
MBE, 20(9): 17407–17427.

DOI: 10.3934/mbe.2023774

Received: 25 May 2023

Revised: 20 August 2023

Accepted: 22 August 2023

Published: 11 September 2023

http://www.aimspress.com/journal/MBE

Research article

An improved genetic algorithm with dynamic neighborhood search for

job shop scheduling problem

Kongfu Hu1, Lei Wang1, Jingcao Cai1,2,* and Long Cheng1

1 School of Mechanical Engineering, Anhui Polytechnic University, Wuhu 241000, China
2 AnHui Key Laboratory of Detection Technology and Energy Saving Devices, AnHui Polytechnic

University, Wuhu 241000, China

* Correspondence: Emil: caijingcao@foxmail.com.

Abstract: The job shop scheduling problem (JSP) has consistently garnered significant attention.
This paper introduces an improved genetic algorithm (IGA) with dynamic neighborhood search to
tackle job shop scheduling problems with the objective of minimization the makespan. An inserted
operation based on idle time is introduced during the decoding phase. An improved POX crossover
operator is presented. A novel mutation operation is designed for searching neighborhood solutions.
A new genetic recombination strategy based on a dynamic gene bank is provided. The elite retention
strategy is presented. Several benchmarks are used to evaluate the algorithm’s performance, and the
computational results demonstrate that IGA delivers promising and competitive outcomes for the
considered JSP.

Keywords: job shop scheduling problem; improved genetic algorithm; idle time; improved POX;
neighborhood searching; dynamic gene bank; elite retention

1. Introduction

In the context of smart manufacturing and in line with the “Made in China 2025” strategy,
enterprises strive for intelligent and precise production. Job shop scheduling is a control technology
that can optimize production processes. By employ intelligent algorithms, we can efficiently utilize
production resources despite existing constraints, leading to cost savings and naturally shortening the
manufacturing cycle.

17408

Mathematical Biosciences and Engineering Volume 20, Issue 9, 17407–17427.

There are several types of job shop scheduling, including the Job shop scheduling problem
(JSP), Flow shop scheduling problem (FSP), and others. The optimization objective can also be
classified into the single objective and the multiple objective. JSP represents the most fundamental
and representative production problem. In brief, it involves processing several jobs on machines,
where the processing information is determined before machining starts, and the goal is to minimize
the makespan.

Research on JSP holds both academic and practical significance, making it a continuously
evolving and debated topic. The solution methods for JSP can be broadly categorized into precise
methods and approximate methods. The exact method can determine the exact optimal solution for
the problem, but as the problem’s scale grows, its time complexity increases significantly, making it
impractical in real-world scenarios. On the other hand, the approximate method may not guarantee
an optimal solution, but it can provide a relatively optimal feasible solution within a reasonable
amount of time. At present the research on JSP is focused on modern intelligent algorithms and their
improved hybrid algorithms. These algorithms have been very successful in solving JSP, including
genetic algorithm (GA) [1–3], tabu search [4,5], particle swarm optimization (PSO) [6,7], ant colony
optimization [8,9], etc.

GA as one of the classical heuristics was first proposed by Holland, and it is a highly parallel
adaptive intelligence algorithm that is inspired by Darwin’s theory of evolution [10]. In contrast to
alternative intelligent algorithms, the GA demonstrates a higher propensity for uncovering global
optimal solutions. This proclivity arises from GA’s reliance on an ensemble of candidate solutions,
as opposed to a solitary solution. Moreover, within numerous instances, specific operations such as
crossover and mutation engender discrepancies within the candidate solution relative to its
antecedent. This dynamic characteristic serves to avert premature confinement within local optima.
With the development of technology, traditional GA is no longer sufficient to solve all problems, so,
many scholars have optimized different steps in GA such as coding [11–13], crossover [14,15],
mutation [16,17], etc. and achieved certain results; Other scholars have also proposed some effective
improvement strategies. Goncalves et al. [18] proposed a search strategy: the graphical method of
Akers, combined with GA, it’s a strange idea that he transmuted the JSP into the path planning
problem, by using this method he optimized process arrangement. Zhang et al. [19] extend the N6
neighborhood and apply it to the Tabu search, their approach dominates others in terms of both
solution quality and performance. Chen et al. [20] proposed a hybrid quantum algorithm based on a
local optimization strategy and improved optimization of the rotation angle. Besides, some people
also have incorporated reinforcement learning into their algorithms to solve JSP. Wang et al. [21]
used the Q-learning algorithm to select appropriate scheduling rules. Shylo et al. [22] propose
global equilibrium search method, which has some common features with the simulated annealing
method. Nasiri et al. [23] used a scatter search algorithm combined with tabu search and path relinking
for the partial JSP, they constructed new solutions by combining existing ones in a systematic fashion,
and the computational experiments show that this algorithm is effective. Gui et al. [24] proposed an
effective memetic algorithm (EMA) to solve the multi-objective JSP, a new hybrid crossover
operator is designed to enhance the search ability of the proposed EMA and avoid premature
convergence.

The majority of scholars aim to enhance algorithm performance by refining existing methods or
introducing new strategies. The primary concern to address is enhancing the search capability and
improving the quality of the approximate method solution within a given time frame. Nevertheless, a

17409

Mathematical Biosciences and Engineering Volume 20, Issue 9, 17407–17427.

single improvement alone is insufficient. To tackle various issues and common drawbacks in the GA,
we incorporate several beneficial enhancements. The goal is to enhance algorithm performance by
improving existing methods or proposing new strategies, and the main problem that needs to be
solved is enhancing the search capability and improving the quality of the approximate method
solution within a given time. However, only one improvement is not enough. To address various
issues and common disadvantages in GA, we introduce several useful enhancements. In the decoding
process, we design an additional program to search idle time between processes on the machine and
identify a suitable subsequent process that can be processed in advance. This program can improve
the compactness of the solution. In response to the shortcomings of the common crossover operator,
such as high randomness and low efficiency, a Precedence Operation Crossover (POX) operator is
adopted and improved to retain favorable genes of the parents while minimizing the damage to the
chromosome as much as possible. In the mutation operator, traditional methods cannot create
excellent new genes efficiently. Therefore, we propose a new mutation operator with neighborhood
optimization, it can effectively reduce ineffective inheritance. To further enhance the sustained
searching ability of the algorithm, we introduce a new genetic recombination strategy with dynamic
gene banks. This enables the algorithm to maintain relatively strong search ability even in later
iterations. Simultaneously, we incorporate an elite retention strategy to prevent the loss of the best
solutions in each iteration.

The paper is structured as follows. The subsequent section provides an introduction of JSP.
Section 3 outlines the specific improvement steps applied to the algorithm. In Section 4, we present
the results of the enhanced GA on benchmarking problems, along with the corresponding analysis.
Finally, in Section 5, we provide our conclusions.

2. Description of job shop scheduling problem

There are n jobs processed on m machines in JSP. The set of jobs 1 2{ , ,..., }nJ J J J and the
set of machines 1 2{ , ,..., }mM M M M . Each job consists of some operations and ,i jO is the j -th

operation of iJ . iC represents the completion time of iJ . ,i jT denotes the process time of ,i jO .

There are some other constrains as follows.
1) Every machine can process only one job at a time;
2) Throughout the manufacturing process, each job cannot be processed target times on the

same machine.
3) The processing of the operations cannot be interrupted after it has begun;
4) There is no preparation time between all processes;
5) All machines and all jobs are available from time 0 on;
6) The operations of the same job should comply with the constraints of the process route.
7) Imposes the start time of all operations are non-negative.
The goal of JSP is to minimize the makespan: maxC .

 max
1

min(max)
n

i
i

C C


 (1)

A 4 × 4 case is given, which means this case has 4 jobs and 4 machines, and the information is
shown in Table 1. Figure 1 illustrates a feasible schedule. generated randomly under these processing
constraints.

17410

Mathematical Biosciences and Engineering Volume 20, Issue 9, 17407–17427.

Table 1. The information of a 4 × 4 case.

Job / i

Processing time/Machine

,1iO ,2iO ,3iO ,4iO

1 3/1 3/2 2/3 6/4

2 1/1 5/4 3/3 4/2

3 3/2 2/1 3/4 5/3

4 3/4 2/3 4/2 1/1

Figure 1. A Gantt chart of a 4×4 case.

The horizontal axis of the Gantt chart represents the makespan, while the vertical axis
represents the processing machines. In the chart, we utilize the same color to represent different
operations of the same job and distinguish different jobs with distinct colors. Each job’s processing
on a machine is represented by a rectangular block, with the job number indicated inside the
rectangle. The numbers at both ends of the rectangle denote the start and finish time of the
corresponding job processing.

3. The improved GA

3.1. The GA

The classical GA is an evolutionary algorithm that leverages the collaborative efforts of
multiple individuals to achieve its impressive global search ability. The initialization of GA involves
creating feasible solutions through specific methods, followed by the selection of valuable solutions
to form a new population. To obtain better solutions and achieve population convergence, the
crossover operator and mutation operator are commonly employed as search methods. The crossover
operator functions as a global search method, where two individuals are selected from their
respective parents and combined through hybridization to create a new offspring. On the other hand,
the mutation operator is a local search method, it usually creates a new individual by adding a small
disturbance to the individual’s local area. Repeat the select operator, crossover operator and mutation
operator mentioned above until the preset termination conditions are met. The flowchart for GA is

17411

Mathematical Biosciences and Engineering Volume 20, Issue 9, 17407–17427.

illustrated in Figure 2.

Create initial population : Pk

set k=0

Calculate fitness of Pk

Algorithm termination
condition reached?

Output results

Select

Reaching Cross
Probability?

cross operator

Yes

Calculate fitness of Pk

k=k+1

No

Yes

No

Yes

No

 mutation operator
Reaching Mutation

Probability?

Figure 2. Flowchart for GA.

3.2. Encoding and decoding

Encoding constitutes the initial and pivotal phase of a GA, exerting a direct influence on both its
complexity and precision. Various established encoding methods exist, encompassing process-based
encoding, job-based encoding, machine-based encoding, and even hybrid encoding. These distinct
encoding strategies serve to capture diverse attributes, with the selection to be made in alignment
with specific requisites.

In this paper, a job-based encoding approach is adopted. The chief advantage of this method lies
in its capacity to readily and straightforwardly identify both the job and its associated processes.
Furthermore, the chromosome generated through this approach remains amenable to direct
implementation across a spectrum of genetic operators, including crossover and mutation operators.
The instantiation of initial chromosomes involves the application of random numbers. This approach
ensures maximal genetic diversity within the population, consequently mitigating the risk of
premature entrapment within local optima during subsequent genetic operations.

In the chromosome, the number indicates the job number, and the number of occurrences
indicates the process of the job. In JSP, each job needs to be processed according to predetermined
constraints. In the job-based encoding, the length of the chromosome is related to the total number of
processes. Based on the 4 × 4 case we mentioned in Section 2 as an example. In this case, there are a

17412

Mathematical Biosciences and Engineering Volume 20, Issue 9, 17407–17427.

total of 4 jobs and 4 machines, and each job has 4 processes. Therefore, the length of the
chromosome is 16 bits. First, we generate a sufficiently long numerical encoding string in a specific
order: [1111222233334444], and then shuffle it by using random numbers, it will become like this:
[3243124313224114], a new chromosome has been created. The “3” in [3243...] indicates the job

“ 3J ”, the first “3” represents the first process of “ 3J ” (3,1O), the second “3” represents the second

process of “ 3J ” (3 2O ，), and so on. The diagram of this coding method is shown in Figure 3.

Figure 3. The diagram of a job-based encoding.

The usual method for decoding involves calculating the makespan based on the chromosome
and processing information at the outset. Due to the random nature of chromosome creation, certain
machines may exhibit relatively more idle time. To address this, a search for machine idle time is
incorporated and coupled with process advancement. The fusion of these two approaches results in
chromosome adjustments that effectively minimize idle time, thus enhancing the overall solution
quality. The specific operational steps are outlined as follows:

Step1: Decode. Set a collection A to store the start and end times of each operation on each
machine. In collection A, if the end time of one operation equals the start time of the next operation,
it indicates that there is no idle time between the two operations. Otherwise, there is idle time present.
Set collection B to record the idle time between operations on each machine, along with their start
and end times. If there is no idle time, it will be represented as 0. The given processing information
includes the processing time for each operation of every job, it will be stored in collection C.

Step2: Find and record every idle time on each machine.
Step3: Start from the first idle time on the first machine, and search for subsequent processes

one after another following this idle time, if any process adheres to either of the following two
conditions, proceed to Step 4; otherwise, proceed to Step 5.

Case 1: ,a b c d  ;

Case 2: ;()a b c a d  

where, a represents “the start-moment of the previous process of the current job”, b represents
“the idle time start-moment”, c represents “the length of idle time”, and d represents “the
processing time of the current process”. All the data above is read from collections A, B, and C.

Step4: dvance the process to the idle time for processing, and update the chromosome.

17413

Mathematical Biosciences and Engineering Volume 20, Issue 9, 17407–17427.

Step5: Continue searching for the next idle time and proceed to Step 3. If the current idle time
is the last one, initiate a search for the next available machine and return to Step 3. In the event that
all idle times on each machine have been exhaustively searched, and none of them satisfy the
aforementioned two conditions, signifying the inability to utilize any idle time, the program is
terminated.

A diagrammatic representation of the 2 types of idle time mentioned in Step3, see Figure 4.

bM

aM

,i jJ

, 1i jJ , 1i jJ 

Advance the process

bM

aM , 1i jJ 

,i jJ

, 1i jJ 

Other process

, 1i jJ 

Case 1：

Case 2：

the previous process the current process

idle time

,i jJ

Advance the process

Figure 4. Two types of idle time and process advancing.

For example, the chromosome mentioned above [3243124313224114], we decode it and search
for idle time, chromosomes will be adjusted to [3243124312324114], the new scheduling of the new
chromosome is plotted as a Gantt chart in Figure 5. The completion time for this updated schedule
has been notably reduced, from 28 seconds down to 24 seconds, this compelling outcome serves as
evidence affirming the efficacy of the idle time search and utilization strategy.

Figure 5. The Gantt chart before and after optimization.

17414

Mathematical Biosciences and Engineering Volume 20, Issue 9, 17407–17427.

3.3. Selection operator and elite retention

In IGA, not all chromosomes are allowed to enter the next generation population. In this paper,
we employ the championship method to select chromosomes, referred to as high-quality individuals.
Initially, two chromosomes are randomly chosen, and their fitness is compared, the superior one is
retained in the new generation. This process is repeated until the new generation's size reaches the
predetermined value.

To prevent the loss of the best chromosome in each generation and to enhance overall algorithm
convergence, we introduce the elite retention strategy in IGA. The best chromosome of each
generation is recorded in the selection operator, after a series of genetic operations, if the best
solution in the current generation is inferior to that of the previous generation, the best solution from
the previous generation replaces the worst solution of the current generation. By incorporating the
championship method and elite retention, the IGA aims to maintain the best individuals over
generations and improve the algorithm's overall performance and convergence.

3.4. An improved POX crossover operator

The crossover operator functions as a global search mechanism, with certain commonly
employed variants including the single-point crossover operator, multi-point crossover, and mixed
crossover operator, among others. While these traditional crossover methods possess inherent search
capabilities, they also carry a certain risk of compromising high-quality genes. Addressing this
concern, Zhang et al. introduced an innovative crossover approach known as the Precedence
Operation (POX) crossover operator. This method adeptly inherits parental traits while mitigating the
potential gene damage, consistently yielding feasible new solutions. Empirical evidence validates its
superiority over alternative crossover techniques.

However, according to the description of the traditional POX crossover operator, it always
selects consecutive job identifiers when partitioning the set of jobs. Operating in this manner, as the
number of iterations increases, the offspring are likely to exhibit similar shortcomings, leading to a
reduction in genetic diversity, which is unfavorable for the algorithm’s convergence. Therefore, we
propose an improvement to the POX crossover operator: when partitioning the set of jobs, we will
use a random method in both quantity and individual aspects. This approach will help mitigate the
impact caused by the aforementioned issues. The specific process of the improved POX crossover
operator is as follows:

Step1: Set the size of the job set: 1 1(1)n n n  ;

Step2: Select 1n jobs into a collection: 1J , put other jobs into another collection: 2J ;

Step3: Copy the individual from parent 1P that contain jobs in 1J to individual 1C and

preserve their positions. Similarly, copy the individual from parent 2P that contain jobs in 2J to

collection 2C and maintain their positions.

Step4: Copy the individual from parent 2P that contain jobs in 2J to collection 1C ,

17415

Mathematical Biosciences and Engineering Volume 20, Issue 9, 17407–17427.

preserving their order. Similarly, copy the individual from parent 1P that contain job 1J to

collection 2C , also preserving their order.

Figure 6 illustrates the crossover operator of two parents in a 4 × 4 scheduling case. It can be
observed that the improved POX crossover operator ensures that each offspring contains genes from
both parents. Moreover, the sequence of job processing on machines is completely preserved and not
disrupted during the crossover operator.

2 4 1 23 4 3 1 3 2 23 4 1 1 4

2 3 4 1 32 2 4 1 3 3 1 4 1 2 4

Parents

2 4 1 23 2 3 1 3 4 43 2 1 1 4

2 3 4 1 32 4 2 1 3 3 1 2 1 4 4

Children

1P

2P

1C

2C

Figure 6. An improved POX crossover operator.

3.5. A new neighbourhood seeking mutation operator

Mutation is a crucial local search ability in GA that generates new genes, enhancing the
performance of offspring and preserving chromosome diversity. However, these traditional mutation
operators often lack control and frequently fail to achieve steady progress. In fact, they may
introduce inferior genes, leading to ineffective inheritance. For instance, when using single-point or
multi-point inverse-order mutation operators, the randomness of the selected points can result in
excessive perturbation to the chromosome, particularly when dealing with long selected parts, this
hampers the evolution of individuals. Similarly, the process swap and insertion mutation operators
cause minimal perturbation to the entire chromosome, becoming practically negligible as the
problem size increases. As a consequence, the traditional GA suffers from low local search capability
and exhibits poor overall performance. These limitations highlight the need for innovative mutation
strategies to improve the algorithm’s effectiveness.

We introduce an innovative mutation operator grounded in neighborhood exploration. To initiate
this process, we randomly select a point within the chromosome, defining a neighborhood region
(typically spanning around 10% of the chromosome's length). Subsequently, genes are randomly
shuffled to generate a fresh chromosome configuration. Following this, the modified chromosome is
decoded, and the resulting completion time is recorded. Should the completion time of the newly
generated chromosome prove shorter than that of the original, the former supersedes the latter.
Conversely, if the completion time is not improved, the original chromosome remains unchanged.
This operation can be iterated multiple times to achieve refinement. The specific procedural steps are
delineated as follows:

Step1: Set mutation times: k .Set 0i  .
Step2: Set a point randomly in the chromosome and form a neighbourhood.

17416

Mathematical Biosciences and Engineering Volume 20, Issue 9, 17407–17427.

Step3: Shuffle genes randomly in this neighbourhood.
Step4: Decode the new chromosome.
Step5: If the new one is better than the original, let the new one replaces the original; if not,

remain unchanged.
Step6: 1i i  .
Step7: If i k , end; if not, go to Step2.
The diagram of the mutation operator in Steps2 and 3 is shown in Figure 7.

2 4 1 23 4 3 1 3 2 23 4 1 1 4... ...

Set a point randomly in the chromosome and form
a neighbourhood

Shuffle genes randomly in this
neighbourhood

2 4 1 23 1 2 4 3 2 23 4 1 1 4... ...

Figure 7. The mutation operator in Steps2 and 3.

3.6. Genetic recombination strategies with dynamic gene banks

To further enhance the performance of the algorithm, we propose a genetic recombination
strategy with dynamic gene banks for post-conventional genetic operations. Relying solely on the
completion time for individual evaluation is narrow in perspective. Therefore, we introduce the
concept of “crowding degree”. The crowding degree assesses the overall scheduling compactness by
calculating the proportion of working time to a machine’s completion time. Higher crowding values
indicate a more compact process arrangement on the machine. We present a comprehensive
evaluation function that holistically assesses individuals by amalgamating crowding degree and final
completion time. The formulation of this comprehensive evaluation function implies an inverse
correlation between an individual’s quality and the evaluation function value. Thus, in each
population generation, the individual with the highest composite evaluation function value is
generally recognized as a high-quality candidate and assigned as the genetic recombination parent.
Conversely, the individual with the lowest composite evaluation function value is typically
considered less proficient and designated as the genetic recombination offspring. Nonetheless, a
drawback arises wherein individuals possessing non-minimum comprehensive evaluation function
values might still carry valuable genes. This may inadvertently overlook quality genes present in
other individuals. To address this, we introduce the concept of the “exploration rate”. During parent

() selection, there is a probability 1 70%  that will select the individual with the smallest value

of the comprehensive evaluation function, a probability 2 10%  that will select the second

smallest individual, a probability 3 10%  that will select the third smallest individuals, and a

probability 4 10%  that select the fourth smallest individual. The relevant parameters of this

17417

Mathematical Biosciences and Engineering Volume 20, Issue 9, 17407–17427.

strategy are shown in Table 2.

Table 2. Parameters related to the strategy.

Symbol Description Count

ikC Completion time per machine in an individual —

iC Individual completion times max
1

max{ }
m

i
i

C C




ikW Working time per machine in an individual —

ikF Idle time per machine in an individual —

ik Crowding per machine in an individual
ik

ik
ik

W

C
 

i Crowding of individuals 1

m

ik
k

i m


 



 Comprehensive evaluation function
i

i

C





 Exploration rate —
 Genetic recombinant parent —
 Genetic recombinant daughter —
 Gene segment —

The comprehensive evaluation function is utilized to identify high-quality individuals and
low-quality individuals in the generation. The high-quality individuals are selected as parents, while
the low-quality individuals are regarded as daughters. A gene is chosen from the parent and
transplanted into the daughter through gene recombination. The fitness of the individual receiving
the new gene is evaluated. If the new individual demonstrates an improved fitness value compared to
the one prior to recombination, it is retained, and the gene is stored in the quality gene bank.
However, if the new individual’s fitness value is not better, it is reverted. In subsequent iterations, if
there are other high-quality gene segments in the gene bank, they are also removed and recombined
into the daughter. The fitness of the individual receiving the new gene is evaluated. If the new
individual exhibits superior fitness compared to the one before the recombination, it is retained.
Conversely, if the new individual's fitness value is not better, it is restored, and the gene is removed
from the gene bank. This process ensures that the most promising genes are utilized in the population
and promotes the overall improvement of the GA.

The Pseudo-code of genetic recombination strategies with dynamic gene banks is as follows:

17418

Mathematical Biosciences and Engineering Volume 20, Issue 9, 17407–17427.

Begin
input Chromosome.

Count maxC ; Record ikW , ikF ; Count ik , .

Select  ,  with  .

Extract gene fragments: select a gene fragment  randomly in  as the High-quality gene
fragment.

//e.g.  = 3 2 4 3 1 2 4 3 1 3 2 2 4 1 1 4
 = 4 3 1 3

Gene recombination: search in  , find genes that duplicate the high-quality gene fragment, and

then replace them.

//e.g. before replace  = 2 3 4 2 1 3 2 4 1 3 3 1 4 1 2 4

after replace ’= 2 3 4 2 1 3 2 4 3 1 3 1 4 1 2 4

Count maxC ’ of ’.

if (max maxC C’)

{Let ’ replace  , and put  in the gene bank}

else

{  remain unchanged;

if (the gene fragment is from the gene bank)
{it will be removed}

}
if (any other high-quality genes fragments int the gene bank)

{repeat the gene recombination mentioned above}
End.

3.7. Description of IGA

Addressing the limitations of the GA, we propose the Improved GA. Our approach
encompasses several key enhancements to the conventional GA methodology. Firstly, we employ a
workpiece-based coding scheme, whereby chromosomes are generated randomly. Subsequently,
decoding is conducted to identify idle time within each machine. By harnessing this idle time, certain
tasks can be expedited. Furthermore, we introduce the championship method to selectively retain
valuable chromosomes. Augmenting this selection process is the integration of an elite retention
mechanism. This ensures the preservation of superior candidates during successive iterations. To
drive evolution, chromosomes within a generation undergo transformations facilitated by crossover
and mutation operators. Moreover, we introduce genetic recombination strategies featuring dynamic

17419

Mathematical Biosciences and Engineering Volume 20, Issue 9, 17407–17427.

gene banks, further promoting generation refinement. The program wouldn’t be terminated until the
termination condition is triggered. The flowchart for IGA is presented in Figure 8.

Create initial population : Pk

set k=0

①Calculate fitness of Pk

②Search for idle time

Algorithm termination
condition reached?

Output results

①Select
②elite retention strategy

Reaching Cross
Probability?

Improved POX
cross operator

Yes

Genetic recombination strategies with dynamic gene banks

Calculate fitness of Pk

k=k+1

No

Yes

No

Yes

No

New neighbourhood
seeking mutation operator

Reaching Mutation
Probability?

Figure 8. Flowchart for IGA.

4. Algorithm experiment

The improved GA in this paper is programmed in C++ language and compiled and run by using
Microsoft Visual Studio 2022 software on a computer with a Windows 11 operating system (Intel
Core i7-12700H CPU with the benchmark speed of 2.3GHz and 16G of RAM).

4.1. Testing of crossover and mutation operator

To assess the performance of different crossover operators, we conduct benchmark tests for 20
times, the case information used in the experiments is LA01 which instance of the JSP standard
benchmark library. The benchmark tests are performed by using the same program, with the
exception of using different crossover operators. The rest of the code remained identical across all
tests. Additionally, random number seeds were implemented in the program to ensure randomness
and fairness in each test.

According to the experiments, it can be observed that the single-point and multi-point crossover

17420

Mathematical Biosciences and Engineering Volume 20, Issue 9, 17407–17427.

operators met yield nearly identical results in the GA, and neither of them can converge to the
optimal solution in each test. Additionally, we simulated the crossover method mentioned in another
document, and although it showed promising results, it still falls short compared to the improved
crossover method proposed in this paper. In most cases, our proposed method allows the solutions to
converge earlier. To illustrate this, we have selected the most representative data and plotted a line
chart, as shown in Figure 9.

Figure 9. The comparison of convergence curves for different crossover operators.

Figure 10. The comparison of convergence curves for different mutation operators.

Furthermore, we also conduct tests on different mutation operators, similarly performing 20
random tests. From the test results, it seems that the performance of the two-point inverse and the
process insertion mutation operators are comparable, and both of them fail to guide the algorithm to
converge to the optimal solution. In contrast, the mutation operator designed in this paper

17421

Mathematical Biosciences and Engineering Volume 20, Issue 9, 17407–17427.

demonstrates significant performance advantages, in over 70% of the tests, it consistently guides the
algorithm to find the optimal solution, highlighting its superior performance. Also, we have selected
the most representative data and plotted a line chart, as shown in Figure 10.

4.2. Testing of IGA in basic solution performance

We will first conduct basic performance testing of IGA. The algorithm used in this paper is an
improved version based on GA; therefore, we will include the basic GA in the comparison list.
Additionally, we have selected the PSO, currently recognized as a classical swarm optimization
algorithm, to complement the comparison. In this regard, we select some examples of different sizes
from different types of problems from the JSP standard example library, considering the randomness
of the algorithm we solve 20 times independently. The termination conditions for the algorithm are
as follows: the algorithm finds the known best makespan, or the algorithm reaches one hundred
thousand iterations.

The algorithm parameters have been configured as follows: a population size of 100 and a
termination condition set either to a predefined threshold of 100,000 iterations or upon reaching a
preset optimal solution. To determine the optimal combination of crossover and mutation parameters,
a systematic exploration of 9 combinations was conducted. These combinations encompassed
crossover probabilities of 0.7, 0.75, and 0.8, mutation probabilities of 0.1, 0.15, and 0.2, along with
mutation repetitions ranging from 3, 4, to 5 times. Through a series of comprehensive experiments, it
was ascertained that the most favorable outcomes for the algorithm were achieved with a crossover
probability of 0.75, a mutation probability of 0.15, and a mutation repetition of 4 times. These
specific parameter values yielded the optimal performance for the algorithm.

We will record and compare the following performance metrics of the algorithms. LB represents
the currently known optimal makespan of the example; bt represents the best makespan of the 20
tests; avt represents the average makespan of the 20 tests; bT represents the running time of the
program to achieve the best makespan, unit in seconds; bI represents the iterations of the program
to achieve the best makespan. The test results are shown in Table 3.

Table 3. Comparison of the algorithm in this paper with other classical algorithms.

Size Example LB
IGA GA PSO

bt ()bT s bI bt bI bt bI

6 × 6 FT06 55 55 0.26 26 59 − 55 34165

10 × 10 FT10 930 930 12.49 4906 1105 − 985 −

20 × 5 FT20 1165 1165 4.02 364 1170 − 1208 −

10 × 5 LA01 666 666 0.26 19 666 78651 676 −

15 × 5 LA06 926 926 0.73 98 928 − 926 48923

20 × 5 LA11 1222 1222 3.96 963 1398 − 1322 −

10 × 10 LA16 945 945 32.78 3419 1057 − 998 −

15 × 10 LA21 1046 1046 90.32 4703 1276 − 1152 −

30 × 10 LA31 1784 1784 3.50 8763 1998 − 1846 −

According to the test results from the benchmark cases, IGA consistently finds the optimal
solution for each test case. The program’s running time is relatively short, and the number of
iterations is also low. On the other hand, GA and PSO struggle to find the optimal solution within the

17422

Mathematical Biosciences and Engineering Volume 20, Issue 9, 17407–17427.

specified number of iterations, and their final results deviate significantly from the optimal solution.
In a few benchmark cases where GA and PSO manage to find the optimal solution, their algorithm
requires an exceptionally large number of iterations. As a result, we can conclude that IGA’s
algorithm performance is superior to that of GA and PSO.

4.3. Testing of IGA in complex solution performance

In order to understand IGA’s efficiency in solving large and complex cases, we conducted tests
using the benchmark case library containing ABZ instances and ORB instances. Additionally, we
used GA and PSO algorithms as a comparison in these tests. By doing so, we aimed to evaluate and
compare the performance of IGA, GA, and PSO in tackling these challenging and intricate problem
sets. The results of these tests will provide valuable insights into the effectiveness and efficiency of
each algorithm in handling large-scale and complex scenarios.

In this test, we have set the termination conditions for each algorithm to be either a maximum
runtime of 100 seconds or 200 seconds. By comparing the quality of the solutions obtained by each
algorithm within the same running time, we can assess their respective efficiency. Also, considering

the randomness of the algorithm we solve 20 times independently, 100t represents the algorithm’s

best makespan obtained when the program runs for 100 seconds; 200t represents the algorithm’s best

makespan obtained when it runs for 200 seconds. The test results are shown in Table 4.

Table 4. Comparison of the algorithm in this paper with other classical algorithms.

Size Example LB
IGA GA PSO

100t 200t 100t 200t 100t 200t

10 × 10 ABZ5 1234 1272 1250 1536 1498 1623 1564

10 × 10 ABZ6 943 956 943 1233 1202 1369 1295

20 × 15 ABZ7 656 698 670 992 945 1065 1002

20 × 15 ABZ8 648 696 682 886 842 858 801

20 × 15 ABZ9 678 731 695 798 786 846 796

10 × 10 ORB01 1059 1127 1103 1278 1245 1392 1364

10 × 10 ORB02 888 936 902 1005 986 1132 1096

10 × 10 ORB03 1005 1095 1072 1247 1222 1195 1184

10 × 10 ORB04 1005 1045 1032 1446 1422 1396 1378

10 × 10 ORB05 887 945 906 1020 996 1203 1167

10 × 10 ORB06 1010 1076 1052 1546 1522 1346 1297

10 × 10 ORB07 397 429 408 688 665 732 708

10 × 10 ORB08 899 981 932 1342 1311 1245 1237

10 × 10 ORB09 934 960 942 1462 1432 1365 1324

10 × 10 ORB10 944 986 946 1213 1202 1354 1326

Based on the experimental results, it can be observed that regardless of the runtime being 100
seconds or 200 seconds, IGA consistently outperforms the other two algorithms. Consequently, it can

17423

Mathematical Biosciences and Engineering Volume 20, Issue 9, 17407–17427.

be concluded that in large-scale and complex case tests, the algorithmic efficiency of IGA is
significantly higher than that of the other two algorithms.

Table 5. Performance comparison between this algorithm and other algorithms

Size Example LB

IGA
Document

[25]

Document

[26]

Document

[27]

Document

[28]

bt avt ()avT s bt bt bt bt

6 × 6 FT06 55 55 55 0.33 55 55 55 55

10 × 10 FT10 930 930 930 50.23 937 930 997 930

20 × 5 FT20 1165 1165 1165 15.31 1180 1165 1196 1165

10 × 5 LA01 666 666 666 0.56 666 666 666 666

10 × 5 LA02 655 655 655 0.72 655 655 655 655

10 × 5 LA03 597 597 597 0.62 597 597 617 597

10 × 5 LA04 590 590 590 1.67 590 590 607 590

10 × 5 LA05 593 593 593 3.56 593 593 593 593

15 × 5 LA06 926 926 926 0.98 926 926 926 926

15 × 5 LA07 890 890 890 2.01 890 890 890 890

15 × 5 LA08 863 863 863 1.37 863 863 863 863

15 × 5 LA09 951 951 951 1.95 951 951 951 951

15 × 5 LA10 958 958 958 2.46 958 958 958 958

20 × 5 LA11 1222 1222 1222 5.46 1222 1222 1222 1222

20 × 5 LA12 1039 1039 1039 8.02 1039 1039 1039 1039

20 × 5 LA13 1150 1150 1150 4.62 1150 1150 1150 1150

20 × 5 LA14 1292 1292 1292 2.18 1292 1292 1292 1292

20 × 5 LA15 1207 1207 1207 3.45 1207 1207 1207 1207

10 × 10 LA16 945 945 945 46.53 956 945 994 945

10 × 10 LA17 784 784 784 16.30 784 784 793 784

10 × 10 LA18 848 848 848 15.26 849 848 860 848

10 × 10 LA20 902 902 904.7 305.62 902 902 912 902

15 × 10 LA21 1046 1046 1046 162.34 1056 1046 1146 1046

15 × 10 LA23 1032 1032 1032 286.24 1036 1032 1033 1032

30 × 10 LA31 1784 1784 1784 8.36 1784 1784 1844 1784

30 × 10 LA32 1850 1850 1850 7.35 1850 1850 1907 1850

30 × 10 LA33 1719 1719 1719 12.09 1719 1719 − 1719

30 × 10 LA34 1721 1721 1721 16.45 1723 1721 − 1721

30 × 10 LA35 1888 1888 1888 12.34 1888 1888 − 1888

4.4. Testing and comparison of IGA and other improved algorithms

In order to compare the solution performance of different algorithms, the test results of the
algorithm in this paper, and the test results of other related algorithms in other document were
statistically analyzed and compared, using document selected from high-level domestic and
international journal document in recent years. The document [25] is a stochastic complex

17424

Mathematical Biosciences and Engineering Volume 20, Issue 9, 17407–17427.

evolutionary algorithm, the document [26] is an improved artificial bee colony algorithm, the
document [27] is an agent-based parallel approach for the problem, and the document [28] is a
hybrid algorithm of GA and tabu search. We have added some additional performance indicators: avt

represents the average makespan of the 20 tests; avT represents the average running time of the
program of the 20 tests. The test results are shown in Table 5.

The statistical analysis was carried out in terms of the number of superior and inferior solutions,
and the results are shown in Table 6. Compared with the algorithm in [25], 22 cases achieved equal
solutions and 7 cases outperformed the algorithm in [25]; compared with [27], 12 cases
outperformed the algorithm in [27]; compared with both algorithms in [26,28], the performance is
comparable. The results verify the superiority of the proposed algorithm.

Figure 11 shows the Gantt chart for the LA35 operator example derived in this paper.

Table 6. Number of solutions for which the algorithm in this paper outperforms other
algorithms.

 Document [25] Document [26] Document [27] Document [28]

Number of equivalent

solutions
22 29 14 29

Better than number of

solutions
7 0 12 0

Figure 11. The Gantt chart for the LA35.

17425

Mathematical Biosciences and Engineering Volume 20, Issue 9, 17407–17427.

5. Conclusions

Many existing basic improved algorithms for JSP often suffer from poor search capability and
tend to get trapped in local optimal solutions. In response to this challenge, we propose an enhanced
GA that incorporates four key improvements: decoding with idle time searching, an improved POX
crossover operator, a novel neighbourhood seeking mutation operator, and a genetic recombination
strategy with dynamic gene banks. To assess the effectiveness of IGA, we conduct tests on
representative benchmark problems and compare its performance with other algorithms selected
from prominent domestic and international journal documents. The computational results
demonstrate that our proposed IGA is a highly effective method for tackling JSPs, thus enriching the
fundamental theoretical study of JSP.

As the manufacturing industry continues to evolve and confront increasingly complex
production environments, our future research will focus on studying JSPs with multiple objectives
and constraints. Additionally, we will actively explore better search strategies and develop new
hybrid algorithm schemes to further enhance the performance of our algorithms.

Use of AI tools declaration

The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this
article.

Acknowledgments

This work was supported by the Research Initiation Foundation of Anhui Polytechnic
University (2022YQQ002), Anhui University Research Project (2023AH050935), Anhui Polytechnic
University Research Project (Xjky2022002), the Open Research Fund of AnHui Key Laboratory of
Detection Technology and Energy Saving Devices (JCKJ2022B01), Key Natural Science Research
Projects of Colleges and Universities in Anhui Province (2022AH050978), Anhui Province
University Excellent Top Talent Training Project(gxbjZD2022023), Wuhu science and technology
project (2022jc26), the Open Research Fund of Anhui Province Key Laboratory of Detection
Technology and Energy Saving Devices, Anhui Polytechnic University (JCKJ2021A06) and Anhui
Polytechnic University-Jiujiang District Industrial Collaborative Innovation Special Fund Project
(2022cyxtb6).

Conflict of interest

The authors declare there is no conflict of interest.

References

1. X. Y. Li, L. Gao, An effective hybrid genetic algorithm and tabu search for flexible job shop
scheduling problem, Int. J. Prod. Econ., 174 (2016), 93–110.
https://doi.org/10.1016/j.ijpe.2016.01.016

17426

Mathematical Biosciences and Engineering Volume 20, Issue 9, 17407–17427.

2. X. Y. Li, L. Gao, Q. K. Pan, L. Wan, K. M. Chao, An effective hybrid genetic algorithm and
variable neighborhood search for integrated process planning and scheduling in a packaging
machine workshop, IEEE Trans. Syst. Man. Cybern. Syst., 49 (2018), 1933–1945.
https://10.1109/TSMC.2018.2881686

3. G. H. Zhang, L. Gao, Y. Shi, An effective genetic algorithm for the flexible job-shop scheduling
problem, Expert Syst. Appl., 38 (2011), 3563–3573. https://doi.org/10.1016/j.eswa.2010.08.145

4. R. Mellado Silva, C. Cubillos, D. C. Paniagua, A constructive heuristic for solving the Job-Shop
Scheduling Problem, IEEE Latin Am. Trans., 14 (2016), 2758–2763.
https://10.1109/TLA.2016.7555250

5. G. Vilcot, J. C. Billaut, A tabu search algorithm for solving a multicriteria flexible job shop
scheduling problem, Int. J. Prod. Res., 49 (2011), 6963–6980.
https://doi.org/10.3182/20060517-3-FR-2903.00038

6. G. H. Zhang, X. Y. Shao, P. G. Li, L. Gao, An effective hybrid particle swarm optimization
algorithm for multi-objective flexible job-shop scheduling problem, Comput. Ind. Eng., 56
(2009), 1309–1318. https://doi.org/10.1016/j.cie.2008.07.021

7. J. Zhang, J. Jie, W. L. Wang, X. Xu, A hybrid particle swarm optimisation for multi-objective
flexible job-shop scheduling problem with dual-resources constrained, Int. J. Comput. Sci.
Math., 8 (2018), 526. https://doi.org/10.1504/IJCSM.2017.088956

8. L. N. Xing, Y. W. Chen, P. Wang, Q. S. Zhao, J. Xiong, A knowledge-based ant colony
optimization for flexible job shop scheduling problems, Appl. Soft Comput., 10 (2010), 888–896.
https://doi.org/10.1016/j.asoc.2009.10.006

9. J. Wu, G. D. Wu, J. J. Wang, Flexible job-shop scheduling problem based on hybrid ACO
algorithm, Int. J. Simul. Model., 16 (2017), 497–505. https://10.2507/IJSIMM16(3)CO11

10. J. Holland, Adaptation in Natural and Artificial Systems: An Introductory Analysis with
Applications to Biology, Control, and Artificial Intelligence, MIT Press, 1992.

11. C. D. Liou, Y. C. Hsieh, Y. Y. Chen, A new encoding scheme-based hybrid algorithm for
minimising two-machine flow-shop group scheduling problem, Int. J. Syst. Sci., 44 (2013), 77–
93. https://doi.org/10.1080/00207721.2011.581396

12. J. C. Tang, G. J. Zhang, B. B. Lin, B. X. Zhang, A hybrid algorithm for flexible job-shop
scheduling problem with setup times, Int. J. Prod. Manage. Eng., 5 (2017), 23–30.
https://doi.org/10.1016/j.proeng.2011.08.689

13. A. Turkyilmaz, S. Bulkan, A hybrid algorithm for total tardiness minimisation in flexible job
shop: genetic algorithm with parallel VNS execution, Int. J. Prod. Res., 53 (2015), 1832–1848.
https://doi.org/10.1080/00207543.2014.962113

14. I. Ono, M. Yamamura, S. Kobayashi, A genetic algorithm for job-shop scheduling problems
using job-based order crossover, in Proceedings of IEEE International Conference on
Evolutionary Computation, (1996), 547–552.

15. Y. Victor, B. Larisa, T. Andrei, Hybrid flowshop with unrelated machines, sequence-dependent
setup time, availability constraints and limited buffers, Comput. Ind. Eng., 56 (2019), 1452–
1463. https://doi.org/10.1016/j.cie.2008.09.004

16. H. C. Chang, T. K. Liu, Optimisation of distributed manufacturing flexible job shop scheduling
by using hybrid genetic algorithms, J. Intell. Manuf., 28 (2017), 1973–1986.
https://doi.org/10.1007/s10845-015-1084-y

17427

Mathematical Biosciences and Engineering Volume 20, Issue 9, 17407–17427.

17. H. Mokhtari, A. Hasani, An energy-efficient multi-objective optimization for flexible job-shop
scheduling problem, Comput. Chem. Eng., 104 (2017), 339–352.
https://doi.org/10.1016/j.compchemeng.2017.05.004

18. J. F. Goncalves, M. G. C. Resende, An extended Akers graphical method with a biased
random-key genetic algorithm for job-shop scheduling, Int. Trans. Oper. Res., 27 (2014), 215–
246. https://doi.org/10.1111/itor.12044

19. C. Y. Zhang, P. G. Li, Z. L. Guan, Y. Q. Rao, A tabu search algorithm with a new neighborhood
structure for the job shop scheduling problem, Comput. Oper. Res., 34 (2007), 3229–3242.
https://doi.org/10.1016/j.cor.2005.12.002

20. W. Chen, H. Yang, Y. Hao, Scheduling of dynamic multi-objective flexible enterprise job-shop
problem based on hybrid QPSO, IEEE Access, 7 (2019), 127090–127097.
https://10.1109/ACCESS.2019.2938773

21. Y. C. Wang, J. M. Usher, Application of reinforcement learning for agent-based production
scheduling, Eng. Appl. Artif. Intell., 18 (2005), 73–82.
https://doi.org/10.1016/j.engappai.2004.08.018

22. P. M. Pardalos, O. V. Shylo, An algorithm for the job shop scheduling problem based on global
equilibrium search techniques, Comput. Manag. Sci., 3 (2006), 331–348.
https://doi.org/10.1007/s10287-006-0023-y

23. M. M. Nasiri, F. Kianfar, A hybrid scatter search for the partial job shop scheduling problem, Int.
J. Adv. Manuf. Technol., 52 (2011), 1031–1038. https://doi.org/10.1007/s00170-010-2792-2

24. G. L. Gong, Q. W. Deng, R. Chiong, X. Gong, H. Huang, An effective memetic algorithm for
multi-objective job-shop scheduling, Knowl. Based Syst., 182 (2019), 104840.
https://doi.org/10.1016/j.knosys.2019.07.011

25. F. Q. Zhao, J. L. Zhang, C. Zhang, J. Wang, An improved shuffled complex evolution algorithm
with sequence mapping mechanism for job shop scheduling problems, Expert Syst. Appl., 42
(2015), 3953–3966. https://doi.org/10.1016/j.eswa.2015.01.007

26. N. Sharma, H. Sharma, A. Sharma, Beer froth artificial bee colony algorithm for job-shop
scheduling problem, Appl. Soft Comput., 68 (2018), 507–524.
https://doi.org/10.1016/j.asoc.2018.04.001

27. A. Leila, Z. Kamran, An agent-based parallel approach for the job shop scheduling problem with
genetic algorithms, Math. Comput. Modell., 52 (2010), 1957–1965.
https://doi.org/10.1016/j.mcm.2010.04.019

28. J. Xie, X. Y. Li, L. Gao, L. Gui, A hybrid algorithm with a new neighborhood structure for job
shop scheduling problems, Comput. Ind. Eng., 169 (2022), 108205.
https://doi.org/10.1016/j.cie.2022.108205

©2023 the Author(s), licensee AIMS Press. This is an open access
article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/4.0)

