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Abstract: Multicast communication technology is widely applied in wireless environments with a
high device density. Traditional wireless network architectures have difficulty flexibly obtaining and
maintaining global network state information and cannot quickly respond to network state changes,
thus affecting the throughput, delay, and other QoS requirements of existing multicasting solutions.
Therefore, this paper proposes a new multicast routing method based on multiagent deep reinforce-
ment learning (MADRL-MR) in a software-defined wireless networking (SDWN) environment. First,
SDWN technology is adopted to flexibly configure the network and obtain network state information
in the form of traffic matrices representing global network links information, such as link bandwidth,
delay, and packet loss rate. Second, the multicast routing problem is divided into multiple subprob-
lems, which are solved through multiagent cooperation. To enable each agent to accurately understand
the current network state and the status of multicast tree construction, the state space of each agent
is designed based on the traffic and multicast tree status matrices, and the set of AP nodes in the net-
work is used as the action space. A novel single-hop action strategy is designed, along with a reward
function based on the four states that may occur during tree construction: progress, invalid, loop, and
termination. Finally, a decentralized training approach is combined with transfer learning to enable
each agent to quickly adapt to the dynamic changes of network link information and accelerate con-
vergence. Simulation experiments show that MADRL-MR outperforms existing algorithms in terms
of throughput, delay, packet loss rate, etc., and can establish more intelligent multicast routes. Code
and model are available at https://github.com/GuetYe/MADRL-MR _code.
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1. Introduction

With the rapid development of wireless network technology, the applications of multicast commu-
nication in wireless networks are becoming increasingly widespread. This communication technology
can be applied for purposes such as video live streaming, multimedia conferences, real-time data trans-
mission, and online games. In these applications, as the number of users and the level of user demand
continue to increase, attempting to use unicast communication to send the necessary data would place
enormous pressure on the information sources and the network bandwidth, leading to network conges-
tion and inability to meet user needs. In the broadcasting scenario, the transmitted information will also
be received by users who do not need it, not only compromising the security of the information but also
wasting considerable bandwidth. For such point-to-point applications, multicast technology can better
solve the above problems. In multicast services, only one multicast message needs to be sent by the
source host, and the data are then replicated and distributed to multiple target nodes upon encountering
forked nodes during transmission [1]. Therefore, multicasting can effectively save bandwidth, reduce
the network load, and improve the security of information transmission [2].

Multicast routing requires the construction of an optimal multicast tree from the source node to all
destination nodes [3]. Timely acquisition of global dynamic network link state information is one of
the basic prerequisites for constructing such an optimal multicast tree. Traditional wireless networks
typically utilize a distributed management approach [4], in which network resources and functionalities
are dispersed across various wireless network devices (such as access points, routers, and switches)
and each device independently executes control decisions. While this approach offers flexibility, it
suffers from low management efficiency and presents difficulties in achieving timely optimization and
coordination of the entire network. Additionally, as the network expands in scale, the traffic data
forwarded by network devices become increasingly voluminous, making it challenging for traditional
network devices, for which forwarding is tightly coupled with control, to obtain real-time information
on the global network status. To address the aforementioned issues, the recently emerging technology
of software-defined wireless networking (SDWN) [5] provides an excellent solution.

SDWN combines software-defined networking (SDN) [6] with wireless networks. SDWN solves
the problems of low network management and control efficiency and the difficulty of achieving global
optimization and coordination in traditional wireless network structures by exploiting the centralized
management advantages of SDN, such as centralized control logic and the decoupling of forwarding
from control. By taking full advantage of these centralized management capabilities, SDWN facili-
tates the global optimization and coordination of network resources. SDWN enables the controller of
a wireless network to obtain the global static topological structure of the network, the global network
state, and the utilization rates of resources by controlling the logical concentration [7]. In combina-
tion with the programmability of SDWN networks, these capabilities allow the network controller to
achieve unified management, integration, and virtualization of network resources and to use a north-
bound interface to provide on-demand allocation of network resources and services for upper-layer
applications.

The classic algorithms for constructing multicast trees in traditional multicast routing include the
shortest path and minimum spanning tree algorithm of Kou, Markowsky and Berman (the KMB algo-
rithm) [8], the minimum cost path heuristic (MPH) algorithm [9], and the average distance heuristic
(ADH) algorithm [10]. These classic multicast tree construction algorithms have been successfully
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applied in many fields over the past decade. However, with the continuous expansion of the network
scale and the exponential growth in network traffic, these traditional multicast tree construction meth-
ods cannot adapt to the dynamic changes of link information in wireless networks, making it difficult
to meet the current requirements in terms of network service quality. Moreover, as the scale of SDWN
networks continues to expand, this deficiency becomes even more apparent. Therefore, designing mul-
ticast trees that adapt to the dynamic changes in network link information to meet the high-performance
requirements of multicast services is an important research topic in leveraging the advantages of SDN
architecture.

In recent years, artificial intelligence technology has been increasingly studied and applied in the
networking field due to its strong adaptability and flexibility. Deep reinforcement learning has signif-
icant advantages in high-dimensional and complex decision-making. By combining it with the SDN
architecture, researchers can fully leverage its flexibility and ability to adapt to the dynamic changes of
network link information, thereby improving network efficiency and performance. Currently, most re-
search on the application of deep reinforcement learning to SDN unicast and multicast communication
1s limited to discussions of single-agent reinforcement learning methods [11-14]. However, compared
to multi-agent reinforcement learning, the convergence speed of these methods is slow. Consequently,
in the case of frequent and dynamic changes of network link information, the single-agent approach
has difficulty responding quickly to the forwarding needs of data flows.

In consideration of the above issues, this paper proposes an intelligent multicast routing method
based on multiagent deep reinforcement learning, named MADRL-MR, for use in SDWN. In MADRL-
MR, an SDWN framework is designed to overcome the limitations of traditional wireless networking,
in which the overall network cannot be directly controlled and maintained, and to enable more conve-
nient configuration of the network devices while improving the network performance. This framework
is used to manage a wireless network and obtain its global topology and link state information. It also
makes use of the adaptability and flexibility of deep reinforcement learning to adapt to the dynamic
changes of network link information. To address the slow convergence speed of the construction of
multicast trees using a single intelligent agent as well as the difficulty of quickly responding to data
forwarding demands, a multi-agent deep reinforcement learning algorithm is designed for multicast
tree construction in MADRL-MR. In this algorithm, each intelligent agent can independently learn
and adapt to changes in the network state and collaborate to achieve better routing strategies. To ac-
celerate the training speed of the multiple intelligent agents, we design corresponding transfer learning
mechanisms [15], in which an initial set of weights is pre-trained and loaded before each intelligent
agent begins training to accelerate its convergence speed.

The main contributions of this article are as follows:

1) In contrast to the traditional approach for managing and maintaining the global network state in a
wireless network, we design a network architecture based on SDWN. By virtue of the centralized
control logic and programmability features of SDWN, we can monitor the global static topology
and network status information of a wireless network and obtain real-time link status information,
such as bandwidth, delay, and packet loss rate, to achieve more efficient global optimization and
coordination of the network resources.

2) In contrast to the existing method of building multicast trees with a single intelligent agent, we de-
sign and implement an intelligent multicast routing method based on multiagent deep reinforcement

Mathematical Biosciences and Engineering Volume 20, Issue 9, 17158-17196.



17161

learning. First, we divide the problem of multicast tree construction into multiple subproblems,
which are solved through collaboration among multiple intelligent agents. Second, in the design of
the state space for each intelligent agent, we comprehensively consider parameters such as band-
width, delay, the packet loss rate of wireless links, the used bandwidth, the packet error rate, the
packet drop rate, the distance between access points, and the multicast tree construction status. In
addition, instead of the existing method of using the k-paths approach to design the action space
for an intelligent agent, we design a novel action space using the next-hop node in the network
as the action. Finally, we design corresponding reward functions for the four possible scenarios
encountered in multicast tree construction, which can guide the intelligent agents to select efficient
multicast routes.

3) To improve the convergence efficiency and collaboration stability of the multiple intelligent agents,
we design a fully decentralized training (independent learning, IL.) method for multiagent systems.
In addition, to enhance the convergence speed of the multiagent system, we adopt transfer learning
techniques. Specifically, we transfer knowledge acquired from experts or previous tasks to the cur-
rent task at the beginning of the training process, thereby reducing the initial ineffective exploration
of the intelligent agents and accelerating their convergence.

The rest of this article is organized as follows. Section 2 introduces the relevant work. Section
3 analyzes the problem and introduces the SDWN intelligent multicast routing structure. Section 4
provides a detailed introduction to the MADRL-MR algorithm. Section 5 introduces the experimental
setup and performance evaluation results. Section 6 introduces the conclusion and future work.

2. Related work

In this section, we mainly discuss the related work on multicast routing in SDWN and analyze the
advantages and disadvantages of traditional algorithms and intelligent algorithms applied in multicast
routing.

Traditional algorithms: Kou et al. [8] proposed a Steiner tree construction method based on a
shortest path and minimum spanning tree algorithm (the KMB algorithm). Takahashi et al. [9] pro-
posed the minimum cost path heuristic (MPH) algorithm. Smith et al. [10] designed an algorithm based
on an average distance heuristic (ADH). The above three classic algorithms were initially proposed to
solve the problem of constructing multicast trees, and many subsequent improvements have been de-
veloped based on these algorithms. Yu et al. [16] proposed an improved algorithm based on key nodes
(KBMPH) by prioritizing the paths for certain key nodes. Zhou et al. [17] designed a delay-constrained
MPH algorithm (DCMPH). Zhao et al. [18] studied how to reduce the cost of constructing a Steiner tree
and proposed a weighted node-based MPH algorithm (NWMPH). Farzinvash et al. [19] decomposed
the problem of multicast tree construction in a wireless mesh network into two phases, with the first
phase considering delay and the second phase considering bandwidth. By combining the two phases,
these authors proposed an algorithm that comprehensively considers both delay and bandwidth for the
construction of multicast trees. Przewozniczek et al. [20] transformed k-shortest Steiner tree problems
into binary dynamic problems and solved them using the integer linear programming (ILP) method.
Walkowiak et al. [21] used a unicast path construction method to construct a multicast tree, but its
computational cost was too high. Martins et al. [22] transformed the multicast tree construction prob-
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lem into an ILP problem and designed a heuristic algorithm with delay constraints. Zhang et al. [23]
proposed a delay-optimized multicast routing scheme for use in the SDN context, which utilizes SDN
to obtain network state information. Hu et al. [24] also proposed a multicast routing method based
on SDN. However, the traditional algorithms mentioned above can use only a single network resource
to construct a multicast tree; thus, they have poor perception of the dynamic changes of network link
information and significant limitations in constructing efficient multicast routes.

Intelligent Algorithms: Annapurna et al. [25] proposed a Steiner tree construction method based
on ant colony optimization (ACO), which optimizes the Steiner tree using bandwidth, delay, and path
cost. Zhang et al. [26] proposed a multicast routing method based on a hybrid ant colony algorithm.
This method combines the solution generation process of the ACO algorithm with the cloud model
(CM) to obtain a minimum-cost multicast tree that satisfies bandwidth, delay, and delay jitter con-
straints. Zhang et al. [27] proposed a Steiner tree construction method based on particle swarm opti-
mization (PSO), which uses the Steiner tree length as the constraint condition. Nath et al. [28] used
gradient descent based on general PSO to accelerate the convergence speed of PSO and designed
a gradient-based PSO algorithm for building a Steiner tree. Zhang et al. [29] proposed a multicast
routing method based on a genetic algorithm (GA), in which a new crossover mechanism called leaf
crossing (LC) is introduced into the GA to solve multicast quality of service (QoS) models. The above
algorithms are all designed for application in traditional network structures and can use only limited
network resources to construct multicast trees. Moreover, these algorithms have high computational
complexity and consume a significant amount of time; thus, they have difficulty reaching convergence.

Reinforcement learning algorithms: Heo et al. [30] proposed a multicast tree construction tech-
nique based on reinforcement learning for use in an SDN environment. This technique abstracts the
process of constructing a multicast tree as a Markov decision process (MDP), uses SDN technology to
obtain global network information and applies reinforcement learning for multicast tree construction.
However, this method considers only the number of hops and does not consider other network link state
information. Araqi et al. [31] proposed a Q-learning-based multicast routing method for wireless mesh
networks, which considers only channel selection and rate and does not optimize the construction of
multicast trees. Tran et al. [32] proposed a deep Q-network (DQN)-based multicast routing method.
In this method, broadcasting is first used to find the destination node, and the destination node then
uses unicast communication to send data packets to the source node to complete the construction of the
multicast tree. This method only considers delay and does not consider parameters such as bandwidth
and packet loss rate. Chae et al. [33] proposed a multicast tree construction algorithm based on meta-
reinforcement learning for use in the SDN context. This algorithm sets the link cost to a fixed value
of 1 and does not consider changes in the link state. Zhao et al. [34] designed a deep reinforcement
learning method for intelligent multicast routing in SDN based on a DQN, which considers only the
bandwidth, delay, and packet loss rate of each link; this method has the problem of slow convergence
of the intelligent agent.

Multi-agent reinforcement learning algorithms: At present, there is still little research in the lit-
erature on the application of multiagent deep reinforcement learning methods to multicast problems in
wireless networks. Instead, we can refer only to other relevant literature on multiagent deep reinforce-
ment learning algorithms. Yang et al. [35] proposed a software-defined urban traffic control algorithm
based on multiagent deep reinforcement learning for use in a software-defined Internet of Things (SD-
[oT) cooperative traffic light environment. Suzuki et al. [36] proposed a dynamic virtual network (VN)
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allocation method based on collaborative multiagent deep reinforcement learning (Coop-MADRL) to
maximize the utilization of limited network resources in dynamic VNs. Wu et al. [37] designed a flow
control and multichannel reallocation (TCCA-MADDPG) algorithm based on a multiagent deep deter-
ministic policy gradient (MADDPG) algorithm to optimize the multichannel reallocation framework
of the core backbone network based on flow control in the SDN-IoT. Bhavanasi et al. [38] proposed
a graph convolutional network routing and deep reinforcement learning algorithm for agents, which
regards the routing problem as a reinforcement learning problem with two new modifications. Duke
et al. [39] designed a multiagent reinforcement learning framework for transient load detection and
prevention in the SDN-IoT. This framework establishes one agent for multipath routing optimization
and another agent for malicious DDoS traffic detection and prevention in the network, with the two
agents collaborating in the same environment. Typically, similar multiagent algorithms have certain
instability issues, which can result in unstable training and difficulty in convergence during the training
phase. Therefore, some researchers have applied transfer learning in combination with multiagent deep
reinforcement learning.

Transfer reinforcement learning: Torrey et al. [40] incorporated transfer learning into multiagent
reinforcement learning by proposing a teacher—student framework for reinforcement learning. First, an
agent is trained as a teacher agent. Then, when training a second student agent for the same task, the
fixed policy of the teacher agent can provide suggestions to speed up the learning process. Parisotto et
al. [41] defined a method of multitasking and transfer learning in deep multitasking and reinforcement
learning, which guides agents to take actions in different tasks through expert experience and thus
accelerates the learning speed of the agents. Silva et al. [42] proposed a multiagent recommendation
framework in which multiple agents can advise each other while learning in a shared environment.

Considering the limitations of classical heuristic algorithms for multicast routing in wireless net-
works, the computational complexity of intelligent algorithms, and the slow convergence speed of
reinforcement learning, we draw inspiration from a previous study of multicast routing in wired net-
works [34]. To adapt to dynamic changes in the wireless network traffic while meeting QoS require-
ments, this paper proposes the adoption of SDWN technology to perceive global network information
and designs a multi-agent based deep reinforcement learning algorithm for the construction of multi-
cast trees. This algorithm can overcome the shortcomings of traditional wireless networks in regard
to the inability to directly control and maintain the global network and solves the problem of slow
convergence of single-agent multicast tree construction methods.

3. Design of SDWN intelligent multicast routing system architecture

3.1. Multicast problem description

Multicast communication, also known as multi-unicast communication, multipoint delivery, or
group communication, allows information to be simultaneously transmitted to a group of specified
destination addresses. Multicast datagrams are transmitted only once on a link in a network’s transport
layer and are only duplicated when encountering a branching link. The data flow diagram of multicast
network communication is shown in Figure 1. The data flows in multicast network communication fol-
low a tree-shaped structure called a multicast tree (or Steiner tree), where the source node src is the root
of the tree and the destination nodes dst for multicasting are the leaf nodes of the tree. The optimization
objective for multicast routing is to find a multicast tree that can achieve the optimal performance.
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@ Source node  ----- » Multicast route request

Destination node €----- Unicast route replay
O Multicast tree member

Figure 1. Illustrate of data flow directions in a multicast tree.

The optimal multicast tree corresponds to the solution of the mathematically defined Steiner tree
problem, which is a classic nondeterministic polynomial time (NP)-complete problem [9]. Consider a
weighted undirected connected graph represented by G(V, E, w), where V is the set of nodes, E is the
set of edges, and w specifies the weights of the edges. The edge e;; € E between node i and node j in
the graph has a weight w(e;;). Given a subset of nodes M C V, where M contains the source node src
and a set of destination nodes DS T = {dst,dst,,- - - ,dst,} for multicasting, that is, M = DS T | J{src}.
The graph G’ is a subgraph of the graph G that includes the vertex set M. Additionally, G’ contains
some nodes that are not in the vertex set M, which are referred to as Steiner nodes. The objective of
the optimal Steiner tree problem is to find a minimum-weight spanning tree 7 = (Vr, E7) in the graph
G’ that contains all of the nodes in M, as shown in Eq (3.1).

i, D, v G-
ej
where Vr denotes all the nodes in tree 7" and E7 denotes all the edges of tree T'.

Strictly speaking, obtaining an exact optimal solution for this NP-complete multicast tree problem
is extremely difficult. Existing works have discussed how to obtain an approximately optimal solu-
tion. Accordingly, an approximate treatment can be applied by decomposing the problem into a set of
distinct routes from the source node to the multiple destination nodes, as shown in Eq (3.2).

T:T(Pl,"'»pk""»l?n) (32)

where py is the path from the source node src to dst; in the multicast tree T, p; = (Vy, E}), Vi represents
all nodes in the path py, E; represents all edges in the py, k = 1,2, - - , n, dst, belongs to the destination
node DS T of the multicast tree, and n is the number of destination nodes.

If each p, € T has the minimum cost, then the multicast tree T is an end-to-end minimum cost
tree. Such a multicast tree can be built by constructing each p; (src,dst;) as a unicast path and then
combining these paths and removing redundant links. During the implementation process of removing

Mathematical Biosciences and Engineering Volume 20, Issue 9, 17158-17196.



17165

redundant links, when unicast paths from the source node to all destination nodes are combined to build
a multicast tree, each link of each path is added to the multicast tree one by one, and before each link
is added, it will judge whether the link exists in the current multicast tree; if so, the current link will
not be added to the multicast tree repeatedly. Instead, the redundant link is deleted. If it does not exist,
it joins the current multicast tree. By exploiting to use SDN technology to monitor the global network
resources, this paper calculates the minimum cost f(p;) for each path using the following parameters:

bwy is the residual bandwidth of p;, which is the minimum residual bandwidth from the source node
src to the destination node dst;. Its definition is given in Eq (3.3).

bwy = min (bw;; 33
Wi = Imin ( w J) (3.3)
where bw;; is the remaining bandwidth of the link e;; between node i and node ;.

delay, is the total delay on p;, which is expressed as the sum of the delays on all links in py. Its
definition is given in Eq (3.4).

delay, = Z delay;; (3.4)

€ij€Pk
where delay;; is the delay on the link e;; between node i and node j.

loss; is the packet loss rate on py, which is calculated as shown in Eq (3.5) since the packet loss rate
on some links is 0.

lossy =1— n (1 - loss,-j) 3.5

€ij€Pk
where loss;; is the packet loss rate on the link e;; between node i and node j.

used_bwy, is the bandwidth used on p;, which is expressed as the maximum bandwidth used from
the source node src to the destination node dst;. It is defined as shown in Eq (3.6).

used_bw; = max (used,bw,-j) 3.6)

€ij€Pk
where used_bw;; is the bandwidth used on the link e;; between node i and node ;.
errorsy is the error packet rate on py, which is calculated via Eq (3.7).

errorsy =1 — n (1 - errors,-.,-) (3.7)

€ij€Pk

where errors;; is the packet error rate on the link e;; between node i and node j.
dropsy is the drop rate on py, which is calculated via Eq (3.8).

drops; =1 — l—[ (1 - drops,-j) (3.8)
€ij€Pk

where drops;; is the packet drop rate on the link e;; between node i and node .

distancey, is the average distance of each link in p;. In a wireless network, the distance between
access points (APs) will affect data forwarding. The average distance can be used to measure the
average energy consumed by each AP node to send data and is defined in Eq (3.9) below.
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distance, = average [ Z distanceij] 3.9

€ij€Pk

where distance;; is the distance of the link ¢;; between node i and node j.

The objective function f(p;) is formulated to maximize the residual bandwidth bw; and minimize
the delay delayy, the packet loss rate loss, the used bandwidth used_bwy, the packet error rate errorsy,
the packet drop rate drops; and the average distance distance; between wireless APs, as shown in the
Eq (3.10).

S (pi) = Bibwy + B> (1 — delayy) + B3 (1 — lossy)
+B4 (1 — used_bwy) + Bs (1 — errorsy) (3.10)
+B¢ (1 —dropsy) + B7 (1 — distancey,)

where S, represents the weight of parameter, and / = 1,2, --- ,7. The specific design of g, is described
in Section 4.1, which discusses the reward function design.

The optimization objective value on each path is represented by f(pi), and the process of con-
structing the multicast tree consists of finding such a path for each destination node. These tasks
are independent of each other, so the problem of multicast tree construction can be mathematically
expressed as the multi-objective optimization problem shown in Eq (3.11).

max F (T) = [f(p1).,---, f(pe), - f (pn)] (3.11)

where T is the multicast tree that implements the communication path of the multicast network, T =
(Vr, ET), pi 1s the optimal path for each destination node, and p; € T, piy = (Vi, Ey), that is, Vy =
ViuUwvUJ---UV,, Er = EiJUEU -+ E,, nis the number of destination nodes.

3.2. SDWN intelligent multicast routing architecture

The SDWN-based intelligent multicast routing strategy combines SDN with wireless networking,
using multiagent reinforcement learning to achieve multicast routing. By perceiving the network link
state information of the wireless network, we obtain information such as the bandwidth, delay, packet
loss rate, used bandwidth, packet error rate, packet drop rate, and distance between wireless access
nodes in the wireless network. We use multiagent collaboration to construct multicast paths from the
source node to all destination nodes and use the southbound interface of the centralized controller to
issue flow tables to the switches on the paths to achieve multicast routing. With its ability to monitor the
global network link state information, SDWN enables the agents to intelligently adjust these multicast
routes based on dynamic changes in the network link state information.

The overall structure of the SDWN-based intelligent multicast routing strategy is shown in Figure
2, and it is explained in further detail below.

Mathematical Biosciences and Engineering Volume 20, Issue 9, 17158-17196.



17167

processing
logic

— Al
\ ...%;T_‘J‘j
() [

// -
AP1 AP3 P.
‘; ; ) _@—_ I:; ; IIJ __%— ;; ; Y

Figure 2. SDWN-based intelligent multicast routing architecture.
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(® The control plane periodically retrieves network status information from the data plane.

@ The application plane collects raw data on the network status and processes these data into corre-
sponding traffic matrices.

® The knowledge plane utilizes the processed traffic matrices from the application plane.

@ Each intelligent agent is assigned a subtask of determining the best multicast routing from the
source node to one or more of the destination nodes based on the link state information.

® The knowledge plane stores the multicast routes.

(® Before the next network traffic arrives, the control plane distributes flow tables to wireless access
nodes in the data plane. Finally, the data plane completes traffic forwarding.

3.2.1. Data plane

The data plane is composed of wireless access nodes (APs) and stations (STAs), which perform a
set of basic tasks, such as AP-to-controller mapping, packet routing, and site migration tasks, based
on instructions issued by the controller. These APs form a multi-hop wireless network by means of
wireless Mesh, and a STA is connected under each AP. Each AP in the data plane operates without
knowledge of the other APs in the wireless network, completely relying on the control plane, appli-
cation plane, and knowledge plane to perform related operations. It periodically interacts with the
controller and transmits wireless network status information to the control plane. Since we study the
route construction problem at the control level and do not involve the design of the underlying rules of
the data plane, we do not consider the AP joining or leaving and the mobility of STAs in the data plane
in this paper.
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3.2.2. Control plane

The control plane contains a centralized controller, which controls and manages the data plane
through its southbound interface and constructs a global view of the network in accordance with the
network flow and state information from the wireless APs in order to further realize the scheduling of
the network resources. The controller also has a northbound interface through which it can interact with
the knowledge plane, which facilitates the distribution and deployment of knowledge plane policies. It
includes three modules: a network topology discovery module, a link information detection module,
and a flow table installation module.

e Network topology discovery module: Topology discovery is performed through the OpenFlow
Discovery Protocol (OFDP), in which the controller periodically sends Link Layer Discovery Pro-
tocol (LLDP) request packets to the data plane to obtain the current network topology and collect
information about the connections between network devices. Specifically, the controller sends a
Features-Request message to a wireless AP to request its configuration information. Upon receiv-
ing the message, the AP encapsulates its port information, MAC address information, and data-
path ID information into a Features-Reply packet, which is sent to the controller. The controller
then parses this packet to establish a connection with the AP. Based on the collected information,
the network topology discovery module establishes associations among the network devices and
infers the network topology. It also stores the collected network device status and configuration
information for future use.

e Link information detection module: This module periodically sends status request packets to
the devices in the data plane. When a device receives a status request message, it encapsulates
its current status information (such as the sizes of sent and received data streams, the number of
dropped packets, the congestion status, and the distances to APs) into a data packet and sends
it to the controller. The link information detection module then receives the reply messages and
parses out the original data containing the network status information from the message packets.
The parsed data are also provided to the application plane for processing.

e Flow table installation module: First, the controller receives the optimal multicast routes se-
lected by the knowledge plane through its northbound interface. Then, before the next data
streams arrive, the controller uses its southbound interface to install the flow table entries and
send them to the wireless APs. Finally, the data plane forwards the traffic based on the installed
flow table entries.

3.2.3. Application plane

The application plane primarily handles the data processing logic between the control plane and the
knowledge plane. It mainly processes the raw network status data collected from the data plane by the
control plane into the network traffic matrix that the knowledge plane requires.

The raw network status data include the numbers of transmitted packets 7x, and received packets
rx,, for each port, the numbers of transmitted bytes tx; and received bytes rx;, the numbers of dropped
packets #x4,,, and rx4,,,, he numbers of erroneous packets zx,,, and rx,,,, and the duration of time #,,,
for which the port sends data. Using the collected port status data, the application plane calculates the
residual bandwidth bw;;, used bandwidth used_bw;;, packet loss rate loss;;, packet error rate errors;j,
and packet drop rate drops;; between node i and node j. The residual bandwidth bw;; can be calculated

Mathematical Biosciences and Engineering Volume 20, Issue 9, 17158-17196.



17169

by subtracting the used bandwidth used_bw;; from the maximum bandwidth bw,,,, of the link, where
the used bandwidth can be derived from tx;, rx;, and #,4,,.. The calculation is shown in Egs (3.12) and
(3.13).

(txp; + rxp;) — (txbj + rxbj)‘
used_bw;; = (3.12)
ldurj = Lauri

bwij = bWy — used_bw;; (3.13)

where 1x;; and tx,,; represent the numbers of bytes transmitted by node i and node j, respectively; rx;
and rx,; represent the number of bytes received by node i and node j, respectively; and #4,,; and #4,,;
represent the durations of data transmission by the ports of node i and node j, respectively.

The packet loss rate loss;; of the link is then calculated from the number of sent packets x,, and the
number of received packets rx,, as shown in Eq (3.14).

IXpi — FXpj

loss;;j = (3.14)

txpi
where rx,,; is the number of packets sent by node i and rx,; is the number of packets received by node
J-
The drop rate drops;; and error rate errors;; are calculated from the numbers of packets dropped
when sending (x,4,,) and receiving (rx,.,) and the numbers of packets with errors when sending
(tx.,r) and receiving (rx,,,), respectively, as shown in Eqs (3.15) and (3.16).

Z‘-xdropi + 'Xdropj

dropsij = - 100% (3.15)

IXpi + FXp;

errors; = et e 100 (3.16)
IXpi + IXp;
where 1x4,,p; and tx.,.; represent the numbers of dropped and erroneous packets sent by node 7, and
IX4ropj and rx,,,j represent the numbers of dropped and erroneous packets received by node j.

The raw network status data also include the round-trip delays RT T, and RTT,,; between the SDN
controller and the source and destination switches, respectively, which are obtained by the SDN con-
troller by means of the LLDP protocol and echo requests with timestamps [43]. The raw status data
also includes the forward transmission delay 7', and the reply transmission delay 7', among the
three; in detail, 7'f,4 is the total transmission delay from the controller to the source switch, from the
source switch to the destination switch, and then from the destination switch back to the controller,
and T is the reverse reply delay. Using the above data, the correct delay delay;; between the two
switches can be calculated as shown in Eq (3.17).

(wad + Trep[y - RTTrs - RTTrd)
2

In addition, the distance distance;; between two wireless APs can be calculated based on their
deployment coordinates. Since these parameters have different units of measurement, to avoid one
parameter having a disproportionate impact on the others, the max-min normalization method [44] is

delay;; = (3.17)
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used to normalize these parameters, as shown in Eq (3.18). In this way, all parameters are scaled to
within the range of [0,1].

m;; —min (T M)
i = Thax (T M) — min (T M)

(3.18)

where m;; is the normalized value of element of the parameter matrix between node i and node ;.
max(7'M) and min(7' M) are the maximum and minimum values in the parameter matrix, respectively.

After the calculation and normalization of these parameters, the traffic matrices required for de-
signing the state spaces of the intelligent agents in the knowledge plane are obtained. This allows the
intelligent agents to use more comprehensive network status information for learning.

3.2.4. Knowledge plane

The knowledge plane is a core module added to the SDWN architecture, and the multicast routing
algorithm proposed in this paper runs on this plane. In the knowledge plane, multicast path calculation
is performed through multi-agent cooperation. The knowledge plane obtains the processed traffic ma-
trices from the application plane and converts them into training data for the agents. After training, the
reward values obtained by the agents converge, that is, each agent uses these traffic matrices to seek its
optimal execution strategy. The construction of the multicast paths is completed