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Abstract: With the continuous improvement of biological detection technology, the scale of biological
data is also increasing, which overloads the central-computing server. The use of edge computing
in 5G networks can provide higher processing performance for large biological data analysis, reduce
bandwidth consumption and improve data security. Appropriate data compression and reading strategy
becomes the key technology to implement edge computing. We introduce the column storage strategy
into mass spectrum data so that part of the analysis scenario can be completed by edge computing. Data
produced by mass spectrometry is a typical biological big data based. A blood sample analysed by mass
spectrometry can produce a 10 gigabytes digital file. By introducing the column storage strategy and
combining the related prior knowledge of mass spectrometry, the structure of the mass spectrum data
is reorganized, and the result file is effectively compressed. Data can be processed immediately near
the scientific instrument, reducing the bandwidth requirements and the pressure of the central server.
Here, we present Aird-Slice, a mass spectrum data format using the column storage strategy. Aird-Slice
reduces volume by 48% compared to vendor files and speeds up the critical computational step of ion
chromatography extraction by an average of 116 times over the test dataset. Aird-Slice provides the
ability to analyze biological data using an edge computing architecture on 5G networks.
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1. Introduction

In the life sciences, huge amounts of biological data are produced every day. These data are generated
by advanced scientific instruments, which are huge and complex to analyze. High-performance central
servers are often used to analyze this data. When biometric data becomes too large, centralized servers
are often overwhelmed. Network transmission speed, data processing speed, data privacy protection and
other issues will be amplified. The privacy of biological data has always been an important issue [1,2].
Large-scale biological data generated by scientific instruments can be partially processed locally rather
than all transferred to a central server. This can effectively enhance the speed of data analysis and ensure
data privacy and security. The edge computing architecture is used to migrate some of the complex
computing work to the terminal computer. This is an important solution to optimize the architecture of
biological big data computing [3].

However, the detection of biological data usually involves converting macroscopic samples into
digital samples. Scientific instruments record the detected microscopic objects in digital form. Thus,
even a single sample of biological data can be enormous. In this case, the data storage strategy,
compression method and information reading strategy will greatly affect the scope of edge computing.
Column storage and edge computing are both long-standing technical ideas [4-8]. Compared with
cloud computing, edge computing can provide services with faster reaction times and higher quality. By
reducing 1O overhead and improving data read efficiency, column storage can reduce CPU overhead.
As a result, traditional small computing devices can perform efficient calculations as well. However,
column storage is not necessarily suitable for all biological data. The introduction of column storage
technology also requires a deep understanding of the prior characteristics of the biological data. This
makes it much more difficult to transform biological data with column storage.
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Figure 1. From a central computing architecture to an edge computing architecture. Mass
Spectrometry data using column storage can be analyzed on a small device. This can effectively
reduce the computing pressure of the central server. Furthermore, due to the physical distance
between the edge computing device and the mass spectrometer, the data transmission and
calculation costs are lower.
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Taking mass spectrometry (MS) data as an example, we describe how column storage is introduced
into MS data. Thus, the analysis of MS data can evolve away from the central calculation, and make
it work properly on small devices. The devices used in edge computing can be connected to mobile
computing devices via 5G networks in addition to conventional small computing devices. This also
enables edge computing frameworks based on MS data (see Figure 1). Mass spectrometry is a widely
recognized technology that has found applications in different fields of applied sciences. MS-based
proteomics and metabolomics are two techniques that have emerged as critical tools in frontier science.
Despite its potential, the challenge of unraveling critical information from the massive amount of data
generated by MS remains a significant hurdle. As a result, researchers have invested considerable effort
in optimizing both MS data formats and data processing platforms to uncover the key findings.

There are numerous MS data formats produced by various MS manufacturers. Nevertheless, these
formats are typically proprietary and cannot be directly accessed. The software that lands with the mass
spectrometer must be required to read and analyze the data. With the growing prevalence of open data
formats, more vendors are offering proprietary software development kits (SDK) to enable researchers to
read their data content [9]. However, developing general-purpose MS data-processing software that uses
vendor-formatted data can be time-consuming due to the lack of standardization among vendors [10]. In
addition, as new formats evolve, new software will cease to support older formats and these obsolete data
formats will become “rotten data” [11, 12]. Therefore, the development of a standardized format for the
MS files has become an industry consensus. Since 2003, the Human Proteome Organization-Proteomics
Standards Initiative (HUPO-PSI) has proposed mzData format to help researchers better preserve and
read MS files in order to establish a unified, standardized structure of MS files [13]. The mzData format
aims to consolidate existing open formats used to store peak list information, such as PKL, DTA, MGF,
etc. and aims to become a data standard for manufacturers of MS instruments. Due to the high design
flexibility of mzData, the overarching framework must be continuously updated to accommodate new
scenarios, making it difficult for the format to be compatible with older ones. During the same period,
the institute for system biology (ISB) proposed the mzXML format, which prefers a more strict structure
and is less flexible [14]. Both formats use different data coding principles to write the same information.
However, the coexistence of the two formats is considered a distraction for software developers and
a source of confusion for users. To solve this problem, PSI and ISB created a new data format called
mzML in 2009 [15]. mzML incorporates the popular features of mzData and mzXML, making it one of
the most popular mass spectrometry data formats available today.

With the advancement of MS-based omics technology and MS instruments, the size and number
of MS files have been significantly increasing. A total of 34,233 datasets were deposited in the open
repository ProteomeXChange in 2022. This number has more than doubled compared to three years ago
when it was 14,169 and continues to rise each month [16, 17]. In addition to proteomics, metabolomics
data repositories like MetaboLights are also expanding annually and their growth shows no sign of
slowing down [18, 19]. With the extensive use of MS technology in clinical research, the number of
high-quality MS files will certainly increase.

Along with the growth in MS file numbers, the volume of MS files has also increased significantly
due to improvements in MS instrument detection accuracy and acquisition methods. It has proven fairly
challenging to preserve and interpret this MS data effectively. The issue of data standardization and
scenario compatibility for mass spectrometer instruments, platforms and acquisition methods is resolved by
mzML. However, the efficacy of mzML in storage or computing scenarios is inadequate, severely limiting
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the computational conditions necessary for MS data analysis. Researchers have an urgent need for high
compression rate and high reading performance data format. In 2012, Mathias et al. proposed the lossless
compression format called mz5 [20], which uses HDF5 [21] as a new container to store information
in mzML. Due to the built-in compression capability of the HDFS5, the file size of mz5 is significantly
smaller than the mzML. In 2014, Teleman et al. proposed MSNumpress [22], a data compression
algorithm used in mzML. MSNumpress includes both lossy and lossless compression for MS data, which
can effectively reduce the mzML file size. In 2015, David et al. proposed the format mzDB [23], which
uses SQLite [24] as a storage container, a cross-platform storage framework. mzDB provides three
different data acquisition strategies for DDA and DIA acquisition to further enhance the data reading
speed, resulting in improved read performance advantage in compute-oriented scenarios. In 2019, Yang
et al. proposed a lossless compression algorithm for MS data called MassComp [25]. MassComp
uses a special algorithm to compress the m/z and intensity data, which improves the compression ratio.
Toffee [26], a lossless compression format proposed by Brett et al. in 2020, also uses HDF5 as a storage
container. Besides, Toffee uses a specific algorithm targeting for time-of-flight (TOF) mass spectrometer
to achieve a high compression rate. The mzMLb format [27] proposed by Ranjeet et al. in 2021 also
uses HDF?S as a storage container. Unlike the mz5 format, mzMLDb uses a mixed storage mode, which
keeps the metadata in the full PSI standard mzML format and save the numerical data in HDF5. This
allows mzMLb to maintain the integrity of the mzML format while still having the container benefits of
HDFS5. In the same year, Felix presented a compression algorithm called mspack [28], which utilizes
the similarity of adjacent mass spectra and bucket sorting algorithm to compress mass spectra directly.
The mspack algorithm achieves an extremely high compression ratio. However, mspack does not
support random spectrum reading, which makes it more appropriate for archive-oriented scenarios.
In 2022, Lu et al. reported the Aird format. Aird is a compression format created specifically for a
computing scenario (Aird-ZDPD) [29] and a storage scenario (Aird-StackZDPD) [30]. Aird improves
compression rates while simultaneously enhancing decompression rates and random access speed. Aird
offers extraordinarily high reading performance for single spectrum or spectra blocks by creating unique
indices for distinct MS acquisition methods. In contrast to other formats, Aird provides a generic
combined compression infrastructure called ComboComp [31] by combining an integer compressor
with a generic compressor. Among all the extended formats of Mzmine3 [32], its file load time is much
higher than other formats.

In terms of application scenarios, these MS data formats can be divided into three major categories:

¢ Standardization-oriented formats, including mzData, mzXML, mzML and mzMLb. They are
designed to store the complete metadata, compress the spectra one by one and support random
spectrum reading. The interoperability of read and write capabilities across platforms and the
completeness of the stored data are typically greater concerns in standard formats.

e Archive-oriented formats, including mspack and Aird-StackZDPD. They prioritize extreme
compression over random spectrum reading. These formats usually do not store spectrum sheet by
sheet, but further leverage similarities between spectra for high-efficacy storage.

e Computation-oriented formats, including Aird-ZDPD and mzDB. Similar to the standardization
oriented format, they also compress the spectrum one by one and support random spectrum reading.
In addition, they build different indexes based on different acquisition methods expedite the random
reading of spectra or spectra blocks. The speed of the following analysis of the data corresponding
to the acquisition method can be significantly accelerated owing to this distinctive index design.
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It can be observed that the format development of mass spectrometry started to shift from standardized
storage to vertical domain optimization gradually, which is tightly linked to the analytical method of the
mass spectrometry file.

Here, we present Aird-Slice. Aird-slice is a column compression format based on the Aird [29],
which adopts the benefits of combination compressors in the Aird format. Aird-Slice is specifically
designed for the scenarios where researchers need to quickly review a few m/z from hundreds of MS
files within seconds. When confronted with tens of thousands of MS files in public data repositories, the
repository can manage to organize these files based on their specific tags, but researchers cannot quickly
access the extracted ion chromatogram (XIC) result of a molecule in large batch of raw files. Although
some mass spectrometry data warehouses do XIC pre-extraction of incoming mass spectrometry data, it
can be quickly displayed during subsequent searches for an m/z. However, this kind of pre-extraction
is not accurate due to the limitations of the XIC algorithm, and often misses some key and effective
points. Aird-Slice, on the other hand, retains all data points completely and is a real-time computation
XIC algorithm. XIC is the key procedure for mass spectrometry and is usually the initial step in MS
data processing. In order to create an XIC for a specific m/z, each spectrum must be decompressed.
However, only a part of the data is really used in this process, which wastes the efficiency of the disk
reads and negatively affects performance while looking for the correct m/z range. This manuscript
employs column compression by storing every point of every target m/z within the entire MS file, thereby
changing the composition of information in the MS file from retention time (RT)-(m/z array, intensity
array) mode to m/z-(rt array, intensity array) mode. This transformation applied in Aird-Slice simplifies
the XIC construction process in the presence of m/z and increases data reading efficacy from less than
one thousandth to one hundred percent. Furthermore, we compress each column using the combined
compressor provided by the AirdPro [29], again achieving an acceptable compression ratio. Therefore,
the column compression format with m/z as storage unit is called Aird-Slice. The introduction of
Aird-Slice reduces the maximum memory requirement for MS data analysis and greatly improves disk
reading efficiency. It solves the limitation that a high throughput MS file must be analyzed using a high
performance and large-memory server, which brings a brand-new experience for MS data analysis in
proteomics or metabolomics. There is great potential for building mz-oriented search engines in data
warehouse-based scenarios as well as in streaming computing-based scenarios. High-throughput MS
data processing can even be moved to small mobile devices due to the drastically decreased CPU and
memory requirements. Small IoT devices can even complete independent computing in the streaming
computing scenario, which is crucial for applications like real-time quality control, target integration
correction and target aggregation search.

2. Materials and methods

2.1. Core computing step

Calculating the XIC results of target molecules is the most common analytical procedure to obtain
quantitative and qualitative results. The mass spectrum contains an array of key-value pairs of mz and
intensity values, which represents the ions and corresponding abundance information when the mass
spectrum is produced. XIC, on the other hand, is the process of searching for the abundance value of a
given ion from each mass spectrum to form a key-value pair of RT and intensity values. Because of the
difference in the resolution of the mass spectrometers and the distribution of the natural isotopes, we
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need to approximate the cumulative intensity value using a very small mz window when conducting the
XIC result. Figure 2 is a typical XIC process and illustrates the procedure for deriving the cumulative
intensity of a particular mz from a single mass spectrum. It is evident that two ions with a difference in
myz of just 0.01 can have drastically different intensity sums.

X Spectrum
Intensity
m/z window m/z range intensity sum
40124242 0015  401.22742-401.25742 200
| I I 40125242 0015  401.23742-401.26742 310
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Figure 2. The schematic representation of the XIC procedure. XIC process for my/z of
401.24242 and 401.25242 are shown respectively. We use the my/z tolerance of 0.015
for calculating the intensities sum. Then, the search range of the two myz becomes
(401.22742,401.25742] and (401.23742,401.26742]. The four boundaries are searched
by binary search algorithm, and the final search result is determined to be between column-1
to column-9 as shown in the figure.

As aresult, we discovered that in order to get the cumulative intensity value for a single spectrum,
we must first perform a direct summing or weighted summation using the binary search algorithm to
perform boundary search four times. A simple summing operation consists of four steps:

e Stepl. Read spectra data from the disk;

e Step2. Decompress the spectra data;

e Step3. Binary search to confirm summation boundary on every spectrum;
e Step4. Sum the intensity values in the boundary for every spectrum.

Obviously, Stepl and Step2 are the most time-consuming steps. If one MS file needs to be analyzed
comprehensively, full file reading and decompressing are unavoidable. This makes searching for a
single my/z particularly inefficient.

2.2. Column storage transformation

The majority of current MS data formats compress and store mass spectra on a sheet-by-sheet manner.
If we were only interested in a handful of m/z values, we would have to read the entire file into memory.
Nonetheless, almost all the data read in is irrelevant for these target m/z points and incurs additional
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computational costs in Step3. One mass spectrum usually contains 5,000-50,000 different my/z-intensity
pairs. One MS file usually contains 7,000—70,000 mass spectra, while the actual number of m/z points
used to sum the intensity values is typically no more than 10.

A Row Storage B Column Storage
RT alignment m/z alignment
m/z, RT,
...................................... - (e - - - o=y, Compress
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Figure 3. (A) The storage model in the traditional MS data format. Spectrum is compressed
and stored sheet by sheet. (B) The storage model of Aird-Slice, using column storage
compression, my/z is the basic organizational unit. (C) Advantages of column storage for
XIC procedures. The data reading efficiency of traditional storage structure is less than one
thousandth, while the data reading efficiency of column storage is 100%.

Figure 3(A) is the traditional MS file storage structure. This can be recognized as a rt-alignment
structure. Each row represents a spectrum arranged inline with the scanning time of the mass spectrom-
eter. Since the length of each mass spectrum is not the same, the data structure formed is a collection of
multiple unequal length arrays. If the mass spectrum file contains n spectra, then all key-value pairs in
an MS file can be expressed as

n Ll'
P, = Dij (2.1)
i1 j=1

where L; is the length of the spectrum;. Since each my/z involves two boundaries when searching, the
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time cost of binary searching in Step3 on this MS file is:

oP,) =2 x Z O(log>L;) = 2 X 0(logzl—[ L) (2.2)

i=1 i=1

Figure 3(B) is the Aird-Slice storage structure. Aird-Slice uses column compression to store MS
data. The first step is to calculate all the different m/z in the entire file. Since the different spectra
usually contain a large number of duplicate my/z, the final de-duplicated my/z array(here defined as 7),,) is
usually much smaller than m/z points in P,. Due to the fact that m/z typically does not contain a response
intensity value in every RT, we populate the positions where the intensity is absent with a value of zero
to obtain a matrix. The height of the transformed matrix (here defined as H) is the array length of 7.,
while the width of the matrix (here defined as n) is the total number of spectra in the MS file. The matrix
here is defined as Tyx,. Each column represents the XIC information of m/z in the T,,/,. All the points

can be expressed as:
H n
T = ). Y. pi (2.3)

i=1 j=1

From the definition of 7,,/,, Vi < nin P, (see Eq (2.1)), L; < H. Therefore, the converted matrix
is a typical sparse matrix. Figure 3(C) shows a comparison of the difference in data reading efficiency
for the XIC process between the two different storage structures. When the specified m/z is analyzed,
the majority of read data is left unused when using the RT-alignment mode. However, under the
my/z-alignment mode, all data read is used in the final calculation. In m/z-alignment mode, the binary
search algorithm only needs to be executed twice. The procedure used to calculate the XIC is changed
to the following steps:

e Stepl. Read 7,,/, data from the disk;

e Step2. Decompress the 7,,/. data;

e Step3. Binary search to confirm summation boundary on 7,.;

e Step4. Read and decompress all specified my/z columns by the calculated boundary of Step3;
e StepS. Add up all the columns.

Therefore the time complexity used to determine the m/z search range is:
O(Tyxn) =2 %X O(log, H) 2.4)

Comparing Eqs (2.2) and (2.4), it is clear that Eq (2.4) is almost a constant value. Equation (2.2), on
the other hand, varies according to the total number of mass spectra and the length of every mass spectra.
Here is an example to compare the time complexity of the two modes. Suppose there is an MS file that
contains 10000 spectra, and each spectrum has 5000 my/z values. Since the detection my/z in proteomics
or metabolomics data is generally in the range of 0-3000, the maximum number of points after 5
decimal places to be precise is 300 million (actually much lower than this number). Here, the theoretical
maximum is substituted. Then the Eq (2.2) can be expressed as O(2 x 10000 x log,5000) = O(242754).
The Eq (2.4) can be expressed as O(2 X log,300000000) = O(56). The difference in time complexity
between the two modes are more than 4000 times.

In terms of data reading efficiency, RT-alignment mode needs to read and decompress all the data file,
whereas my/z-alignment mode reads only specified m/z columns. Therefore, no matter how the original
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file volume changes, the number of m/z columns that need to be read only depends on the m/z tolerance.
The amount of data to be read is usually only a few kilobytes (KB). It is also a thousand times more
complex in time compared to a comprehensive read of a file in RT-alignment mode.

In general, XIC calculation using my/z-alignment is thousands of times faster than RT-alignment for a
small group of my/z. Furthermore, columnar storage enables streaming analysis of mass spectrum data.

2.3. Compression method

After m/z-alignment transformation, the original MS data is transformed into a sparse matrix. Column
compression is plainly more suited as Aird-Slice is aimed for column slicing. Based on the sparse
feature of the matrix, Aird-Slice only store the non-zero points in the matrix. Each non-zero point can
be expressed as (column number,intensity) pairs. Storing data for each m/z column is actually storing an
array of column numbers array and intensity array.

In addition to saving these non-zero points, Aird-Slice must also save the actual mapping value of
the matrix. The width of the matrix corresponds to the T, array, with the height refers to the RT

array. Aird-Slice compresses these four types of arrays using the combined compressor framework
from Aird [29].

A B  Intensity
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Figure 4. (A) The principle of the combined compression framework provided by Aird. (B)
The process of converting the Profile mode mass spectrometry to centroid mode.

Figure 4(A) is the basic structure of the combined framework. The framework offers two
integer-purpose compressors (BinaryPacking and Variable Bytes) [33] and four general-purpose
compressor(Zlib, Zstd [34], Snappy [35] and Brotli [36]). The two arrays must first undergo a micro
loss conversion before being compressed, which converts the array from a double floating-point type
to an integer type. The my/z array is converted with a reasonable absolute error of 107> (5 decimal
places, 5dp) [37], while the absolute error of the RT conversion is 107>, Aird-Slice offers three precision
modes of 3, 4 and 5dp for different scenarios.

2.4. Data centroid processing

Spectrum organization can be divided into two modes: Profile mode and Centroid mode. Centroid
mode is a result that appears after the profiled spectrum has been algorithmically processed. Figure 4(B)
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is the diagram of data centroid algorithm. The centroided data is obviously getting more succinct.
Although it may cause some possible valuable signal loss, it can greatly reduce the cost of data storage,
thus improving the efficiency of subsequent analysis.

Intensity

Poiﬂ of maximum intensity

Bt S

44444444

: Exact Mass
1 mz

Figure 5. Diagram of exact-mass algorithm used by Aird-Slice.

Aird-Slice provides a common data centroid algorithm called exact-mass, which is also used in

Mzmine3 [32]. For profile MS data, the exact-mass algorithm is highly recommended. See Figure 5.
This algorithm calculates the exact mass of a peak using the FWHM (full width at half maximum)
concept. First, the algorithm locates four data points at half the highest intensity that are closest to
the peak center. The four points can be expressed as (P;(x;,y:),i = 1,2,3,4). The [p,p, can be written
as determinant:
Y=Yi Yj—Ji
X=X Xj—X
The cross points of y = halfmax(hf) with lp, p, and Ip,p, are cP(x.1, hf) and cPa(x., hf), which define
the width of the peak. The values of x.; and x., are deduced from the following equation:

=0 (2.5)

hf —=y1 y2—n —0 (2.6)
Xel — X1 X2 — X
hf=ys ya=ys | _, (2.7)
X2 — X3 X4 — X3

The exact mass is then obtained as the center of the width, and we get:

X, - X,
ExactMass = % (2.8)

The exact mass algorithm is an optional algorithm for format conversion.

2.5. Storage strategy for DDA and DIA

There are two main acquisition methods for high-throughput mass spectrometry: Data dependent
acquisition (DDA) and data independent acquisition (DIA) In either acquisition method, the step of
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constructing XIC result is necessary. However, in the process of data analyzing for DDA, spectra
similarity comparison is another important step for ion identification. Such spectra consist of specific
my/z fragmentation and are labeled as secondary spectrum (MS2). The spectra similarity comparison
algorithm needs to read the entire mass spectrum. It is obvious that spectrum-centered row storage
is more suitable for this algorithm step. Figure 6(A) shows the spectra structure of MS1 and MS2 in
the DDA file. Each MS1 contains a number of m/z and intensity key-value pair signals. In the DDA
method, the signal in MS1 is screened according to certain conditions to determine which ions need
to construct the MS2. For example, ions with top 20 intensity values were selected to generate MS2.
Due to the randomness of this selection, the MS2 collected by DDA is not analyzed by constructing
XIC, but is used as an MS “fingerprint” for ion identification. Since MS1 requires calculation of XIC
for subsequent analysis and MS2 requires similarity comparison algorithm, Aird-Slice uses a mixed
storage mode to achieve the best read performance. For the DIA acquisition method, since both MS1
and MS?2 in DIA files use XIC as the basis step for subsequent algorithms. Therefore, column storage
can be fully used for DIA file conversion.

A B MS1 — Ms1
MS1 > MS1 mz
- mz 400 - 425 alignement
MS2 : alignement
MS1
g : } MS1 v 3¢| 425-450
= : o N .
& Mixed 2 . 400 - 425 mz
=z ms2 Ms2 Storage g 1500 - 1600 : i t
18,3 Mode §'-' ' 400 - 425 alignemen (S::)Iumn
s : o s2 >3 . - orage
3 e N 3 425 - 450 Mode
o 3 RT o Ms1 S -
s Ms1 a . g 3 : mz
= alignement e [ 425 - 450 alignement
MS2 MS2 o 400 - 425 -
} { % 425 - 450 1500 - 1600 mz
MS2 Ms2 . i alignement
1500 - 1600
1500 - 1600

Figure 6. (A) The DDA spectra structure. Since the MS2 spectra are only used for similarity
comparison, Therefore, hybrid compression mode is used for DDA storage. (B) The DIA
spectra structure. MS2 spectra in DIA are also used in XIC building. However, because
each MS2 block’s search space is independent of the others. As a result, the column storage
strategy is more appropriate for the MS1 block and each MS2 blocks.

2.6. Index building and compression

With column storage, some of the metadata described with controlled vocabulary (CV) is meaning-
less for column information. To ensure the integrity of MS data while not interfering with Aird-Slice
format reading performance, we store the original metadata information separately from the column
metadata information. The newly described column storage metadata is stored as a JSON file with the
extension cjson. The index mostly records the global RT array, the global unique m/z array and the
spectrum number array and intensity array corresponding to each column of my/z. The key fields are
described in Table 1.
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Table 1. Description of Aird-Slice column index.

Field Name Type Description
level Integer Label the spectra type from which the m/z data came
ptr Long Position of the total column stored data in Aird
range Array Range of the target m/z
mzListPtr Long Position of the compressed unique my/z array in Aird
rtListPtr Long Position of the compressed global RT array in Aird
specrtaldListPtr Long Position of the compressed offset array for spectra ids
intensityListPtr Long Position of the compressed offset array for intensities
Vendor File
|
Split MS2 Block
MS1 Block Acuigistion Meta Data
Method (Controlled
\—l i DIA Vocabulary)
DDA
Centroid Processing(Optional) l
____________________ .
< m/zarray ||intensity array| «—— Spectrum —
g l ____________________
Column Transform
Merge I
N S—— L
'|spectrald array || intensity array| «—  Column
""""""""""""""""""""" Build
unique m/z l l
array
— Compress with ComboComp Framework <«
i rt array I
Compressed Bytes —Build— Index Information

l—l

J—

]

Aird File(.aird)

Column Index File(.cjson)

Index File(.json)

}

4

Aird Files

Figure 7. The main conversion workflow for Aird-Slice. DDA and DIA modes are both
supported by Aird-Slice at present. Aird-Slice sets up cjson files to define column information
in addition to the fundamental description data based on the CV structure.
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The range of the unique my/z array is ordered and usually between O and 3000. As a result, the
difference between neighbors is minimal. Due to the mass spectrometer’s extraordinarily high and
constant scanning frequency, the global RT array is ordered and the distinction between RTs is also
relatively minor. Using the ComboComp framework to compress these two arrays can achieve an
excellent compression ratio. We only store the volume of each spectrald and intensity compressed array
rather than their starting and ending positions. In order to minimize disk reading costs for index files,
Aird-Slice compress the offsets arrays as well.

Figure 7 shows the whole conversion process of Aird-Slice. First, you need to separate MS1 and
MS?2 blocks in the MS file. Then, DDA files and DIA files are then converted according to different
policies (see Section 2.5). Aird-slice finally consists of three files, Aird binary data file, metadata and
spectra information description index file and column data index file.

2.7. Test datasets

To conduct a comprehensive test on the performance of Aird-slice, we selected and collected 16 raw
MS files sourced from others laboratories Table 2.

The test dataset includes 11 metabolomics files obtained from Metabolights and 5 proteomics files
acquired from ProteomeXchange [16]. These files are obtained from various mainstream mass spec-
trometer manufacturers (Thermo, SCIEX, Agilent), representing a wide range of types of instruments.
Of these files, 12 are acquired by DDA, while the rest were in DIA format. For the file size, they are
ranging from tens to hundreds of megabytes (MB), with 10 out of 16 files being smaller than 400MB,
one file being over 700MB and five files being over 1 gigabyte (GB).

The raw files were first converted to the mzML and mzMLb formats using msConvert (version 3.0.22290
and version 3.0.20059) with parameters ‘-mz32 —inten32’ [27,38]. Then, we further converted raw
files to the Aird-Slice format by AirdPro (version 4.4.0.0) [29]. The parameters used were Scene in
search mode, m/z precision at 3, 4 and 5 decimal places, auto decision and either profile or centroid
mode. Therefore, each raw file generated six Aird-Slice files, with both profile and centroid modes and
encoded at different storage precisions (3, 4 and 5dp).

This manuscript compares Aird-Slice format file sizes with other data formats, and compares Aird-
Slice file sizes with different precision and preprocessing conditions. Additionally, the speeds of
searching through numerous files for a tiny group of my/z are contrasted. The comparison reading speed
test was performed on a laptop. The CPU uses Intel 19-12900H, 32GB memory and 2TB SSD disks. To
conduct a comprehensive test on the performance of Aird-slice, we selected and collected 16 raw MS
files sourced from others laboratories Table 2.

The test dataset includes 11 metabolomics files obtained from Metabolights and 5 proteomics files
acquired from ProteomeXchange [16]. These files are obtained from various mainstream mass spec-
trometer manufacturers (Thermo, SCIEX, Agilent), representing a wide range of types of instruments.
Of these files, 12 are acquired by DDA, while the rest were in DIA format. For the file size, they are
ranging from tens to hundreds of megabytes (MB), with 10 out of 16 files being smaller than 400MB,
one file being over 700MB and five files being over 1 gigabyte (GB).

The raw files were first converted to the mzML and mzMLb formats using msConvert (version 3.0.22290
and version 3.0.20059) with parameters ‘-mz32 —inten32’ [27,38]. Then, we further converted raw
files to the Aird-Slice format by AirdPro (version 4.4.0.0) [29]. The parameters used were Scene in
search mode, m/z precision at 3, 4 and 5 decimal places, auto decision and either profile or centroid
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mode. Therefore, each raw file generated six Aird-Slice files, with both profile and centroid modes and
encoded at different storage precisions (3, 4 and 5dp).

We compare Aird-Slice format file sizes with other data formats, and compares Aird-Slice file sizes
with different precision and preprocessing conditions. Additionally, the speeds of searching through
numerous files for a tiny group of m/z are contrasted. The comparison reading speed test was performed
on a laptop. The CPU uses Intel 19-12900H, 32GB memory and 2TB SSD disks.

Table 2. Vendor MS files used for test.

No. Repository Files Instruments
1 MTBLS733  SAl.raw QE HF
2 MTBLS736  SampleA_1.wiff TripleTOF 6600
3 MTBLS1108 PestMix1_8Plasma DDA20-50.wiff TripleTOF 6600
4 MTBLS2267 jaeger3_0001.d 6520 Series QTOF
5 MTBLS2421 l.raw LTQ Orbitrap XL
6 MTBLS2421 02122020_-QCPool_Setl _P_2.raw QE
7 MTBLS2469 SID599_H.raw QE
8 MTBLS4861 RP POS-QC-1.raw QE hybrid
9 MTBLS5615 MSOI.raw QE Hybrid
10 MTBLS6402 ELOI_pos.raw QE Plus
11 MTBLS6742 2 _feces_fibrosisl_positive.raw Q Exactive plus
12 PXD034709 20220818 _HFX_cy_MCF _phospho_ TNF_DDA _1_120min.raw QE HF-X
13 PXDO034709 20220818 _HFX_cy_MCF_phospho_.TNF_DDA_2_120min.raw QE HF-X
14 PXDO034709  20220905_HFX_cy_MCF_phospho_ TNF_DIA_1_120min.raw  QE HF-X
15 PXD034709 20220905_HFX_cy MCF_phospho_ TNF_DIA_3_120min.raw  QE HF-X
16 PXD034709 20220905_HFX_cy_MCF _phospho_TNF_DIA 4_120min.raw  QE HF-X
3. Results

3.1. Read speed comparison

Reading and decoding of MS data is the first and most time-consuming step of MS data analysis.

Typically, XIC step will be processed after MS data decoding. Similar to the mzML format, Aird-CC
is a spectrum-oriented format, but it has been substantially optimized for MS data compression and
reading speed, making it 3 times faster than mzML format [29]. Aird-Slice focuses on scenarios that
search and build XIC result for a single or small number of m/z. The speed of Aird-CC versus Aird-Slice
when reading a single mz is contrasted in this section. Here, the total time for reading, decoding and
XIC building is evaluated at 1, 10 and 100 my/z, respectively.

The test code is implemented in the Java language, and the entire Java virtual machine (JVM) is
restarted for each file tested to ensure there is no caching impact. Additionally, to guarantee that the Java
code is always hot loaded each time, every test is preheated with additional files outside the test dataset.

See Figure 8(A), since the spectrum-oriented format requires going through all the spectra, the majority
of the consumption time is in reading and decoding the spectra, and the difference between computing 1
myz or 100 my/z is relatively small. See Figure 8(B), when calculating a single m/z, the total computation
time for Aird-Slice is significantly reduced. Even 10 my/z calculation has a significant time advantage,
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which can be seen from Figure 8(C). In 16 test files, Aird-Slice increased the speed by 20-300 times, with
an average increase of 116 times. The computing time in all files is less than 20 milliseconds.

A. XIC Speed for Aird-CC @ 1 target 10 targets 100 targets C. XIC Time Fold Change
Average Fold Change: 116.63
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Figure 8. (A) Comparison of XIC time consumption for 1,10 and 100 my/z using Aird-CC
format. (B) Comparison of XIC time consumption for 1,10 and 100 my/z using Aird-Slice
format. (C) Comparison of XIC time consumption for single m/z between Aird-Slice and
Aird-CC.

3.2. File volume comparison

In this study, we converted sixteen raw files with varying vendor file sizes, ranging from 12.2
to 2242.6 Mb, mentioned in Table 2 into four types of formats, mzML, mzMLDb, Aird-ComboComp (CC)
and Aird-Slice by msConvert and AirdPro. Aird-CC is an Aird-based computation-oriented format,
which is converted through AirdPro with Scene option in Computation and Auto Decision is selected. To
evaluate the compression performance of each format, we compared the file sizes across these formats.

For the Aird-CC and Aird-Slice format, each file was stored at three storage precisions (3, 4 and 5dp)
in profile mode, but Aird-Slice was further tested in centroid mode Figure 9. Compared with Aird-CC,
the average file sizes of profile-mode are larger at different storage accuracies, where 3dp is 124%,
4dp is 170% and 5dp is 190% larger. However, the Aird-Slice format in centroid mode illustrated the
smallest file sizes in most files, except for files 2, 3 and 4, which have similar file sizes to Aird-CC.
These centroid-mode Aird-Slice showed a relative smaller file size than its corresponding file in profile
mode, resulting file sizes were reduced to 36, 32 and 30% for 3, 4 and 5dp, respectively.
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We further compared Aird-Slice with raw files as well as other popular open formats (Figure 10). For the
mzML and mzMLDb format, almost all files showed a larger file size than raw files, with the exception for
three DIA proteomics data (i.e., Files 14, 15 and 16) with a similar file size to raw files. More specifically,
mzML and mzMLD files were on average of 185 and 286% larger than raw files, respectively. Here, we
chose the 5dp for Aird-Slice and Aird-CC, since this storage precision is the recommended setting. Unlike
mzML and mzMLb, most Aird-CC and Aird-Slice file sizes were significantly smaller than raw files,
except for a few files in three DDA metabolomics data (Files 2, 3 and 4) obtained from non-Thermo
instruments. More specifically, Aird-Slice files generated by Thermo instrument with 5dp precision
showed smaller file sizes than raw files, with an average reduction 48% for profile-mode and 83% for
centroid-mode. Furthermore, Aird-Slice had a larger file size than Aird-CC at 5dp precision and in
profile-mode, with an average rate of 148%. In the non-Thermo files (Files 2, 3 and 4), the file size
of Aird-Slice-5dp is 3-times larger than raw files and is about 4-times larger than Aird-CC-5dp, but is
similar to mzML and only half of mzMLb.

To conclude, Aird-Slice-5dp files showed a smaller file size in 15 out of 16 files than mzML and
mzMLDb formats, except for file4. Furthermore, Aird-Slice-5dp centroid files were significantly smaller
than all other format files.
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Figure 9. File Size Comparison between Aird-Slice and Aird-CC formats at different storage
precisions. Aird-CC files were stored at data precision of 3, 4 and 5dp. Aird-Slice files in both
profile and centroid mode were stored at precisions of 3, 4 and Sdp.
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Figure 10. File Size Comparison between raw, mzML, mzMLb, Aird-Slice (Slice) and
Aird-CC (CC) formats. Each raw file was converted into four different formats (Aird-CC,
Aird-Slice, mzML and mzMLb). Aird-CC and Aird-Slice (profile- and centroid-mode) files
with storage precision of 5dp were compared to raw, mzML and mzMLb files.

3.3. AirdPro and AirdSDK

AirdPro is a Graphical User Interface (GUI) client for converting MS vendor formats to Aird-Slice
format. It can also generate conversion tasks by commands through Redis middleware. AirdPro is
opensource and can be visited at https://github.com/CSi-Studio/AirdPro. AirdSDK is the SDK for
reading the Aird-Slice format. Currently, AirdSDK provides Java and C# languages. The project can be
visited at https://github.com/CSi-Studio/Aird-SDK.
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4. Discussion

To optimize the process of MS data exchange, dissemination and analysis in the MS community,
a number of open data formats has been developed. Among them, standardization-orient formats
aim to store complete data and improve the capability of data read and write cross-platforms, and
archive-oriented formats focus on store data with an optimized compression rate. Upon these formats,
we developed Aird, a computation-oriented format with significant compression rate, to accelerate the
following data processing [29]. Furthermore, we integrated Combcomp, an auto-decision compressor,
into AirdPro and generated Aird-CC with optimized compression rate. However, we have noticed that
researchers often only need to inspect a few my/z points that they are interested, requiring to read and
decompress all spectra to the disk, which is a time- and computation-consuming process. Therefore, we
developed Aird-Slice, a column compression format, from Aird format to fill the gap.

As a search-oriented format, Aird-Slice has not demonstrated a higher compression rate relative to
Aird-CC, but it still showed a significant smaller file size than raw, mzML and mzMLb formats. More
specifically, Aird-Slice in profile mode can save half (48—-66% in 3—5dp storage precision) of the storage
space compared to the raw files, expanding the rate to 83 to 88% in the centroid mode. Compared with
the popular formats of mzML and mzMLb, Aird-Slice tends to show a higher compression rate.

In the scenario of glancing a few molecules from a whole MS dataset, Aird-Slice demonstrates the
ability to quickly locate data points and construct XICs due to its high read speed. Moreover, we believed
that the high compression rate could be another strong reason for researchers to choose a Aird-Slice
format. Previously, MS data formats compressed spectra with RT-alignment structure and utilized the
distinctive index for acceleration of data processing. Aird-Slice format leverages the transformation of
data structure, from RT-alignment to mz-alignment, to improve the data reading efficiency from less
than 0.1 to 100%. Moreover, we built an additional index of column storage while storing the original
metadata, accelerating the mz point search and maintaining the integrity of MS data.

Although Aird-Slice is characterized by its high read speed and compression rate, some limitations
continue to exist. Aird-Slice has an obvious advantage when searching a few points from MS data files,
while the advantage is losing and the number of points is increasing. However, in most cases, researchers
would search one point once, which maintains the strength of high read speed. The characteristic of
search in Aird-Slice is suitable for deploying across Internet of Things (IoT) devices, resulting a quick
visual query of a molecule.

This manuscript demonstrates that rethinking the storage technology of biological data requires a
great deal of specialized knowledge, which is not a simple task. Column storage technology has been
widely used in conventional database scenarios. Edge computing is also not a new concept. However,
these methodologies remain difficult to put into practice in biological big data. To complete the task
more effectively, assistance of scholars from multiple disciplines are required. It is hoped that such
cross-learning can provide more possibilities for data computation in the field of life science.

S. Conclusions
Storing by column can significantly minimize the amount of data read from a disk while computing
XIC with a single mz, enhancing search performance significantly. It also has the lowest CPU and memory

consumption, which allows MS data analysis to be performed on small IoT devices. Column storage loses
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its speed advantage when faced with hundreds or thousands of m/z as the data read steadily gets closer to
reading the complete data file. Nevertheless, there are many situations in which it is sufficient to look
through existing MS files just for several relevant chemical targets rather than fully analyze the entire file.
Typically, this takes place during the data reanalysis stage. Aird-Slice provides a feasible solution for fast
data search capability in MS data centers. When a new molecular target is hypothesized, the Aird-Slice
can be used to quickly verify it in existing MS files, in addition to real-time search. Due to the fact that
each column of data carries the whole signal of an m/z, XIC calculation can be performed directly during
data transmission. This also provides technical feasibility for streaming computing.

Mass spectrometer, as a technology that converts biological samples into digital samples, can
effectively preserve valuable biological information. However, current algorithms and software are
difficult to use for all the signals in the MS file effectively. This means that current MS files may
have new discoveries in the future. How to quickly search for the signal of the target molecule in an
existing MS file has important biological significance. In addition, MS data analysis using Aird-Slice
has minimal hardware requirements and can be quickly applied in IoT devices. This makes decentralized
MS data analysis possible.

Compression and reading of biological big data is becoming an increasingly important topic. As
the precision of scientific instruments continues to increase and the number of deployments continues
to grow, centralized computing architectures for biological data are stretched thin. Column storage
has great performance advantages for biological data based on time series acquisition. It enables
partial queries or calculations to be performed on small devices and promotes the diversified design
of network architecture in biological data analysis. However, using such methods on biological data
requires a thorough comprehension of the underlying biology. It requires considerable engineering
to assure compatibility and actual performance. With the use of mass spectrum data as a case study,
this work describes in detail how column storage is integrated into MS data storage and promotes
mass spectrum data analysis to avoid a strong reliance on centralized computing mode, making edge
computing architecture conceivable. We hoped that the work can pave the way for introducing related
technologies into more biological data.
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Appendix

The following abbreviations are used in this manuscript:

MS: Mass Spectrometry

SDK: Software Development Kits
HUPO-PSI: Human Proteome Organization-Proteomics Standards Initiative
ISB: Institute for System Biology
DDA: Data Dependent Acquisition
DIA: Data Independent Acquisition
XIC: Extracted Ion Chromatogram
RT: Retention Time

m/z: mass-to-charge ratio

dp: decimal places

FWHM: Full Width at Half Maximum
MS1: Mass Spectrum Level 1

MS2: Mass Spectrum Level 2
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CV: Controlled Vocabulary
GB: Gigabyte

MB: Megabyte

JVM: Java Virtual Machine
GUI: Graphical User Interface
IoT: Internet Of Things
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