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Abstract: Multicast communication technology is widely applied in wireless environments with a
high device density. Traditional wireless network architectures have difficulty flexibly obtaining and
maintaining global network state information and cannot quickly respond to network state changes,
thus affecting the throughput, delay, and other QoS requirements of existing multicasting solutions.
Therefore, this paper proposes a new multicast routing method based on multiagent deep reinforce-
ment learning (MADRL-MR) in a software-defined wireless networking (SDWN) environment. First,
SDWN technology is adopted to flexibly configure the network and obtain network state information
in the form of traffic matrices representing global network links information, such as link bandwidth,
delay, and packet loss rate. Second, the multicast routing problem is divided into multiple subprob-
lems, which are solved through multiagent cooperation. To enable each agent to accurately understand
the current network state and the status of multicast tree construction, the state space of each agent
is designed based on the traffic and multicast tree status matrices, and the set of AP nodes in the net-
work is used as the action space. A novel single-hop action strategy is designed, along with a reward
function based on the four states that may occur during tree construction: progress, invalid, loop, and
termination. Finally, a decentralized training approach is combined with transfer learning to enable
each agent to quickly adapt to the dynamic changes of network link information and accelerate con-
vergence. Simulation experiments show that MADRL-MR outperforms existing algorithms in terms
of throughput, delay, packet loss rate, etc., and can establish more intelligent multicast routes. Code
and model are available at https://github.com/GuetYe/MADRL-MR code.
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1. Introduction

With the rapid development of wireless network technology, the applications of multicast commu-
nication in wireless networks are becoming increasingly widespread. This communication technology
can be applied for purposes such as video live streaming, multimedia conferences, real-time data trans-
mission, and online games. In these applications, as the number of users and the level of user demand
continue to increase, attempting to use unicast communication to send the necessary data would place
enormous pressure on the information sources and the network bandwidth, leading to network conges-
tion and inability to meet user needs. In the broadcasting scenario, the transmitted information will also
be received by users who do not need it, not only compromising the security of the information but also
wasting considerable bandwidth. For such point-to-point applications, multicast technology can better
solve the above problems. In multicast services, only one multicast message needs to be sent by the
source host, and the data are then replicated and distributed to multiple target nodes upon encountering
forked nodes during transmission [1]. Therefore, multicasting can effectively save bandwidth, reduce
the network load, and improve the security of information transmission [2].

Multicast routing requires the construction of an optimal multicast tree from the source node to all
destination nodes [3]. Timely acquisition of global dynamic network link state information is one of
the basic prerequisites for constructing such an optimal multicast tree. Traditional wireless networks
typically utilize a distributed management approach [4], in which network resources and functionalities
are dispersed across various wireless network devices (such as access points, routers, and switches)
and each device independently executes control decisions. While this approach offers flexibility, it
suffers from low management efficiency and presents difficulties in achieving timely optimization and
coordination of the entire network. Additionally, as the network expands in scale, the traffic data
forwarded by network devices become increasingly voluminous, making it challenging for traditional
network devices, for which forwarding is tightly coupled with control, to obtain real-time information
on the global network status. To address the aforementioned issues, the recently emerging technology
of software-defined wireless networking (SDWN) [5] provides an excellent solution.

SDWN combines software-defined networking (SDN) [6] with wireless networks. SDWN solves
the problems of low network management and control efficiency and the difficulty of achieving global
optimization and coordination in traditional wireless network structures by exploiting the centralized
management advantages of SDN, such as centralized control logic and the decoupling of forwarding
from control. By taking full advantage of these centralized management capabilities, SDWN facili-
tates the global optimization and coordination of network resources. SDWN enables the controller of
a wireless network to obtain the global static topological structure of the network, the global network
state, and the utilization rates of resources by controlling the logical concentration [7]. In combina-
tion with the programmability of SDWN networks, these capabilities allow the network controller to
achieve unified management, integration, and virtualization of network resources and to use a north-
bound interface to provide on-demand allocation of network resources and services for upper-layer
applications.

The classic algorithms for constructing multicast trees in traditional multicast routing include the
shortest path and minimum spanning tree algorithm of Kou, Markowsky and Berman (the KMB algo-
rithm) [8], the minimum cost path heuristic (MPH) algorithm [9], and the average distance heuristic
(ADH) algorithm [10]. These classic multicast tree construction algorithms have been successfully
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applied in many fields over the past decade. However, with the continuous expansion of the network
scale and the exponential growth in network traffic, these traditional multicast tree construction meth-
ods cannot adapt to the dynamic changes of link information in wireless networks, making it difficult
to meet the current requirements in terms of network service quality. Moreover, as the scale of SDWN
networks continues to expand, this deficiency becomes even more apparent. Therefore, designing mul-
ticast trees that adapt to the dynamic changes in network link information to meet the high-performance
requirements of multicast services is an important research topic in leveraging the advantages of SDN
architecture.

In recent years, artificial intelligence technology has been increasingly studied and applied in the
networking field due to its strong adaptability and flexibility. Deep reinforcement learning has signif-
icant advantages in high-dimensional and complex decision-making. By combining it with the SDN
architecture, researchers can fully leverage its flexibility and ability to adapt to the dynamic changes of
network link information, thereby improving network efficiency and performance. Currently, most re-
search on the application of deep reinforcement learning to SDN unicast and multicast communication
is limited to discussions of single-agent reinforcement learning methods [11–14]. However, compared
to multi-agent reinforcement learning, the convergence speed of these methods is slow. Consequently,
in the case of frequent and dynamic changes of network link information, the single-agent approach
has difficulty responding quickly to the forwarding needs of data flows.

In consideration of the above issues, this paper proposes an intelligent multicast routing method
based on multiagent deep reinforcement learning, named MADRL-MR, for use in SDWN. In MADRL-
MR, an SDWN framework is designed to overcome the limitations of traditional wireless networking,
in which the overall network cannot be directly controlled and maintained, and to enable more conve-
nient configuration of the network devices while improving the network performance. This framework
is used to manage a wireless network and obtain its global topology and link state information. It also
makes use of the adaptability and flexibility of deep reinforcement learning to adapt to the dynamic
changes of network link information. To address the slow convergence speed of the construction of
multicast trees using a single intelligent agent as well as the difficulty of quickly responding to data
forwarding demands, a multi-agent deep reinforcement learning algorithm is designed for multicast
tree construction in MADRL-MR. In this algorithm, each intelligent agent can independently learn
and adapt to changes in the network state and collaborate to achieve better routing strategies. To ac-
celerate the training speed of the multiple intelligent agents, we design corresponding transfer learning
mechanisms [15], in which an initial set of weights is pre-trained and loaded before each intelligent
agent begins training to accelerate its convergence speed.

The main contributions of this article are as follows:

1) In contrast to the traditional approach for managing and maintaining the global network state in a
wireless network, we design a network architecture based on SDWN. By virtue of the centralized
control logic and programmability features of SDWN, we can monitor the global static topology
and network status information of a wireless network and obtain real-time link status information,
such as bandwidth, delay, and packet loss rate, to achieve more efficient global optimization and
coordination of the network resources.

2) In contrast to the existing method of building multicast trees with a single intelligent agent, we de-
sign and implement an intelligent multicast routing method based on multiagent deep reinforcement
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learning. First, we divide the problem of multicast tree construction into multiple subproblems,
which are solved through collaboration among multiple intelligent agents. Second, in the design of
the state space for each intelligent agent, we comprehensively consider parameters such as band-
width, delay, the packet loss rate of wireless links, the used bandwidth, the packet error rate, the
packet drop rate, the distance between access points, and the multicast tree construction status. In
addition, instead of the existing method of using the k-paths approach to design the action space
for an intelligent agent, we design a novel action space using the next-hop node in the network
as the action. Finally, we design corresponding reward functions for the four possible scenarios
encountered in multicast tree construction, which can guide the intelligent agents to select efficient
multicast routes.

3) To improve the convergence efficiency and collaboration stability of the multiple intelligent agents,
we design a fully decentralized training (independent learning, IL) method for multiagent systems.
In addition, to enhance the convergence speed of the multiagent system, we adopt transfer learning
techniques. Specifically, we transfer knowledge acquired from experts or previous tasks to the cur-
rent task at the beginning of the training process, thereby reducing the initial ineffective exploration
of the intelligent agents and accelerating their convergence.

The rest of this article is organized as follows. Section 2 introduces the relevant work. Section
3 analyzes the problem and introduces the SDWN intelligent multicast routing structure. Section 4
provides a detailed introduction to the MADRL-MR algorithm. Section 5 introduces the experimental
setup and performance evaluation results. Section 6 introduces the conclusion and future work.

2. Related work

In this section, we mainly discuss the related work on multicast routing in SDWN and analyze the
advantages and disadvantages of traditional algorithms and intelligent algorithms applied in multicast
routing.

Traditional algorithms: Kou et al. [8] proposed a Steiner tree construction method based on a
shortest path and minimum spanning tree algorithm (the KMB algorithm). Takahashi et al. [9] pro-
posed the minimum cost path heuristic (MPH) algorithm. Smith et al. [10] designed an algorithm based
on an average distance heuristic (ADH). The above three classic algorithms were initially proposed to
solve the problem of constructing multicast trees, and many subsequent improvements have been de-
veloped based on these algorithms. Yu et al. [16] proposed an improved algorithm based on key nodes
(KBMPH) by prioritizing the paths for certain key nodes. Zhou et al. [17] designed a delay-constrained
MPH algorithm (DCMPH). Zhao et al. [18] studied how to reduce the cost of constructing a Steiner tree
and proposed a weighted node-based MPH algorithm (NWMPH). Farzinvash et al. [19] decomposed
the problem of multicast tree construction in a wireless mesh network into two phases, with the first
phase considering delay and the second phase considering bandwidth. By combining the two phases,
these authors proposed an algorithm that comprehensively considers both delay and bandwidth for the
construction of multicast trees. Przewoźniczek et al. [20] transformed k-shortest Steiner tree problems
into binary dynamic problems and solved them using the integer linear programming (ILP) method.
Walkowiak et al. [21] used a unicast path construction method to construct a multicast tree, but its
computational cost was too high. Martins et al. [22] transformed the multicast tree construction prob-
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lem into an ILP problem and designed a heuristic algorithm with delay constraints. Zhang et al. [23]
proposed a delay-optimized multicast routing scheme for use in the SDN context, which utilizes SDN
to obtain network state information. Hu et al. [24] also proposed a multicast routing method based
on SDN. However, the traditional algorithms mentioned above can use only a single network resource
to construct a multicast tree; thus, they have poor perception of the dynamic changes of network link
information and significant limitations in constructing efficient multicast routes.

Intelligent Algorithms: Annapurna et al. [25] proposed a Steiner tree construction method based
on ant colony optimization (ACO), which optimizes the Steiner tree using bandwidth, delay, and path
cost. Zhang et al. [26] proposed a multicast routing method based on a hybrid ant colony algorithm.
This method combines the solution generation process of the ACO algorithm with the cloud model
(CM) to obtain a minimum-cost multicast tree that satisfies bandwidth, delay, and delay jitter con-
straints. Zhang et al. [27] proposed a Steiner tree construction method based on particle swarm opti-
mization (PSO), which uses the Steiner tree length as the constraint condition. Nath et al. [28] used
gradient descent based on general PSO to accelerate the convergence speed of PSO and designed
a gradient-based PSO algorithm for building a Steiner tree. Zhang et al. [29] proposed a multicast
routing method based on a genetic algorithm (GA), in which a new crossover mechanism called leaf
crossing (LC) is introduced into the GA to solve multicast quality of service (QoS) models. The above
algorithms are all designed for application in traditional network structures and can use only limited
network resources to construct multicast trees. Moreover, these algorithms have high computational
complexity and consume a significant amount of time; thus, they have difficulty reaching convergence.

Reinforcement learning algorithms: Heo et al. [30] proposed a multicast tree construction tech-
nique based on reinforcement learning for use in an SDN environment. This technique abstracts the
process of constructing a multicast tree as a Markov decision process (MDP), uses SDN technology to
obtain global network information and applies reinforcement learning for multicast tree construction.
However, this method considers only the number of hops and does not consider other network link state
information. Araqi et al. [31] proposed a Q-learning-based multicast routing method for wireless mesh
networks, which considers only channel selection and rate and does not optimize the construction of
multicast trees. Tran et al. [32] proposed a deep Q-network (DQN)-based multicast routing method.
In this method, broadcasting is first used to find the destination node, and the destination node then
uses unicast communication to send data packets to the source node to complete the construction of the
multicast tree. This method only considers delay and does not consider parameters such as bandwidth
and packet loss rate. Chae et al. [33] proposed a multicast tree construction algorithm based on meta-
reinforcement learning for use in the SDN context. This algorithm sets the link cost to a fixed value
of 1 and does not consider changes in the link state. Zhao et al. [34] designed a deep reinforcement
learning method for intelligent multicast routing in SDN based on a DQN, which considers only the
bandwidth, delay, and packet loss rate of each link; this method has the problem of slow convergence
of the intelligent agent.

Multi-agent reinforcement learning algorithms: At present, there is still little research in the lit-
erature on the application of multiagent deep reinforcement learning methods to multicast problems in
wireless networks. Instead, we can refer only to other relevant literature on multiagent deep reinforce-
ment learning algorithms. Yang et al. [35] proposed a software-defined urban traffic control algorithm
based on multiagent deep reinforcement learning for use in a software-defined Internet of Things (SD-
IoT) cooperative traffic light environment. Suzuki et al. [36] proposed a dynamic virtual network (VN)
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allocation method based on collaborative multiagent deep reinforcement learning (Coop-MADRL) to
maximize the utilization of limited network resources in dynamic VNs. Wu et al. [37] designed a flow
control and multichannel reallocation (TCCA-MADDPG) algorithm based on a multiagent deep deter-
ministic policy gradient (MADDPG) algorithm to optimize the multichannel reallocation framework
of the core backbone network based on flow control in the SDN-IoT. Bhavanasi et al. [38] proposed
a graph convolutional network routing and deep reinforcement learning algorithm for agents, which
regards the routing problem as a reinforcement learning problem with two new modifications. Duke
et al. [39] designed a multiagent reinforcement learning framework for transient load detection and
prevention in the SDN-IoT. This framework establishes one agent for multipath routing optimization
and another agent for malicious DDoS traffic detection and prevention in the network, with the two
agents collaborating in the same environment. Typically, similar multiagent algorithms have certain
instability issues, which can result in unstable training and difficulty in convergence during the training
phase. Therefore, some researchers have applied transfer learning in combination with multiagent deep
reinforcement learning.

Transfer reinforcement learning: Torrey et al. [40] incorporated transfer learning into multiagent
reinforcement learning by proposing a teacher–student framework for reinforcement learning. First, an
agent is trained as a teacher agent. Then, when training a second student agent for the same task, the
fixed policy of the teacher agent can provide suggestions to speed up the learning process. Parisotto et
al. [41] defined a method of multitasking and transfer learning in deep multitasking and reinforcement
learning, which guides agents to take actions in different tasks through expert experience and thus
accelerates the learning speed of the agents. Silva et al. [42] proposed a multiagent recommendation
framework in which multiple agents can advise each other while learning in a shared environment.

Considering the limitations of classical heuristic algorithms for multicast routing in wireless net-
works, the computational complexity of intelligent algorithms, and the slow convergence speed of
reinforcement learning, we draw inspiration from a previous study of multicast routing in wired net-
works [34]. To adapt to dynamic changes in the wireless network traffic while meeting QoS require-
ments, this paper proposes the adoption of SDWN technology to perceive global network information
and designs a multi-agent based deep reinforcement learning algorithm for the construction of multi-
cast trees. This algorithm can overcome the shortcomings of traditional wireless networks in regard
to the inability to directly control and maintain the global network and solves the problem of slow
convergence of single-agent multicast tree construction methods.

3. Design of SDWN intelligent multicast routing system architecture

3.1. Multicast problem description

Multicast communication, also known as multi-unicast communication, multipoint delivery, or
group communication, allows information to be simultaneously transmitted to a group of specified
destination addresses. Multicast datagrams are transmitted only once on a link in a network’s transport
layer and are only duplicated when encountering a branching link. The data flow diagram of multicast
network communication is shown in Figure 1. The data flows in multicast network communication fol-
low a tree-shaped structure called a multicast tree (or Steiner tree), where the source node src is the root
of the tree and the destination nodes dst for multicasting are the leaf nodes of the tree. The optimization
objective for multicast routing is to find a multicast tree that can achieve the optimal performance.
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Figure 1. Illustrate of data flow directions in a multicast tree.

The optimal multicast tree corresponds to the solution of the mathematically defined Steiner tree
problem, which is a classic nondeterministic polynomial time (NP)-complete problem [9]. Consider a
weighted undirected connected graph represented by G(V, E,w), where V is the set of nodes, E is the
set of edges, and w specifies the weights of the edges. The edge ei j ∈ E between node i and node j in
the graph has a weight w(ei j). Given a subset of nodes M ⊆ V , where M contains the source node src
and a set of destination nodes DS T = {dst1, dst2, · · · , dstn} for multicasting, that is, M = DS T

⋃
{src}.

The graph G′ is a subgraph of the graph G that includes the vertex set M. Additionally, G′ contains
some nodes that are not in the vertex set M, which are referred to as Steiner nodes. The objective of
the optimal Steiner tree problem is to find a minimum-weight spanning tree T = (VT , ET ) in the graph
G′ that contains all of the nodes in M, as shown in Eq (3.1).

min
T⊆G,M⊆VT

∑
ei j

w(ei j) (3.1)

where VT denotes all the nodes in tree T and ET denotes all the edges of tree T .
Strictly speaking, obtaining an exact optimal solution for this NP-complete multicast tree problem

is extremely difficult. Existing works have discussed how to obtain an approximately optimal solu-
tion. Accordingly, an approximate treatment can be applied by decomposing the problem into a set of
distinct routes from the source node to the multiple destination nodes, as shown in Eq (3.2).

T = T (p1, · · · , pk, · · · , pn) (3.2)

where pk is the path from the source node src to dstk in the multicast tree T , pk = (Vk, Ek), Vk represents
all nodes in the path pk, Ek represents all edges in the pk, k = 1, 2, · · · , n, dstk belongs to the destination
node DS T of the multicast tree, and n is the number of destination nodes.

If each pk ∈ T has the minimum cost, then the multicast tree T is an end-to-end minimum cost
tree. Such a multicast tree can be built by constructing each pk (src, dstk) as a unicast path and then
combining these paths and removing redundant links. During the implementation process of removing
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redundant links, when unicast paths from the source node to all destination nodes are combined to build
a multicast tree, each link of each path is added to the multicast tree one by one, and before each link
is added, it will judge whether the link exists in the current multicast tree; if so, the current link will
not be added to the multicast tree repeatedly. Instead, the redundant link is deleted. If it does not exist,
it joins the current multicast tree. By exploiting to use SDN technology to monitor the global network
resources, this paper calculates the minimum cost f (pk) for each path using the following parameters:

bwk is the residual bandwidth of pk, which is the minimum residual bandwidth from the source node
src to the destination node dstk. Its definition is given in Eq (3.3).

bwk = min
ei j∈pk

(
bwi j

)
(3.3)

where bwi j is the remaining bandwidth of the link ei j between node i and node j.
delayk is the total delay on pk, which is expressed as the sum of the delays on all links in pk. Its

definition is given in Eq (3.4).

delayk =
∑

ei j∈pk

delayi j (3.4)

where delayi j is the delay on the link ei j between node i and node j.
lossk is the packet loss rate on pk, which is calculated as shown in Eq (3.5) since the packet loss rate

on some links is 0.

lossk = 1 −
∏

ei j∈pk

(
1 − lossi j

)
(3.5)

where lossi j is the packet loss rate on the link ei j between node i and node j.
used bwk is the bandwidth used on pk, which is expressed as the maximum bandwidth used from

the source node src to the destination node dstk. It is defined as shown in Eq (3.6).

used bwk = max
ei j∈pk

(
used bwi j

)
(3.6)

where used bwi j is the bandwidth used on the link ei j between node i and node j.
errorsk is the error packet rate on pk, which is calculated via Eq (3.7).

errorsk = 1 −
∏

ei j∈pk

(
1 − errorsi j

)
(3.7)

where errorsi j is the packet error rate on the link ei j between node i and node j.
dropsk is the drop rate on pk, which is calculated via Eq (3.8).

dropsk = 1 −
∏

ei j∈pk

(
1 − dropsi j

)
(3.8)

where dropsi j is the packet drop rate on the link ei j between node i and node j.
distancek is the average distance of each link in pk. In a wireless network, the distance between

access points (APs) will affect data forwarding. The average distance can be used to measure the
average energy consumed by each AP node to send data and is defined in Eq (3.9) below.
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distancek = average

∑
ei j∈pk

distancei j

 (3.9)

where distancei j is the distance of the link ei j between node i and node j.
The objective function f (pk) is formulated to maximize the residual bandwidth bwk and minimize

the delay delayk, the packet loss rate lossk, the used bandwidth used bwk, the packet error rate errorsk,
the packet drop rate dropsk and the average distance distancek between wireless APs, as shown in the
Eq (3.10).

f (pk) = β1bwk + β2 (1 − delayk) + β3 (1 − lossk)

+β4 (1 − used bwk) + β5 (1 − errorsk)

+β6 (1 − dropsk) + β7 (1 − distancek)

(3.10)

where βl represents the weight of parameter, and l = 1, 2, · · · , 7. The specific design of βl is described
in Section 4.1, which discusses the reward function design.

The optimization objective value on each path is represented by f (pk), and the process of con-
structing the multicast tree consists of finding such a path for each destination node. These tasks
are independent of each other, so the problem of multicast tree construction can be mathematically
expressed as the multi-objective optimization problem shown in Eq (3.11).

max F (T ) =
[
f (p1) , · · · , f (pk) , · · · f (pn)

]
(3.11)

where T is the multicast tree that implements the communication path of the multicast network, T =
(VT , ET ), pk is the optimal path for each destination node, and pk ∈ T , pk = (Vk, Ek), that is, VT =

V1
⋃

V2
⋃
· · ·
⋃

Vn, ET = E1
⋃

E2
⋃
· · ·
⋃

En, n is the number of destination nodes.

3.2. SDWN intelligent multicast routing architecture

The SDWN-based intelligent multicast routing strategy combines SDN with wireless networking,
using multiagent reinforcement learning to achieve multicast routing. By perceiving the network link
state information of the wireless network, we obtain information such as the bandwidth, delay, packet
loss rate, used bandwidth, packet error rate, packet drop rate, and distance between wireless access
nodes in the wireless network. We use multiagent collaboration to construct multicast paths from the
source node to all destination nodes and use the southbound interface of the centralized controller to
issue flow tables to the switches on the paths to achieve multicast routing. With its ability to monitor the
global network link state information, SDWN enables the agents to intelligently adjust these multicast
routes based on dynamic changes in the network link state information.

The overall structure of the SDWN-based intelligent multicast routing strategy is shown in Figure
2, and it is explained in further detail below.
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Figure 2. SDWN-based intelligent multicast routing architecture.

1O The control plane periodically retrieves network status information from the data plane.

2O The application plane collects raw data on the network status and processes these data into corre-
sponding traffic matrices.

3O The knowledge plane utilizes the processed traffic matrices from the application plane.

4O Each intelligent agent is assigned a subtask of determining the best multicast routing from the
source node to one or more of the destination nodes based on the link state information.

5O The knowledge plane stores the multicast routes.

6O Before the next network traffic arrives, the control plane distributes flow tables to wireless access
nodes in the data plane. Finally, the data plane completes traffic forwarding.

3.2.1. Data plane

The data plane is composed of wireless access nodes (APs) and stations (STAs), which perform a
set of basic tasks, such as AP-to-controller mapping, packet routing, and site migration tasks, based
on instructions issued by the controller. These APs form a multi-hop wireless network by means of
wireless Mesh, and a STA is connected under each AP. Each AP in the data plane operates without
knowledge of the other APs in the wireless network, completely relying on the control plane, appli-
cation plane, and knowledge plane to perform related operations. It periodically interacts with the
controller and transmits wireless network status information to the control plane. Since we study the
route construction problem at the control level and do not involve the design of the underlying rules of
the data plane, we do not consider the AP joining or leaving and the mobility of STAs in the data plane
in this paper.
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3.2.2. Control plane

The control plane contains a centralized controller, which controls and manages the data plane
through its southbound interface and constructs a global view of the network in accordance with the
network flow and state information from the wireless APs in order to further realize the scheduling of
the network resources. The controller also has a northbound interface through which it can interact with
the knowledge plane, which facilitates the distribution and deployment of knowledge plane policies. It
includes three modules: a network topology discovery module, a link information detection module,
and a flow table installation module.

• Network topology discovery module: Topology discovery is performed through the OpenFlow
Discovery Protocol (OFDP), in which the controller periodically sends Link Layer Discovery Pro-
tocol (LLDP) request packets to the data plane to obtain the current network topology and collect
information about the connections between network devices. Specifically, the controller sends a
Features-Request message to a wireless AP to request its configuration information. Upon receiv-
ing the message, the AP encapsulates its port information, MAC address information, and data-
path ID information into a Features-Reply packet, which is sent to the controller. The controller
then parses this packet to establish a connection with the AP. Based on the collected information,
the network topology discovery module establishes associations among the network devices and
infers the network topology. It also stores the collected network device status and configuration
information for future use.
• Link information detection module: This module periodically sends status request packets to

the devices in the data plane. When a device receives a status request message, it encapsulates
its current status information (such as the sizes of sent and received data streams, the number of
dropped packets, the congestion status, and the distances to APs) into a data packet and sends
it to the controller. The link information detection module then receives the reply messages and
parses out the original data containing the network status information from the message packets.
The parsed data are also provided to the application plane for processing.
• Flow table installation module: First, the controller receives the optimal multicast routes se-

lected by the knowledge plane through its northbound interface. Then, before the next data
streams arrive, the controller uses its southbound interface to install the flow table entries and
send them to the wireless APs. Finally, the data plane forwards the traffic based on the installed
flow table entries.

3.2.3. Application plane

The application plane primarily handles the data processing logic between the control plane and the
knowledge plane. It mainly processes the raw network status data collected from the data plane by the
control plane into the network traffic matrix that the knowledge plane requires.

The raw network status data include the numbers of transmitted packets txp and received packets
rxp for each port, the numbers of transmitted bytes txb and received bytes rxb, the numbers of dropped
packets txdrop and rxdrop, he numbers of erroneous packets txerr and rxerr, and the duration of time tdur

for which the port sends data. Using the collected port status data, the application plane calculates the
residual bandwidth bwi j, used bandwidth used bwi j, packet loss rate lossi j, packet error rate errorsi j,
and packet drop rate dropsi j between node i and node j. The residual bandwidth bwi j can be calculated
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by subtracting the used bandwidth used bwi j from the maximum bandwidth bwmax of the link, where
the used bandwidth can be derived from txb, rxb, and tdur. The calculation is shown in Eqs (3.12) and
(3.13).

used bwi j =

∣∣∣∣(txbi + rxbi) −
(
txb j + rxb j

)∣∣∣∣
tdur j − tduri

(3.12)

bwi j = bwmax − used bwi j (3.13)

where txbi and txb j represent the numbers of bytes transmitted by node i and node j, respectively; rxbi

and rxb j represent the number of bytes received by node i and node j, respectively; and tduri and tdur j

represent the durations of data transmission by the ports of node i and node j, respectively.
The packet loss rate lossi j of the link is then calculated from the number of sent packets txp and the

number of received packets rxp, as shown in Eq (3.14).

lossi j =
txpi − rxp j

txpi
(3.14)

where txpi is the number of packets sent by node i and rxp j is the number of packets received by node
j.

The drop rate dropsi j and error rate errorsi j are calculated from the numbers of packets dropped
when sending (txdrop) and receiving (rxdrop) and the numbers of packets with errors when sending
(txerr) and receiving (rxerr), respectively, as shown in Eqs (3.15) and (3.16).

dropsi j =
txdropi + rxdrop j

txpi + rxp j
· 100% (3.15)

errorsi j =
txerri + rxerr j

txpi + rxp j
· 100% (3.16)

where txdropi and txerri represent the numbers of dropped and erroneous packets sent by node i, and
rxdrop j and rxerr j represent the numbers of dropped and erroneous packets received by node j.

The raw network status data also include the round-trip delays RTTrs and RTTrd between the SDN
controller and the source and destination switches, respectively, which are obtained by the SDN con-
troller by means of the LLDP protocol and echo requests with timestamps [43]. The raw status data
also includes the forward transmission delay T f wd and the reply transmission delay Treply among the
three; in detail, T f wd is the total transmission delay from the controller to the source switch, from the
source switch to the destination switch, and then from the destination switch back to the controller,
and Treply is the reverse reply delay. Using the above data, the correct delay delayi j between the two
switches can be calculated as shown in Eq (3.17).

delayi j =

(
T f wd + Treply − RTTrs − RTTrd

)
2

(3.17)

In addition, the distance distancei j between two wireless APs can be calculated based on their
deployment coordinates. Since these parameters have different units of measurement, to avoid one
parameter having a disproportionate impact on the others, the max-min normalization method [44] is
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used to normalize these parameters, as shown in Eq (3.18). In this way, all parameters are scaled to
within the range of [0,1].

mi j =
mi j −min (T M)

max (T M) −min (T M)
(3.18)

where mi j is the normalized value of element of the parameter matrix between node i and node j.
max(T M) and min(T M) are the maximum and minimum values in the parameter matrix, respectively.

After the calculation and normalization of these parameters, the traffic matrices required for de-
signing the state spaces of the intelligent agents in the knowledge plane are obtained. This allows the
intelligent agents to use more comprehensive network status information for learning.

3.2.4. Knowledge plane

The knowledge plane is a core module added to the SDWN architecture, and the multicast routing
algorithm proposed in this paper runs on this plane. In the knowledge plane, multicast path calculation
is performed through multi-agent cooperation. The knowledge plane obtains the processed traffic ma-
trices from the application plane and converts them into training data for the agents. After training, the
reward values obtained by the agents converge, that is, each agent uses these traffic matrices to seek its
optimal execution strategy. The construction of the multicast paths is completed through the cooper-
ation of multiple agents, and the multicast paths are then sent to the control plane via the northbound
interface.

Figure 3. Illustrate of multi-agent cooperation for building a multicast tree.

The scheme for constructing a multicast tree through multi-agent cooperation in the knowledge
plane is based on the formal description of the multicast problem given in Section 3.1. The problem of
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constructing a multicast tree with the minimum end-to-end costs is decomposed into the construction
of multiple unicast paths from the source node to individual destination nodes. The final multicast
tree is simply a collection of such unicast paths. To construct such a multicast tree, we abstract the
construction process as an MDP [45]. The state space, action space, and reward function of each
intelligent agent are designed using the global network topology and link state information. This is
illustrated in Figure 3.

First, the multicast routes from the source node src to the multicast destination node set DS T ,
DS T = {dst1, · · · , dst6}, are decomposed into 6 unicast routes {(src, dst1), · · · , (src, dst6)}. Then, these
routes are randomly partitioned among three subtasks {(src, dst2), (src, dst3)}, {(src, dst1), (src, dst5)},
and {(src, dst4), (src, dst6)}. These subtasks are randomly assigned to three different agents, i.e., agent1,
agent2, and agent3, for completion to obtain the unicast paths {path1, path2, · · · , path6} for the corre-
sponding destination nodes. Remove redundant links and ultimately obtain a multicast tree completed
by multiple agents working together.

4. MADRL-MR: An intelligent multicast routing algorithm with multi-agent deep
reinforcement learning

Figure 4. Flowchart of the MADRL-MR algorithm.

The flowchart of the MADRL-MR algorithm is shown in Figure 4. First, SDWN technology is used
to obtain the topology and link state information of the wireless network, and form an environment
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with which the intelligent agents can interact is formed based on the generated network topology and
traffic matrices. A set of pretrained unicast routing agent weights for all nodes is also generated. Each
agent in MADRL-MR loads these pretrained weights and interacts with the established environment
to obtain the current state. If the state is not a terminal state, then the agent generates an action and
interacts with the environment again to obtain the next state and reward. This process is repeated until
all agents reach the goal state, that is, the optimal multicast routing paths are generated to construct the
multicast tree from the source to all destination nodes.

Each agent in MADRL-MR uses the Advantage Actor–Critic (A2C) algorithm [46] as its core
architecture, as shown in Figure 5. The actor is the policy-based neural network, and the critic is the
value-based neural network. A2C is a reinforcement learning method that combines policy gradients
and temporal difference learning. It uses an on-policy learning approach to interactively learn from
the environment. The learning process involves a series of actions taken to proceed from the source
node to the destination node. The selection of each action (i.e., from the current state to the next state)
generates a probability distribution for the selection of all possible actions, yielding a policy π. The
initial actor interacts with the environment to collect data, and based on these data, the value function
is estimated using the temporal difference (TD) method. The critic judges the goodness of the selected
action in the current state and then updates the policy π based on the value function. Finally, a policy
will be trained to select the action with the highest reward value in each state.

The following description of the proposed algorithm starts with the design of the state space, action
space, and reward function for each agent and a detailed analysis of the policy gradient update process
of A2C. Finally, the designed multiagent training method is introduced, and how transfer learning is
used to accelerate the convergence of the designed multiagent algorithm is described.

Figure 5. Structure of A2C.

4.1. Designed reinforcement learning agents

The MADRL-MR algorithm represents an extension from single-agent to multi-agent reinforcement
learning. The design of each reinforcement learning agent includes its state space, action space, reward
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function, and internal structure, which are identical for all agents in the multi-agent system. Here, we
introduce the design of the reinforcement learning agents.

4.1.1. State space

The state space is a description of the environment and the agent, and the agent can obtain the
current state by observing the environment. In the reinforcement learning problem of interest here,
the environment consists of the data plane, and the agent’s state space is composed of the link state
information and the constructed paths from the current source node to all destination nodes in the data
plane. We transform this information into a multi-channel matrix GT , which consists of eight matrices
corresponding to different channels, as shown in Figure 6.

Figure 6. The designed state matrix of each agent.

As illustrated in Figure 6, we transform each of the seven types of data collected from the data plane,
namely, bw, delay, loss, used bw, errors, drops and distance, into an adjacency matrix of a weighted
undirected graph, resulting in seven traffic matrices with different weights. Here, n is the number of
nodes in the network topology. We also express the constructed multicast tree as a symmetric matrix
Mtree, where src is the source node and {dst1, dst2, dst3} are the destination nodes of the tree. If the
matrix element corresponding the edge between node i and node j is set to 1, this indicates that this
edge is present in the multicast tree.

The set of all possible changes to GT is the state space S. Each state corresponds to a multi-channel
matrix. A state transition corresponds to adding a new link to a path, i.e., adding a new link between
two nodes. Based on the changes in GT , the current state st is transformed into the next state st+1. When
paths to all destination nodes have been found (i.e., when the multicast tree has been constructed), st+1

is set to the terminal state, i.e., st+1 = None.

4.1.2. Action space

The action space is the set of actions that an agent can take based on its observation of the current
state. In this article, the wireless AP nodes (i.e., the possible next hops) in the data plane are regarded
as actions, i.e.,A = {a1, a2, · · · , ai, · · · , an} = {N1,N2, · · · ,Ni, · · · ,Nk}, where Nk represents AP node i,
for i = 1, 2, · · · , n, and ai corresponds to Ni. Taking a certain action means adding that action (wireless
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AP node) to the path from the source node to the destination node. For each state si ∈ S in the state
space, the agent can take any action a ∈ A, and the execution of action a will result in a change in the
state. In theory, all nodes can be considered as actions, but not all actions can be executed. To meet
the requirements of the input tensor for a neural network, some invalid actions will be generated when
selecting actions. Suppose that the agent selects a node as an action at that is not adjacent to any node
in the current state st. If the resulting state st+1 generated by interacting with the environment does not
advance the construction of the path, then this node cannot be added to the multicast tree. Therefore,
the agent’s valid actions correspond to the set of adjacent nodes in the current state, i.e., the degree
dr(Ni) of the nodes in that state.

4.1.3. Reward function

The reward function guides the agent to choose the maximum reward in order to obtain the optimal
policy. It measures the value of a certain action taken by the agent in a certain state, thus helping
the agent evolve toward an optimal policy. The optimization objective of maximizing the remaining
bandwidth and minimizing the delay, packet loss rate, used bandwidth, packet error rate, packet drop
rate, and distance between APs is communicated to the agent through the reward function. At each
time step, the agent selects an action at in the current state st based on its policy π, and the environment
responds to this action, resulting in a state transition to st+1 and the agent receiving a reward value
rt+1. When an agent interacts with the environment, it may select either valid or invalid actions. A
valid action can lead to a process state, a normal state change, or a terminal state. Thus, there are four
possible outcomes that can arise from the interaction between an agent and the environment: a process
state (PART ), an invalid action (HELL), a loop (LOOP), and a terminal state (END).

• Process state PART : When the agent executes a valid action and adds a new node to the path,
the state transitions to a non-terminal process state, and the agent updates its policy to continue
exploring and learning. The reward value is Rpart (Eq (4.1)). To adapt to the dynamic change of
network link information and enable the agent to select the optimal combination of actions, we
calculate the reward value based on the remaining bandwidth bwi j, the delay delayi j, the packet
loss rate lossi j, the used bandwidth used bwi j,the packet error rate errorsi j, the packet drop rate
dropsi j, and the distance distancei j between node i and node j on the network link. The weighting
factors of these parameters are denoted by βl ∈ [0, 1], for l = 1, 2, · · · , 7. These parameters are
all normalized to [0,1] using the max-min method, for which the specific calculation is shown in
(3.18).

Rpart = β1bwi j + β2

(
1 − delayi j

)
+ β3

(
1 − lossi j

)
+β4

(
1 − used bwi j

)
+ β5

(
1 − errorsi j

)
+β6

(
1 − dropsi j

)
+ β7

(
1 − distancei j

) (4.1)

• Invalid action HELL: When the agent selects an invalid action, that is, selects a non-neighbor
node or a node that is already in the multicast tree, the action will not be executed, and the state
will remain unchanged. To discourage the agent from selecting invalid actions, a fixed penalty
value of Rhell = C1 is given in this case.
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• Loop state LOOP: In addition to process states, there is also a certain probability that executing
a valid action will cause the path to form a loop. In this case, although the chosen action is a
neighbor node of the current state, once the action is executed, the agent will be trapped in a loop
and unable to explore further to find the optimal path. Therefore, the state is rolled back to st, and
a fixed penalty value of Rloop = C2 is given.
• Terminal state END: When an action is executed and the paths from the source node to all

destination nodes have been found, that is, the multicast tree has been constructed, the state is set
to a terminal state, that is, st+1 = None. In this state, the reward function of each agent calculates
the reward value using the network link state of its own unicast path, as shown in Eq (4.2).

Rend = β1bwk + β2 (1 − delayk) + β3 (1 − lossk)

+β4 (1 − used bwk) + β5 (1 − errorsk)

+β6 (1 − dropsk) + β7 (1 − distancek)

(4.2)

4.1.4. A2C network parameter update

The actor network serves as a policy function πθ(a|s), where the policy is parameterized as a neural
network with θ representing its parameters. Given the current state, the network outputs the next action
to be taken. The training objective of the network is to maximize the expected cumulative reward. The
policy gradient for this network is given by Eq (4.3).

∇J (θ) = 1
N

N∑
n=1

Tn∑
t=1

(
Qπθ
(
sn

t , a
n
t
)
−Vπθ

(
sn

t
))
∇ log πθ

(
an

t |s
n
t
)

(4.3)

where Tn is the maximum number of steps interacting with the environment, Qπθ(sn
t , a

n
t ) is the expected

cumulative return and Vπθ(sn
t ) is the expected value of Qπθ(sn

t , a
n
t ) resulting from performing all actions

in the state sn
t .

In actor–critic (AC) algorithms, high variance can occur because not all actions with positive re-
wards in a single action trajectory may necessarily be optimal; they could instead be suboptimal. To
address this issue, A2C introduces a baseline, represented by Vπ(s), which is subtracted from the orig-
inal reward value to calculate the advantage function, as shown in Eq (4.4).

Aθ
(
sn

t , a
n
t
)
= Qπθ

(
sn

t , a
n
t
)
− Vπθ

(
sn

t
)

(4.4)

From (4.4), it can be seen that two types of estimates are needed: the action–value function estimate
Qπθ(sn

t , a
n
t ) and the state–value function estimate Vπθ(sn

t ). The expected Q-value calculation method is
based on the equation Qπθ(sn

t , a
n
t ) = E[rt + γV(st+1)], where γ is a discount factor satisfying γ ∈ [0, 1].

Since the next state st+1 is updated in the next time step after an action is taken and the reward rt is
obtained in the current time step, the Q-value is calculated as the expected value of the reward plus the
discounted value of the next state by introducing the TD error method, as shown in Eq (4.5).
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Qπθ
(
sn

t , a
n
t
)
= rn

t + γV
πθ
(
sn

t+1

)
T Derror = r + γV (st+1) − V (st)

Aθ
(
sn

t , a
n
t
)
= rn

t + γV
πθ
(
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)
− Vπθ

(
sn

t
)

(4.5)

The critic network calculates the value function Vπ(s), which represents the future payoff that the
agent can expect from state s, and estimates the value function of the current policy from this expected
payoff, that is, it evaluates the goodness of the actor network. With the help of the value function, an
AC algorithm can perform a single-step parameter update without waiting until the end of the round.
The value function is calculated as shown in Eq (4.6).

Vπ (s) = Eπ {rt|st = s} (4.6)

The critic network parameters ω are updated using the mean squared error loss function through
backward propagation of the gradient, where the mean squared error loss function is shown in Eq
(4.7).

MS E =
∑

(r + γVπ (st+1) − Vπ (st, ω))2 (4.7)

According to the policy gradient formula analyzed above, Equation (4.8) for updating the parame-
ters of the policy function of the actor network is obtained by combining the comparative advantage
function of A2C with the TD method, where α1 is the learning rate.

θ = θ + α1
1
N

N∑
n=1

Tn∑
t=1

(
Qπθ
(
sn

t , a
n
t
)
−Vπθ

(
sn

t
))
∇ log πθ

(
an

t |s
n
t
)

(4.8)

4.1.5. Multi-agent training strategy for MADRL-MR design

Four main challenges are encountered in multi-agent reinforcement learning: non-stationarity of
training, scalability, partial observability, and privacy and security. Based on the above challenges,
multi-agent training methods can be divided into three main types: fully decentralized (IL) training,
fully centralized training, and centralized training and decentralized execution (CTDE) [47]. Although
fully centralized training alleviates the issues of partial observability and non-stationarity, it is not fea-
sible for large-scale and real-time systems. Moreover, since the CTDE method relies on a centralized
control unit that collects training information from each agent, it also has difficulty scaling to environ-
ments with large numbers of agents. With an increasing number of agents, a centralized critic network
will suffer from increasingly high variance, and the value function will have difficulty converging.
Therefore, a fully decentralized training method is adopted in this paper, as shown in Figure 7.

This method is a direct extension from the single-agent scenario to the multiple-agent scenario,
in which each agent independently optimizes its policy without considering non-stationarity issues.
To address the convergence challenges of this method for the agents, we adopt the strategy of transfer
reinforcement learning. In practice, the IL method has achieved satisfactory results for several resource
allocation and control problems in wireless communication networks [48–50].
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Figure 7. Fully decentralized training.

4.1.6. Reinforcement learning with transfer learning mechanisms

To accelerate the training speed of the multi-agent system and address the issues of instability and
difficulty in convergence during the training phase, this paper applies transfer learning in combination
with reinforcement learning. Transfer learning (TL) allows knowledge acquired from experts or other
processes to be transferred to the current task, which accelerates learning. The applications of transfer
learning in reinforcement learning can be divided into the following three main categories depending
on the transfer setting [51]: 1) fixed-domain transfer from a single source task to a target task, 2) fixed-
domain migration across multiple source tasks to target tasks, and 3) transfer between source and target
tasks in different domains.

This paper adopts the second approach, which involves fixed-domain transfer across multiple source
tasks to a target task in the same task domain. Specifically, a pretraining process is conducted to obtain
the initial weights of an intelligent agent for single-broadcast routing that covers all source nodes and
destination nodes with the same state space, action space, and reward function. In MADRL-MR, each
intelligent agent loads these initial weights before learning, in a process called knowledge transfer, to
reduce ineffective exploration at the beginning of training. Then, during the training process, the algo-
rithm parameters are adjusted based on the different tasks of the multiple intelligent agents to accelerate
their convergence. This approach aims to enable stable coordination among multiple intelligent agents
and make them more adaptable to dynamic changes in the network link information.

4.2. Design of the MADRL-MR algorithm

In the MADRL-MR algorithm, the paths between the input source node src and the destination
nodes DS T are first divided among several subtasks such that each agent is assigned different tasks of
establishing paths from src to multiple destination nodes dst ∈ DS T . Second, based on the current
network topology graph (the environment), each agent learns the optimal unicast paths from src to
multiple dst nodes. Finally, once all agents have completed their tasks, the learned paths from src
to all dst nodes are combined to obtain the optimal multicast tree from src to DS T in graph. The
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detailed implementation of the MADRL-MR algorithm for multicast routing with multiagent deep
reinforcement learning is shown in Algorithm 1.

Algorithm 1 MADRL-MR
Require: network topology G(V, E), traffic matrix T M, source and multicast destination node (src,DS T ), weight factor βl, l = 1, 2, ...7,

actor learning rate α1, critic learning rate α2, reward discount factor γ, batch-size k, update frequency updatetime, number of agents
n, training episodes episodes, pre-training weights of actor and critic θ̂ and ω̂

Ensure: optimal multicast tree for tree(src,DS T )
1: Initialize actor network θ
2: Initialize critic network ω
3: Initialize buffer capacity B
4: Load pre-training weights θ = θ̂, ω = ω̂
5: Assign destination nodes to each agent randomly and equally
6: for episode← 1 to episodes do
7: for T M in Network Information Storage do
8: Reset environment with (src,DS T )
9: The agent obtains the initial state st

10: while True do
11: Choose an action at from st by sampling the output action probability
12: Execute action at and observe reward rt and next state st+1

13: Store (st, at, rt, st+1) in B
14: if len(B) ≥ k then
15: for i← 1 to updatetime do
16: Sample batch k data
17: Enter data(st) and data(st+1) in the critic network to get Vπ(st) and Vπ(st+1)
18: Calculate T Derror T Derror ← r + γVπ(st+1) − Vπ(st)
19: Calculate MSE as gradient update of critic network parameters ω.

MS E ←
∑

(r + γVπ(st+1) − Vπ(st, ω))2

20: Update actor network parameters θ according to Eq (4.8)
21: Empty buffer B
22: end for
23: end if
24: if done then //The path of all destination nodes has been found
25: Build a multicast tree
26: Break
27: end if
28: st ← st+1

29: end while
30: end for
31: end for

The algorithm takes as input a network topology G(V, E), a traffic matrix T M, the source node and
destination nodes (src,DS T )for multicasting, and hyperparameters for the reinforcement learning al-
gorithm. The output of the algorithm is an optimal multicast tree from the source node src o the set of
destination nodes DS T . Lines 1–3 initialize the actor network parameters, the critic network parame-
ters, and the experience buffer, respectively, which are discarded after each update. Line 4 uses transfer
learning technology to load the pretrained agent weights for all source nodes to all destination nodes
obtained before the start of training, i.e., performs knowledge transfer. On line 5, the destination nodes
in the multicast group are equally and randomly split among several subtasks according to the number
of input agents, and one subtask is assigned to each agent. Lines 8 and 9 initialize the environment to
obtain the initial state st. Lines 11–13 input the state st into the actor network and select an action at

based on importance sampling. Then, the selected action is performed to interact with the environment
to obtain the reward value rt and the next state st+1, and the experience (st, at, rt, st+1) is stored in the
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experience buffer. Lines 14–18 involve learning from the experiences stored in the experience buffer
by inputting st and st+1 into the critic network to obtain Vπ(st) and Vπ(st+1). The TD error, T Derror, is
then calculated using (4.5). Line 19 calculates the mean squared error loss function (4.7) to be used for
the gradient update of the critic network parameters ω. Line 20 updates the actor network parameters
θ according to (4.8) based on Vπ(st), Vπ(st+1) and T Derror . Line 21 clears the experience buffer. Lines
24–27 judge whether all agents have found the desired paths from the source node to the destination
nodes and obtain the optimal multicast tree by removing redundant links from these paths. Finally, line
28 updates the state st to proceed to the next episode.

5. Experimental setup and performance evaluation

(a) 10-nodes topology (alias Node10Net) (b) 14-nodes topology (alias Node14Net)

(c) 21-nodes topology (alias Node21Net)

Figure 8. Wireless network topology. (a) 10 nodes topology whose alias is Node10Net.
(b) 14 nodes topology whose alias is Node14Net. (c) 21 nodes topology whose alias is
Node21Net.

This section describes the experimental settings used in this study and the corresponding perfor-
mance evaluation. First, the experimental environment is introduced. Second, the performance metrics
for algorithm evaluation are defined. Then, the tuning and setting of the algorithm hyperparameters
during the experimental process are described. Finally, the comparison experiments were carried out
with the Double Duel Deep Q-network (DQN) using preferential experience replay and the classical
Steiner tree construction algorithm KMB, and the results of the comparison experiments were dis-
cussed respectively.
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5.1. Experimental environment

For the experimental environment in this study, we used Mininet-WIFI 2.3.1b as the simulation
platform for the SDWN network. Mininet-WIFI [52] is a branch of the Mininet SDN network emulator
that extends the functionality of Mininet by adding virtualized wireless APs based on standard Linux
wireless drivers and the 80211 hwsim wireless simulation driver. The SDWN controller used in the
experiment is Ryu 4.3.4 [53]. The experiment was conducted on a server with hardware consisting of
a 64-core processor and a GeForce RTX 3090 graphics card and with Ubuntu 18.04.6 as the software
environment. The Iperf [54] tool was used to send User Datagram Protocol (UDP) packets.

The design of the wireless network topology graph is inspired by the literature [11]. We designed
three network topologies consisting of 10, 14 and 21 wireless nodes, alias Node10Net, Node14Net,
and Node21Net, respectively, to test the performance of MADRL-MR, as shown in Figure 8. The
parameters of the network links were randomly generated following a uniform distribution. The ranges
of the random link bandwidth and delay values were 5–40 Mbps and 1–10 ms, respectively, while the
distances between wireless APs were set within the range of 30–120 m.

To more accurately simulate a real environment, we used the Iperf traffic generator tool to simulate
the network traffic situation 24 hours a day, as shown in Figure 9. The horizontal axis represents time,
and the vertical axis represents the average traffic sent by each node in units of Mbit/s. The traffic
distribution conforms to a typical network traffic distribution at different times of day.

Figure 9. Flows sent by Iperf.

5.2. Performance metrics

As performance indicators, we use the convergence status of the intelligent agents’ reward values as
well as commonly used performance metrics for routing, such as the instantaneous throughput, delay,
and packet loss rate. In addition, we use the remaining bandwidth, tree length, and average distance
between wireless APs in the multicast tree as evaluation metrics for our algorithm.

1) The calculation of the reward value is described in Section 4.1, specifically, the reader is referred to
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the formula for the reward function.

2) For the three commonly used evaluation metrics of instantaneous throughput, delay, and packet loss
rate, based on the simulated 24-hour network traffic, we use their average values in different time
periods to represent the network performance, as shown in Eq (5.1).

throughput =
∑

i
∑

j throughputi j

∆t

delay =
∑

i
∑

j delayi j

∆t

loss =
∑

i
∑

j lossi j

∆t

(5.1)

where avg throughput, avg delay, and avg loss represent the average throughput, average delay
and average packet loss rate over a time duration ∆t time, respectively, and throughputi j is the
throughput from node i to node j.

3) For the remaining bandwidth, tree length, and average distance between wireless APs in the multi-
cast tree, we use multiple measurements and obtain the average value as the corresponding evalua-
tion metric, as shown in Eq (5.2).

bwtree = average
∑

n
∑

i j∈tree bwi j

n·E

lentree = average
∑

n lentree
n

disttree = average
∑

n
∑

i j∈tree distancei j

n·E

(5.2)

where bwtree and disttree represent the average remaining bandwidth per link in the multicast tree and
the average distance between wireless APs in the multicast tree, respectively. lentree is the average
length of the multicast tree after multiple measurements. bwi j and distancei j are the remaining
bandwidth and the distance, respectively, from node i to node j in the multicast tree. n is the
number measurements performed at a given time. E is the number of edges in the multicast tree.

5.3. Transfer learning performance and parameter settings

First, the impact of transfer learning on the convergence of the multi-agent SDWN-based intelligent
multicast routing algorithm is analyzed, as shown in Figure 10. The convergence of the reward values
is significantly faster with transfer learning than without, and the reward values are also higher with
transfer learning. When transfer learning is used in reinforcement learning, a set of pretrained initial
weights for connecting all source nodes to all destination nodes in different environments is loaded
before each agent starts learning. This is also known as knowledge transfer and endows the agents
with some decision-making ability at the beginning of training. In this way, the agents can reach
convergence faster than they would if each agent needed to learn from scratch, and it also solves the
problem of slower convergence with an increasing number of agents. Therefore, applying transfer
learning in multiagent reinforcement learning endows the MADRL-MR intelligent multicast routing
algorithm with a stronger learning ability, enables the agents to learn efficient behaviors more quickly,
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and accelerates the convergence of the reward values. This confirms that transfer learning can improve
the performance of the MADRL-MR algorithm.

Figure 10. Comparison between reward values achieved with and without TL.

The most important prerequisite for using deep reinforcement learning to select the optimal mul-
ticast routes is the setting of the hyperparameters. We use a multicast group with a complex set of
possible paths as a representative example, with node 3 as the source node and multicast destinations
of {6, 7, 8, 9, 11, 13}. The more complex the set of possible paths to each destination node is, the
more choices the agent can explore, and since the multicast tree constructed from the source node to
all multicast destination nodes is not unique, testing the effectiveness of the algorithm becomes more
challenging with more complex path situations.

The hyperparameter settings for the reward values Rpart, Rhell, Rloop, and Rend will affect the conver-
gence speed of the agents. If these hyperparameters are not set appropriately, the agents’ reward values
may fail to converge, i.e., the agents may be unable to find the optimal strategy.

The first step is to set the penalty values Rhell and Rloop. Since the selected actions may be invalid or
create loops, this will greatly affect the construction of the multicast tree. Too many invalid actions and
loops will affect the convergence speed of the agents and may even lead to nonconvergence. Therefore,
the setting of the penalty values is crucial. To reduce the influence of the other two reward values on
the setting of the penalty values, we set the weighting factors in the calculation formulas of Rpart and
Rend to 1. Additionally, since all reward calculation parameters are normalized to [0,1], we initially
set both penalty values to -1. We then evaluated the performance achieved under various settings of
these two penalty values based on the approximate round when convergence began and the total reward
value and adjusted the penalty values multiple times accordingly. The results are shown in Table 1.

In multiple rounds of adjustment, we first fixed the value of Rhell to -1 and adjusted the value of Rloop.
The results showed that with Rloop = −0.5, convergence started at approximately the 390th episode,
with a converged value of approximately 12. Second, we fixed Rloop at 0.5 and adjusted Rhell. It was
found that Rhell = −0.7 gave the best result, with the agents starting to converge at approximately the
250th episode and achieving a convergence value of 22, which was the best result among the tested
parameter settings. Therefore, we set the values of Rhell and Rloop to -0.7 and -0.5, respectively.

Mathematical Biosciences and Engineering Volume 20, Issue 9, 17158–17196.



17183

Table 1. Penalty setting.

Rhell Rloop Episode Reward
-1 -1 450 -23
-1 -0.7 670 -30
-1 -0.5 390 12
-1 -0.1 810 -15
-0.7 -0.5 250 22
-0.5 -0.5 380 -9
-0.1 -0.5 460 -5

(a) (b) (c)

(d) (e) (f)

Figure 11. The weight factor settings of the Rpart and Rend reward functions uniformly com-
pare the weights we set [0.7, 0.3, 0.1, 0.1, 0.1, 0.1, 0.1], where (a) is a comparison chart with
all weights of 1; (b) is a comparison chart with adjustments to the weights of the last four
parameters; (c) sets the first three parameters to 0.3, 0.3, 0.6, and the remaining 0.1; (d) is
a comparison chart with increasing the delay weight of 0.7 and decreasing the packet loss
weight of 0.1; (e) A comparison chart with the first three parameters set to 0.1, 0.3, 0.7; (f) a
comparison chart with the first three parameters set to 0.7, 0.1, 0.3.

Next, Rpart and Rend need to be set because the reward values for these two cases are calculated
based on the traffic matrix of the network links, as shown in (4.1) and (4.2). The design of these
two reward values mainly involves setting the weight ratios of the seven network link parameters. A
different weighting factors should be set for each network link parameter to represent the influence of
that parameter on the construction of the multicast tree. We set the weights for the seven parameters,
namely, remaining bandwidth, delay, packet loss rate, used bandwidth, packet error rate, packet drop
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rate, and distance between APs, to [0.7, 0.3, 0.1, 0.1, 0.1, 0.1, 0.1]. In detail, since our goal is to
construct a multicast tree with the main influencing factors being the remaining bandwidth, delay, and
packet loss rate, we set the weights of the first three parameters to 0.7, 0.3, and 0.1, respectively. The
remaining parameters, namely, the used bandwidth, packet error rate, packet drop rate, and distance
between APs, are equally important in building an optimal multicast tree, but compared to the first
three parameters, we consider them to be supplementary factors. Therefore, we set the weights of the
used bandwidth, packet error rate, packet drop rate, and distance between APs all to 0.1. Thus, the
initial weights of all parameters are [0.7, 0.3, 0.1, 0.1, 0.1, 0.1, 0.1].

To evaluate the efficacy of these parameter settings, we first set all parameter weights to 1 and
conducted comparative experiments. As shown in Figure 11(a), weights of [0.7, 0.3, 0.1, 0.1, 0.1,
0.1, 0.1] achieve better convergence and yield higher reward values compared to setting all parameter
weights to 1.

Then, to test the influence of the last four parameters on multicast tree construction, we set the
parameters to [0.1, 0.1, 0.1, 0.7, 0.7, 0.6, 0.1] and compared the results with those of the initial weight
ratios we set. As shown in Figure 11(b), the initial weight ratios we set show more stable convergence,
so we set the weights of the last four parameters smaller.

Next, we tested changing the weight values of the first three parameters to [0.3, 0.3, 0.6, 0.1, 0.1,
0.1, 0.1]. As shown in Figure 11(c), although the convergence is relatively stable in both cases, the
initial weight ratios we set yielded higher reward values and faster convergence.

Finally, to further verify the influence of the three main factors (remaining bandwidth, delay, and
packet loss rate), we increased the weight of the delay parameter, setting the weights to [0.3, 0.7, 0.1,
0.1, 0.1, 0.1, 0.1]. As shown in Figure 11(d), the obtained reward value decreased slightly.

Similarly, we increased the weight of the packet loss rate and decreased the weight of the remaining
bandwidth, setting the weights to [0.1, 0.3, 0.7, 0.1, 0.1, 0.1, 0.1]. As shown in Figure 11(e), tthe
converged reward value achieved under this setting was closer to that achieved with the initial weight
values, but the initial weight values we set are still better.

To further compare the importance of the delay and packet loss rate, we then swapped their weights,
setting them to [0.7, 0.1, 0.3, 0.1, 0.1, 0.1, 0.1]. As shown in Figure 11(f), the initial weight values still
yielded a higher reward value.

Through multiple adjustments of the parameter weights, the results consistently showed that the
initial weights [0.7,0.3,0.1,0.1,0.1,0.1,0.1] offer the best convergence behavior and the highest reward
values. These findings validate the reasonableness and accuracy of our initial weight setting.

The learning rate is a hyperparameter that controls the speed at which a neural network adjusts its
weights based on the loss gradient, directly impacting how quickly an agent can converge to the optimal
value. Generally, a higher learning rate leads to faster learning of the neural network, while a lower
learning rate may cause the model to become trapped in a local optimum. However, if the learning rate
is too high, this can cause oscillation in the loss function during the parameter optimization process,
leading to failure to converge. Therefore, setting a proper learning rate is crucial. The algorithm used
in this paper is A2C, which involves two neural networks, the actor network and the critic network. To
optimize the learning rates of the actor network (α1) and the critic network (α2), we fixed one learning
rate and adjusted the other. First, we set α2 = 3e − 3 and adjusted α1. The results are shown in Figure
12.
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Figure 12. Learning rate α1.

Figure 13. Learning rate α2.

Based on the results of adjusting α1, it was found that when α1 was set to 1e − 5 or 1e − 6, the
learning rate was too low for the network to converge easily. When α1 was set to 1e-3 or 1e-4, the
reward value converged, but the convergence effect and reward value obtained with α1 = 1e − 3 were
the best. Then, α1 was fixed while α2 was adjusted, as shown in Figure 13. The reward value converged
under all tested values of α2, but when α2 was set to 3e − 3 or 3e − 4, he convergence speed was faster.

Based on the results of the above two comparative experiments, we set α1 = 1e− 3 and α2 = 3e− 3.
Based on the characteristics of the Markov process, we set a reward discount factor that discounts

the rewards obtained in the future, with a greater discount for rewards from further ahead. This is
because we wish to prioritize the current reward and avoid infinite rewards. By adjusting the discount
factor (another hyperparameter), we can obtain intelligent agents with different performance, as shown
in Figure 14.
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According to the results shown in Figure 14, setting the discount factor to 0.9 was found to yield
the best performance.

Figure 14. Discount factor.

Figure 15. Batch size.

The purpose of the batch size hyperparameter is to control the number of samples selected by the
model during each training iteration, which can affect the degree and speed of model optimization.
From Figure 15, we can see that the convergence situation is similar with batch sizes of 16, 32, and 64,
whereas the performance obtained with a batch size of 128 is the worst.

Experiments on setting the update frequency of the neural networks of the intelligent agents, as
shown in Figure 16, were conducted by adjusting the update time parameter to 1, 10, 100, and 1000.
When this parameter was set to 1000, the intelligent agents were unable to reach the terminal state,
so an additional parameter adjustment experiment with update time set to 5 was added. The results
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in this figure show that the best convergence effect and the highest reward value were obtained when
update time was set to 10.

Figure 16. Update frequency.

Figure 17. Number of agents.

Multi-agent reinforcement learning is used in this paper to find the optimal policy; therefore, another
very important hyperparameter is the number of agents. The convergence speed and the final converged
reward value are different with different numbers of agents. It is not generally true that more agents are
better. In fact, the larger the number of agents, the harder it is for the multi-agent system to converge.
In Figure 17, the experimental results show that when the number of agents is set to 3, the convergence
of the reward value is the best.
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5.4. Comparative experiment

To evaluate the performance of MADRL-MR algorithm, we compared it with deep reinforcement
learning based on value function using double dueling deep Q network (DQN) and priority experience
replay (PER) in 10 nodes, 14 nodes and 21 nodes wireless network topologies respectively. As shown
in Figure 18(a)–(c), the MADRL-MR algorithm achieves higher reward values and faster convergence
speed in all three different topologies compared with Double-Dueling DQN. The results show that
the MADRL-MR algorithm shows better performance in terms of reward acquisition and convergence
speed.

(a) Node10Net reward value (b) Node14Net reward value (c) Node21Net reward value

Figure 18. Comparison between MADRL-MR and Dueling DQN. (a) Node10Net reward
value. (b) Node14Net reward value. (c) Node21Net reward value.

We also compared the results of our algorithm with the experimental results of constructing Steiner
trees using the classic KMB algorithm in three wireless network topologies: Node10Net, Node14Net
and Node21Net. To demonstrate the influence of the network link parameters on multicast tree con-
struction, we implemented three versions of the KMB algorithm using the residual bandwidth, delay,
and packet loss rate as weights. We used the average throughput, delay, packet loss rate, residual band-
width, tree length, and average distance between wireless APs in the multicast tree as performance
evaluation indicators. The results are shown in Figures 19–21.

Figures 19(a), 20(a) and 21(a) present the network throughput experiment comparing MADRL-
MR with the KMB algorithm using the bandwidth, delay, and packet loss rate as weights. It can be
observed that as time progresses and the simulated network traffic grows, the network throughput under
the proposed intelligent multicast routing algorithm is significantly higher than those under KMBbw,
KMBdelay, and KMBloss. For example, in Node14Net, the average is 58.71% higher than that under
KMBbw and 31.8% higher than that under KMBdelay.

Figures 19(b), 20(b) and 21(b) compare the average link delay of the multicast trees constructed
by MADRL-MR, KMBbw, KMBdelay, and KMBloss. The results show that the average link delay of
MADRL-MR in all network topologies is smaller than KMBbw and KMBloss, which is very close to
the value of KMBdelay. For example, in Node14Net, as the network traffic increases, the average link
delay of MADRL-MR is 53.52% and 48.53% lower than those of KMBbw and KMBloss respectively,
and is close to the value for KMBdelay. This indicates that MADRL-MR achieves good performance in
terms of the average link delay.

Mathematical Biosciences and Engineering Volume 20, Issue 9, 17158–17196.



17189

(a) Node10Net throughput (b) Node10Net delay (c) Node10Net loss

(d) Node10Net bandwidth (e) Node10Net length (f) Node10Net distance

Figure 19. The performance comparison of MADRL-MR with KMBbw, KMBdelay, and
KMBloss in Node10Net. (a) Node10Net throughput; (b) Node10Net delay; (c) Node10Net
loss; (d) Node10Net bandwidth; (e) Node10Net length; (f) Node10Net distance.

(a) Node14Net throughput (b) Node14Net delay (c) Node14Net loss

(d) Node14Net bandwidth (e) Node14Net length (f) Node14Net distance

Figure 20. The performance comparison of MADRL-MR with KMBbw, KMBdelay, and
KMBloss in Node14Net. (a) Node14Net throughput; (b) Node14Net delay; (c) Node14Net
loss; (d) Node14Net bandwidth; (e) Node14Net length; (f) Node14Net distance.
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Figures 19(c), 20(c) and 21(c) compare the average packet loss rates on the links of the multi-
cast trees constructed by MADRL-MR, KMBbw, KMBdelay, and KMBloss. The results show that the
average link packet loss rate of MADRL-MR is small in all network topologies. For example, in
Node14Net, MADRL-MR performs slightly worse than KMBloss in terms of the average link packet
loss rate, although the values of the two are very close. However, MADRL-MR outperforms KMBbw

and KMBdelay by 50.32% and 37.3% on average, respectively, indicating that MADRL-MR generally
has a lower packet loss rate.

Figures 19(d), 20(d) and 21(d) compare the average link bandwidths of the multicast trees con-
structed by MADRL-MR, KMBbw, KMBdelay, and KMBloss. The results show that MADRL-MR is
significantly better than KMBdelay and KMBloss in the average link bandwidth of multicast trees in
all network topologies, and slightly better than KMBbw. For example, in Node14Net, MADRL-MR
performs significantly better than KMBdelay and KMBloss in terms of the average link bandwidth and
exhibits an average improvement of 16.96% compared to KMBbw.

Figures 19(e), 20(e) and 21(e) compare the average lengths of the multicast trees constructed by
MADRL-MR, KMBbw, KMBdelay, and KMBloss. The results show that in Node10Net and Node14Net,
the multicast tree constructed by MADRL-MR is longer on average than those constructed by the other
three algorithms, reflecting the fact that our algorithm considers more parameters when constructing
the multicast tree and considers more nodes when selecting nodes to join the multicast paths. However,
it is smaller than KMBloss in Node21Net, although we consider more nodes, the proposed algorithm
will make a compromise choice in the case of balancing length and performance.

(a) Node21Net throughput (b) Node21Net delay (c) Node21Net loss

(d) Node21Net bandwidth (e) Node21Net length (f) Node21Net distance

Figure 21. The performance comparison of MADRL-MR with KMBbw, KMBdelay, and
KMBloss in Node21Net. (a) Node21Net throughput; (b) Node21Net delay; (c) Node21Net
loss; (d) Node21Net bandwidth; (e) Node21Net length; (f) Node21Net distance.
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Figures 19(f), 20(f) and 21(f) compare the average distances between wireless AP nodes in the
multicast trees constructed by MADRL-MR, KMBbw, KMBdelay, and KMBloss. The results show that
MADRL-MR achieves good results in terms of the average distance between AP nodes of the multicast
tree constructed in all network topologies. For example, in Node14Net, although the longer average
multicast tree length of MADRL-MR shown in Figure 19(e), the distance between AP nodes does not
show the same trend. As seen in Figure 19(f), the MADRL-MR algorithm constructs multicast trees
with a shorter average distance between AP nodes than KMBbw, KMBdelay, and KMBloss, indicating
that the proposed algorithm considers the distance between wireless AP nodes and achieves good
results.

6. Conclusions

In this paper, we have introduced MADRL-MR, an intelligent multicast routing method based on
multi-agent deep reinforcement learning in an SDWN environment. First, we addressed the issues
of traditional wireless networks, such as the difficulty of controlling and maintaining nodes and the
tight coupling of data forwarding and logic control in traditional network devices, making it difficult to
achieve compatibility with other devices and software. To overcome these issues, we chose to utilize
the decoupling of forwarding and control and the global perception capabilities in SDWN. Second, tra-
ditional multicast routing algorithms cannot effectively use the link information of the entire network
to construct a multicast tree. Moreover, in deep reinforcement learning, multicast tree construction
by a single agent has a slow convergence rate, leading to difficulty in responding quickly to the dy-
namic change of network link information. MADRL-MR effectively utilizes network link information
and rapidly constructs the optimal multicast tree through mutual cooperation among multiple agents.
Finally, to speed up multiagent training, the use of transfer learning techniques was proposed to accel-
erate the convergence rate of the agents.

In MADRL-MR, the design of the agents is based on the traffic matrix and the process of multicast
tree construction. The state space is designed based on these factors. The design of the action space
is different from that in other algorithms that use the k-paths approach because in k-paths, the paths
are fixed, and the optimal path is chosen from among these fixed paths; however, the fixed path chosen
in this way is not guaranteed to be the best. Therefore, a novel next-hop method is adopted instead to
design the action space in this article. The agents explore and gradually construct the optimal multicast
routes. For this purpose, a reward function is designed and calculated based on the traffic matrix of the
network links.

The results of a large number of comparative experiments show that the proposed MADRL-MR
algorithm offers better performance than three versions of the classic KMB algorithm implemented
using the residual bandwidth, delay, and packet loss rate as weights. Additionally, in the network
where the link information changes in real time, MADRL-MR can quickly deploy multicast routing
solutions.

Furthermore, with the development and promotion of SDWN technology, the size of networks is
becoming increasingly larger. A single controller will not be able to meet the needs of large-scale
SDWN networks. Therefore, in the future, we will consider designing an intelligent multicast routing
algorithm based on multi-agent deep reinforcement learning under multi-controller SDWN scenarios.
And the mobility problem of data plane STAs and the joining and leaving of aps in SDWN will be
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considered. Additionally, reducing computation cost and the improving search efficiency will also be
considered.
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