundant feature information brought 
on by the skip connection. U-Net++ introduces a jump path consisting of dense convolutional blocks 
and dense jump connections into the structure of U-Net. Meanwhile, U-Net++ adds a deep supervision 
mechanism to speed up the convergence of network training. In addition to the methods based on U-
Net, some retinal vessel segmentation methods have been proposed based on generative adversarial 
networks [17–20]. For example, Yue et al. [20] proposed an improved generative adversarial network 
based on R2U-Net for retinal vessel segmentation. Generative adversarial network-based segmentation 
methods have difficulty training models; thus, they have not become widespread popular methods. 

The abovementioned methods mainly focus on segmentation accuracy while usually ignoring 
segmentation efficiency. The efficiency of the model is of great significance to practical applications. 
To improve the segmentation model efficiency, Galdran et al. [21] proposed a new model called W-
Net, which is a simple extension of the U-Net structure and can obtain an outstanding performance on 
retinal vessel segmentation. Hence, we employ W-Net as the backbone network of our proposed 
method and further boost its segmentation performance for small retinal vessels by introducing the 
multi-scale feature extraction module. 

2.2. Cross-domain segmentation 

In recent years, some researchers have found that when a deep learning model trained on a labeled 
dataset is directly applied to a different dataset, the segmentation performance of the model is greatly 
reduced [13]. This is because different fundus image datasets usually have the issue of domain shift. 
To alleviate this issue, many cross-domain segmentation methods have been presented to strengthen 
the domain transferability of models and mitigate cross-domain model performance decline. Cross-
domain segmentation methods can be broadly categorized into two main classes: methods based on 
semi-supervised domain adaptation and methods based on unsupervised domain adaptation. 

The methods based on semi-supervised domain adaptation [22–26] usually adopt fewer labeled 
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images and more unlabeled images in the target domain dataset to mitigate the negative impact of 
domain shift on model performance. For instance, Xia et al. [22] proposed an uncertainty-aware multi-
view co-training (UMCT) method to achieve semi-supervised learning and domain adaptation, which 
can obtain an improved performance for cross-domain medical image segmentation. Chen et al. [23] 
proposed a dual-level domain mixing-based segmentation network that learns domain-invariant 
region-level and image-level features based on labeled samples from different domains and further 
enhances the model performance by using pseudo labels of unlabeled data. The performance of semi-
supervised domain adaptation methods is limited by the number of labeled images; annotating these 
medical images is very difficult, which greatly reduces the scope of the practical application of these 
semi-supervised domain adaptation models. 

The methods based on unsupervised domain adaptation aim to enhance model domain 
transferability and alleviate cross-domain performance degradation by only using unlabeled data in the 
target domain. In recent years, many unsupervised domain adaptation methods with a relatively good 
performance have been proposed [27–32]. Wang et al. [27] designed a cross-domain segmentation 
approach based on feature separation. This approach adopts a new unsupervised region adaptive 
strategy and the disentangled reconstruction neural network (DRNN) to reduce the impact of domain 
shift on the model’s segmentation performance. Zuo et al. [28] developed an unsupervised domain 
adaptation method based on category-level adversarial self-ensembling, which aligns the source and 
target domain by constraining the descriptions. Xu et al. [29] designed self-ensembling attention 
networks to produce attention-aware features and used them to guide the model to compute the 
consistency loss in the target domain. Since the methods based on unsupervised domain adaptation do 
not require any labeled target domain data, they are more convenient for practical applications. 

Inspired by these previous studies and to avoid models that are too complex, we design a simple 
yet effective method to address the issue of domain shift. Specifically, we combine Cycle-GAN [33], 
which is a popular algorithm to transfer images over different domains by cycle consistency losses, 
and a pseudo-label learning strategy to ensure that our segmentation method can still acquire good 
segmentation performance when dealing with images from cross-domains. 

3. Proposed method 

3.1. The overall framework of MSFST-NET 

The overall structure of our MSFST-NET is shown in Figure 2. First, the labeled source domain 
images are input into our proposed segmentation model, named MSF-Net, to train and obtain the model 
with the optimal segmentation performance. Then, based on the style of the source domain images, 
style transformation is performed on the unlabeled target domain images by the proposed style transfer 
module. Finally, the target domain images after the style transformation are input into the trained MSF-
Net to generate the prediction maps. Prediction maps are used as pseudo-labels that are fused with the 
labeled source domain images to further increase the segmentation accuracy and strengthen the 
generalization ability of the network. Overall, MSFST-NET includes the following three parts: the 
segmentation module MSF-Net, a style transfer module and a pseudo-label learning strategy. 
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Figure 2. The overall structure of MSFST-NET. 

Segmentation module MSF-Net: This part is the basic segmentation model of our proposed 
MSFST-NET. To make the model lightweight and have a good performance, we use two-cascade three-
layer U-Net as the basic architecture of MSF-Net. In addition, considering that retinal vessels have 
different sizes and scales, it is difficult to simultaneously obtain the important feature information of 
blood vessels at each scale by only using convolution kernels of the same size. Therefore, we introduce 
SK into the encoding stage of each U-Net in MSF-Net, that is, we employ convolution kernels of 
different sizes to learn and adaptively fuse multi-scale features to reduce feature loss and further 
increase the accuracy of blood vessel segmentation. 

Style transfer module: Since the issue of domain shift is common in the community of medical 
image segmentation, we construct a style transfer module to make the target domain images and the 
source domain images tend to assimilate in style, thereby reducing the style difference between them 
and easing the performance degradation when the model is directly applied to another dataset. In this 
module, the classical Cycle-GAN style transfer algorithm is adopted, and the model trained by the 
source domain dataset is employed to segment the target domain images after the style transfer to 
obtain improved segmentation results of the target domain images. 

Pseudo-label learning strategy: To further strengthen the model performance when dealing with 
cross-domain datasets (i.e., there is a domain shift between two datasets), we further design a pseudo-
label learning strategy. The pseudo-label of the target domain dataset generated by the style transfer 
module is utilized as the training data; then, the model is retrained by the target domain dataset and the 
source domain dataset, which can obtain a model with an improved segmentation performance and a 
stronger generalization ability. 

3.2. MSF-Net 

We adopt a deep learning model containing a two-cascade three-layer U-Net, which is called W-
Net [21], as the backbone network of MSF-Net; this deep learning model is a lightweight model that 
has a good segmentation accuracy and few parameters. The original U-Net contains five layers of 
downsampling and upsampling. To make the model lightweight, W-Net reduces the five-layer network 
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structure to a three-layer network structure that has approximately 0.03 M parameters. To reduce the 
number of layers and parameters without losing too much model performance, W-Net concatenates 
two three-layer U-Nets, which has around 0.06 M parameters in total [21]. The segmentation results 
output by the first U-Net in W-Net are fused with the original images as the input of the second U-Net, 
that is, the blood vessel segmentation prediction map of the first U-Net is used as an attention map to 
weigh the original image and input it to the second U-Net so that the second U-Net pays more attention 
to the key parts of the image when segmenting blood vessels.  

Although W-Net performs relatively well for retinal vessel segmentation, it cannot capture rich 
multi-scale image features; hence, the segmentation results of small blood vessels are not satisfactory. 
To solve this drawback, we embed the SK [34] into W-Net to construct a new network named MSF-
Net to strengthen the multi-scale feature extraction ability of the model. Figure 3 shows the structure 
of our MSF-Net. 

 

Figure 3. The MSF-Net architecture. 

In MSF-Net, each encoder in the two cascaded U-Net networks contains three stages, and each 
stage contains a normal convolution operation and an SK module, along with a downsampling 
operation. Each decoder in U-Net consists of a convolution operation and an upsampling operation. In 
Figure 3, the blue rectangular block represents the feature map, and the number on each feature map 
denotes the number of channels. The blue arrow represents a 3 × 3 convolution, batch normalization 
(BN) and rectified linear unit (ReLU) activation function [35] (BN can accelerate network training and 
increase model accuracy [36], and ReLU can enhance nonlinear mapping learning and reduce the 
computational complexity of the network to prevent gradient disappearance). The red arrow represents 
the SK module, and BN and ReLU are added after SK. The yellow downward arrows represent the 
max pooling operation, which is employed to decrease the size of the feature map and extract features. 
The yellow up arrow represents the upsampling step used to gradually recover the details of the object 
and the corresponding spatial dimension. The gray arrow represents skip connections, which can 
provide richer feature information for the decoder. 

The SK module [34] is a dynamic selective kernel that uses convolution kernels with different 
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receptive field sizes to extract multi-scale feature maps and adaptively selects the appropriate receptive 
fields for vessels of different sizes, thus obtaining rich multi-scale feature information for retinal vessel 
segmentation. Figure 4 shows the architecture of the SK module. 

 

Figure 4. The SK module architecture. 

The key to the SK module is that it employs convolution kernels with different receptive field 
sizes to adaptively extract and select multi-scale features, making the feature information learned by 
the network richer and more discriminative, which is conducive to improving the segmentation results 
of small blood vessels in the retinal image. SK consists of three operations: split, fuse and select. 

The split operation extracts abundant multi-scale feature information and adopts convolution 
kernels with different receptive field sizes (3 × 3 and 5 × 5) to deal with the input features X to obtain 
the different scale feature maps 𝑈 and 𝑈, as shown in Figure 4. 

The fusion operation first integrates 𝑈 and 𝑈 by elementwise summation to obtain the fusion 
feature map U. Then, it utilizes the average pooling and fully connected layer to handle U to produce 
a compact feature map 𝑧. 𝑧 will be utilized to learn the adaptive weights 𝑎  and 𝑏  for the different 
scale feature maps. This process can be described by the following formulas: 

𝑧 𝐹 𝑠 𝛿 𝐵𝑁 𝑊𝑠                           (1) 

𝑠 𝐹 𝑈 ∑ ∑ 𝑈 𝑖, 𝑗                        (2) 

where 𝐹  represents the fully connected layer, 𝐵𝑁 is the batch normalization, 𝛿  represents the 
ReLU activation function, W is a learnable parameter and 𝑊 ∈ 𝑅 ∗ , 𝑑 represents the dimensions of 
the fully connected layer, 𝐹   denotes the global average pooling operation utilized to obtain the 
channel-wise statistics 𝑠 , specifically, 𝑠   represents the c-th element of s , Uc denotes the c-th 
channel of U, and h and w are the height and width of the feature map, respectively. 

The selection operation adaptively selects the multi-scale features by the different attention 
weights. First, it employs the softmax operation to calculate the weights 𝑎  and 𝑏  of the feature 
maps with different scales by Eq (3). Then, the c-th channel 𝑉  of the final feature map V is obtained 
by Eq (4): 

𝑎     𝑏                        (3) 

𝑉 𝑎 ∙ 𝑈 𝑏 ∙ 𝑈,          𝑎 𝑏 1                    (4) 
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where 𝐴  represents the c-th row of 𝐴, 𝐵  is the c-th row of 𝐵, 𝐴 and 𝐵 are learnable parameters, 
and 𝐴, 𝐵 ∈ 𝑅 ∗ . 

3.3. Style transfer module 

Due to the differences in the shooting devices and the shooting angles, there are often stylistic 
differences between images from two different retinal vessel datasets, which is called a domain shift. 
Therefore, when a segmentation model trained on one fundus image dataset is directly applied to 
another fundus image dataset, the performance of the model will be greatly reduced. To address this 
problem, we develop a style transfer module to reduce the differences between the two datasets as 
much as possible to alleviate the domain shift problem. In the style transfer module, we adopt a 
classical model, termed Cycle-GAN [33], to transfer the style of the target domain images to that of 
source domain images. In medical image segmentation, interpretability is very important. Cycle-GAN 
can transform target domain images into source-like domain images, which is a more intuitive and 
highly interpretable approach. Furthermore, the transformed images can be directly utilized in our 
segmentation model without retraining. In contrast, other advanced domain generalization methods 
usually require aligning features from different domains in a high-dimensional feature space, which is 
less interpretable and creates greater training challenges. Hence, we selected the relatively simple yet 
effective Cycle-GAN as our style transfer module. 

One advantage of Cycle-Gan is that it can be trained without paired datasets, and it can retain the 
details of the original image content as much as possible during style transfer. The Cycle-GAN 
structure is shown in Figure 5. It represents the target domain dataset and Is represents the source 
domain dataset. There are two generators and two discriminators in the Cycle-GAN model: F is an 
image generator that converts the source domain style to the target domain style, and Dx is a 
discriminator that decides whether the generated image style is consistent with the target domain image 
style. G is an image generator that converts the target domain style to the source domain style and Dy 

is a discriminator that determines whether the style of the image generated by G is consistent with that 
of the source domain image. 

 

Figure 5. The architecture of Cycle-GAN. 

Cycle-GAN mainly uses cycle consistency constraints to ensure that the content is consistent 
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between the output image of the generator and the original input image. As shown in Figure 5, in the 
process of cycle consistency, given two images, It and Is, from different style domains, image It is first 
used to generate image It2s with image Is style through the generator G, and then It2s is utilized to 
generate the image It’ with the same style as It through the generator F. In this process, if the content 
and style of the image It and the image It’ are consistent, it signifies that the image has gone through a 
cycle and the content and style of the image remain consistent before and after the cycle, which is the 
basic principle of cycle consistency. 

Cycle consistency can ensure that the content of the original input image is preserved when the 
generator produces the style-transferred image so that the generated image can be returned to the input 
image by another generator during the second transformation. In our work, when performing a style 
transfer on fundus images, cycle consistency can preserve as much of the key information of blood 
vessels as possible. 

3.4. Pseudo-label learning strategy 

In the previous section, the style transfer module was proposed to ease the domain transfer 
problem between the different datasets to some extent. To further solve this problem and strengthen 
the generalization ability of our model, our work adopts a pseudo-label learning strategy. The pseudo-
label learning strategy is a method based on the idea of semi-supervised learning, and its main purpose 
is to enhance the generalization ability of the model by employing unlabeled data. 

The semi-supervised training process based on pseudo-label learning mainly contains the 
following four steps. First, the labeled source domain dataset is employed to train the segmentation 
model and save the optimal model parameters. Second, the trained model is utilized to estimate the 
labels of unlabeled target domain samples, and the estimated results are used as the pseudo-labels of 
these unlabeled target domain samples. Third, the labeled source domain samples and the target 
domain samples with pseudo-labels are employed as new training data to retrain the segmentation 
model, and the first to third steps are repeated until the model converges. Finally, the images in the 
target domain test dataset are predicted to obtain the final blood vessel segmentation results. The details 
of the pseudo-label learning strategy are shown in Algorithm 1. 

Algorithm 1 Pseudo-label learning strategy
Input: Labeled source domain dataset 𝐷 𝑥 , 𝑦  , 𝑥  represents source image and y  is the 
corresponding label; Unlabeled target domain dataset 𝐷t 𝑥 , 𝑥  represents the target image. 
Initialization: The max number of iterations Imax; Train MSF-Net using the samples from 

sD  and 

save the MSF-Net network 𝑓  which has the optimal parameters. 
For i = 1 to Imax do 
Predict the segmentation mask 𝑦  of each 𝑥  by using 𝑓 ; 
Set 𝑦  as the pseudo-label of 𝑥  and obtain a new target domain dataset 𝐷 𝑥 , 𝑦  with pseudo-
labels; 
𝐷 ← 𝐷 ∪ 𝐷 ; 
Train 𝑓  again by 𝐷 and obtain the network 𝑓  with new parameters; 
End for 
Output: Final trained network 𝑓 . 
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3.5. Loss function 

Our proposed method adopts the binary cross-entropy (BCE) loss function [37]. Specifically, the 
formula of our final loss function 𝑓loss is as follows: 

𝑓loss 𝐿 𝑃 , 𝑦 𝐿  𝑃 , 𝑦                           (5) 

𝐿 𝑃 , 𝑦 𝑦𝑙𝑜𝑔𝑃 1 𝑦 𝑙𝑜𝑔 1 𝑃                      (6) 

𝐿 𝑃 , 𝑦 𝑦𝑙𝑜𝑔𝑃 1 𝑦 𝑙𝑜𝑔 1 𝑃                      (7) 

where 𝑥 is the input image, 𝑦 is the true label in the ground truth, 𝑃  is the prediction result of the 
first U-Net, 𝑃  is the prediction result of the second U-Net, and 𝐿  represents the BCE loss, which 
is calculated based on the cross-entropy between the prediction result generated by the model and the 
true label in the ground truth. 

4. Experiment results 

Our proposed MSFST-NET is composed of MSF-Net, which is a style transfer module and a 
pseudo-label learning strategy. In this section, we first verify the effectiveness of MSF-Net for the 
retinal blood vessel segmentation task. Second, based on MSF-Net, the style transfer module and 
pseudo-label strategy are tested and evaluated to verify their effectiveness in solving the domain shift 
problem. Finally, the performance of our proposed MSFST-NET is evaluated by comparing it to other 
advanced methods and constructing an additional ablation experiment. 

4.1. Datasets and evaluation criteria 

The experimental datasets used in this paper are DRIVE [38] and CHASE_DB1 [39], which are 
frequently adopted in the fundus image segmentation community. Figure 6 shows the example images 
from these two datasets. In Figure 6, the images in the first row are from DRIVE, and the images in 
the second row are from CHASE_DB1. 

 

    (a) Images  (b) Ground truth  (c) Circular mask 

   Figure 6. The images from the DRIVE and CHASE_DB1 datasets. 
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The DRIVE dataset [38] contains a total of 40 color fundus images, where seven images contain 
diabetic lesions, and the remaining 33 images are normal. The resolution of each image is 584 × 565 
pixels. The first 20 images in DRIVE are employed as the training data, and the last 20 images are 
adopted as the test data. Moreover, DRIVE provides a nearly circular mask with a diameter of 
approximately 540 pixels for each image, which is used to indicate the region for the model training. 

The CHASE_DB1 dataset [39] consists of 28 color retinal images with a resolution of 999 × 960 
pixels. The images in this dataset are taken from the left and right eyes of 14 school-aged children. 
CHASE_DB1 was evenly separated into two parts, each containing 14 images, and used as a training 
set and a test set. Additionally, this dataset provides a circular mask for each image. 

To evaluate the performance of the proposed method, we adopt five evaluation criteria commonly 
used in retinal vascular segmentation, which include sensitivity (Se), accuracy (Acc), comprehensive 
evaluation index (F1-score), AUC (area under the curve) and Matthews correlation coefficient (MCC). 
The larger the value of these indicators, the better the prediction result. The AUC is calculated by using 
the implementation provided in the scikit-learn Python library. The specific formulas of the other 
evaluation criteria are as follows: 

𝑆𝑒                                    (8) 

𝐴𝐶𝐶                              (9) 

F1-score                             (10) 

𝑀𝐶𝐶                      (11) 

where TP, TN, FP and FN are the number of true positive, true negative, false positive and false 
negative pixels, respectively. 

4.2. Implementation details 

In the experiment, our method is trained by the PyTorch 11.4 framework and implemented on a 
desktop PC with an NvidiaGeForceGTX·3060TI and 8 GB RAM. 

1) Data enhancement 
In the medical image processing domain, labeling data is difficult, so the medical image dataset 

is relatively small. To fully train the segmentation model, we adopt a variety of online data 
augmentation methods to preprocess the image data in the experiment, including horizontal flip, vertical 
flip, random 45-degree rotation transformation, and horizontal and vertical offset transformation. 

2) Parameter setting 
In the experiments, we utilize DRIVE as the target domain dataset and utilize CHASE_DB1 as 

the source domain dataset. In model training, the Adam optimization technology is used, and the 
number of iterations is set to 50 in each cycle, for a total of 20 rounds of training. The batch size is set 
to four. The learning rate is initially set to 0.01, and then cyclically decreased using the cosine law 
until the learning rate reaches 1 10 . 
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4.3. Verifying the performance of the MSF-Net module 

Table 1. Comparison of MSF-Net and different segmentation methods on DRIVE. 

Method Year AUC Acc Se F1-score 
U-Net [7] 2018 97.55% 95.31% 75.37% 81.42% 
Yan et al. [42] 2018 97.50% 95.40% 76.30% - 
Kai Hu [43] 2018 97.59% 95.33% 77.72% 80.98% 
BTS-UNet [44] 2019 98.06% 95.61% 78.91% 82.49% 
CENe [45] 2019 97.79% 95.45% 83.09% - 
S-Unet [46] 2019 98.21% 95.67% 83.12% - 
IterNet [47] 2020 98.16% 95.73% 77.35% 82.05% 
RVSeg-Net [48] 2020 98.17% 96.81% 81.07% - 
Cheng et al. [49] 2020 97.93% 95.59% 76.72% - 
Du et al. [50] 2021 97.80% 95.56% 78.14%  
Wu et al [51] 2021 98.16% 95.65% 78.69% 82.21% 
Wu et al. [40] 2022 98.42% 96.86% 80.43% 81.79% 
SegR-Net [41] 2023 - - 82.06% 80.97% 
MSF-Net - 98.50% 96.05% 83.67% 84.46% 

Table 2. Comparison of MSF-Net and different segmentation methods on CHASE_DB1. 

Method Year AUC Acc Se F1-score 
U-Net [7] 2018 97.72% 95.78% 82.88% 77.83% 
LadderNet [52] 2018 98.39% 95.33% 79.78% 80.31% 
DEU-Net [9] 2019 98.12% 96.61% 80.37% 80.37% 
AG-Net [10] 2019 97.79% 97.43% 81.86% - 
Lü et al. [53] 2020 97.82% 96.17% 81.35% - 
MSCNN-AM [54] 2020 98.38% 96.44% 81.32% - 
RVSeg-Net [48] 2020 98.33% 97.26% 80.69% - 
Cheng et al. [49] 2020 97.85% 94.88% 89.67% - 
Du et al. [50] 2021 97.84% 95.90% 81.95%  
Wu et al [51] 2021 98.46% 97.02% 79.42% 80.57% 
Wu et al. [40] 2022 97.46% 97.46% 83.00% 80.05% 
SegR-Net [41] 2023 - - 83.29% 80.30% 
MSF-Net - 98.46% 96.21% 83.26% 81.44% 

We compare our proposed MSF-Net to some methods with superior performances in recent years. 
Tables 1 and 2 show the segmentation results of MSF-Net and other methods on the DRIVE and 
CHASEDB1 datasets. It should be mentioned that in this experiment, there is no domain shift problem 
to consider, that is, the training and testing samples are from the same database. Here, we only evaluate 
the segmentation performance of MSF-Net, and we test the effectiveness of our proposed style transfer 
module, pseudo-label learning strategy and the proposed overall method MSFST-NET when dealing 
with the issue of domain shift in Sections 3.4 and 3.5. 

From Table 1, we find that the AUC, Acc, Se and F1-score values of MSF-Net are 98.50%, 
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96.05%, 83.67% and 84.46%, respectively. In general, they are better than those of other methods. The 
Acc of MSF-Net is slightly lower than those of other methods; for example, the Acc of MSF-Net is 
slightly lower than that of Wu et al. [40], but the AUC, Se and F1-score of MSF-Net are higher than 
those of Wu et al. [40] by 0.08%, 3.24% and 2.67%, respectively. Hence, the overall performance of 
MSF-Net is superior to that of Wu et al. [40] on the DRIVE dataset. As shown in Table 2, the AUC, 
Acc, Se and F1-score of MSF-Net are 98.46%, 96.21%, 83.26% and 81.44%, respectively. MSF-Net 
gains an optimal performance in the two indicators of AUC and F1-score. The Acc of MSF-Net is not 
optimal; for example, the Acc is slightly lower than that of Wu et al. [40], but the AUC, Se and F1-
score of MSF-Net are higher than those of Wu et al. [40] by 1.00%, 0.26% and 1.39, respectively. 
Moreover, this demonstrates that the overall performance of MSF-Net is superior to that of Wu et al. [40] 
on the CHASE_DB1 dataset. The Se of MSF-Net is slightly lower than that of SegR-Net [41] by 0.03% 
on the CHASE_DB1 dataset, but the F1-score of MSF-Net is higher than that of SegR-Net [41] by 1.14% 
on the CHASE_DB1 dataset, and both the Se and F1-score are higher than those of SegR-Net [41] 
by 1.61% and 3.49% on the DRIVE dataset, respectively. Therefore, by comprehensively comparing 
all the indicators, our proposed MSF-Net has the optimal segmentation precision for retinal blood 
vessels compared to other previously used methods.  

To further demonstrate the performance of MSF-Net, we visualize and compare the segmentation 
results of MSF-Net and the classical U-Net. Figures 7 and 8 show the segmentation results of different 
approaches on DRIVE and CHASEDB1. 

 

                 (a) Images   (b) U-Net   (c) MSF-Net   (d) Ground truth 

Figure 7. Segmentation results of the images from DRIVE. 

From Figures 7 and 8, we find that compared to U-Net, our MSF-Net can obtain a result that is 
closer to the ground truth. For example, MSF-Net can segment very small blood vessels well, as shown 
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in the region marked by the red box in Figure 7. Moreover, U-Net misclassifies a large number of 
background pixels as blood vessels, while our MSF-Net can distinguish the background and blood 
vessels well, as shown in the region marked by the red box in Figure 8. 

Based on the above results and analysis, we can conclude that compared to other segmentation 
approaches, the segmentation results of our MSF-Net are more consistent with the ground truth, that 
is, MSF-net achieves a better segmentation performance. This is because MSF-Net can extract more 
blood vessel feature information of different scales by improving the convolution operation based on SK, 
so it can effectively distinguish the background and blood vessels, especially for small blood vessels. 

 

(a) Images    (b) U-Net      (c) MSF-Net    (d) Ground truth 

Figure 8. Segmentation results of the images from CHASE_DB1. 

4.4. Verifying the performance of the style transfer module and pseudo-label learning strategy 

In this experiment, we employ DRIVE as the target domain dataset and adopt CHASE_DB1 as 
the source domain dataset. After the style transfer, the DRIVE dataset is named DRIVE_style. The 
images obtained by the style transfer module are shown in Figure 9. In Figure 9, the images in the first 
row are from the source domain (CHASE_DB1), the images in the second row are from the target 
domain (DRIVE), and the images in the third row are the images obtained by transferring the style of 
the image in the target domain to the style of the source domain. From Figure 9, we can see that after 
the style transfer, the style of the images in the DRIVE dataset has generally been transformed into the 
style of the images in the CHASE_DB1 dataset. 
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To further verify the positive effect of style transfer on the retinal vessel segmentation task, the 
style-transferred images obtained by our style transfer module are input into the segmentation model 
MSF-Net to test the segmentation performance, and the experimental results are shown in Figure 10. 
In Figure 10, (a) is the original image in DRIVE, (b) is the segmentation result of the original image 
by employing the MSF-Net model trained on CHASE_DB1, (c) is the style-transferred image of the 
original image in DRIVE obtained by the style transfer module, (d) is the segmentation result of the 
image in (c) when using the MSF-Net model trained on CHASE_DB1, and (e) is the corresponding 
ground truth. Comparing the regions marked by the red rectangular box in Figure 10, it can be found 
that the segmentation results of the style-transferred images are significantly better than those of the 
original image. Therefore, this experiment verifies that our style transfer module can alleviate the 
degradation of model performance caused by the domain transfer. 

 

Figure 9. The style transfer results. 

 

(a)      (b)     (c)      (d)      (e) 

Figure 10. The style-transferred image segmentation results. 

To further improve the generalization ability of our proposed approach, the pseudo-label learning 
method is adopted after the style transfer. To illustrate the validity of the pseudo-label learning strategy, 
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we compare the segmentation results obtained by the MSF-Net model with and without the pseudo-
label learning strategy, as shown in Figure 11. In Figure 11, (a) is the original image in DRIVE, (b) is 
the segmentation result of the original image, (c) is the segmentation result of the style-transferred 
image obtained by the style transfer module, (d) is the segmentation result obtained after the style 
transfer and the pseudo-label learning strategies, and (e) is the ground truth. The abovementioned 
results are obtained by using MSF-Net trained on the training set of CHASE_DB1. Observing the red 
rectangular box in Figure 11, it can be found that with the gradual addition of the style transfer module 
and a pseudo-label learning strategy, the details of the blood vessels in the segmentation results become 
increasingly clear, which indicates that the use of the pseudo-label learning strategy based on style 
transfer can further mitigate the adverse effects of the domain shift on the segmentation performance 
of the model. 

 

(a)        (b)           (c)         (d)         (e) 

Figure 11. The segmentation results of the model without and with pseudo-label learning. 

4.5. Comparison and analysis of the performance of MSFST-Net 

In this section, we first test the performance of our proposed overall segmentation method 
MSFST-Net. Then, we perform an ablation experiment to quantitatively analyze the validity of each 
component in MSFST-Net. Finally, we test the effect of different parameters in the style transfer 
module on the segmentation performance. 
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4.5.1. Comparison of segmentation results 

In this experiment, to verify the ability of the method to deal with cross-domain segmentation 
problems CHASE_DB1 is utilized as the source domain dataset, DRIVE is used as the target domain 
dataset, and we compare MSFST-Net with some cross-domain retinal vessel segmentation methods 
with superior performances in recent years. The adopted evaluation metrics include AUC, F1-Score, 
and MCC. The comparison results are listed in Table 3. From Table 3, we can find that MSFST-Net 
achieves 97.65%, 81.27% and 78.68% for the AUC, F1-Score and MCC, respectively, which is 
generally better than the other methods. The abovementioned results prove that our proposed MSFST-
Net outperforms the compared methods. 

It should be mentioned that although the evaluation metrics obtained by our proposed model are 
not significantly higher than those of other methods, our proposed model has fewer parameters than 
other models. Explicitly, most of the comparison models obtained good segmentation results by 
designing relatively complex network structures that have more parameters while we designed a 
relatively lightweight segmentation model, and our model can generally achieve an improved 
segmentation accuracy than that of these complex networks. 

Table 3. Comparison of segmentation results of different methods. 

Method AUC F1-Score MCC 

DANN [55] 97.21% 77.89% 76.02% 

DRCN [56] 97.17% 79.17% 77.37% 

DRNN [27] 96.80% 79.62% 77.92% 

FD [57] 96.88% 79.13% 77.48% 

KDFD [57] 97.13% 80.30% 78.57% 

AMCD [58] 96.91% 78.60% - 

MSFST-Net 97.65% 81.27% 78.68% 

4.5.2. Comparison of the number of parameters 

Table 4 lists the number of parameters (Params) of the different methods and our proposed method. 
Fewer parameters indicate that the model is more lightweight. In practical applications, our proposed 
method trains Cycle-GAN offline before segmentation, so the main parameter number of our method 
in the training process is the parameter number of MSF-Net. From Table 4, we can find that our 
proposed method is the most lightweight. For example, the number of parameters of FD is 114.58 M, 
while the number of parameters of our proposed model is approximately 0.11 M. Although we propose 
a lightweight model, our model can generally achieve a better segmentation accuracy than other 
methods, as shown in Tables 1–3. In addition, for blood vessel segmentation, the average time to infer 
and save segmentation results per image is a total of 175 ms in our method, which can meet practical 
applications in medical scenarios. 
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Table 4. Comparison of the number of parameters. 

Method Params 

U-Net [7] 35 M 
SegR-Net [41] 0.64 M 
FD [57] 114.58 M 
Ours 0.11 M 

4.5.3. Ablation experiment results 

To objectively verify the performance of each module in MSFST-Net, we test the influence of 
each module in MSFST-Net on the segmentation performance when handling retinal vessel 
segmentation with a domain shift problem. The specific results are listed in Table 5. 

Table 5. Ablation experiment results. 

Method AUC Acc F1-Score MCC 

Baseline 96.61% 94.89% 76.97% 74.65% 

Baseline+Pseudo-label 96.63% 94.98% 78.20% 73.75% 

Baseline+Cycle-GAN 96.99% 95.03% 77.79% 75.42% 

Baseline+Cycle-GAN+Pseudo-label 
(MSFST-Net) 

97.65% 95.45% 81.27% 78.68% 

In Table 5, the baseline is the optimal MSF-Net model trained on the CHASE_DB1 dataset, and 
Baseline+Pseudo-label refers to the model that introduces the pseudo-label learning strategy into the 
baseline. Baseline+Cycle-GAN refers to the model that introduces the style transfer module into the 
baseline. Baseline+Cycle-GAN+Pseudo-label is the model that introduces both style transfer and 
pseudo-label learning into the baseline, that is, the final proposed method MSFST-Net. From Table 4, 
we can summarize the following points. First, after adding the pseudo-label learning strategy to the 
baseline, most of the evaluation indicator values are increased, which demonstrates that the pseudo-
label learning strategy can significantly strengthen the segmentation performance. Second, after adding 
the style transfer module to the baseline model, most of the evaluation indicators are significantly 
improved, which means that the style transfer module can effectively reduce the style differences 
between the different datasets, thus further increasing the segmentation accuracy. Finally, after 
simultaneously introducing the style transfer module and pseudo-label learning strategy into the 
baseline model, the values of all evaluation indicators are significantly increased, which verifies that 
the introduction of the style transfer module and the pseudo-label learning strategy simultaneously 
have obvious roles in improving the segmentation performance. 

4.5.4. Style transfer module parameter testing 

The iteration times of the style transfer module in the training process have a great influence on 
the segmentation results. Therefore, we carry out different iterations when transferring the style of the 
image and compare the segmentation results obtained by the different iterations, as shown in Table 6. 
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In Table 6, the baseline is the MSF-Net model. 
From Table 6, we can find the following: 
1) Compared to the baseline, the values of AUC, Acc and F1-score slightly decrease when the iteration 

time is 200. The reason for this phenomenon is that Cycle-GAN cannot converge well under 200 
iterations; thus, the quality of transferred images does not meet the demand, which further leads to the 
deterioration of the AUC, Acc and F1-score.  

2) Baseline+Cycle-GAN performs better than the baseline when the number of iterations is 300 
and 400, and Baseline+Cycle-GAN obtains optimal results in 400 iterations.  

3) With an increase in the number of iterations (such as 600 and 800), the performance of 
Baseline+Cycle-GAN shows a slight decline again, which is due to the excessive number of iterations 
leading to overfitting of the network, which further leads to a decline in the segmentation performance.  

Therefore, 400 is the optimal number of iterations and we select Cycle-GAN trained by 400 
iterations as the style transfer module in our work. 

Table 6. Comparison of segmentation results under the different iteration times. 

Method AUC Acc F1-score Se 

Baseline 96.61% 94.89% 76.97% 69.79% 

Baseline+Cycle-GAN (200) 96.44% 94.75% 76.84% 70.34% 
Baseline+Cycle-GAN (300) 96.78% 94.94% 77.36% 70.64% 
Baseline+Cycle-GAN (400) 96.99% 95.03% 77.79% 71.27% 
Baseline+Cycle-GAN (600) 96.62% 94.22% 76.94% 69.33% 

Baseline+Cycle-GAN (800) 96.64% 94.77% 76.56% 69.85% 

To more intuitively show the influence of different iteration times, we further visualize the style 
transfer results, as shown in Figure 12. From Figure 12, we can observe that the segmentation accuracy 
gradually improves after gradually increasing the number of training iterations. The preliminary style 
transfer results are obtained after 200 iterations; however, at this time, the image after the style transfer 
is missing many details, and the blood vessels are blurred. Conversely, when the number of iterations 
increases to 400, the blood vessels in the image gradually become clear. 

 

Figure 12. Results of style transfer with different numbers of iterations. 
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5. Conclusions 

In this paper, a novel MSFST-NET was proposed for segmenting blood vessels, which first 
introduces SK to construct a new segmentation model MSF-Net to increase the model’s segmentation 
ability for small blood vessels in fundus images. Then, to alleviate segmentation precision degradation 
caused by domain shift, we introduced a style transfer module and a pseudo-label learning strategy 
into MSFST-NET. The style transfer module is used to reduce the style difference between the different 
domain images to improve the segmentation performance. The pseudo-label learning strategy is 
combined with the style transfer method to further boost the generalization ability of the model. In the 
experiment, we adopted two datasets (DRIVE and CHASE_DB1) to test the performance of the 
proposed method. The experimental results verify that the proposed MSFST-NET has a good 
performance on the retinal vessel segmentation task, and style transfer and pseudo-label learning can 
strengthen the generalization ability of the model when dealing with cross-domain datasets that have 
the issue of domain shift. 

In this paper, a limitation of our work is that it only focused on 2D medical images. In future 
work, we aim to explore and assess the performance of MSFST-NET in the context of 3D medical 
images. This extension will be a crucial step in evaluating the model’s applicability in more complex 
medical imaging scenarios. Moreover, we plan to develop a network based on the large foundation 
model for medical image segmentation. 
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