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Abstract: In this paper, a double association-based evolutionary algorithm (denoted as DAEA) is
proposed to solve many-objective optimization problems. In the proposed DAEA, a double association
strategy is designed to associate solutions with each subspace. Different from the existing association
methods, the double association strategy takes the empty subspace into account and associates it
with a promising solution, which can facilitate the exploration of unknown areas. Besides, a new
quality evaluation scheme is developed to evaluate the quality of each solution in subspace, where
the convergence and diversity of each solution is first measured, and in order to evaluate the diversity
of solutions more finely, the global diversity and local diversity is designed to measure the diversity
of each solution. Then, a dynamic penalty coefficient is designed to balance the convergence and
diversity by penalizing the global diversity distribution of solutions. The performance of DAEA is
validated by comparing with five state-of-the-art many-objective evolutionary algorithms on a number
of well-known benchmark problems with up to 20 objectives. Experimental results show that our
DAEA has high competitiveness in solving many-objective optimizatiopn problems compared with the
other compared algorithms.

Keywords: many-objective optimization; double association; quality evaluation; convergence;
diversity

1. Introduction

Multi-objective optimization problems (MOPs) exist in many fields of production practice [1].
Thus, lots of multi-objective evolutionary algorithms (MOEAs) have been designed to deal with
MOPs with two or three objectives [2]. However, with the continuous improvement of people’s
requirements for sophistication, optimization models established in many complex industrial
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processes [3, 4] and industrial applications [5–7] often involve more than three objectives, which are
called as many-objective optimization problems (MaOPs). Generally, an MaOP involving m
conflicting objectives can be formulated as follows:

Minimize F (x) = ( f1(x), f2(x), . . . , fm(x))
T

s.t. x ∈Ω⊆ Rn
(1)

where x = (x1,x2, . . . ,xn)
T is the decision vector in the decision space Ω. F(x) denotes the objective

vector and fi(x) is the ith objective (i = 1,2, . . . ,m). Due to the conflicting property of different
objectives, it is almost impossible to find a solution that optimizes all objectives simultaneously [8].
On the contrary, a set of trade-off solutions is needed, which is known as the Pareto front (PF) in the
objective space and the Pareto set (PS) in the decision space [9].

Since the number of optimization objectives are increased, most of the solutions based on
Pareto-dominance method become nondominated [10] and considerably slows down the evolutionary
process, which leads to most Pareto dominance based MOEAs that fail to solve MaOPs. Besides, as
the dimension of the objective space increases, the finite solutions become increasingly scarce in the
high-dimensional objective space. As a result, many frequently used diversity maintenance strategy,
such as crowding distance [11], are no longer effective on MaOPs.

To better solve MaOPs, researchers have proposed many different methods, which can be divided
into the following five categories [12]:

The first category is modifying Pareto-dominance relation or developing new dominance relations
to increase the selection pressure toward the PF for MaOPs. Examples of modifying dominance
definitions include k-optimality relation [13], average and maximum ranking relations [14],
ε-dominance [15], L-optimality [16], grid-dominance [17], preference order ranking [18], fuzzy
dominance [19], θ -dominance [20] and RP-dominance [21]. The distinctive modifications have
shown to be very promising for MaOPs. However, most of them can only be used within a specific
algorithmic framework. Another typical idea in this category is to adjust the selection pressure
through changing the dominated area of each solution, such as α-dominance [22]. Two
representatives are CE-dominance [23] and CN-dominance [24]. The former can dynamically adjuste
the solutions’ dominant area by varying a parameter S, and thereby adjust the selection pressure. The
latter transforms the original objectives by using the author designed nonlinear function to further
adjust the area dominated by each solution. While the idea of dynamically adjusting the dominated
area of each solution enables Pareto-based MOEAs to enhance selection pressure among solutions,
ensuring the quality of the selected solutions remains a challenging endeavor.

The second category is the indicator-based approach, which uses an evaluation indicator instead of
Pareto-dominance to evaluate the quality of solutions [25]. Among the current indicators available, the
IGD indicator as a comprehensive indicator is used to select the potential solutions in each generation
(MaOEA-IGD) [26]. The hypervolume (HV) indicator [27] possesses good theoretical properties and is
often used as the indicator function in multiobjective search. However, the high computation cost of the
hypervolume holds back its spread, especially for MaOPs with more than five objectives [28]. Bader
and Zitzler [29] suggested a new HV-based algorithm (HypE), which adopts Monte Carlo simulation
to replace the exact hypervolume calculations, causing the computational complexity been alleviated,
but in turn, the inexactly calculation of HV deteriorates the performance of HypE on MaOPs [30].
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The third category is the objective reduction-based methods. Since some many-objective
optimization problems have redundancy between the objectives, this method aims to identify the most
relevant objectives first and then expurgate redundant ones that do not contribute significantly to
describing the Pareto front. Deb and Saxena [31] developed a novel algorithm called PCA-NSGA-II,
which combines principal component analysis (PCA) with NSGA-II for effectively handling MaOPs
that have redundant objectives. Moreover, Singh et al. [32] designed a novel approach that
emphasizes a reduced set of objectives instead of dealing with the complete dimensionality of the
MaOP. Meanwhile, they adopt corner solutions, which are located in the boundaries of PF, to estimate
the dimensionality of the true PF. Recent research has confirmed that certain methods based on
objective reduction are susceptible when dealing with optimization problems that involve a
high-dimensional PF [33]. In other words, these techniques may be effective for addressing problems
that involve a moderate number of conflicting objectives.

The fourth technique is to use preference incorporation-based approaches, where the timing of
integrating preference information into the optimization process is a crucial factor. The preference
information given by decision maker (DM) can make the search direction that is biased towards the
area of the PF, which is focused by DM, the many-objective optimization algorithms combined with
the preference information can reduce the consumption of computing resources during the
search [33]. For example, Wang et al. [34] developed a novel algorithm named PICEA-g, which
enables decision-makers to obtain a comprehensive and diverse representation of the Pareto fronts,
prior to eliciting and applying their preferences. In [35], a reference vector guided evolutionary
algorithm is proposed, where the reference vectors not only decompose a MaOP into single-objective
subproblems, but also elucidate user preference to target a preferred subset of the whole PF. This
shows promising performance on certain problem types, but they suffer from suboptimal results since
the bias may lead to premature convergence [36].

The last technique is a decomposition-based method, which decomposes a complex MOP into a
number of subproblems and simultaneously optimizes them in a collaborative manner, is often known
as another promising way. MOEA/D [37] is the most typical representative of this method. By
assigning a set of evenly distributed weight vectors, MOEA/D maintains population diversity better
and has the ability to solve many kinds of optimization problems with varying degrees of
success [38–44]. Based on the framework of MOEA/D, MaOACO-RP utilizes the designed penalty
boundary intersection and adaptive reference points to pick out solutions for the next generation [38].
Zhang et al. [45] integrated the designed information feedback model into MOEA/D for solving
MaOPs with many decision variables. MaOEA-IT [46] adopts two stages to balance the convergence
and diversity. Recently, the reference point-based MOEAs are highlighted in many-objective
optimizations. A little bit different from decomposition-based MOEAs, the reference points are used
to facilitate the diversity of selected solutions by associating each solution in objective space with
them, e.g., NSGA-III [47], which adopts a reference point-based niche-preservation operation to
replace the crowding distance operator in NSGA-II. Recently, Yi et al. [48] combines the crossover
operator with the NSGA-III for MaOPs with many decision variables. However, with the increasing
number of objectives, Pareto-dominance gradually loses its ability to filter solutions, thus, the
solutions obtained by NSGA-III stress diversity more than convergence. In literature [20], a new
algorithm called θ -DEA is proposed to solve MaOPs, where a reference points-based dominance
relation (θ -dominance) is designed to select the solutions. The experimental results show that θ -DEA
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can better improve the performance of NSGA-III for MaOPs, especially the convergence. In
SPEA/R [30], it designs a new reference direction based fitness assignment scheme and an
environmental selection strategy to improve the performance of SPEA2 in solving both
multi-objective and many-objective problems, but the performance of SPEA/R remains constrained to
Pareto-dominance with the number of objectives increasing.

In order to better maintain the diversity of solutions in objective space, and motivated by the idea
of dividing objective space by well-distributed reference vectors to select the quality of obtained
solutions, we propose a double association-based evolutionary algorithm for solving MaOPs. In
comparison with existing approaches that rely on reference points/vectors, this paper offers the
following key contributions:

1) A double association strategy is designed to associate each solution with a reference vector.
When the objective space is divided by the well-distributed reference vectors, different from
other existing association methods [20, 30], the double association strategy takes the empty
subspace into account and associates it with the nearest solution. This new association method
can facilitate the exploration of unknown areas.

2) A new quality evaluation scheme is proposed to quantify the quality of each solution in
subspace, where the convergence and diversity of each solution is first computed, and then a
dynamic penalty coefficient is designed to balance the convergence and diversity by penalizing
the diversity distribution of solutions.

The remaining structure of this paper is as follows: Section 2 elaborates the 3DEA in detail.
Section 3 presents the experimental design for solving many-objective optimization. In Section 4, the
experimental results are conducted and analyzed. Finally, Section 5 presents the conclusions of the
study.

2. Proposed algorithm: DAEA

2.1. General framework

The framework of DAEA is given in Algorithm 1 and Figure 1 shows the flowchart of DAEA, which
mainly corresponds to Algorithm 1. First, we employ the Das and Dennis’s [49] systematic approach
to generate evenly reference vectors. Then, an initial population P0 with N individuals are randomly
produced. The ideal point z∗ and nadir point znad are initialized in step 3 and step 4, respectively.
They are computed by the minimum value and maximum value of obtained population P0 for objective
fi, respectively, and both of them are updated in each iteration. Steps 6–23 denote that DAEA enters
the iterative procedure. In step 7, on the basis of the preserved parent population Pt , the offspring
population Qt is produced by employing the widely used genetic operators, i.e., the simulated binary
crossover (SBX) [50] and the polynomial mutation (PM) [51]. Meanwhile, a combined population
Rt is formed by combining the parent population Pt and offspring population Qt . The population
St =

⋃
τ
i=1 Fi, where Fi is the ith Pareto nondominated level of Rt and τ satisfies ∑

τ−1
i=1 |Fi| < N and

∑
τ
i=1 |Fi| ≥ N. In step 11, the normalization procedure [20] is implemented to normalize the objective

population {F(x)|x ∈ St} of St to F̃(St) = {F̃(x)|x ∈ St}, and then each member in F̃(St) is associated
with a reference vector by our proposed double association strategy in step 12. For each solution in
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Algorithm 1 Main framework of the proposed DAEA
Input: the maximal number of fitness evaluations(MFEs)
Output: Final population P
1: W ← Generate Reference vector(N);
2: P0← Initialize Population(N);
3: z∗← Initialize IdealPoint(P0);
4: znad ← Initialize NadirPoint(P0);
5: t ← 0;
6: while the termination criterion is not met do
7: Qt ← Create Offspring Population(Pt);
8: Rt ← Union Population Pt ∪Qt ;
9: St ← Pareto Nondominated Levels(Rt);

10: Update Ideal Point(St);
11: F̃(St)← Normalize (St ,z∗,znad);
12: [S(1), ...,S(N)]← Double Association (F̃(St),W );
13: [T (1),T (2), ...]← Quality Evaluation [S(1), ...,S(N)];
14: Pt+1← /0;
15: i← 1;
16: while |Pt+1|+ |T (i)|< N do
17: Pt+1← Pt+1

⋃
T (i);

18: i← i+1;
19: end while
20: Random Sort(T (i));
21: Pt+1← Pt+1

⋃
T (i)[1 : (N−|Pt+1|)];

22: t ← t +1;
23: end while

its associated subspace, the proposed quality evaluation scheme is used to evaluate the quality of each
solution, and then sort them according the evaluated values, the first-ranked solution in each subspace
are put into the set T (1), the second-ranked solution in each subspace are put into the set T (2), and so
on. Then steps 14–21 fill the population slots in Pt+1 using one level at a time, starting from T (1), for
the solutions in last accepted level T (i), we randomly select the number of needed solutions in T (i),
since our proposed quality evaluation scheme takes both convergence and diversity into account. In
the following sections, the implementation details of important component of DAEA will be described
step by step.

2.2. Reference vectors generation

In order to maintain the diversity of obtained solutions, evenly reference vectors
W = (λ1,λ2, · · · ,λN) are generated by Das and Dennis’s [42] systematic approach in DAEA, which
divide the objective space into N independent subspaces and reserve the most promising solutions of
each subspace as much as possible. In this approach, reference vectors are sampled from a unit
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Start
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Initialize ideal pointsInitialize nadir points
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Perform double association Normalize objective values

Perform nondominated sort

Perform quality of solutions Select N promising solutions

Update ideal/nadir points

Unite parent and offspring

Iteration Procedure

Stop condition satisfied Output N elite solutions
No Yes

Initialization Procedure

Figure 1. The flowchart of DAEA.

simplex and the number of reference vectors is equal to N =

(
H +m−1

m−1

)
, where m is the

dimension of objective space and H is the number of divisions considered along each objective axis.
Suppose that λi = (λ 1

i ,λ
2
i , · · · ,λ m

i ) is the ith reference vector, let us consider

m
∑
j=1

u j
i = H,u j

i ∈ N (2)

Then, the elements of reference vector λi is obtained by

λ k
i =

uk
i

H ,k = 1,2, · · · ,m (3)

It can be clearly observed that when H ≥ m, the above method will result in lots of reference

vectors. Even if H = m, N =

(
8+8−1

8−1

)
= 6435. This will significantly increase the computational

cost. However, if we adopt the method reducing H to relieve the computational burden, the generated
reference vectors may unevenly distribute. To avoid such situation, the two-layered reference vectors
with small values of H as suggested in [47] is adopted in DAEA. Supposing the number of divisions of
boundary and inner layers is H1 and H2, respectively, then the reference vectors are generated by Das
and Dennis’s method. The number of reference vectors (i.e., population size) is computed as

N =

(
H1 +m−1

m−1

)
+

(
H2 +m−1

m−1

)
(4)

2.3. Double association strategy

After the whole objective space is divided into N independent subspaces, the population
distributed in the target space needs to be assigned to different subspaces. The idea of assigning the
population by associating each member in the normalized objective set with its closest reference
vector has been employed in many recent papers, such as [20, 21, 30, 43, 52], etc. However, they have
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different characteristics and motivations. In [52], when a subspace contains no solution, i.e., the
subspace is empty, a solution is randomly chosen and associated with this subspace. This means a
randomly selected solution is assigned to the empty subspace. This kind of association methods is the
random association. Random association aims to increase the probability of the unknown region
being explored, however, the operation of randomly selecting solutions may make the search even
worse. In [34], each nondominated solution is associated with a subspace and then the density of each
subspace is estimated by counting the number of solutions associated with the subspace. Since there
may be some empty subspaces, it may lead to some incorrect estimation. Also, in [20, 21, 30], when
empty subspace appears, these association methods have no further action and directly ignore them,
which will destroy the diversity of the obtained solutions. This kind of association methods is the
single association.

To better explore the unknown region and increase the diversity, we design a double association
strategy, in which we do the first step of association as same as that in the existing one [53], i.e., each
reference vector will generate a subspace, and each solution will be associated with its closest subspace,
but like the discussion above, this can result in empty subspace(s) and can not keep the good diversity
of the obtained solutions. To overcome this shortcoming, we do the second step of association. For
each empty subspace, we associate a closest solution with it, in which the perpendicular Euclidean
distance d2 (the distance of each solution from each reference vector) [46] is used to measure the
distance between the solution and the subspace (represented by the corresponding reference vector).
In this way, the diversity of the obtained solutions will be greatly improved. The detail is as follows.

Currently, we have a normalized union population F̃(Rt) (see Algorithm 1) in the objective space.
Suppose that F̃(x) = ( f̃1(x), ..., f̃m(x))T ∈ F̃(Rt), the ideal point is the origin, then the Euclidean
distance between the origin and the foot of the normal drawn from the solution x to the reference
vector λi is denoted as di

1(x), and the length of the normal is denoted as di
2(x). To be specific, their

mathematical descriptions are [16]:

di
1(x) =

∥∥∥F̃(x)T
λi

∥∥∥/∥λi∥ (5)

di
2(x) =

∥∥F̃(x)−di
1(x)(λi/∥λi∥)

∥∥ (6)

For visually presenting them, Figure 2 illustrates the two distance measures di
1(x) and di

2(x) with
respect to the reference vector λi in a two-objective minimization problem.

In the first step association, for each solution xi ∈ Rt , we first compute its perpendicular Euclidean
distance d j

2(xi) between F̃(xi) and each λ j( j = 1,2, ...,N), then the solution xi is associated with its
closest subspace (corresponding to the closest reference vector) based on the distance d j

2(xi) for j =
1,2, ...,N. After all solutions in Rt have been associated with their closest subspaces, we begin the
second step association. We examine all subspaces to see whether there is an empty subspace. If yes,
we associate the empty subspace with its closest solution in Rt using perpendicular Euclidean distance.
Otherwise, we do not use the second step association. In this way, not only can the diversity of the
obtained solutions be improved, but also the solution which is closest to the empty subspace will be
preserved, which is very helpful to improve the diversity and can generate potential solutions in the
subsequent evolution. The detailed description of the double association strategy is given in Algorithm
2.
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Figure 2. Illustration of distances di
1(x) and di

2(x).

Figure 3. Influence of three different association schemes on the performance of the
algorithm.

Mathematical Biosciences and Engineering Volume 20, Issue 9, 17324–17355.



17332

Algorithm 2 Double association
Input: F̃(Rt)(normalized union population),

W (reference vector set)
Output: {S(1),S(2), . . . ,S(N)} (S(i) stores all the individuals associated with the ith reference

vector)
1: {S(1),S(2), . . . ,S(N)}← { /0, /0, . . . , /0};
2: for each xi ∈ R̃t do
3: for each λ j ∈W do
4: Compute the perpendicular Euclidean distance d j

2(xi) between F̃(xi) and λ j;
5: end for
6: k = argmin

j∈{1,...,|w|}
d j

2(xi);

7: S(k) = S(k)∪ xi;
8: end for
9: for each S( j) do

10: if isempty S( j) then
11: q = argmin

i∈{1,...,|R̃t|}
d j

2(xi);

12: S( j) = S( j)∪ xq
13: end if
14: end for

To intuitively demonstrate the advantages of our proposed double association strategy, we compare
it with two kinds of existing association schemes: Random association (randomly chooses a solution
to associate it with an empty subspace in the second step association), e.g., [52], and single association
(without second step association), e.g., [20, 21, 30]. Figure 3 gives a simple example to illustrate the
influence of the random association, the single association and the proposed double association strategy
on the performance of the algorithm. For these three association methods, the first step association
operation of them are the same, we suppose that after the first step association operation, solution a is
associated with sub-space S(1) and b,c,d are all associated with sub-space S(2). There is no solution
associated with sub-space S(3). If one uses the single association, such as ones in [20,21,30], S(3) will
be empty. This will result in bad diversity of solutions. If one uses the random association, a randomly
chosen solution among {a,b,c,d} (such as d) is assigned to S(3), which also results in bad diversity
of the solutions. If one uses our double association, since c is closest to λ3, it will be directly assigned
to associate with subspace S(3), which helps to improve the diversity of the solutions. This is very
necessary for exploring unknown areas. Besides, the survival of solution a in subspace S(1) is very
important for the unexploited area.

2.4. Quality evaluation scheme

For comprehensively assessing the quality of each solution, we design a novel quality evaluation
function for the solutions in each subspace S(i), where this evaluation function takes into account both
the convergence measure and diversity measure of each solution. The mathematical description of the
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new quality value of solution x is as follows:

FV (x) = di
1(x)+µ ·di

2(x)+ min
y∈S(i),x,y

d(x,y) (7)

where di
1(x) means the shortest perpendicular Euclidean distance of solution x from the ideal point and

is used to measure the convergence of solution x. The smaller the value of di
1(x), the better convergence

of solution x. The shortest perpendicular Euclidean distance di
2(x) among the distances of each solution

x from each reference vector λi is used to measure the contribution of solution x to the global diversity,
the smaller the value of di

2(x), the better the diversity of solution x. min
y∈S(i),x,y

d(x,y) represents the

minimum distance from the solution x to all other solutions associated to the subspace S(i), which
is used to measure the contribution of solution x to the local diversity. For diversity measure, the
smaller the value of di

2(x) and min
y∈S(i),x,y

d(x,y), the better the diversity of solution x. The parameter µ

is a penalty parameter, and is designed to punish the solutions in dense area from global perspective.
Considering that in an ideal state, each subspace should have two solutions distributed, here we set µ =
|S(i)|

2 . As the subspace S(i) is distributed with more solutions, the parameter µ is going to get bigger,
which means stronger punishment will be inflicted on local diversity. Therefore, when a solution
obtains a smaller quality value FV , it indicates that the solution possesses superior convergence and
diversity characteristics.

Therefore, the new quality evaluation simultanously consider convergence measure and diversity
measure and can adaptively protect the solutions located in the sparse areas. The quality value of a
solution is lower, which denotes the solution has better convergence and diversity. After the solutions
in each subspace are assigned to the corresponding quality value, we ascending sort the solutions
in subspace S(i) as Numi(1), ...,Numi(|S(i)|) based on the quality value FV . Then, the first-ranked
solution in each subspace are put into the set T (1), the second-ranked solution in each subspace are
put into the set T (2), and so on. The details are shown in Algorithm 3.

Algorithm 3 Quality evaluation scheme
Input:
d1, d2, {S(1),S(2), . . . ,S(N)} (S(i) stores the individuals associated with the ith reference vector)
Output: [T (1),T (2), ...]
1: for i = 1 : N do
2: for Each x ∈ S(i) do
3: Assign a quality value FVi(x) by Eq.(7);
4: Sort FVi as [Numi(1),Numi(2), ...,Numi(|S(i)|)];
5: end for
6: end for
7: for k = 1 : max

j=1:N
|S( j)| do

8: for i = 1 : N do
9: T (k) = [T (k),Numi(k)];

10: end for
11: end for
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2.5. Computational complexity of DAEA

The computational complexity of DAEA in one generation is dominated by the double association
operator that is described in Algorithm 2. For the procedure of double association, there are two steps:
In the first step of association (lines 2–8 of Algorithm 2), for a solution x, calculating N perpendicular
distances from x to N reference vectors needs O(mN) computational cost, and calculating the shortest
perpendicular distance from x to N reference vectors requires O(N) computational cost. Thus, the
association between 2N solutions with N reference vectors needs O(mN2) computational cost. In the
second step association (lines 9–14 of Algorithm 2), finding the empty subspace from N subspaces and
then associating it with a solution closest to it needs O((N− 1)N) operations in the worst situation.
Thus, the overall worst complexity of one generation of DAEA is approximately O(mN2).

3. Experimental design

In this section, experimental design is given to verify the performance of the proposed DAEA
on many-objective optimization problems. First, the test problems and the compared algorithms are
presented. Then, we will give a brief rundown of the performance metrics utilized in our experimental
study. Next, we give parameter settings in this work. All experiments are carried out in the open-source
software PlatEMO [54] that has been widely used in many-objective optimization.

3.1. Test problems

In order to test the performance of six algorithms involved in this paper, DTLZ test suite
(DTLZ1-DTLZ7) [55] and WFG test suite (WFG1-WFG9) [56] as two common used many-objective
optimization benchmarks are adopted in our experiments. They contains many different features, such
as degenerate, biased, large scale, non-separable and partially separable of the decision variable in
decision space as well as linear, convex, concave, mixed geometric structures and multi-modal of the
PFs in objective space. These different features pose great challenges to the comprehensive
performance of an algorithm. Besides, the objectives and decision variables of all these test problems
can be scaled to any number.

In our experiment, the number of objectives for all test problems are taken from 5 to 20, i.e., m ∈
{5,8,12,16,20}. For DTLZ test suite, the number of decision variables is given by n = m+ k− 1.
Different test problems may have different values of k. As suggested in [41, 48], the parameter k is set
to 5 for DTLZ1, 10 for DTLZ2-DTLZ6 and 20 for DTLZ7. For WFG test suite, as suggested by the
references [50] and [49], the number of decision variables for all test problems are set to 24 and the
position related parameter is set to m−1.

To test the performance of our proposed DAEA in solving MaOPs, five well-known MaOEAs are
selected to compared with DAEA based on a series of experiments. To be specific, NSGA-III [47]
is selected since it is typically used as a baseline for solving MaOPs. θ -DEA [20] adopts the single
association method to decompose the population. SPEA/R [30] is mixed algorithm that combines
decomposition and Pareto dominance. MaOEA-IGD [26] is typically indicator-based algorithm for
solving MaOPs. MaOEA-IT [46] is a recently proposed MaOEAs which employs two-stage strategy
to take the convergence and diversity of solutions into account.
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3.2. Performance metrics

We select two widely used performance metrics to evaluate the performance of DAEA and other
compared algorithms on MaOPs. More details are as follows:

(1) Inverted generational distance (IGD) [57]: The IGD metric can measure both the convergence and
diversity of the obtained solution set, whose mathematical description is:

IGD(A,P∗) =
1
|P∗|

|P∗|

∑
i=1

min
f∈A

d( fi
∗, f ) (8)

where P∗ is a set of solutions obtained by uniformly sampling from the true PF and A refers to
non-dominated solutions obtained by an algorithm. |P∗| is the size of P∗, and d( fi

∗, f ) represents
the Euclidean distance from the point in true PF to their closest to the obtained population A. A
smaller IGD value of a set A means a better performance of the set A.

(2) Hypervolume (HV) [27]: HV is a comprehensive indicator, which can assess both the convergence
and diversity of a solution set as well. Its mathematical description is as follows:

HV (S) = VOL(∪ [ fr∈A [ f1(x),zr
1]× . . . [ fm(x),zr

m]) (9)

where VOL(·) represents the Lebesgue measure, A is the obtained non-dominated solutions, and
z = (z1, · · · ,zm) is the reference point and set to (1,1,·,1). In addition, When the number of
objectives m exceeds 8, we employ the Monte Carlo method with 1,000,000 sampling points to
approximate the HV values [25]. Obviously, the larger the HV value, the higher the quality of
solution set A is.

3.3. Experimental settings

In this section, we outline the general experimental settings and provide specific parameter settings
for each algorithm, as described below.

(1) Population size: The population size N of these algorithms using reference vectors (such as NSGA-
III, θ -DEA) is determined by the parameter H and the number of objectives m [47]. To have
a fair comparison, the population size of other compared algorithms keep identical to the above
algorithms. Table 1 lists the detailed settings of population size N for problems with different
number of objectives used in this paper.

Table 1. Settings of the population size.

No. of objectives (m) Divisions (H) Population size (N) MFEs
5 6 210 99,960
8 (4,1) 338 99,990
12 (3,1) 376 100,100
16 (2,2) 272 100,386
20 (2,1) 230 99,960
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(2) Number of runs and termination criterion: Each algorithm is executed independently for 20 runs on
every test instance, and the maximum function evaluations (MFEs) is used as the terminal criterion
of each run. More details are presented in Table 1.

(3) Significance test: To evaluate the statistical significance of the results obtained from DAEA and
the other five compared algorithms, the Wilcoxon rank sum test is utilized at a significance level
of 0.05. In this test, we use the symbols “+”, “-” and “=” to signify that the results obtained by a
compared algorithm are significantly better than, worse than, and similar to 3DEA, respectively.

(4) Parameters of genetic operators: SBX [50] and PM [51] are used in all algorithms. For SBX
[50], the crossover probability pc = 1.0 and the distribution index is set to ηc = 20 are used in all
compared algorithms. For the polynomial mutation [51], the distribution index and the mutation
probability are set to ηm = 20 and pm = 1 for all compared algorithms.

(5) Parameter setting in each algorithm: The parameters used in all the compared algorithms remain
unchanged from their original publications.

4. Experimental results and analysis

4.1. Performance comparisons on DTLZ test suite

Tables 2 and 3 present the statistical results of DAEA and five compared algorithms on the DTLZ
test suite in terms of IGD and HV values, respectively, where the best results are highlighted in bold
font.

From the IGD results in Table 2, it can be observed that DAEA is significantly superior to NSGA-III,
θ -DEA, SPEA/R, MaOEA-IGD and MaOEA-IT on 26, 18, 35, 26 and 35 test instances, respectively.
Analogously, it can be observed from the HV results in Table 3 that DAEA defeats NSGA-III, θ -
DEA, SPEA/R, MaOEA-IGD and MaOEA-IT on 28, 18, 32, 20 and 35 test instances, respectively. In
summary, our proposed 3DEA is superior to the other state-of-the-art algorithms.

Specifically, DTLZ1 is a multi-modal problem with the linear PF, which mainly challenges the
algorithm ability to jump out of local optima. DAEA obtains the best results in dealing with this
problem, followed by θ -DEA.

For DTLZ2 test problem, DAEA performs best among the six compared algorithms. To more
intuitively show the results obtained by six algorithms, we plot the parallel coordinates of final solutions
obtained by each algorithm on 20-objective DTLZ2 instance in Figure 4. From this figure, we can see
that θ -DEA and DAEA have better comprehensive performance in terms of convergence and diversity,
while the other algorithms fail to converge to the true PF.

Since its multimodal property, DTLZ3 is difficult to solve. From the IGD and HV values highlighted
in Tables 2 and 3, we can see that our DAEA performs best for most instances with different number of
objective except 16-objective instance, which are won by θ -DEA. Other four algorithms are defeated
by DAEA. It may because the double association in DAEA maintains a good diversity of solutions.

DTLZ4 mainly test the ability of algorithms to maintain population diversity. From Tables 2 and
3 we can see that DAEA performs best for most instances with different number of objective except
8-objective instance in Tables 3 and 8-, 12-, 16-objective instances in Tables 2, which are won by
MaOEA-IGD. Other four algorithms are defeated by DAEA.
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Figure 4. Parallel coordinates of final solutions achieved by six algorithms on 20-objective
DTLZ2.

DTLZ5 and DTLZ6 have the degenerated PFs, which are used to test the ability of algorithms to
deal with MaOPs with degenerate PFs. On these two problems, the IGD values obtained by DAEA are
best for all instances. For HV metric, MaOEA-IGD is more suitable for solving this kind of problems
than other compared algorithms. DAEA is the second and defeats the other four competitors on all
test instances, which may be caused by the effective fitness assignment proposed by DAEA, since their
tacit cooperation enables the algorithm to balance convergence and diversity.

DTLZ7, as a kind of mixed (concave and convex), disconnected and multi-modal problems, is
difficult to better balance the convergence and diversity for existing evolutionary algorithms. From
Tables 2, we can see that NSGA-III achieves the best IGD result on 5-objective instance, θ -DEA
achieves the best IGD results on 8-, and 12-objective instances, MaOEA-IGD has the best IGD
statistical results on 16-, and 20-objective instances. DAEA is statistically similar to that obtained by
θ -DEA. From the HV results in Table 3, it can be observed that NSGA-III performs best on
5-objective instance, while θ -DEA performing best HV on 8-, and 20-objective instances. For our
DAEA, it performs best on 12-, and 16-objective instances. As for MaOEA-IT, it is defeated by its
peer competitors.

4.2. Performance comparisons on WFG test suite

As evidenced by statistical results of the IGD and HV values summarized in Tables 4 and 5, it is
clearly observed that our DAEA performs best compared with other five algorithms in most cases.
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Table 2. Statistical results (mean and standard deviation) of the IGD values obtained by six
algorithms for DTLZ problems.

Problem M NSGA-III θ -DEA SPEA/R MaOEA-IGD MaOEA-IT DAEA

DTLZ1

5 2.5939e-1 (2.72e-1) − 4.0697e-1 (5.29e-1) − 7.6791e-2 (1.95e-2) − 1.2614e-1 (1.04e-1) − 1.6647e+0 (3.64e+0) − 4.9172e-2 (5.12e-4)
8 1.2208e-1 (5.38e-2) ≈ 1.0748e-1 (3.04e-2) ≈ 1.6194e-1 (5.49e-2) − 9.0395e-2 (5.56e-3) + 1.0092e+1 (8.63e+0) − 1.1280e-1 (5.42e-2)
12 1.6554e-1 (6.55e-2) − 1.3493e-1 (2.43e-2) − 6.6817e-1 (3.80e-1) − 1.2406e-1 (7.78e-3) − 9.9151e+0 (7.77e+0) − 1.1378e-1 (1.58e-2)
16 1.3893e-1 (1.54e-2) − 1.3895e-1 (3.17e-2) ≈ 9.4617e-1 (5.12e-1) − 1.6317e-1 (6.29e-2) − 9.3445e+0 (9.35e+0) − 1.3227e-1 (1.76e-2)
20 1.7432e+0 (1.99e+0) ≈ 5.6653e-1 (4.54e-1) ≈ 8.9357e-1 (5.35e-1) − 2.9398e-1 (1.33e-1) ≈ 1.4090e+1 (1.34e+1) − 2.4431e-1 (3.80e-2)

DTLZ2

5 1.8127e-1 (1.86e-2) − 1.7969e-1 (1.68e-2) − 1.6831e-1 (5.96e-4) − 1.6874e-1 (5.94e-4) − 5.1210e-1 (7.07e-2) − 1.6511e-1 (5.12e-6)
8 3.1519e-1 (1.01e-3) − 3.1259e-1 (9.18e-4) − 3.1929e-1 (1.07e-3) − 3.1158e-1 (1.51e-3) ≈ 7.3607e-1 (5.95e-2) − 3.1163e-1 (3.69e-4)
12 5.0400e-1 (1.01e-2) − 4.9742e-1 (2.56e-4) − 5.1908e-1 (3.80e-3) − 4.8895e-1 (1.64e-2) + 9.2191e-1 (3.78e-2) − 4.9614e-1 (5.06e-4)
16 5.6841e-1 (3.19e-2) − 5.3807e-1 (6.89e-4) ≈ 5.4596e-1 (1.73e-3) − 6.0157e-1 (4.86e-2) − 1.0911e+0 (8.87e-2) − 5.3813e-1 (1.32e-3)
20 8.3085e-1 (1.07e-1) − 6.4059e-1 (2.21e-2) − 6.5141e-1 (9.30e-3) − 8.1877e-1 (1.52e-1) − 1.3304e+0 (3.81e-2) − 6.2279e-1 (1.04e-4)

DTLZ3

5 1.3262e+1 (1.55e+1) − 9.6356e+0 (1.16e+1) − 1.1833e+0 (1.23e+0) − 9.9392e+0 (3.28e+0) − 1.8904e+1 (1.84e+1) − 1.6502e-1 (2.89e-4)
8 1.6894e+0 (1.40e+0) − 4.8179e-1 (9.37e-2) ≈ 2.0831e+1 (7.57e+0) − 8.4596e+0 (3.66e+0) − 2.7048e+2 (6.44e+1) − 4.6603e-1 (9.06e-2)
12 5.7464e+0 (4.34e+0) − 7.2829e-1 (3.12e-1) ≈ 9.6636e+1 (2.73e+1) − 3.5768e+0 (1.91e+0) − 2.8098e+2 (8.68e+1) − 6.1707e-1 (7.00e-2)
16 5.4120e+0 (2.55e+0) − 6.3162e-1 (6.52e-2) ≈ 2.6765e+1 (1.23e+1) − 2.6480e+0 (1.48e+0) − 2.6151e+2 (8.01e+1) − 6.6507e-1 (1.98e-1)
20 1.5099e+2 (7.61e+1) − 2.8344e+1 (3.24e+1) − 1.8933e+2 (7.79e+1) − 2.6276e+0 (1.88e+0) − 2.5575e+2 (1.19e+2) − 7.1357e-1 (1.38e-1)

DTLZ4

5 2.0617e-1 (8.56e-2) − 1.8208e-1 (2.00e-2) ≈ 1.6851e-1 (8.61e-4) − 1.6815e-1 (1.64e-4) − 9.5214e-1 (9.19e-2) − 1.6507e-1 (2.02e-5)
8 3.1512e-1 (6.45e-4) − 3.1405e-1 (6.26e-4) − 3.2456e-1 (1.54e-3) − 3.0971e-1 (3.98e-4) + 1.0085e+0 (7.19e-2) − 3.1308e-1 (3.76e-4)
12 4.9863e-1 (3.71e-4) − 4.9799e-1 (1.46e-4) − 5.3197e-1 (4.58e-3) − 4.9499e-1 (9.77e-3) + 1.0705e+0 (5.15e-2) − 4.9762e-1 (2.08e-4)
16 5.7109e-1 (4.60e-2) ≈ 5.4595e-1 (2.22e-3) ≈ 5.8503e-1 (1.08e-2) − 5.9435e-1 (9.45e-3) − 1.3666e+0 (4.99e-2) − 5.4685e-1 (2.58e-3)
20 7.4141e-1 (1.20e-1) − 6.3718e-1 (1.68e-2) − 6.4541e-1 (5.53e-3) − 6.2891e-1 (5.94e-3) − 1.0677e+0 (9.18e-2) − 6.2286e-1 (1.27e-4)

DTLZ5

5 8.4498e-2 (2.44e-2) ≈ 2.9769e-1 (1.02e-1) − 1.8032e-1 (2.86e-2) − 5.5991e-1 (1.45e-1) − 3.3280e-1 (4.75e-2) − 6.6476e-2 (2.31e-2)
8 2.6381e-1 (4.85e-2) − 1.3932e-1 (1.69e-2) − 7.3947e-1 (1.00e-1) − 4.1669e-1 (1.76e-1) − 3.2769e-1 (1.81e-1) − 8.6543e-2 (1.33e-2)
12 2.9711e-1 (6.86e-2) − 1.9821e-1 (2.33e-2) − 1.0233e+0 (1.60e-1) − 4.4597e-1 (1.91e-1) − 3.8060e-1 (2.03e-1) − 1.2661e-1 (1.30e-2)
16 3.9936e-1 (1.24e-1) − 1.9319e-1 (4.10e-2) − 1.0488e+0 (2.28e-1) − 2.5775e-1 (1.06e-1) − 4.0334e-1 (5.69e-2) − 1.3472e-1 (2.64e-2)
20 9.0180e-1 (4.28e-1) − 1.8029e-1 (4.05e-2) ≈ 1.0145e+0 (3.20e-1) − 3.2690e-1 (9.62e-2) − 4.4991e-1 (7.68e-2) − 1.6519e-1 (2.38e-2)

DTLZ6

5 2.0024e-1 (4.67e-2) − 1.7203e-1 (4.57e-2) ≈ 3.1990e-1 (1.34e-1) − 6.1062e-1 (5.22e-2) − 8.2900e+0 (1.97e-1) − 1.3102e-1 (5.06e-2)
8 6.3033e-1 (3.38e-1) − 2.5260e-1 (3.30e-2) − 5.9415e+0 (8.79e-1) − 6.5391e-1 (1.13e-1) − 8.4818e+0 (1.57e-1) − 1.5568e-1 (4.30e-2)
12 1.4339e+0 (4.92e-1) − 2.3895e-1 (4.76e-2) − 8.2463e+0 (6.18e-1) − 6.4578e-1 (1.43e-1) − 8.5341e+0 (1.17e-1) − 1.8940e-1 (3.64e-2)
16 1.7275e+0 (1.12e+0) − 2.6499e-1 (5.65e-2) − 4.0255e+0 (8.32e-1) − 3.6858e-1 (1.23e-5) − 8.2822e+0 (1.87e-1) − 1.8479e-1 (4.05e-2)
20 7.0043e+0 (2.11e+0) − 2.3670e-1 (5.46e-2) ≈ 8.8242e+0 (5.64e-1) − 3.9494e-1 (9.58e-5) − 8.3734e+0 (3.38e-1) − 2.1291e-1 (4.95e-2)

DTLZ7

5 2.8518e-1 (7.36e-3) + 3.0960e-1 (2.99e-2) ≈ 3.5710e-1 (5.41e-3) − 6.7529e-1 (1.33e-3) − 3.3571e+0 (2.40e+0) − 3.0883e-1 (1.43e-2)
8 6.8878e-1 (2.40e-2) ≈ 6.4153e-1 (4.85e-2) + 1.2164e+0 (1.28e-1) − 1.1487e+0 (3.51e-2) − 2.2976e+1 (1.62e+0) − 6.8070e-1 (1.73e-2)
12 1.7824e+0 (3.65e-1) ≈ 1.3153e+0 (1.75e-1) ≈ 3.4219e+0 (3.90e-2) − 1.6631e+0 (3.01e-2) ≈ 3.8619e+1 (1.95e+0) − 1.8297e+0 (6.65e-1)
16 5.2080e+0 (1.19e+0) ≈ 4.0932e+0 (6.50e-1) + 1.6952e+1 (8.84e+0) − 2.2296e+0 (7.73e-2) + 6.1326e+1 (4.11e+0) − 5.9838e+0 (1.15e+0)
20 8.7893e+0 (1.12e+0) ≈ 8.7351e+0 (6.28e-1) ≈ 1.3015e+1 (1.89e-2) − 3.6207e+0 (1.78e-1) + 8.1247e+1 (2.32e+0) − 8.9963e+0 (1.76e+0)

+/−/≈ 1/26/8 2/18/15 0/35/0 6/26/3 0/35/0
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Table 3. Statistical results (mean and standard deviation) of the HV values obtained by six
algorithms for DTLZ problems.

Problem M NSGA-III θ -DEA SPEA/R MaOEA-IGD MaOEA-IT DAEA

DTLZ1

5 5.9949e-1 (4.68e-1) ≈ 5.6494e-1 (4.86e-1) ≈ 9.6160e-1 (1.51e-2) ≈ 8.1638e-1 (2.26e-1) ≈ 3.5251e-1 (3.88e-1) − 9.5909e-1 (6.20e-3)
8 9.5582e-1 (1.28e-1) + 9.8378e-1 (4.51e-2) + 8.6708e-1 (2.23e-1) ≈ 9.9635e-1 (1.48e-3) + 3.7079e-3 (1.17e-2) − 9.2375e-1 (7.80e-2)
12 9.3936e-1 (1.92e-1) − 9.9746e-1 (5.76e-3) + 1.6215e-1 (2.52e-1) − 9.9482e-1 (2.70e-3) + 0.0000e+0 (0.00e+0) − 9.6511e-1 (1.19e-2)
16 9.9777e-1 (5.63e-3) + 9.9797e-1 (2.83e-3) ≈ 3.1669e-2 (6.60e-2) − 9.1608e-1 (1.76e-1) − 0.0000e+0 (0.00e+0) − 9.9690e-1 (3.86e-3)
20 4.7100e-1 (5.02e-1) ≈ 5.3503e-1 (5.08e-1) ≈ 9.1563e-2 (2.12e-1) − 7.4270e-1 (3.66e-1) ≈ 3.3344e-2 (1.11e-1) − 9.3660e-1 (6.05e-2)

DTLZ2

5 7.9091e-1 (2.49e-2) − 7.9598e-1 (1.89e-2) − 8.1020e-1 (1.07e-3) − 8.1277e-1 (3.47e-4) ≈ 1.8835e-1 (7.50e-2) − 8.1263e-1 (3.44e-4)
8 9.4308e-1 (4.33e-4) − 9.4553e-1 (2.62e-4) − 9.3853e-1 (7.94e-4) − 9.4603e-1 (2.69e-4) ≈ 2.1057e-1 (8.97e-2) − 9.4605e-1 (3.46e-4)
12 9.8242e-1 (5.76e-3) − 9.8708e-1 (1.85e-4) − 9.7130e-1 (3.18e-3) − 9.8428e-1 (4.65e-3) − 1.8514e-1 (4.91e-2) − 9.8753e-1 (9.74e-5)
16 9.8635e-1 (6.10e-3) − 9.9317e-1 (1.53e-4) − 9.6167e-1 (1.34e-2) − 9.8242e-1 (1.54e-2) − 1.1518e-1 (6.96e-2) − 9.9361e-1 (9.60e-5)
20 6.8201e-1 (2.45e-1) − 9.3663e-1 (7.23e-2) − 9.9023e-1 (4.22e-3) − 8.4570e-1 (2.13e-1) − 5.2857e-2 (2.22e-2) − 9.9864e-1 (3.98e-5)

DTLZ3

5 4.3308e-1 (4.15e-1) − 4.3787e-1 (4.19e-1) − 1.9116e-1 (2.02e-1) − 0.0000e+0 (0.00e+0) − 0.0000e+0 (0.00e+0) − 8.0848e-1 (2.53e-3)
8 1.9669e-1 (2.74e-1) − 6.7752e-1 (1.52e-1) ≈ 0.0000e+0 (0.00e+0) − 0.0000e+0 (0.00e+0) − 0.0000e+0 (0.00e+0) − 7.4043e-1 (1.15e-1)
12 1.0702e-3 (3.55e-3) − 6.3708e-1 (3.48e-1) ≈ 0.0000e+0 (0.00e+0) − 7.1293e-3 (2.36e-2) − 0.0000e+0 (0.00e+0) − 7.3553e-1 (1.64e-1)
16 0.0000e+0 (0.00e+0) − 9.0148e-1 (1.21e-1) ≈ 0.0000e+0 (0.00e+0) − 8.0334e-2 (2.07e-1) − 0.0000e+0 (0.00e+0) − 8.5744e-1 (2.73e-1)
20 0.0000e+0 (0.00e+0) − 3.6235e-1 (4.88e-1) − 0.0000e+0 (0.00e+0) − 2.1848e-2 (4.25e-2) − 0.0000e+0 (0.00e+0) − 8.6036e-1 (2.26e-1)

DTLZ4

5 7.7443e-1 (5.90e-2) − 7.9614e-1 (1.91e-2) ≈ 8.0859e-1 (9.61e-4) − 8.1256e-1 (3.02e-4) ≈ 1.1783e-1 (1.04e-1) − 8.1259e-1 (2.19e-4)
8 9.4395e-1 (5.00e-4) − 9.4595e-1 (1.34e-4) − 9.3023e-1 (2.58e-3) − 9.4684e-1 (3.58e-4) + 2.8299e-2 (2.30e-2) − 9.4640e-1 (1.76e-4)
12 9.8702e-1 (1.92e-4) − 9.8770e-1 (1.53e-4) − 9.6120e-1 (4.11e-3) − 9.8774e-1 (9.63e-4) − 6.1729e-2 (3.29e-2) − 9.8784e-1 (9.74e-5)
16 9.8899e-1 (1.29e-2) − 9.9412e-1 (6.10e-5) − 9.5800e-1 (1.37e-2) − 9.9286e-1 (2.43e-3) − 1.7976e-2 (2.03e-2) − 9.9438e-1 (9.76e-5)
20 7.8446e-1 (3.19e-1) − 9.9354e-1 (6.39e-3) ≈ 9.9254e-1 (2.06e-3) − 9.9831e-1 (3.27e-4) − 1.1442e-1 (1.16e-1) − 9.9871e-1 (2.52e-5)

DTLZ5

5 1.1219e-1 (8.37e-3) − 9.8779e-2 (6.89e-3) − 3.8972e-2 (1.89e-2) − 8.8702e-2 (2.94e-2) − 1.8887e-3 (3.09e-3) − 1.1800e-1 (5.90e-3)
8 5.4139e-2 (2.22e-2) − 9.0568e-2 (2.04e-3) − 0.0000e+0 (0.00e+0) − 9.1836e-2 (3.58e-4) − 1.9136e-3 (3.82e-3) − 9.6855e-2 (2.28e-3)
12 6.3693e-2 (1.40e-2) − 8.7445e-2 (2.17e-3) − 0.0000e+0 (0.00e+0) − 9.1062e-2 (4.44e-4) ≈ 1.0098e-3 (2.34e-3) − 9.1000e-2 (1.35e-3)
16 5.2239e-2 (2.09e-2) − 8.9112e-2 (1.04e-3) − 0.0000e+0 (0.00e+0) − 9.3627e-2 (3.10e-4) + 3.1627e-3 (8.83e-3) − 9.0713e-2 (5.80e-4)
20 7.6891e-3 (2.55e-2) − 9.0150e-2 (4.09e-4) ≈ 1.2840e-9 (4.26e-9) − 9.1484e-2 (2.26e-4) + 1.2256e-3 (4.06e-3) − 9.0141e-2 (8.60e-4)

DTLZ6

5 9.7594e-2 (1.23e-2) − 9.6233e-2 (5.70e-3) − 1.0052e-2 (1.71e-2) − 8.8249e-2 (2.92e-2) − 0.0000e+0 (0.00e+0) − 1.0826e-1 (8.21e-3)
8 1.6583e-2 (3.69e-2) − 9.0859e-2 (2.69e-4) − 0.0000e+0 (0.00e+0) − 9.2213e-2 (4.89e-5) ≈ 0.0000e+0 (0.00e+0) − 9.1802e-2 (8.51e-4)
12 0.0000e+0 (0.00e+0) − 9.0821e-2 (1.85e-4) ≈ 0.0000e+0 (0.00e+0) − 8.3140e-2 (2.76e-2) ≈ 0.0000e+0 (0.00e+0) − 9.1133e-2 (6.37e-4)
16 8.2325e-3 (2.73e-2) − 9.0967e-2 (2.40e-4) ≈ 0.0000e+0 (0.00e+0) − 9.3507e-2 (7.93e-5) + 0.0000e+0 (0.00e+0) − 9.1176e-2 (2.83e-4)
20 0.0000e+0 (0.00e+0) − 9.0827e-2 (3.74e-4) ≈ 0.0000e+0 (0.00e+0) − 9.1335e-2 (5.88e-5) + 0.0000e+0 (0.00e+0) − 9.1046e-2 (3.51e-4)

DTLZ7

5 2.5196e-1 (4.93e-3) + 2.1515e-1 (1.22e-2) ≈ 2.4822e-1 (2.04e-3) + 1.8324e-1 (5.95e-4) − 1.9654e-2 (2.79e-2) − 2.1828e-1 (1.15e-2)
8 1.8644e-1 (4.11e-3) ≈ 1.8889e-1 (6.62e-3) ≈ 1.5418e-1 (1.24e-2) − 3.5097e-2 (1.12e-2) − 0.0000e+0 (0.00e+0) − 1.8876e-1 (1.74e-2)
12 1.3951e-1 (3.61e-3) − 1.6784e-1 (6.22e-3) − 1.1534e-1 (7.79e-3) − 1.5239e-3 (7.65e-4) − 0.0000e+0 (0.00e+0) − 1.8170e-1 (6.08e-3)
16 5.3692e-2 (1.18e-2) − 8.6784e-2 (1.72e-2) − 2.5694e-2 (3.81e-2) − 1.8263e-4 (1.80e-4) − 0.0000e+0 (0.00e+0) − 1.3647e-1 (1.54e-2)
20 1.2134e-1 (8.00e-3) ≈ 1.4454e-1 (3.63e-3) + 1.1055e-1 (7.57e-3) − 4.5248e-5 (1.04e-4) − 0.0000e+0 (0.00e+0) − 1.2897e-1 (9.42e-3)

+/−/≈ 3/28/4 3/18/14 1/32/2 7/20/8 0/35/0
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According to the statistic results of Wilcoxon rank sum test in the last line of Table 4, we can see
that, among the 45 test instances, the IGD results obtained by DAEA are significantly better than those
obtained by NSGA-III, θ -DEA, SPEA/R, MaOEA-IGD and MaOEA-IT in most test instances (in 25,
19, 34, 39 and 45 test instances, respectively), while the IGD results obtained by NSGA-III, θ -DEA,
SPEA/R, MaOEA-IGD and MaOEA-IT are significantly better than those obtained by DAEA in only a
few test instances (in 10, 9, 7, 3 and 0 test instances, respectively). According to the statistic results in
Table 5, it can be concluded that DAEA defeats its competitors on most test instances. To be specific,
DAEA outperforms NSGA-III, θ -DEA, SPEA/R, MaOEA-IGD and MaOEA-IT on 25, 21, 22, 39
and 42 test instances out of 45 test instances, respectively. Moreover, NSGA-III, θ -DEA, SPEA/R,
MaOEA-IGD and MaOEA-IT outperform DAEA in terms of HV results on a limited number of test
instances (8, 6, 17, 1 and 0 test instances, respectively). In what follows, we will delve into detailed
discussions regarding the experimental results.

WFG1 has a flat bias and a combination of convex and concave structures in its PF. From Table 4,
we can observe that DAEA obtains the best IGD values on 5-objective instance, θ -DEA achieves the
best performance on 8-, 12- and 16-objective instances in terms of IGD values, while NSGA-III wins
on 20-objective instance. In terms of the HV metric, SPEA/R exhibits the best performance on 5- and
8-objective instances, θ -DEA shows the best performance on 12- and 16-objective instances, while
NSGA-III demonstrates the best performance on the 20-objective instance. As for MaOEA-IGD and
MaOEA-IT, both of them perform worse for this problem.

WFG2 consists of multiple convex PF segments that are not connected, and its variables cannot be
separated.For this problem, NSGA-III and SPEA/R are superior to other four algorithms, followed by
DAEA and θ -DEA.

WFG3 is a variant of WFG2 where its PF is both linear and degenerate, which poses a big challenge
to reference vector-based algorithms. Our proposed DAEA outperforms other methods on 8-, 12-, 16-
and 20-objective test instances, while the best performance on 5-objective instance is achieved by
θ -DEA. The results verifies the effectiveness of DAEA on degenerate problems.

The problems WFG4 to WFG9 share the same hyper-ellipse PF shape in the objective space, but
their characteristics differ in the decision space. To be specific, WFG4 has the property of
multimodality with “hill sizes”, it can be used to test whether a algorithm has the ability to jump out
of local optima.

DAEA shows distinct advantage in most instances except the 8-objective instance, which is
defeated by SPEA/R. WFG5 is a deceptive problem, the IGD metric shows that DAEA performs best
on most test instances, while NSGA-III and θ -DEA perform similar to DAEA on 8-, 12- and
16-objective instances. The HV metric shows that SPEA/R and DAEA are superior to the other four
algorithms. WFG6 is a nonseparable and reduced problem, DAEA obtains the best IGD values on all
test instances except 12-objective instance which is obtained by NSGA-III, which indicates that our
proposed DAEA has promising performance of diversity and convergence, especially for the
optimization problem with a larger number of objectives. WFG7-WFG9 all introduce some biases to
challenge algorithms’ diversity, DAEA performs best on these problems, followed by SPEA/R,
θ -DEA and NSGA-III, MaOEA-IGD and MaOEA-IT have poor performance for these problems.
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Table 4. Statistical results (mean and standard deviation) of the IGD values obtained by six
algorithms for WFG problems.

Problem M NSGA-III θ -DEA SPEA/R MaOEA-IGD MaOEA-IT DAEA

WFG1

5 9.0860e-1 (7.82e-2) − 7.0773e-1 (4.83e-2) − 7.4525e-1 (8.72e-2) − 4.6474e+0 (1.06e+0) − 2.8366e+0 (7.36e-1) − 6.7688e-1 (3.88e-2)
8 1.7059e+0 (5.89e-2) − 1.3079e+0 (5.73e-2) ≈ 1.4501e+0 (1.00e-1) − 6.4321e+0 (1.69e+0) − 3.0898e+0 (1.34e-1) − 1.3395e+0 (7.99e-2)
12 2.1941e+0 (1.44e-1) − 1.3844e+0 (9.80e-2) + 1.9156e+0 (1.03e-1) − 7.0021e+0 (3.41e+0) − 3.6929e+0 (2.42e-2) − 1.4882e+0 (1.14e-1)
16 2.0197e+0 (7.25e-2) − 1.6169e+0 (3.48e-2) + 2.3633e+0 (8.01e-2) − 7.1334e+0 (4.49e+0) − 4.5738e+0 (1.80e-2) − 1.6829e+0 (3.76e-2)
20 3.4351e+0 (2.57e-1) + 4.2830e+0 (1.46e-1) + 4.6873e+0 (6.82e-2) ≈ 6.7913e+0 (2.81e+0) − 5.7861e+0 (7.59e-2) − 4.6584e+0 (1.17e-1)

WFG2

5 3.8973e-1 (1.54e-3) + 3.8845e-1 (1.48e-3) + 3.9693e-1 (2.64e-3) + 1.9012e+0 (3.29e-1) − 1.4237e+0 (2.09e-1) − 4.2582e-1 (1.41e-2)
8 9.3351e-1 (2.14e-1) ≈ 9.6161e-1 (8.53e-2) − 8.9315e-1 (1.03e-2) + 2.2531e+0 (3.34e-1) − 2.9767e+0 (1.61e+0) − 9.9827e-1 (3.77e-2)
12 1.2696e+0 (1.70e-1) + 2.1502e+0 (2.02e-1) ≈ 1.2828e+0 (8.79e-2) + 2.3080e+0 (8.43e-1) ≈ 5.5055e+0 (2.65e+0) − 2.1745e+0 (3.42e-1)
16 1.6433e+0 (1.15e-1) + 4.4643e+0 (1.51e+0) − 1.5212e+0 (2.28e-2) + 2.4133e+0 (6.44e-1) + 6.3191e+0 (1.03e+0) − 3.7928e+0 (1.24e+0)
20 3.9551e+0 (1.55e-1) + 7.7340e+0 (1.55e+0) − 3.4213e+0 (1.63e-1) + 5.2726e+0 (1.03e+0) + 2.4236e+1 (1.83e+0) − 6.8658e+0 (1.81e+0)

WFG3

5 5.1177e-1 (5.04e-2) + 4.4611e-1 (6.60e-2) + 4.5680e-1 (3.80e-2) + 5.4368e+0 (2.46e-2) − 1.7082e+0 (5.97e-1) − 5.8462e-1 (5.76e-2)
8 1.0298e+0 (4.17e-1) ≈ 8.7387e-1 (2.05e-1) − 1.2242e+0 (1.43e-1) − 4.2277e+0 (3.95e+0) − 1.5001e+0 (9.53e-1) − 7.8143e-1 (1.68e-1)
12 1.0867e+0 (1.49e-1) − 1.0573e+0 (8.18e-2) − 2.2882e+0 (6.21e-2) − 2.5972e+0 (2.22e-1) − 2.9690e+0 (2.44e+0) − 5.9947e-1 (7.17e-2)
16 2.7167e+0 (1.00e+0) − 2.1204e+0 (2.93e-1) − 4.4535e+0 (3.47e-1) − 6.7846e+0 (3.18e+0) − 4.3294e+0 (7.41e-1) − 1.6384e+0 (1.86e-1)
20 8.5546e+0 (2.44e+0) − 2.8146e+0 (4.05e-1) − 5.6041e+0 (2.23e-1) − 7.5147e+0 (3.11e-1) − 9.7097e+0 (1.17e+0) − 2.2681e+0 (2.65e-1)

WFG4

5 9.6293e-1 (1.65e-3) + 9.6363e-1 (1.43e-3) ≈ 9.7338e-1 (4.27e-3) − 6.1436e+0 (6.07e-1) − 2.1584e+0 (1.67e-1) − 9.6441e-1 (1.74e-3)
8 2.7770e+0 (1.04e-2) ≈ 2.7801e+0 (6.43e-3) ≈ 2.7987e+0 (7.92e-3) − 9.7982e+0 (9.25e-2) − 7.2906e+0 (2.31e+0) − 2.7814e+0 (9.52e-3)
12 5.7568e+0 (2.27e-2) ≈ 5.7552e+0 (1.59e-2) ≈ 5.8076e+0 (1.45e-2) − 1.2124e+1 (3.63e+0) − 1.3653e+1 (2.55e+0) − 5.7653e+0 (1.99e-2)
16 8.8737e+0 (1.16e-1) ≈ 8.7811e+0 (3.38e-2) + 8.9581e+0 (1.04e-1) − 2.1252e+1 (7.15e+0) − 2.2709e+1 (3.91e+0) − 8.8464e+0 (5.08e-2)
20 1.2862e+1 (8.25e-1) − 1.1460e+1 (2.17e-2) ≈ 1.1525e+1 (3.00e-2) − 3.0573e+1 (1.20e+1) − 3.9563e+1 (3.36e-1) − 1.1455e+1 (2.06e-2)

WFG5

5 9.5729e-1 (8.40e-4) − 9.5710e-1 (6.07e-4) − 9.6656e-1 (3.80e-3) − 6.8193e+0 (1.15e+0) − 1.9890e+0 (3.46e-1) − 9.5630e-1 (7.22e-4)
8 2.7514e+0 (7.69e-3) ≈ 2.7538e+0 (9.49e-3) ≈ 2.7817e+0 (6.58e-3) − 9.0835e+0 (5.64e+0) − 4.8627e+0 (2.42e-1) − 2.7535e+0 (1.12e-2)
12 5.5840e+0 (1.54e-2) ≈ 5.5914e+0 (1.94e-2) ≈ 5.7317e+0 (9.39e-3) − 9.3416e+0 (7.30e+0) − 9.3790e+0 (3.12e-1) − 5.5925e+0 (2.57e-2)
16 8.5294e+0 (1.45e-1) − 8.3110e+0 (1.08e-1) ≈ 9.2334e+0 (4.49e-2) − 2.8622e+1 (8.40e+0) − 1.7289e+1 (1.72e+0) − 8.3364e+0 (1.31e-1)
20 1.1787e+1 (4.94e-1) − 1.1308e+1 (4.41e-2) − 1.1526e+1 (9.34e-3) − 3.0995e+1 (1.59e+1) ≈ 3.4108e+1 (2.63e+0) − 1.1278e+1 (4.28e-2)

WFG6

5 9.6048e-1 (1.06e-3) ≈ 9.5995e-1 (9.14e-4) ≈ 9.7057e-1 (5.39e-3) − 5.8291e+0 (6.97e-1) − 2.1748e+0 (2.99e-1) − 9.5985e-1 (7.31e-4)
8 2.8035e+0 (1.12e-2) − 2.8044e+0 (1.19e-2) − 2.8124e+0 (1.06e-2) − 8.6983e+0 (3.27e+0) − 5.8344e+0 (1.17e+0) − 2.7950e+0 (6.35e-3)
12 5.7527e+0 (1.11e-2) ≈ 5.7657e+0 (1.03e-2) − 5.8085e+0 (1.05e-2) − 1.4878e+1 (5.71e+0) − 1.0701e+1 (1.90e+0) − 5.7616e+0 (1.15e-2)
16 8.8778e+0 (5.95e-2) − 8.8463e+0 (3.46e-2) − 9.2482e+0 (5.78e-2) − 2.1590e+1 (8.60e+0) − 1.8797e+1 (1.52e+0) − 8.8127e+0 (3.19e-2)
20 1.4135e+1 (9.32e-1) − 1.1518e+1 (8.94e-3) ≈ 1.1591e+1 (4.10e-2) − 2.2328e+1 (1.43e+1) ≈ 3.4559e+1 (2.65e+0) − 1.1518e+1 (1.65e-2)

WFG7

5 9.6389e-1 (8.51e-4) + 9.6456e-1 (5.36e-4) + 9.7069e-1 (2.64e-3) − 5.7817e+0 (5.93e-1) − 1.8108e+0 (2.32e-1) − 9.6527e-1 (2.92e-4)
8 2.8038e+0 (1.26e-2) − 2.8010e+0 (9.66e-3) − 2.8009e+0 (9.35e-3) ≈ 8.2638e+0 (2.11e+0) − 5.2291e+0 (4.79e-1) − 2.7935e+0 (9.16e-3)
12 5.7146e+0 (2.99e-2) + 5.7563e+0 (1.14e-2) − 5.7814e+0 (1.05e-2) − 9.3477e+0 (5.43e+0) − 1.0496e+1 (8.48e-1) − 5.7550e+0 (1.73e-2)
16 8.7667e+0 (9.37e-2) − 8.7622e+0 (4.30e-2) − 9.2655e+0 (4.24e-2) − 2.0412e+1 (9.01e+0) − 1.9445e+1 (3.14e+0) − 8.3971e+0 (2.05e-1)
20 1.4669e+1 (4.87e-1) − 1.1558e+1 (2.41e-2) ≈ 1.1768e+1 (4.43e-2) − 2.7680e+1 (1.21e+1) − 3.9596e+1 (1.65e+0) − 1.1580e+1 (3.44e-2)

WFG8

5 9.5004e-1 (8.57e-4) − 9.4920e-1 (9.63e-4) ≈ 9.6462e-1 (4.62e-3) − 4.6258e+0 (3.62e-1) − 2.1709e+0 (3.13e-1) − 9.4853e-1 (1.11e-3)
8 2.7141e+0 (8.39e-3) − 2.7130e+0 (8.80e-3) ≈ 2.8204e+0 (6.40e-3) − 1.0217e+1 (2.52e+0) − 5.5551e+0 (7.91e-1) − 2.7054e+0 (1.11e-2)
12 5.5299e+0 (3.51e-1) ≈ 5.3176e+0 (7.94e-2) ≈ 5.7568e+0 (2.54e-2) − 1.5460e+1 (6.91e-1) − 1.1226e+1 (1.70e+0) − 5.3351e+0 (7.01e-2)
16 9.0385e+0 (6.20e-1) + 9.0242e+0 (4.04e-1) + 9.4247e+0 (4.47e-2) ≈ 2.5601e+1 (2.93e+0) − 1.9715e+1 (2.24e+0) − 9.5431e+0 (5.18e-1)
20 1.4608e+1 (2.35e+0) − 1.1648e+1 (3.49e-1) + 1.1616e+1 (6.93e-2) + 3.3699e+1 (2.31e+0) − 3.5216e+1 (2.19e+0) − 1.2903e+1 (8.71e-1)

WFG9

5 9.4127e-1 (6.97e-3) − 9.3471e-1 (3.38e-3) ≈ 9.5208e-1 (7.89e-3) − 4.0779e+0 (9.91e-1) − 1.9805e+0 (1.15e-1) − 9.3386e-1 (3.24e-3)
8 2.6844e+0 (1.67e-2) − 2.6853e+0 (1.29e-2) − 2.7563e+0 (6.57e-3) − 3.9176e+0 (1.65e+0) − 5.2374e+0 (2.35e-1) − 2.6671e+0 (2.26e-2)
12 5.2795e+0 (4.72e-2) − 5.2667e+0 (4.37e-2) − 5.5806e+0 (2.60e-2) − 6.0522e+0 (3.64e-1) − 1.0139e+1 (4.50e-1) − 5.2529e+0 (3.20e-2)
16 8.6590e+0 (1.14e-1) − 8.1217e+0 (1.81e-1) − 9.2093e+0 (1.07e-1) − 1.1587e+1 (6.25e+0) − 1.8142e+1 (8.80e-1) − 8.1031e+0 (2.17e-1)
20 1.3567e+1 (9.40e-1) − 1.1640e+1 (2.18e-1) ≈ 1.1821e+1 (5.08e-2) ≈ 1.0694e+1 (4.74e-1) + 3.7661e+1 (1.87e+0) − 1.1712e+1 (2.21e-1)

+/−/≈ 10/25/10 9/19/17 7/34/4 3/39/3 0/45/0
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Table 5. Statistical results (mean and standard deviation) of the HV values obtained by six
algorithms for WFG problems.

Problem M NSGA-III θ -DEA SPEA/R MaOEA-IGD MaOEA-IT DAEA

WFG1

5 7.0107e-1 (1.02e-1) ≈ 7.7825e-1 (9.35e-2) ≈ 8.1028e-1 (8.60e-2) + 1.2226e-1 (3.42e-2) − 8.7614e-2 (4.27e-2) − 7.1947e-1 (1.80e-2)
8 5.1893e-1 (8.91e-2) ≈ 6.9441e-1 (1.21e-1) + 7.3242e-1 (9.99e-2) + 3.0458e-1 (1.28e-1) − 1.6711e-2 (1.87e-2) − 5.9573e-1 (2.84e-2)
12 5.3257e-1 (1.45e-1) − 8.6074e-1 (1.06e-1) + 8.3271e-1 (1.04e-1) + 4.4712e-1 (1.18e-1) − 3.5816e-2 (9.90e-3) − 7.5827e-1 (5.28e-2)
16 9.5696e-1 (7.48e-2) ≈ 9.9766e-1 (8.83e-4) + 9.8813e-1 (3.59e-2) − 6.5300e-1 (1.11e-1) − 7.1142e-2 (2.14e-2) − 9.9629e-1 (1.15e-3)
20 9.9984e-1 (1.86e-4) + 9.9767e-1 (7.70e-4) ≈ 9.9278e-1 (4.17e-3) − 7.6164e-1 (2.52e-1) − 9.8757e-2 (2.30e-2) − 9.9752e-1 (6.92e-4)

WFG2

5 9.8629e-1 (2.09e-3) + 9.8701e-1 (1.88e-3) + 9.8773e-1 (1.10e-3) + 8.6568e-1 (4.97e-2) − 6.0691e-1 (2.53e-2) − 9.6857e-1 (7.54e-3)
8 9.8333e-1 (8.70e-3) + 9.7477e-1 (5.89e-3) ≈ 9.7941e-1 (2.47e-3) + 9.0472e-1 (4.14e-2) − 5.6365e-1 (7.70e-2) − 9.6927e-1 (8.13e-3)
12 9.8939e-1 (3.90e-3) + 9.5744e-1 (1.21e-2) ≈ 9.8212e-1 (2.86e-3) + 9.4132e-1 (5.78e-2) ≈ 5.4702e-1 (7.77e-2) − 9.5439e-1 (1.38e-2)
16 9.9351e-1 (2.04e-3) + 9.1166e-1 (7.18e-2) − 9.8544e-1 (4.81e-3) + 9.5793e-1 (1.62e-2) ≈ 5.5495e-1 (4.88e-2) − 9.3612e-1 (5.75e-2)
20 9.9682e-1 (1.24e-3) + 8.4618e-1 (6.44e-2) − 9.9464e-1 (2.57e-3) + 9.6847e-1 (3.18e-2) + 3.1055e-1 (2.94e-2) − 8.9782e-1 (8.31e-2)

WFG3

5 1.0963e-1 (1.58e-2) + 1.7278e-1 (1.83e-2) + 1.6477e-1 (2.50e-2) + 5.7829e-2 (5.63e-3) − 0.0000e+0 (0.00e+0) − 8.0869e-2 (2.69e-2)
8 0.0000e+0 (0.00e+0) − 3.8263e-2 (1.91e-2) − 7.6590e-4 (2.97e-3) − 0.0000e+0 (0.00e+0) − 0.0000e+0 (0.00e+0) − 1.2427e-1 (1.29e-2)
12 0.0000e+0 (0.00e+0) ≈ 0.0000e+0 (0.00e+0) ≈ 0.0000e+0 (0.00e+0) ≈ 0.0000e+0 (0.00e+0) ≈ 0.0000e+0 (0.00e+0) ≈ 0.0000e+0 (0.00e+0)
16 0.0000e+0 (0.00e+0) ≈ 0.0000e+0 (0.00e+0) ≈ 0.0000e+0 (0.00e+0) ≈ 0.0000e+0 (0.00e+0) ≈ 0.0000e+0 (0.00e+0) ≈ 0.0000e+0 (0.00e+0)
20 0.0000e+0 (0.00e+0) ≈ 0.0000e+0 (0.00e+0) ≈ 0.0000e+0 (0.00e+0) ≈ 0.0000e+0 (0.00e+0) ≈ 0.0000e+0 (0.00e+0) ≈ 0.0000e+0 (0.00e+0)

WFG4

5 7.8210e-1 (2.15e-3) − 7.8568e-1 (2.68e-3) − 7.8774e-1 (2.36e-3) − 1.1655e-1 (4.75e-2) − 3.4332e-1 (1.16e-2) − 7.8849e-1 (2.00e-3)
8 8.7806e-1 (4.08e-3) − 8.8580e-1 (3.08e-3) − 8.9565e-1 (3.07e-3) + 9.5410e-2 (2.13e-2) − 3.3561e-1 (9.94e-2) − 8.9203e-1 (3.05e-3)
12 9.1894e-1 (9.94e-3) − 9.2273e-1 (6.00e-3) − 9.2695e-1 (5.90e-3) − 2.8894e-1 (3.07e-1) − 3.4707e-1 (7.63e-2) − 9.2702e-1 (3.94e-3)
16 9.3912e-1 (1.16e-2) − 9.4100e-1 (5.13e-3) − 9.0144e-1 (2.55e-2) − 2.4671e-1 (2.43e-1) − 2.6542e-1 (1.05e-1) − 9.4820e-1 (4.44e-3)
20 8.8115e-1 (4.33e-2) − 9.8748e-1 (2.64e-3) ≈ 9.8824e-1 (3.29e-3) − 2.8234e-1 (3.06e-1) − 1.1271e-1 (5.73e-3) − 9.8897e-1 (2.26e-3)

WFG5

5 7.5682e-1 (6.31e-4) − 7.5825e-1 (7.13e-4) − 7.5836e-1 (7.79e-4) − 1.0942e-1 (4.26e-2) − 2.4200e-1 (3.43e-2) − 7.5903e-1 (6.06e-4)
8 8.6374e-1 (1.64e-3) − 8.6897e-1 (1.94e-3) − 8.7533e-1 (1.18e-3) + 3.7913e-1 (3.08e-1) − 3.1396e-1 (7.66e-3) − 8.7098e-1 (1.58e-3)
12 8.9339e-1 (2.34e-3) − 8.9878e-1 (1.29e-3) − 9.0654e-1 (6.93e-4) + 6.1226e-1 (2.74e-1) − 2.9971e-1 (1.78e-2) − 9.0075e-1 (2.14e-3)
16 8.7848e-1 (8.92e-3) − 8.6480e-1 (1.01e-2) − 7.1205e-1 (3.12e-2) − 1.8666e-1 (2.45e-1) − 2.1659e-1 (3.40e-2) − 8.9520e-1 (2.30e-3)
20 8.7832e-1 (2.77e-2) − 9.1237e-1 (1.21e-3) ≈ 9.1462e-1 (7.26e-4) + 3.2685e-1 (3.57e-1) − 1.1497e-1 (2.24e-2) − 9.1267e-1 (9.78e-4)

WFG6

5 7.4793e-1 (4.70e-3) ≈ 7.5140e-1 (4.54e-3) ≈ 7.5403e-1 (6.26e-3) ≈ 1.5827e-1 (5.22e-2) − 2.1243e-1 (3.11e-2) − 7.5175e-1 (7.43e-3)
8 8.4591e-1 (7.38e-3) − 8.5419e-1 (5.53e-3) ≈ 8.5782e-1 (6.09e-3) − 2.5431e-1 (1.58e-1) − 2.6716e-1 (5.07e-2) − 8.5787e-1 (5.08e-3)
12 8.6859e-1 (7.28e-3) − 8.7732e-1 (9.90e-3) ≈ 8.9306e-1 (7.60e-3) + 3.0384e-1 (1.96e-1) − 2.8629e-1 (6.65e-2) − 8.8046e-1 (9.18e-3)
16 8.7111e-1 (1.99e-2) ≈ 8.6644e-1 (1.48e-2) ≈ 7.1903e-1 (4.11e-2) − 2.9858e-1 (2.14e-1) − 2.1473e-1 (3.77e-2) − 8.7303e-1 (1.71e-2)
20 8.3650e-1 (4.71e-2) − 8.9443e-1 (1.94e-2) ≈ 9.1817e-1 (2.78e-2) ≈ 4.3662e-1 (2.73e-1) − 1.6361e-1 (2.30e-2) − 9.0482e-1 (2.80e-2)

WFG7

5 7.9481e-1 (1.99e-3) − 8.0011e-1 (9.78e-4) − 7.9900e-1 (1.19e-3) − 1.8601e-1 (6.73e-2) − 3.3682e-1 (3.24e-2) − 8.0507e-1 (5.88e-4)
8 9.1000e-1 (4.09e-3) − 9.2042e-1 (1.80e-3) − 9.2153e-1 (1.98e-3) − 3.1720e-1 (1.43e-1) − 3.7262e-1 (2.17e-2) − 9.2633e-1 (1.32e-3)
12 9.5209e-1 (9.41e-3) − 9.5152e-1 (4.03e-3) − 9.4709e-1 (3.97e-3) − 6.3470e-1 (2.33e-1) − 3.7542e-1 (3.27e-2) − 9.5870e-1 (2.07e-3)
16 9.5962e-1 (9.14e-3) ≈ 9.4904e-1 (7.33e-3) − 8.2391e-1 (2.93e-2) − 3.8346e-1 (3.26e-1) − 2.8677e-1 (8.08e-2) − 9.6561e-1 (4.36e-3)
20 8.4469e-1 (3.75e-2) − 9.9272e-1 (7.08e-4) ≈ 9.7872e-1 (2.62e-3) − 4.3018e-1 (3.50e-1) − 1.0107e-1 (3.32e-2) − 9.9240e-1 (1.05e-3)

WFG8

5 7.2675e-1 (2.01e-3) − 7.2860e-1 (1.74e-3) ≈ 7.3612e-1 (1.98e-3) + 6.7585e-2 (6.07e-2) − 2.2896e-1 (1.72e-2) − 7.3022e-1 (1.81e-3)
8 8.1010e-1 (5.87e-3) ≈ 8.1032e-1 (4.92e-3) ≈ 8.3586e-1 (2.71e-3) + 2.0683e-1 (1.30e-1) − 3.1276e-1 (3.58e-2) − 8.1284e-1 (3.91e-3)
12 8.5811e-1 (3.03e-2) + 8.2792e-1 (1.17e-2) ≈ 8.7595e-1 (1.05e-2) + 2.8140e-1 (4.31e-2) − 2.9974e-1 (7.46e-2) − 8.3203e-1 (8.97e-3)
16 8.8869e-1 (3.41e-2) ≈ 8.7462e-1 (3.38e-2) − 7.6026e-1 (4.91e-2) − 1.9837e-1 (6.21e-2) − 2.1323e-1 (4.07e-2) − 8.8987e-1 (9.55e-3)
20 5.9911e-1 (1.78e-1) − 9.6045e-1 (9.55e-3) + 9.6081e-1 (1.62e-2) ≈ 2.2075e-1 (3.54e-2) − 1.5093e-1 (2.15e-2) − 9.5280e-1 (4.90e-3)

WFG9

5 7.2182e-1 (2.56e-2) − 7.4765e-1 (4.65e-3) − 7.1184e-1 (2.13e-2) − 2.7325e-1 (1.10e-1) − 2.4290e-1 (1.62e-2) − 7.5753e-1 (4.91e-3)
8 8.1627e-1 (8.71e-3) − 8.4388e-1 (8.86e-3) − 8.2523e-1 (1.79e-2) − 6.3098e-1 (1.39e-1) − 2.9556e-1 (1.44e-2) − 8.5943e-1 (7.02e-3)
12 8.4770e-1 (1.74e-2) − 8.6476e-1 (1.40e-2) − 8.5304e-1 (1.38e-2) − 7.3167e-1 (1.61e-2) − 3.2330e-1 (1.77e-2) − 8.8320e-1 (1.19e-2)
16 8.7519e-1 (3.21e-2) ≈ 8.4067e-1 (1.26e-2) − 7.7586e-1 (2.90e-2) − 6.6414e-1 (1.94e-1) − 2.9630e-1 (2.98e-2) − 8.7871e-1 (1.09e-2)
20 8.2567e-1 (3.92e-2) − 9.1908e-1 (8.74e-3) − 9.0566e-1 (1.50e-2) − 8.4398e-1 (4.21e-2) − 1.4200e-1 (4.10e-2) − 9.2399e-1 (6.99e-3)

+/−/≈ 8/25/12 6/21/18 17/22/6 1/39/5 0/42/3
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4.3. The effectiveness of double association

To verify the advantage of our double association, we use it to replace the association method of
other decomposition-based algorithms. Here, θ -DEA [16] and RPD-NSGA-II [17] as two classical
decomposition-based MaOEAs are selected to make experiments. Both of them use single association
method to associate solutions.

Tables 6 and 7 show the statistical results of θ -DEA with different association methods in terms of
IGD and HV values on DTLZ test suite, respectively. θ -DEA rand and θ -DEA DA represent using
the random association method and double association method to replace the association method used
in θ -DEA. The best results are highlighted in bold. We can clearly observe from Tables 6 and 7 that
after using our proposed double association method to replace the single association method used in
θ -DEA, the performance of θ -DEA is significantly improved, while the random association makes the
performance of θ -DEA worse.

Tables 8 and 9 show the statistical results of RPD-NSGA-II with different association methods in
terms of IGD and HV values on DTLZ test suite, respectively. RPD-NSGA-II rand and RPD-NSGA-
II DA represent that using random association method and double association method to replace the
association method used in RPD-NSGA-II. The best results are highlighted in bold. It can be seen
clearly from Tables 8 and 9 that after using our proposed double association method to replace the
single association method used in RPD-NSGA-II, the performance of RPD-NSGA-II is significantly
improved, while the random association makes the performance of RPD-NSGA-II worse.

These results indicate that double association, as a new method to associate the solutions in objective
space, can better maintain the diversity of the obtained solutions and give some potential solutions
an opportunity for further evolution, and thus can improve the performance of reference point-based
algorithms.

4.4. Effect of different penalty parameter µ

In our proposed quality evaluation scheme, a penalty parameter µ is designed to punish the solutions
in dense area from global perspective. Considering that in an ideal state, each subspace should have
two solutions distributed, so we set µ = |S(i)|

2 to balance the convergence and diversity. To investigate
the effect of different value of parameter µ on the proposed quality evaluation scheme, DAEA is tested
on DTLZ1-7 with three different µ values: 1)µ = 1; 2)µ = 5; 3)µ = |S(i)|

2 .
Tables 10 and 11 show the statistical results of DAEA with three different µ values in terms of

IGD and HV values on DTLZ test suite, respectively. The best results are highlighted in bold. As can
be observed, DAEA µ = |S(i)|

2 has achieved most of the best results out of 35 test instances. From
the statistic results of Wilcoxon rank sum test in the last line of Tables 10 and 11, we can also see
that, among the 35 test instances, the IGD results obtained by DAEA µ = |S(i)|

2 are significantly better
than those obtained by DAEA µ = 1 and DAEA µ = 5 in most test instances. These experimental
results indicate that setting the penalty parameter µ as a dynamic parameter is much better than taking
constants 1 and 5.

4.5. Further discussion on DAEA

According to the experimental results (the effectiveness of double association) and comparative
results, we can clearly see that these algorithms adopting the existing association operator for
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Table 6. Statistical results (mean and standard deviation) of the igd values obtained by three
association methods based on θ -DEA.

Problem M θ -DEA θ -DEA rand θ -DEA DA

DTLZ1

5 4.4240e-1 (5.44e-1) − 4.7501e-1 (1.41e-2) − 5.2688e-2 (5.13e-5)
8 1.0901e-1 (3.16e-2) ≈ 4.9120e-1 (1.45e-2) − 9.4331e-2 (8.02e-3)
12 1.3530e-1 (2.56e-2) ≈ 4.9541e-1 (1.47e-2) − 1.5249e-1 (4.44e-2)
16 1.4073e-1 (3.28e-2) ≈ 5.0929e-1 (1.30e-2) − 1.2878e-1 (1.97e-2)
20 5.9928e-1 (4.64e-1) ≈ 5.4043e-1 (4.90e-3) − 2.2740e-1 (3.66e-2)

DTLZ2

5 1.8115e-1 (1.69e-2) ≈ 1.1021e+0 (1.90e-2) − 1.6512e-1 (9.16e-6)
8 3.1244e-1 (8.12e-4) ≈ 1.2139e+0 (3.47e-9) − 3.1234e-1 (4.48e-4)
12 4.9740e-1 (2.62e-4) ≈ 1.2588e+0 (1.73e-9) − 4.9728e-1 (3.08e-4)
16 5.3798e-1 (6.55e-4) ≈ 1.2962e+0 (1.97e-9) − 5.3850e-1 (1.14e-3)
20 6.4238e-1 (2.25e-2) − 1.3357e+0 (1.45e-9) − 6.2316e-1 (3.11e-4)

DTLZ3

5 1.0583e+1 (1.17e+1) ≈ 1.0880e+0 (4.26e-2) − 1.6598e-1 (7.41e-4)
8 4.8590e-1 (9.77e-2) ≈ 1.2148e+0 (5.78e-4) − 4.5528e-1 (1.03e-1)
12 7.3979e-1 (3.27e-1) ≈ 1.2595e+0 (7.66e-4) − 6.9328e-1 (2.03e-1)
16 6.1792e-1 (4.92e-2) ≈ 1.2969e+0 (7.23e-4) − 5.9654e-1 (5.79e-2)
20 3.1061e+1 (3.28e+1) − 1.3369e+0 (1.33e-3) − 8.0789e-1 (3.49e-1)

DTLZ4

5 1.8379e-1 (2.02e-2) ≈ 1.1081e+0 (1.37e-9) − 1.6508e-1 (2.23e-5)
8 3.1412e-1 (6.19e-4) − 1.2139e+0 (1.19e-9) − 3.1352e-1 (4.85e-4)
12 4.9795e-1 (8.95e-5) ≈ 1.1944e+0 (1.03e-2) − 4.9789e-1 (1.63e-4)
16 5.4567e-1 (2.12e-3) ≈ 1.2793e+0 (2.86e-3) − 5.4516e-1 (1.59e-3)
20 6.3861e-1 (1.70e-2) − 1.3350e+0 (1.56e-3) − 6.2295e-1 (1.10e-4)

DTLZ5

5 3.1261e-1 (9.46e-2) − 7.3813e-1 (1.25e-2) − 5.6616e-2 (7.99e-3)
8 1.4105e-1 (1.68e-2) − 2.2039e+0 (5.22e-1) − 7.4929e-2 (8.66e-3)
12 1.9590e-1 (2.32e-2) − 2.9270e+0 (6.77e-2) − 1.3027e-1 (2.12e-2)
16 1.9380e-1 (4.31e-2) − 2.9439e+0 (3.82e-2) − 1.2846e-1 (2.30e-2)
20 1.8249e-1 (4.20e-2) ≈ 2.9560e+0 (4.15e-11) − 1.4674e-1 (3.82e-2)

DTLZ6

5 1.7190e-1 (4.81e-2) − 7.4209e-1 (2.89e-8) − 1.1853e-1 (2.66e-2)
8 2.5362e-1 (3.46e-2) − 3.3118e+0 (6.01e-1) − 1.8213e-1 (6.63e-2)
12 2.3504e-1 (4.83e-2) − 6.5446e+0 (4.33e-1) − 1.7638e-1 (3.31e-2)
16 2.7272e-1 (5.30e-2) − 8.4206e+0 (3.43e-1) − 2.0287e-1 (1.76e-2)
20 2.3690e-1 (5.75e-2) ≈ 8.9562e+0 (2.96e-1) − 2.1557e-1 (5.88e-2)

DTLZ7

5 3.1000e-1 (3.15e-2) ≈ 1.7463e+0 (2.72e-2) − 3.1070e-1 (1.92e-2)
8 6.4153e-1 (4.85e-2) + 3.6844e+0 (2.71e-2) − 6.8944e-1 (4.59e-2)
12 1.3153e+0 (1.75e-1) − 6.2480e+0 (1.23e-2) − 1.0904e+0 (6.31e-2)
16 4.0932e+0 (6.50e-1) ≈ 1.1464e+1 (5.41e-1) − 4.0745e+0 (8.51e-1)
20 8.7351e+0 (6.28e-1) − 1.6108e+1 (5.23e-1) − 7.4542e+0 (1.03e+0)

+/−/≈ 1/15/19 0/35/0
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Table 7. Statistical results (mean and standard deviation) of the HV values obtained by three
association methods based on θ -DEA.

Problem M θ -DEA θ -DEA rand θ -DEA DA

DTLZ1

5 5.2349e-1 (4.91e-1) − 9.8304e-2 (2.37e-2) − 9.7972e-1 (1.64e-4)
8 9.8228e-1 (4.73e-2) ≈ 1.2296e-1 (2.67e-2) − 9.9821e-1 (1.07e-3)
12 9.9723e-1 (6.02e-3) ≈ 1.2111e-1 (2.70e-2) − 9.8239e-1 (4.24e-2)
16 9.9783e-1 (2.95e-3) ≈ 1.1653e-1 (2.44e-2) − 9.9850e-1 (2.03e-3)
20 4.9419e-1 (5.16e-1) ≈ 1.0567e-1 (9.64e-3) − 9.8832e-1 (1.24e-2)

DTLZ2

5 7.9430e-1 (1.91e-2) − 9.1516e-2 (1.92e-3) − 8.1248e-1 (4.54e-4)
8 9.4555e-1 (2.68e-4) ≈ 9.0909e-2 (5.20e-9) − 9.4545e-1 (3.42e-4)
12 9.8708e-1 (1.95e-4) ≈ 9.0909e-2 (2.50e-9) − 9.8724e-1 (1.42e-4)
16 9.9317e-1 (1.61e-4) ≈ 9.0909e-2 (2.76e-9) − 9.9317e-1 (1.79e-4)
20 9.3043e-1 (7.30e-2) − 9.0909e-2 (1.97e-9) − 9.9860e-1 (4.86e-5)

DTLZ3

5 4.0104e-1 (4.23e-1) ≈ 9.2788e-2 (6.34e-3) − 8.0228e-1 (4.50e-3)
8 6.6856e-1 (1.57e-1) ≈ 8.9667e-2 (8.65e-4) − 7.2520e-1 (1.67e-1)
12 6.1467e-1 (3.59e-1) ≈ 8.9888e-2 (1.10e-3) − 6.4951e-1 (3.03e-1)
16 9.3001e-1 (7.92e-2) ≈ 8.9941e-2 (1.01e-3) − 9.3233e-1 (8.00e-2)
20 3.9097e-1 (5.05e-1) ≈ 8.9297e-2 (1.81e-3) − 7.8047e-1 (4.13e-1)

DTLZ4

5 7.9448e-1 (1.93e-2) ≈ 9.0909e-2 (2.24e-9) − 8.1251e-1 (5.44e-4)
8 9.4594e-1 (1.36e-4) ≈ 9.0909e-2 (1.78e-9) − 9.4601e-1 (2.59e-4)
12 9.8769e-1 (1.57e-4) ≈ 8.3199e-2 (6.78e-3) − 9.8776e-1 (5.68e-5)
16 9.9411e-1 (4.69e-5) ≈ 8.9620e-2 (1.23e-3) − 9.9413e-1 (1.04e-4)
20 9.9303e-1 (6.49e-3) ≈ 9.1036e-2 (4.98e-4) − 9.9871e-1 (4.57e-5)

DTLZ5

5 9.9274e-2 (7.05e-3) − 8.1827e-2 (2.87e-2) − 1.1949e-1 (2.28e-3)
8 9.0492e-2 (2.13e-3) − 9.0909e-3 (2.87e-2) − 9.7509e-2 (1.23e-3)
12 8.7500e-2 (2.28e-3) − 0.0000e+0 (0.00e+0) − 9.1881e-2 (9.81e-4)
16 8.8949e-2 (9.40e-4) − 0.0000e+0 (0.00e+0) − 9.0883e-2 (5.67e-4)
20 9.0111e-2 (4.10e-4) ≈ 0.0000e+0 (0.00e+0) − 9.0417e-2 (4.99e-4)

DTLZ6

5 9.6538e-2 (5.91e-3) − 9.1524e-3 (2.87e-2) − 1.0990e-1 (6.90e-3)
8 9.0875e-2 (2.79e-4) ≈ 0.0000e+0 (0.00e+0) − 9.1523e-2 (1.27e-3)
12 9.0811e-2 (1.93e-4) − 0.0000e+0 (0.00e+0) − 9.1005e-2 (1.78e-4)
16 9.0980e-2 (2.48e-4) ≈ 0.0000e+0 (0.00e+0) − 9.1029e-2 (4.83e-4)
20 9.0830e-2 (3.94e-4) − 0.0000e+0 (0.00e+0) − 9.1258e-2 (3.80e-4)

DTLZ7

5 2.1587e-1 (1.26e-2) ≈ 2.2390e-2 (3.14e-4) − 2.2123e-1 (1.21e-2)
8 1.8889e-1 (6.62e-3) ≈ 1.7539e-2 (6.49e-4) − 1.8702e-1 (1.29e-2)
12 1.6784e-1 (6.22e-3) − 1.5163e-2 (8.39e-4) − 1.8436e-1 (5.02e-3)
16 8.6784e-2 (1.72e-2) − 2.9130e-2 (3.13e-2) − 1.2226e-1 (1.39e-2)
20 1.4454e-1 (3.63e-3) + 8.3927e-2 (2.39e-2) − 1.1883e-1 (1.08e-2)

+/−/≈ 1/12/22 0/35/0
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Table 8. Sstatistical results (mean and standard deviation) of the IGD alues obtained by three
association methods based on RPD-NSGA-II.

Problem M RPD-NSGA-II RPD-NSGA-II rand RPD-NSGAII DA

DTLZ1

5 6.1512e-2 (1.06e-3) − 1.8369e-1 (3.06e-2) − 5.9109e-2 (1.81e-3)
8 1.3007e-1 (2.48e-2) ≈ 2.4255e-1 (1.05e-1) − 1.1911e-1 (2.11e-2)
12 1.7769e-1 (1.69e-2) ≈ 4.3168e-1 (1.33e-1) − 1.8011e-1 (9.89e-3)
16 1.6846e-1 (6.48e-3) + 3.8623e-1 (1.69e-1) − 1.8820e-1 (6.97e-3)
20 2.0861e-1 (8.84e-3) ≈ 7.3910e-1 (3.52e-1) − 2.0357e-1 (9.60e-3)

DTLZ2

5 1.6639e-1 (1.27e-3) ≈ 2.3446e-1 (1.21e-2) − 1.6645e-1 (9.28e-4)
8 3.1130e-1 (5.90e-4) − 3.7418e-1 (9.87e-3) − 3.1060e-1 (1.01e-3)
12 4.8922e-1 (1.33e-3) ≈ 5.3838e-1 (1.08e-2) − 4.8979e-1 (1.23e-3)
16 5.3964e-1 (1.94e-3) + 7.1640e-1 (2.58e-2) − 5.4299e-1 (2.17e-3)
20 6.2435e-1 (1.52e-3) − 1.1012e+0 (8.95e-2) − 6.2168e-1 (1.40e-3)

DTLZ3

5 2.0070e-1 (4.08e-3) − 1.1385e+1 (4.69e+0) − 1.9386e-1 (6.09e-3)
8 3.4970e-1 (1.22e-2) ≈ 2.7850e+1 (9.21e+0) − 3.4634e-1 (1.52e-2)
12 5.2323e-1 (1.84e-2) ≈ 5.8508e+1 (2.07e+1) − 5.1967e-1 (3.05e-2)
16 6.0176e-1 (5.33e-2) ≈ 4.5266e+1 (1.67e+1) − 5.7453e-1 (1.15e-2)
20 7.3898e-1 (2.50e-1) ≈ 8.6181e+1 (2.82e+1) − 7.0508e-1 (2.26e-1)

DTLZ4

5 1.6858e-1 (9.28e-4) ≈ 2.5456e-1 (8.63e-3) − 1.6806e-1 (1.28e-3)
8 3.1271e-1 (1.22e-3) ≈ 4.0707e-1 (1.21e-2) − 3.1185e-1 (9.01e-4)
12 4.9246e-1 (1.08e-3) ≈ 5.9980e-1 (1.81e-2) − 4.9232e-1 (1.07e-3)
16 5.5665e-1 (1.40e-3) + 8.0970e-1 (3.02e-2) − 5.5930e-1 (2.60e-3)
20 6.2742e-1 (8.97e-4) − 1.0987e+0 (8.13e-2) − 6.2560e-1 (5.83e-4)

DTLZ5

5 9.4819e-2 (2.57e-2) − 2.1829e-1 (2.94e-2) − 5.6864e-2 (7.99e-3)
8 1.1654e-1 (1.29e-2) − 1.7542e-1 (2.66e-2) − 6.9108e-2 (1.71e-2)
12 1.6217e-1 (1.20e-2) − 1.8434e-1 (4.13e-2) − 1.0235e-1 (9.57e-3)
16 1.6523e-1 (1.38e-2) − 3.4193e-1 (5.51e-2) − 3.6315e-2 (9.69e-3)
20 1.7108e-1 (1.11e-2) − 3.1531e-1 (5.30e-2) − 1.4936e-1 (1.07e-2)

DTLZ6

5 2.0796e-1 (1.49e-1) − 4.3726e-1 (2.34e-1) − 8.5257e-2 (2.35e-2)
8 1.7850e-1 (4.90e-2) − 3.0353e+0 (4.59e-1) − 7.1994e-2 (1.98e-2)
12 1.6568e-1 (2.57e-2) − 4.4509e+0 (8.63e-1) − 8.8925e-2 (2.53e-2)
16 2.1528e-1 (8.83e-2) − 3.1505e+0 (7.36e-1) − 3.2185e-2 (1.25e-2)
20 2.3634e-1 (7.17e-2) − 8.3142e+0 (5.41e-1) − 1.2443e-1 (4.05e-2)

DTLZ7

5 3.2590e-1 (5.21e-3) − 3.4387e-1 (2.75e-2) − 3.1308e-1 (7.57e-3)
8 1.0637e+0 (2.69e-2) − 1.2022e+0 (1.50e-1) − 6.7709e-1 (1.70e-2)
12 2.7331e+0 (2.84e-1) ≈ 3.2798e+0 (5.15e-1) ≈ 3.0976e+0 (9.37e-1)
16 7.9525e+0 (4.41e-1) ≈ 1.1818e+1 (2.09e+0) − 8.2591e+0 (8.15e-1)
20 1.3533e+1 (1.17e+0) ≈ 2.9395e+1 (6.70e+0) − 1.3529e+1 (1.04e+0)

+/−/≈ 3/17/15 0/34/1
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Table 9. statistical results (mean and standard deviation) of the HV values obtained by three
association methods based on RPD-NSGA-II.

Problem M RPD-NSGA-II RPD-NSGA-II rand RPD-NSGAII DA

DTLZ1

5 9.7349e-1 (1.46e-3) ≈ 7.9516e-1 (6.23e-2) − 9.7465e-1 (1.48e-3)
8 9.7408e-1 (2.62e-2) ≈ 7.2094e-1 (3.24e-1) − 9.8582e-1 (1.72e-2)
12 9.7139e-1 (2.10e-2) + 2.9413e-1 (2.98e-1) − 9.5428e-1 (2.02e-2)
16 9.6681e-1 (1.25e-2) ≈ 4.7984e-1 (3.91e-1) − 9.4465e-1 (2.73e-2)
20 9.6983e-1 (9.62e-3) + 1.7406e-1 (3.36e-1) − 9.5259e-1 (1.56e-2)

DTLZ2

5 8.1076e-1 (7.25e-4) + 7.2760e-1 (1.00e-2) − 8.0998e-1 (5.87e-4)
8 9.4239e-1 (9.10e-4) ≈ 8.4481e-1 (1.91e-2) − 9.4244e-1 (8.86e-4)
12 9.8681e-1 (4.31e-4) ≈ 9.0111e-1 (1.14e-2) − 9.8691e-1 (5.45e-4)
16 9.9094e-1 (4.67e-4) ≈ 7.3201e-1 (6.47e-2) − 9.9129e-1 (8.41e-4)
20 9.9813e-1 (1.18e-4) ≈ 1.7005e-1 (1.01e-1) − 9.9811e-1 (1.23e-4)

DTLZ3

5 7.7893e-1 (8.46e-3) ≈ 0.0000e+0 (0.00e+0) − 7.8549e-1 (6.37e-3)
8 9.0970e-1 (1.49e-2) ≈ 0.0000e+0 (0.00e+0) − 9.1290e-1 (1.31e-2)
12 9.6468e-1 (1.12e-2) ≈ 0.0000e+0 (0.00e+0) − 9.6693e-1 (1.22e-2)
16 9.4265e-1 (9.14e-2) ≈ 0.0000e+0 (0.00e+0) − 9.7792e-1 (6.32e-3)
20 8.7129e-1 (3.10e-1) ≈ 0.0000e+0 (0.00e+0) − 8.9527e-1 (3.11e-1)

DTLZ4

5 8.0802e-1 (1.67e-3) ≈ 7.1195e-1 (1.53e-2) − 8.0919e-1 (1.96e-3)
8 9.4474e-1 (6.90e-4) ≈ 8.5856e-1 (1.38e-2) − 9.4428e-1 (7.15e-4)
12 9.8815e-1 (1.74e-4) ≈ 8.9848e-1 (2.37e-2) − 9.8821e-1 (1.83e-4)
16 9.9408e-1 (1.80e-4) ≈ 6.0449e-1 (9.02e-2) − 9.9413e-1 (1.01e-4)
20 9.9846e-1 (6.31e-5) ≈ 1.9163e-1 (9.25e-2) − 9.9848e-1 (5.15e-5)

DTLZ5

5 1.1327e-1 (3.81e-3) − 9.1168e-2 (3.72e-4) − 1.2648e-1 (6.93e-4)
8 9.4723e-2 (1.38e-3) − 9.0816e-2 (3.30e-4) − 1.0502e-1 (4.99e-4)
12 7.9339e-2 (8.49e-3) − 9.0761e-2 (4.34e-4) − 9.6513e-2 (4.52e-4)
16 8.6975e-2 (1.87e-3) − 9.0105e-2 (4.22e-4) − 9.4089e-2 (2.02e-4)
20 8.9082e-2 (2.26e-3) − 9.0967e-2 (4.28e-4) − 9.1917e-2 (3.43e-4)

DTLZ6

5 9.6125e-2 (3.40e-2) − 8.7136e-2 (3.12e-2) − 1.2306e-1 (1.71e-3)
8 8.1241e-2 (3.04e-2) − 0.0000e+0 (0.00e+0) − 1.0448e-1 (9.52e-4)
12 8.6737e-2 (1.76e-2) − 0.0000e+0 (0.00e+0) − 9.4160e-2 (8.74e-3)
16 8.4571e-2 (2.22e-2) − 0.0000e+0 (0.00e+0) − 9.3860e-2 (3.41e-4)
20 7.3580e-2 (3.78e-2) − 0.0000e+0 (0.00e+0) − 9.2582e-2 (4.07e-4)

DTLZ7

5 2.5918e-1 (2.40e-3) − 2.3233e-1 (4.64e-3) − 2.6482e-1 (1.50e-3)
8 1.8968e-1 (2.37e-3) − 1.4120e-1 (9.86e-3) − 2.1010e-1 (2.92e-3)
12 1.5914e-1 (1.14e-2) − 8.2322e-2 (8.94e-3) − 1.7686e-1 (6.80e-3)
16 1.6631e-1 (3.21e-3) + 1.5403e-2 (1.84e-2) − 1.5894e-1 (9.13e-3)
20 1.1577e-1 (2.01e-2) ≈ 0.0000e+0 (0.00e+0) − 1.1545e-1 (1.99e-2)

+/−/≈ 4/13/18 0/35/0

Mathematical Biosciences and Engineering Volume 20, Issue 9, 17324–17355.



17348

Table 10. statistical results (mean and standard deviation) of the IGD values obtained by
three different µ values based on DAEA.

Problem M D DAEA µ = 1 DAEA µ = 5 DAEA µ = |S(i)|
2

DTLZ1

5 9 4.9697e-2 (4.65e-4) − 5.2658e-2 (8.34e-5) − 4.9172e-2 (4.99e-4)
8 12 1.0800e-1 (2.17e-2) ≈ 9.4784e-2 (1.30e-2) + 1.1271e-1 (4.69e-2)
12 16 1.2593e-1 (4.07e-2) − 1.2532e-1 (7.93e-3) − 1.2253e-1 (2.75e-2)
16 20 1.6764e-1 (4.83e-2) − 1.4620e-1 (6.11e-2) ≈ 1.3974e-1 (3.34e-2)
20 24 2.5023e-1 (2.96e-2) − 2.3939e-1 (5.29e-2) ≈ 2.3781e-1 (3.49e-2)

DTLZ2

5 14 1.6519e-1 (1.00e-4) − 1.6513e-1 (6.48e-6) − 1.6511e-1 (8.48e-6)
8 17 3.1197e-1 (6.22e-4) ≈ 3.1208e-1 (4.02e-4) − 3.1155e-1 (3.06e-4)
12 21 4.9518e-1 (6.84e-4) ≈ 4.9708e-1 (3.41e-4) − 4.9610e-1 (4.46e-4)
16 25 5.3545e-1 (1.32e-3) ≈ 5.3816e-1 (1.04e-3) ≈ 5.3785e-1 (9.95e-4)
20 29 6.2299e-1 (3.86e-4) ≈ 6.2323e-1 (1.51e-4) − 6.2279e-1 (1.04e-4)

DTLZ3

5 14 1.6527e-1 (5.87e-4) − 1.6657e-1 (1.69e-3) − 1.6493e-1 (2.46e-4)
8 17 4.2297e-1 (1.30e-1) ≈ 4.3958e-1 (1.16e-1) ≈ 4.5962e-1 (8.58e-2)
12 21 6.9888e-1 (2.92e-1) ≈ 7.9676e-1 (5.55e-1) ≈ 5.9533e-1 (8.68e-2)
16 25 7.5356e-1 (5.51e-1) ≈ 5.9583e-1 (5.39e-2) ≈ 6.5141e-1 (1.69e-1)
20 29 1.1294e+0 (8.34e-1) − 1.0717e+0 (9.85e-1) ≈ 8.0177e-1 (3.09e-1)

DTLZ4

5 14 1.6519e-1 (7.78e-5) − 1.6508e-1 (2.26e-5) ≈ 1.6506e-1 (3.72e-5)
8 17 3.1299e-1 (4.51e-4) ≈ 3.1334e-1 (3.06e-4) ≈ 3.1317e-1 (4.13e-4)
12 21 4.9720e-1 (2.05e-4) + 4.9797e-1 (1.92e-4) − 4.9756e-1 (1.89e-4)
16 25 5.4822e-1 (2.27e-3) ≈ 5.4586e-1 (2.33e-3) ≈ 5.4687e-1 (2.54e-3)
20 29 6.2268e-1 (2.54e-4) + 6.2299e-1 (6.42e-5) − 6.2287e-1 (1.04e-4)

DTLZ5

5 14 6.1556e-2 (2.39e-2) ≈ 5.9657e-2 (1.87e-2) ≈ 7.5732e-2 (4.55e-2)
8 17 9.4172e-2 (2.46e-2) ≈ 8.5318e-2 (9.13e-3) ≈ 8.3139e-2 (1.31e-2)
12 21 1.1370e-1 (1.41e-2) ≈ 1.3713e-1 (2.24e-2) ≈ 1.2358e-1 (1.32e-2)
16 25 1.0961e-1 (1.88e-2) + 1.3878e-1 (2.88e-2) ≈ 1.3315e-1 (2.38e-2)
20 29 1.5568e-1 (3.70e-2) ≈ 1.5593e-1 (2.73e-2) ≈ 1.6225e-1 (2.22e-2)

DTLZ6

5 14 1.0620e-1 (4.59e-2) ≈ 1.3771e-1 (5.28e-2) ≈ 1.2169e-1 (4.62e-2)
8 17 1.7569e-1 (3.56e-2) ≈ 1.7248e-1 (4.43e-2) ≈ 1.5675e-1 (3.95e-2)
12 21 2.3007e-1 (1.79e-2) − 2.0198e-1 (3.02e-2) ≈ 1.8632e-1 (3.82e-2)
16 25 2.0145e-1 (1.55e-2) ≈ 1.9360e-1 (2.73e-2) ≈ 1.9294e-1 (3.85e-2)
20 29 2.5995e-1 (5.03e-2) ≈ 2.2883e-1 (5.04e-2) ≈ 2.3362e-1 (4.92e-2)

DTLZ7

5 24 3.5144e-1 (3.24e-2) − 3.0785e-1 (2.28e-2) ≈ 3.0784e-1 (1.56e-2)
8 27 7.1936e-1 (4.02e-2) − 6.8736e-1 (3.95e-2) ≈ 6.8731e-1 (2.60e-2)
12 31 2.3150e+0 (8.40e-1) ≈ 1.1127e+0 (6.74e-2) + 1.6662e+0 (5.86e-1)
16 35 6.9230e+0 (9.21e-1) − 3.6936e+0 (5.46e-1) + 5.8983e+0 (9.77e-1)
20 39 9.2385e+0 (2.15e+0) ≈ 7.3038e+0 (9.80e-1) + 8.9384e+0 (1.60e+0)

+/−/≈ 3/12/20 4/9/22
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Table 11. statistical results (mean and standard deviation) of the HV values obtained by three
different µ values based on DAEA.

Problem M D DAEA µ = 1 DAEA µ = 5 DAEA µ = |S(i)|
2

DTLZ1

5 9 9.3911e-1 (9.57e-3) − 9.7973e-1 (1.39e-4) + 9.5827e-1 (6.78e-3)
8 12 9.5089e-1 (2.03e-2) ≈ 9.9662e-1 (6.88e-3) + 9.3008e-1 (6.70e-2)
12 16 9.7224e-1 (1.50e-2) + 9.9981e-1 (1.28e-4) + 9.6234e-1 (1.20e-2)
16 20 9.8496e-1 (2.61e-2) − 9.7749e-1 (7.94e-2) − 9.9375e-1 (1.36e-2)
20 24 9.5040e-1 (6.60e-2) ≈ 9.5968e-1 (6.79e-2) ≈ 9.5982e-1 (5.59e-2)

DTLZ2

5 14 8.1243e-1 (6.13e-4) ≈ 8.1239e-1 (3.86e-4) − 8.1271e-1 (3.04e-4)
8 17 9.4597e-1 (4.31e-4) − 9.4535e-1 (2.67e-4) − 9.4607e-1 (3.23e-4)
12 21 9.8858e-1 (1.56e-4) + 9.8719e-1 (1.15e-4) − 9.8755e-1 (1.16e-4)
16 25 9.9380e-1 (1.58e-4) + 9.9321e-1 (1.42e-4) − 9.9359e-1 (1.05e-4)
20 29 9.9862e-1 (3.61e-5) − 9.9860e-1 (3.39e-5) − 9.9865e-1 (3.85e-5)

DTLZ3

5 14 8.0731e-1 (3.89e-3) − 8.0014e-1 (7.94e-3) − 8.0889e-1 (1.89e-3)
8 17 7.5373e-1 (2.04e-1) ≈ 7.5112e-1 (1.70e-1) ≈ 7.5303e-1 (1.08e-1)
12 21 6.6094e-1 (3.59e-1) − 6.9215e-1 (3.61e-1) − 7.7273e-1 (1.81e-1)
16 25 8.6723e-1 (2.54e-1) ≈ 9.4778e-1 (5.00e-2) ≈ 8.7748e-1 (2.34e-1)
20 29 6.0436e-1 (4.33e-1) ≈ 7.6096e-1 (3.91e-1) ≈ 7.6537e-1 (3.68e-1)

DTLZ4

5 14 8.1244e-1 (4.59e-4) − 8.1249e-1 (5.28e-4) − 8.1258e-1 (2.52e-4)
8 17 9.4610e-1 (3.47e-4) − 9.4593e-1 (2.82e-4) − 9.4635e-1 (1.90e-4)
12 21 9.8873e-1 (1.43e-4) + 9.8765e-1 (8.90e-5) − 9.8784e-1 (1.04e-4)
16 25 9.9452e-1 (1.29e-4) + 9.9416e-1 (1.00e-4) − 9.9438e-1 (9.37e-5)
20 29 9.9870e-1 (2.76e-5) − 9.9869e-1 (4.72e-5) − 9.9870e-1 (3.36e-5)

DTLZ5

5 14 1.1888e-1 (5.92e-3) ≈ 1.1826e-1 (5.07e-3) ≈ 1.1520e-1 (9.26e-3)
8 17 9.6929e-2 (2.27e-3) ≈ 9.7049e-2 (1.30e-3) ≈ 9.6742e-2 (1.94e-3)
12 21 9.2916e-2 (8.14e-4) + 9.0740e-2 (1.40e-3) ≈ 9.1081e-2 (1.33e-3)
16 25 9.1644e-2 (9.53e-4) + 9.0598e-2 (5.88e-4) ≈ 9.0677e-2 (4.98e-4)
20 29 9.1574e-2 (8.51e-4) + 9.0758e-2 (4.82e-4) + 9.0213e-2 (7.62e-4)

DTLZ6

5 14 1.0883e-1 (9.03e-3) ≈ 1.1242e-1 (6.16e-3) ≈ 1.0967e-1 (7.56e-3)
8 17 9.1229e-2 (2.59e-3) − 9.1399e-2 (5.67e-4) − 9.1761e-2 (8.03e-4)
12 21 9.0925e-2 (2.97e-4) − 9.0838e-2 (2.71e-4) − 9.1090e-2 (5.76e-4)
16 25 9.0881e-2 (2.45e-4) − 9.1074e-2 (4.39e-4) ≈ 9.1075e-2 (2.99e-4)
20 29 9.1198e-2 (4.27e-4) − 9.1217e-2 (6.55e-4) ≈ 9.1224e-2 (5.21e-4)

DTLZ7

5 24 2.2246e-1 (2.13e-2) ≈ 2.2598e-1 (1.29e-2) ≈ 2.2040e-1 (1.36e-2)
8 27 1.8110e-1 (2.25e-2) ≈ 1.9663e-1 (1.35e-2) ≈ 1.8476e-1 (1.96e-2)
12 31 1.6599e-1 (7.70e-3) − 1.8279e-1 (1.17e-2) ≈ 1.8045e-1 (5.84e-3)
16 35 1.4163e-1 (7.58e-3) ≈ 1.1315e-1 (9.01e-3) − 1.3506e-1 (1.37e-2)
20 39 8.9536e-2 (1.46e-2) − 1.1070e-1 (9.32e-3) − 1.2885e-1 (7.62e-3)

+/−/≈ 8/15/12 4/17/14
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many-objective optimization may not work effectively and efficiently, especially in solving these
problems with the multi-modal property or the complicated PF. One possible reason is that these
algorithms ignore the importance of the subspace without associated, and further deteriorate their
ability to explore unknown regions. In DAEA, we design the double association strategy that
considers the empty subspace and associates it with a promising solution. This is helpful for DAEA to
explore more unknown regions, and further improve the performance of DAEA. The effectiveness of
the double association strategy has been validated by the corresponding experiment (i.e., the
effectiveness of double association). In addition, most existing algorithms only consider the
convergence and global diversity to measure the quality of solutions, which is not conductive to trade
off the convergence and diversity of population. On the contrary, DAEA takes the convergence, global
diversity, and local diversity into account, while using the designed dynamic penalty coefficient to
adjust these three factors, and further balance the convergence and diversity of population. The
effectiveness of the dynamic penalty coefficient has been confirmed by the corresponding experiment
(i.e., parameter analysis).

However, our experimental results on the DTLZ7 indicate that the proposed DAEA does not present
a clear advantage over θ -DEA and MaOEA-IGD. Even so, the proposed DAEA still outperforms the
other competitors. In addition, when DAEA deals with WFG1 and WFG2 with irregular PFs, DAEA
is slightly worse than NSGA-III and SPEA/R. This is because of this fact that, for many-objective
problems with the irregular Pareto fronts, the even distribution of reference vectors combing with our
proposed double association strategy may result in partial waste of computing resources and affect the
performance of algorithm.

5. Conclusions and future work

In this paper, we have presented a double association-based evolutionary algorithm (denoted as
DAEA) for many-objective optimization problems. The proposed double association strategy takes the
empty subspace into account and associates it with a solution that is closest to this subspace, which
can increase the probability of an unknown area being explored. In addition, a new quality evaluation
scheme that takes the convergence and diversity of solutions into account is developed to measure the
quality of each solution in subspace, where the diversity of each solution is subdivided into global
diversity and local diversity. Then, a dynamic penalty coefficient is designed to protect these solutions
located in sparse areas by penalizing the worse global diversity of solutions.

To demonstrate the high competitiveness of DAEA, we compare it with five state-of-the-art
many-objective evolutionary algorithms on two test suites, DTLZ and WFG, with the number of
objectives varying from 5 to 20. The corresponding experimental results demonstrate that our
proposed DAEA has higher competitiveness in terms of both convergence enhancement and diversity
maintenance compared with the other state-of-the-art MaOEAs.

Although DAEA outperforms the compared algorithms on most of the test problems, it struggles
in dealing with some problems with the irregular Pareto fronts. For future research, we would like to
add the idea of reference vector dynamic adjustment mechanism on DAEA to improve the algorithm’s
adjustability on the irregular Pareto fronts. In addition, we also consider verifying the performance of
DAEA on MaOPs in the real world.
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