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Abstract: Defect detection on magnetic tile surfaces is of great significance for the production
monitoring of permanent magnet motors. However, it is challenging to detect the surface defects from
the magnetic tile due to these issues: 1) Defects appear randomly on the surface of the magnetic tile; 2)
the defects are tiny and often overwhelmed by the background. To address such problems, an Adaptive
Rotation Attention Network (ARA-Net) is proposed for defect detection on the magnetic tile surface,
where the Adaptive Rotation Convolution (ARC) module is devised to capture the random defects on
the magnetic tile surface by learning multi-view feature maps, and then the Rotation Region Attention
(RAA) module is designed to locate the small defects from the complicated background by focusing
more attention on the defect features. Experiments conducted on the MTSD3C6K dataset demonstrate
the proposed ARA-Net outperforms the state-of-the-art methods, further providing assistance for
permanent magnet motor monitoring.

Keywords: surface defect detection; rotation convolution; attention mechanism; convolutional neural
networks

1. Introduction

In industrial production, magnetic tiles are widely used in the rotor or stator of permanent magnet
motors [1–3]. However, mechanical friction and human unconscious collisions will inevitably lead to
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surface defects of magnetic tiles [4], adversely affecting the quality of permanent magnet motors, and
even causing disasters and accidents [5]. Therefore, it is essential to detect the defects on the magnetic
tile surface in the production process.

(a) (b) (c) (d)

Figure 1. Examples of the defect on the magnetic tile surface, where they appears randomly
and are tiny, and often overwhelmed by the background.

Recently, defect detection on magnetic tile surfaces mainly depends on experienced workers [6, 7],
but it is time-consuming and has low-accuracy. To address this problem, many methods are proposed
for defect detection on the magnetic tile surface, including traditional techniques and machine
learning-based approaches [8, 9]. For the traditional methods, Xie et al. propose a surface defect
inspection method on magnetic tiles based on shearlet [10]. Yang et al. propose an effective method
for defect detection in magnetic tiles using a stationary wavelet transform [11]. These traditional
methods tend to extract representative features from magnetic tiles to perform defect detection, but
they are conducted under specific conditions and show low results. Compared to the traditional
methods, machine learning-based approaches have achieved better performance on this task. For
example, an unsupervised segmentation method is proposed for defect detection based on
attention-enhanced flexible U-Net [12]. In [13], researchers propose a fusion feature network for
detecting surface defect on magnetic tiles using an attention mechanism. Liang et al. propose [14] a
feature enhancement and loop-shaped fusion network for surface defects detection on magnetic tiles
by enhancing shallow features and fusing loop-shaped features.

Although these machine learning-based methods have shown good results in detecting surface
defects on magnetic tiles, the practice application is still difficult because of these problems. First,
most defects randomly appear on the magnetic tile surface (see Figure 1) [15, 16], resulting in the
difficulty for networks to capture these defects, further degrading the performance of deep learning
models. Second, the defects on magnetic tile surfaces vary greatly, such as the long thin cracks and
tiny deformation [17, 18], and they are always overwhelmed by the background, leading to failure
detection by networks, as shown in Figure 1(a)–(c).

Motivated by these observations, an Adaptive Rotation Attention Network (ARA-Net) is proposed
for defect detection on the magnetic tile surface, where the Adaptive Rotation Convolution (ARC)
module is devised to capture the random defects on the magnetic tile surface by multi-view learning
from rotated feature maps, and the Rotation Region Attention (RAA) module is designed to locate the
small defects from the complicated background by focusing more attention on defect features. Our
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main contributions are summarized as follows.
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Figure 2. The framework of the Adaptive Rotation Attention Network (ARA-Net), where
the Adaptive Rotation Convolution (ARC) module is devised to capture the random defects
on the magnetic tile surface by multi-view learning on the feature map, and then the
Rotation Region Attention (RAA) module is developed to locate the small defects from the
background by focusing more attention on defect features. Finally, the feature maps are fed
into the Feed Forward Networks to perform defect classification on the magnetic tile surface.

1) The Adaptive Rotation Convolution (ARC) module, which can learn the multi-view features on
the feature map, is devised to capture the random defects on the magnetic tile surface.

2) The Rotation Region Attention (RAA) module, which can focus on the attention of defect
features, is designed to locate the small defects from the complicated background.

3) Extensive experiments demonstrate the effectiveness of the proposed ARA-Net, and it
outperforms the state-of-the-art approaches.

The rest of this paper is organized as follows: the proposed ARA-Net is described in Section 2,
while experiments are discussed in Section 3, and Section 4 shows the conclusions.

2. Adaptive rotation attention network for defect detection on magnetic tile surface

In this section, an Adaptive Rotation Attention Network (ARA-Net) is proposed for defect detection
on the magnetic tile surface, and it consists of two key parts: the Adaptive Rotation Convolution (ARC)
module and Rotation Region Attention (RAA) module, as shown in Figure 2, which are shown as
follows.
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Figure 3. The diagram of the adaptive rotation for feature map convolution, where the 0◦,
90◦, 180◦, and 270◦ angles are used as the basic shifted feature maps, and then the offset
angles between them are adaptively calculated from the Linear layers, which can capture
multi-view details from the feature maps.

2.1. Adaptive rotation convolution module for multi-view features learning

In the production of permanent magnet motors, most of the defects randomly appear on the magnetic
tile surface [18], leading to network capture failure and degrading the performance of the deep learning
model (Figure 1). Correspondingly, multi-view learning and rotated convolution [19] can provide rich
information about feature maps for network training, thus capturing the object from the complicated
background [20, 21]. Inspired by this, an Adaptive Rotation Convolution (ARC) module is developed
to capture the random defects on the magnetic tile surface by multi-view features learning, where the
rotation convolution can adaptively obtain feature maps from various angles [19, 35], as shown in the
Adaptive Rotation Convolution Module of Figure 2, defined as

ARC(X) =Concat[BR(F) + α · AR(F)], (2.1)

where BR and AR denote the basic rotation and adaptive rotation, respectively, α is the learnable
parameter, and Concat represents the concatenation, which are described as follows:

• First, the head convolution is utilized to generate the head feature maps (H).

• Second, the head feature maps (H) are rotated to produce basic multi-view feature maps (M) with
four angles: 0◦, 90◦, 180◦ and 270◦.

Mathematical Biosciences and Engineering Volume 20, Issue 9, 17554–17568.
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• Third, the basic multi-view feature maps (M) are adaptively rotated to obtain four different-offset
feature maps (O), and the offset angles are calculated by linear layer from the head feature maps
(H). Specifically, as shown in Figure 3, (a), (c), (e) and (g) denote the rotated feature maps at 0◦,
90◦, 180◦ and 270◦ angles, (b), (d), (f) and (h) are rotated from (a), (c), (e), and (g) with any angle,
calculated by the linear layer, respectively.

• Fourth, these four different-offset feature maps (O) are added with the basic multi-view feature maps
(M) to generate the rotated feature maps (R).

• Finally, the summation results of the rotated feature maps (R) are concatenated to produce the output
feature maps.

After these processes, the proposed ARC module can capture multi-view feature maps to locate the
random defects on the magnetic tile surface.

2.2. Rotation region attention module for defect features attention

Some small defects, such as the tiny blowhole and the thin crack, always lead to difficulty in defect
detection on the magnetic tile surface [22, 23]. Correspondingly, the attention mechanism has shown
excellent performance in object detection [24, 25]. Motivated by this, the Rotation Region Attention
(RAA) module, is designed to locate the small defects from the complicated background by focusing
more attention on defect features, as shown in the Rotation Region Attention Module of Figure 2,
defined as

RRA(X) =AT(X) ⊙ AR(X), (2.2)

where AT is the self-attention mechanism, and AR denotes the different-offset feature maps (R)
obtained from the ARC module, which is shown as follows.

• First, the feature maps (X) are used as the query (Q), Key (K) and value (V), respectively.

• Second, the Query (Q) is flattened and transposed at the space dimension, and then multiplied with
the flattened Key (K) to generate the attention weight maps (A).

• Third, the attention weight maps (A) are multiplied with the flattened value (V) to obtain the output
feature maps (F).

• Finally, the output feature maps (F) will spatially flatten and add with the different-offset feature
maps (R) to produce efficient feature maps.

To this end, the proposed RRA module can help the network focus attention on the small defects on
the magnetic tile surface, thereby improving the performance of the proposed ARA-Net.

3. Experiments, and results analysis

3.1. Datasets

To validate the performance of ARA-Net for defects detection on the magnetic tile surface, the
MTSD3C6K dataset [35] is employed to perform experiments, where there are 6450 samples, including
2023 crack images, 2381 normal samples and 2046 blowhole images. In the experiments, this dataset
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is divided into the training set, validation set, and test set, with the numbers of 3870, 1290 and 1290,
respectively.

3.2. Evaluation metrics

To verify the defect detection performance on the magnetic tile surface, Accuracy, Precision, Recall,
F1-score, and Kappa score are used as evaluation metrics:

Accuracy =
T P + T N

T P + T N + FP + FN
, (3.1)

Precision =
T P

T P + FP
, (3.2)

Recall =
T P

T P + FN
, (3.3)

F1-score = 2 ×
PPV × SEN
PPV + SEN

, (3.4)

and
Kappa =

Accuracy − CAccuracy
1 − CAccuracy

, (3.5)

where CAccuracy denotes the class accuracy, computed by

CAccuracy =

N∑
i=1

aibi

N2 , (3.6)

in which ai is the actual number of samples for each category, and bi is the number of samples predicted
for each class.

Moreover, to validate the complexity of models, the model size, i.e., parameters (Params), is applied
to compute the space consumption of models, and the frames per second (FPS) are used to measure
the actual inference speed of the model. Furthermore, the confusion matrix is provided to show clear
insight into the model performance.

Table 1. The quantitative comparisons on the MTSD3C6K dataset.

Model Accuracy (%) Precision (%) Recall (%) F1-score (%) Kappa Params (M) FPS (frames/s)

DenseNet-121 88.94 98.32 90.12 94.03 0.663 6.867 35.4
MobileNetV3 89.82 96.73 92.72 94.68 0.661 0.561 115.4
EfficientNet-b0 92.03 95.87 96.86 96.36 0.701 3.969 74.1
Visformer 92.92 97.27 94.22 95.72 0.758 39.186 100.2
HRNet 93.81 97.83 94.78 96.28 0.788 11.143 59.1
GhostNet 93.81 98.89 94.81 96.81 0.793 3.899 56.4
VGG19 95.13 98.92 95.33 97.09 0.836 128.783 196.7
ARANet 97.05 97.07 97.12 97.08 0.858 0.133 37.3
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Table 2. Ablation studies of proposed modules for defect detection on the magnetic tile
surface.

No. Baseline ARC RAA Accuracy (%) Kappa
1 ✓ 92.47 0.787
2 ✓ ✓ 94.51 0.812
3 ✓ ✓ 94.77 0.826
4 ✓ ✓ ✓ 97.05 0.858

Table 3. The hyper-parameter tuning results tested on the MTSD3C6K dataset.

Name Value Accuracy (%) Precision (%) Recall (%) F1-score (%) Kappa

Lr

0.01 95.22 96.13 94.89 95.51 0.813
0.001 97.05 97.07 97.12 97.08 0.858
0.0005 92.38 93.88 92.41 93.14 0.746
0.0001 83.97 84.56 82.91 83.73 0.633

Epoch

30 94.92 95.47 95.69 95.57 0.813
50 95.81 96.93 96.14 96.53 0.828
80 95.93 96.14 96.22 96.18 0.837
100 97.05 97.07 97.12 97.08 0.858

Optimizer

Adagrad 91.15 92.08 93.11 92.59 0.686
RMSprop 92.03 93.34 94.77 94.05 0.737
Adam 93.45 94.61 95.13 94.87 0.769
SGD 97.05 97.07 97.12 97.08 0.858

3.3. Implementation details

The proposed ARA-Net is constructed by Pytorch 1.9.0 [26] on a server with one NVIDIA GeForce
GTX 3090Ti GPU, the SGD optimizer [27] is utilized to obtain the high-performance model, the epoch,
batch size, and the initial learning rate are set as 100, 32, and of 1e−3, respectively, the StepLR is
regarded as the learning scheduler, and CrossEntroy is considered as the loss function.

3.4. Performances on the MTSD3C6K Dataset

To validate the performance of the proposed ARA-net, five classical state-of-the-art deep learning-
based networks, i.e., DenseNet-121 [28], MobileNetV3 [29], EfficientNet-b0 [30], GhostNet [31], and
VGG19 [32], and two vision transformers, including Visformer [33] and HRNet [34], are tested on
the MTSD3C6K dataset, where the accuracy, precision, recall, F1-score, and kappa score are used as
evaluation metrics. Furthermore, the model efficiency is also explored in this section, which can be
seen as follows.

First, these five classical networks are conducted on the MTSD3C6K dataset [35]. Then, the vision-
based transformer networks are tested, and the results are recorded in Table 1 and the confusion matrix
in Figure 5. We can note that the proposed ARA-Net can achieve the best performance on defect
detection, with the 97.05, 97.07, 97.12, 97.08%, and 0.858 of accuracy, precision, recall, F1-score, and
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kappa, respectively, showing that it can be used as a valuable tool for defect detection for magnetic tiles.
In addition, two metrics, i.e., Params and FPS, are utilized to evaluate the model efficiency, and the

results are listed in Table 1. It can be seen that the proposed ARC-Net can achieve fast calculation
speed, achieving an FPS of 37.3 with small capacity parameters (Params) of 0.133 M. Furthermore,
compared with the second-best VGG19 method, although the proposed ARA-Net is slower than the
VGG19, it can obtain significant improvements on Params, demonstrating the ARA-Net can be used
as an effective tool for defect detection on the magnetic tile surface.

A
B

C
D

(a) (b) (c) (d) (e) (f) (g) (h)

Figure 4. Examples of class activation mapping (CAM) for defect detection on the magnetic
tile. The row denotes the results of the ablation studies of the proposed modules: A. raw
images, B. baseline, C. baseline + ARC, D. baseline + ARC + RAA. Besides, (b),(d)–
(h) represent the random defects while (a),(c),(f) and (g) denote the tiny defects hidden by
background.

3.5. Ablation studies

In this section, we perform a series of ablation experiments to validate the effect of the Adaptive
Rotation Convolution (ARC) module, the Rotation Region Attention (RAA) module, learning rate,
training epoch, and network optimizer.

3.5.1. Impact of adaptive rotation convolution module

In section 2.1, the Adaptive Rotation Convolution (ARC) module is devised to capture the random
defects on the magnetic tile surface. To verify the effectiveness of the proposed ARC module, several
ablation studies are performed on the MTSD3C6K dataset, and the results are listed in Table 2. No.1 is
the performance of the baseline without ARC and RRA modules, and it can achieve the performance
of 92.47% and 0.787 on accuracy and kappa score, respectively. After adding the ARC module to the
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baseline, it can obtain better results on defect detection, with 94.51% accuracy and 0.812 kappa score,
demonstrating it is beneficial for defect detection. Moreover, from the visualized CAM feature maps
in Figure 4, we can observe that these results (A and B) show that the baseline+ARC can pay more
attention to the random defects while some defects are ignored by the baseline. These excellent results
show that the proposed ARC module can assist the network in capturing more random defects on the
magnetic tile surface by multi-view learning.

3.5.2. Impact of rotation region attention module

Similarly, the proposed Rotation Region Attention (RRA) module, described in Section 2.2, is
employed to focus on the defects, especially the tiny defects on the magnetic tile surface. To validate
the impact of the proposed RRA module, many experiments are carried out on the magnetic tile surface,
and the results are given in Table 2. It can be seen that the performance of the network is increased
after adding the RRA module, achieving improvements of 2.28 and 3.87% on accuracy and kappa,
respectively, compared to the baseline + ARC, indicating that it is effective for defect detection. In
addition, the visualized CAM feature maps are shown in Figure 4. It can be found from C of Figure
4 that adding the ARC module can help the network to expand the perception field of vision to locate
random defects on the input images, but shows low sensitivity on the small defects. Furthermore, the
RRA module can locate small defects from the magnetic tile surface. Specifically, as can be seen
from (a),(c),(f) and (g) in Figure 4, adding the RAA module can further help the network focus on the
attention of small defects on the magnetic tile, compared D with C. This demonstrates that the RAA
module can weaken the disturbance of the background when detecting defects on the magnetic tile
surface.

Moreover, we also have performed some experiments to validate the effectiveness of the proposed
modules by integrating separately single modules into the network. The results are listed in the second
row and third one of Table 2. These results also demonstrate the proposed modules can improve the
performance of the network for defect detection on the magnetic tile surface.

3.5.3. Impact of learning rate

To explore the effect of the learning rate, four different learning rates, i.e., 0.01, 0.001, 0.0005, and
0.0001 are used in the experiments on the magnetic tile defect dataset, and the results are given in
Table 3. It can be seen that the proposed ARA-Net can achieve the best performance when the learning
rate is set to 0.001. Also, we can observe from Figure 6 that the training and validation accuracies are
the best while the losses are the lower when the learning rate is equal to 0.001. Therefore, the learning
rate is set to 0.001 in the proposed ARA-Net during experiments.

3.5.4. Impact of epoch

To verify the effect of the epoch, four different epochs, i.e., 30, 50, 80, and 100 are applied to the
experiments while other parameters are the same, and the results are shown in Table 3. It can be noted
that the proposed ARA-Net shows the best performance when the epoch is set to 100, achieving an
accuracy of 97.05%, a precision of 97.07%, a recall of 97.12%, and the F1-score of 97.08% on the
magnetic tile defect dataset. Besides, it can be found from Figures 5 and 7 that both accuracy and loss
tend to be smooth with only small fluctuations after about 40 epochs, i.e., the overfitting. Similarly, the
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difference is small between these epochs, i.e., 30, 50, 80, and 100, but the accuracy is the highest when
the epoch is set to 100. Therefore, the epoch is set to 100 in the experiments.

Figure 5. The evolutions of training and validation accuracies with epoch and the confusion
matrix on the magnetic tile defect.

Figure 6. The accuracy and loss of different learning rates during training and validation on
the magnetic tile defect.
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Figure 7. The accuracy and loss of different epochs during training and validation on the
magnetic tile defect.

Figure 8. The accuracy and loss of different optimizers during training and validation on the
magnetic tile defect.

3.5.5. Impact of optimizer

To validate the effect of the optimizer, four different optimizers, i.e., Adagrad, RMSprop, Adam,
and SGD are employed to optimize the proposed ARA-Net for magnetic tile defect detection, and the
results are listed in Table 3. We can note from Table 3 that the proposed ARA-Net with the SGD
optimizer performs better than others. Similarly, Figure 8 shows that the accuracy and loss curves of
the SGD optimizer are better and smoother than those of others. For this, the SGD optimizer is used to
obtain the high-performance model in the experiments.

Mathematical Biosciences and Engineering Volume 20, Issue 9, 17554–17568.
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4. Conclusions

In this article, an Adaptive Rotation Attention Network (ARA-Net) is proposed for Defect
Detection on the magnetic tile surface, where the Adaptive Rotation Convolution (ARC) module is
devised to capture the random defects on the magnetic tile surface, and the Rotation Region Attention
(RAA) module is designed to locate the small defects from the complicated backgrounds.
Experiments conducted on the benchmark dataset demonstrate the effectiveness of the proposed
ARA-Net, further assisting in permanent magnet motor production. However, the proposed ARA-Net
is conducted on a limited magnetic tile defect dataset. In future works, it is essential to establish a
larger magnetic tile dataset to promote its practical application, and it will be further validated in the
actual industrial environment.
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