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Abstract: From the perspective of prevention and treatment of dengue, it is important to minimize
the number of infections within a limited time frame. That is, the study of finite time contraction
stability (FTCS) of dengue system is a meaningful topic. This article proposes a dengue epidemic
model with reaction-diffusion, impulse and Markov switching. By constructing an equivalent system,
the well-posedness of the positive solution is proved. The main result is that sufficient conditions to
guarantee the finite time contraction stability of the dengue model are acquired based on the average
pulse interval method and the bounded pulse interval method. Furthermore, the numerical findings
indicate the influences of impulse, control strategies and noise intensity on the FTCS.
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1. Introduction

Dengue fever is one of the most dangerous diseases spread by mosquitoes around the world. Ac-
cording to the statistics from the WHO, almost 50% of people on earth reside in areas at risk of dengue.
Each year, up to 400 million people get infected with dengue, of which 100 million exhibit clinical
symptoms of varying severity, resulting in about 40,000 deaths [1]. In recent years, the incidence of
dengue fever has increased dramatically, from 505,430 cases in 2000 to 4.2 million cases in 2019 [2].
As a result, dengue fever has seriously endangered people’s safety and hindered economic growth.
Understanding the pathogenesis of dengue is essential for early intervention.

Mathematical modeling has become an extremely effective method to understand the mechanisms
of dengue transmission and predict the development trend of dengue. Recently, various dengue models
considering different factors have been widely proposed [3–6]. For example, Zhu and Xu [5] devel-
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oped a dengue model that takes into account both spatial heterogeneity and temporal periodicity to
discuss the asymptotic stability of periodic solutions. In [4], Li et al. studied a study on the opti-
mal control problem of a dengue system that incorporates reaction-diffusion. Unfortunately, the above
models ignored the effect of spraying insecticides and sterile mosquitoes for dengue. These human
behaviors can be characterized by impulsive differential equations. So far, some results have been
obtained for modeling impulsive dengue models [7–10]. For instance, Pang et al. [7] investigated
a stage-structured impulsive model to explore the feasibility of controlling wild mosquito populations
by periodically releasing sterile mosquitoes. Yang and Nie [8] conducted a dengue model that involved
culling mosquitoes to investigate the effect of the impulsive strategies. However, they did not discuss
the influence of noise.

In fact, it is widely recognized that external environmental factors have a significant impact on the
spread of dengue fever. The use of random differential equations driven by white noise to construct
dengue models have attracted widespread attention [11–14]. For example, Liu and Din [11] introduced
the random disturbance and information intervention factors into the dengue model to analyze the sta-
bility of the positive solution. Chang et al. [12] established a stochastic dengue model related to white
noise to investigate the stationary distribution and optimal control. However, white noise can only be
applied to continuous random disturbances and cannot describe sudden changes in the environment.
Dengue may be impacted by unforeseen weather changes, like temperature and rainfall, which will
lead to switching from one environmental system to another. Frequently, the switch occurs without
memory and the waiting period until the next transition is determined by the exponential distrnibu-
tion [15]. Therefore, some scholars have introduced continuous-time Markov chains to describe the
regime switch [16–19]. Nevertheless, Markov switching is hardly considered in the dengue models,
only in [16] Liu et al. analyzed the stationary distribution of a stochastic dengue model considering
immune responses and Markov switching.

It is worth noting that the existing dengue models only consider the long-term dynamical behavior.
When addressing the concern of controlling dengue, it makes more sense to focus on limiting the
number of infected individuals within a specific time frame to reduce within a specified threshold and
eventually make it lower than the original number. This dynamic property is referred to as finite-
time contraction stability (FTCS). As far as we know, there have been intriguing findings concerning
FTCS [20–23]. However, no studies have analyzed the finite-time contraction stability of dengue.

In view of the above discussion, a stochastic dengue epidemic model with reaction-diffusion, im-
pulse and Markov switching is constructed. Compared with the latest research results on the dengue
model that only consider the long-term behaviors of the system [24, 25], our results not only consider
FTCS of dengue model for the first time but also investigate the effects of control strategies, impulse
and noise intensity on FTCS. The coexistence of diffusion, pulse and Markov switching makes the
model complex, which brings challenges to analyze the stability of the system by Lyapunov stability
theory. Moreover, it is difficult to get a suitable range of control variables for the system to achieve
FTCS. To solve these problems, we use the average and bounded pulse interval method combined with
the comparison method to effectively obtain sufficient conditions for FTCS. Especially, the highlights
are listed as follows:

• Considering the use of pesticides and the release of sterile mosquitoes, as well as parameters
uncertainties, a hybrid impulse dengue model with diffusion and Markov switching is proposed,
which is an extension of the model in [12].
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• Less conservative sufficient conditions for FTCS of the stochastic dengue system are presented
based on two impulsive representations. In addition, the effects of control strategies, impulse and
noise intensity on FTCS are also analyzed.

The remainder of this document is structured in the following manner: In Section 2, Some pre-
liminary preparations are introduced. According to an equivalent system, Section 3 yields the well-
posedness of positive solution of the system. In Section 4, the average and bounded pulse interval
method are used to provide the criteria to ensure FTCS. Section 5 gives various numerical simulations
to effectively illustrate the theoretical discoveries, as well as to display the impacts of impulse, control
strategies and noise intensity on FTCS. The last section gives the conclusion of this paper and discusses
further work.

2. Model development and preliminary preparation

For the purpose of subsequent analysis, a reaction-diffusion dengue model with impulse and Markov
switching is established and give some notations.

2.1. Model development

The rapid development of transportation has created convenient conditions for the spread of
mosquitoes and people, which increases the risk of contracting the virus. Considering the existence of
spatial diffusion, Chang et al. [12] proposed the following system:

∂S H(x, t)
∂t

= D1△S H(x, t) + µh(x)NH −
βH(x)b
NH + m

S H(x, t)Iv(x, t) − µ(x)S H(x, t),

∂IH(x, t)
∂t

= D2△IH(x, t) +
βH(x)b
NH + m

S H(x, t)Iv(x, t) − (µ(x) + γH(x))IH(x, t),

∂RH(x, t)
∂t

= D3△RH(x, t) + γH(x)IH(x, t) − µ(x)RH(x, t),

∂S v(x, t)
∂t

= D4△S v(x, t) + A −
βv(x)b

NH + m
S v(x, t)IH(x, t) − v(x)S v(x, t),

∂Iv(x, t)
∂t

= D5△Iv(x, t) +
βv(x)b

NH + m
S v(x, t)IH(x, t) − v(x)Iv(x, t),

(2.1)

with initial value

(S H(x, 0), IH(x, 0),RH(x, 0), S v(x, 0), Iv(x, 0)) = (S H,0(x), IH,0(x),RH,0(x), S v,0(x), Iv,0(x)). (2.2)

and boundary condition

∂S H(x, t)
∂ν

=
∂IH(x, t)
∂ν

=
∂RH(x, t)
∂ν

=
∂S v(x, t)
∂ν

=
∂Iv(x, t)
∂ν

= 0, x ∈ ∂Γ, t > 0. (2.3)

Below is an explanation of the variables used in the equation.

• S H, IH,RH: the density of susceptible, infectious and immune individuals, respectively. Mean-
while, NH = S H + IH + RH.
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• S v, Iv: the density of susceptible and infectious mosquitoes, respectively.
• D1,D2,D3: the diffusion coefficient of individuals, respectively. (per square kilometer per day)
• D4,D5: the diffusion coefficient of mosquitoes, respectively. (per square kilometer per day)
• γH, µh, µ: the recovery, birth, and death rate of individuals, respectively. (per day)
• m, A: the density of alternative hosts that can serve as blood sources and the recruitment of

mosquitoes, respectively
• b, v: the biting rate and natural mortality rate of mosquitoes, respectively. (per day)
• βH: the probability of infected mosquitoes transmitting to susceptible individuals. (per bite)
• βv: the probability of infected individuals transmitting to susceptible mosquitoes.(per bite)

At the same time, there is evidence that the vector control techniques (e.g., the development of
Wolbachia-infected mosquitoes, the use of insecticides and so on) are effective ways to avoid the
spread of dengue fever [26,27]. Therefore, we consider the following control measures on the basis of
system (2.1).

(i) We define ∅1k and ∅2k as the impulse intensities that affect susceptible mosquitoes and infected
mosquitoes, respectively. Among them, ∅1k > 0 indicates the release of sterile mosquitoes, and ∅1k <

0,∅2k > 0 indicates the killing of mosquitoes. Because of the need to maintain ecological stability,
mosquitoes cannot be completely killed. Thus, we have reason to assume that −1 < ∅1k < ∅1m,
0 < ∅2k < ∅2m, where ∅1m and ∅2m are the maximum allowable impulse on susceptible mosquitoes
and infected mosquitoes, respectively.

(ii) Treating infected individuals and spraying insecticides on mosquitoes can reduce the num-
ber of infected. δ1 is the recovery rate of dengue infection individuals due to treatment, δ2 is the
culling rate of mosquitoes, δ1(x)IH(x, t) indicates the proportion of infected individuals recovered and
δ2(x)S v(x, t), δ2(x)Iv(x, t) represents the proportion of mosquitoes eliminated.

Based on the above discussions, we tend to unintentionally introduce pulse perturbations into sys-
tem (2.1), and obtain the following equations with control variables:

dS H(x, t) = [D1△S H(x, t) + µh(x)NH −
βH(x)b
NH + m

S H(x, t)Iv(x, t) − µ(x)S H(x, t)]dt

dIH(x, t) = [D2△IH(x, t) +
βH(x)b
NH + m

S H(x, t)Iv(x, t) − (µ(x) + γH(x))IH(x, t) − δ1(x)IH(x, t)]dt

dRH(x, t) = [D3△RH(x, t) + γH(x)IH(x, t) + δ1(x)IH(x, t) − µ(x)RH]dt,

dS v(x, t) = [D4△S v(x, t) + A −
βv(x)b

NH + m
S v(x, t)IH(x, t) − v(x)S v(x, t) − δ2(x)S v(x, t)]dt

dIv(x, t) = [D5△Iv(x, t) +
βv(x)b

NH + m
S v(x, t)IH(x, t) − v(x)Iv(x, t) − δ2(x)Iv(x, t)]dt,



t , tk,

t > 0,
x ∈ Γ

S H(x, t+k ) = S H(x, tk),
IH(x, t+k ) = IH(x, tk),
RH(x, t+k ) = RH(x, tk),
S v(x, t+k ) = (1 + ∅1k)S v(x, tk),
Iv(x, t+k ) = (1 − ∅2k)Iv(x, tk)


t = tk.

(2.4)
which with initial values (2.2) and boundary condition (2.3). We set the admissible control set
Uδ =

{
δ(x) = (δ1(x), δ2(x)) ∈ L∞

(
[0,T ]; R2

)
| 0 ≤ δi(x) ≤ δi max < 1,∀t ∈ [0,T ]} . Impulsive sequence

{tk}, k ∈ N+, represents the spraying of pesticides and the release of sterile mosquitoes at time point
t = tk, satisfies 0 = t0 < t1 < t2 < . . . < tk < . . ., as well as limk→+∞ tk = +∞ and z(x, t+k ) = limt→t+k

z(x, t).
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In real life, it is widely understood that there are a variety of environmental factors (for instance
rainfall, temperature change and so on) that can affect the spread of dengue fever. Assume that the
transmission rate βH and βv are subject to stochastic fluctuations. That is

βH → βH + ρ1dB1(t), βv → βv + ρ2dB2(t).

where Bi(t)(i = 1, 2) is standard Brownian movements, and ρi is its intensity. Furthermore, these
sudden environmental changes can also cause the parameters in the system to not be fixed constants.
These parameters are assumed to be a stochastic process that satisfies Markov switching. Let {ζt}t≥0

be a right-continuous Markov chain taking values in a finite state S = {1, 2, ...,M}. Its generator
o = (qi j)M×M is given by the following formula.

P(ζt+∆ = j|ζt = i) =

qi j∆ + o(∆), i , j,

1 + qii∆ + o(∆), i = j,

where o(∆) satisfies lim∆→0
o(∆)
∆
= 0, ∆ > 0. If i , j, qi j > 0 is the transition rate from i to j while

qi j = −
∑

i, j qi j. Then, system (2.4) can be written as:

dS H(x, t) = [D1(ζ(t))△S H(x, t) + µh(ζ(t))NH(ζ(t)) −
βH(ζ(t))b(ζ(t))

NH(ζ(t)) + m(ζ(t))
S H(x, t)Iv(x, t)

− µ(ζ(t))S H(x, t)]dt −
b(ζ(t))

NH(ζ(t)) + m(ζ(t))
ρ1(ζ(t))S H(x, t)Iv(x, t)dB1(t),

dIH(x, t) = [D2(ζ(t))△IH(x, t) +
βH(ζ(t))b(ζ(t))

NH(ζ(t)) + m(ζ(t))
S H(x, t)Iv(x, t) − (µ(ζ(t)) + γH(ζ(t)))IH(x, t)

− δ1(ζ(t))IH(x, t)]dt +
b(ζ(t))

NH(ζ(t)) + m(ζ(t))
ρ1(ζ(t))S H(x, t)Iv(x, t)dB1(t),

dRH(x, t) = [D3(ζ(t))△RH(x, t) + γH(ζ(t))IH(x, t) + δ1(ζ(t))IH(x, t) − µ(ζ(t))RH]dt,

dS v(x, t) = [D4(ζ(t))△S v(x, t) + A(ζ(t)) −
βv(ζ(t))b(ζ(t))

NH(ζ(t)) + m(ζ(t))
S v(x, t)IH(x, t) − v(ζ(t))S v(x, t)

− δ2(ζ(t))S v(x, t)]dt −
b(ζ(t))

NH(ζ(t)) + m(ζ(t))
ρ2(ζ(t))S v(x, t)IH(x, t)dB2(t),

dIv(x, t) = [D5(ζ(t))△Iv(x, t) +
βv(ζ(t))b(ζ(t))

NH(ζ(t)) + m(ζ(t))
S v(x, t)IH(x, t) − v(ζ(t))Iv(x, t)

− δ2(ζ(t))Iv(x, t)]dt +
b(ζ(t))

NH(ζ(t)) + m(ζ(t))
ρ2(ζ(t))S v(x, t)IH(x, t)dB2(t),



t , tk,

t > 0,
x ∈ Γ

S H(x, t+k ) = S H(x, tk),
IH(x, t+k ) = IH(x, tk),
RH(x, t+k ) = RH(x, tk),
S v(x, t+k ) = (1 + ∅1k)S v(x, tk),
Iv(x, t+k ) = (1 − ∅2k)Iv(x, tk)


t = tk.

(2.5)
Next, in order to study subsequent conclusions, the following preparatory knowledge needs to be given.

2.2. Preliminaries

Assign

V = H1(Γ) ≡
{
φ|φ ∈ L2(Γ),

∂φ

∂xi
∈ L2(Γ), i = 1, 2, 3

}
,
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where the dual space of V is V−1 = H−1(Γ). Define Cb
+ as a group of functions that are both bounded

and continuous. (Ω,F , {Ft}0≤t≤T , P) be a complete probability space equipped with a filtration {Ft}0≤t≤T

satisfying the usual conditions (i.e., it is right continuous and F0 contains all P-null sets). E denotes
the probability expectation corresponding to P. Let z(x, t) = (S H(x, t), IH(x, t),RH(x, t), S v(x, t), Iv(x, t)).
The setM+ = L2

(
Γ × [0,∞),R5

+

)
is made up of square integrable functions defined on Γ×[0,∞). These

functions are equipped with a norm denoted by ∥ · ∥. For any function z(x, t) inM+, the norm is defined

as ∥z(x, t)∥ =
(∫
Γ

z(x, t)zT (x, t)dx
) 1

2 .
Before continuing, let’s first determine the following symbols:
(A1) For any i ∈ S, hypothesis

f̌ = max
i∈S
{ f (i)}, f̂ = min

i∈S
{ f (i)}

where f (i) illustrates the parameter of system (2.5) in the i-th state.
(A2) h2 is the lower bound of h2(t).

3. Well-posedness

To start with, using a method similar to [28], to prove the well-posedness of global positive solution
of system (2.5), it is imperative that we first scrutinize the ensuing system:



dy1(x, t) = [D1(ζ(t))△y1(x, t) + µh(ζ(t))NH(ζ(t)) −
βH(ζ(t))b(ζ(t))

NH(ζ(t)) + m(ζ(t))
y1(x, t)h2(t)y5(x, t)

− µ(ζ(t))y1(x, t)]dt −
b(ζ(t))

NH(ζ(t)) + m(ζ(t))
ρ1(ζ(t))y1(x, t)h2(t)y5(x, t)dB1(t),

dy2(x, t) = [D2(ζ(t))△y2(x, t) +
βH(ζ(t))b(ζ(t))

NH(ζ(t)) + m(ζ(t))
y1(x, t)h2(t)y5(x, t) − (µ(ζ(t)) + γH(ζ(t)))y2(x, t)

− δ1(ζ(t))y2(x, t)]dt +
b(ζ(t))

NH(ζ(t)) + m(ζ(t))
ρ1(ζ(t))y1(x, t)h2(t)y5(x, t)dB1(t),

dy3(x, t) = [D3(ζ(t))△y3(x, t) + γH(ζ(t))y2(x, t) + δ1(ζ(t))y2(x, t) − µ(ζ(t))y3(x, t)]dt,

dy4(x, t) = [D4(ζ(t))△y4(x, t) + A(ζ(t))h−1
1 (t) −

βv(ζ(t))b(ζ(t))
NH(ζ(t)) + m(ζ(t))

y4(x, t)y2(x, t) − δ2(ζ(t))y4(x, t)

− (v(ζ(t)) − ln(1 + ∅1k))y4(x, t)]dt −
b(ζ(t))ρ2(ζ(t))

NH(ζ(t)) + m(ζ(t))
y4(x, t)y2(x, t)dB2(t),

dy5(x, t) = [D5(ζ(t))△y5(x, t) +
βv(ζ(t))b(ζ(t))

NH(ζ(t)) + m(ζ(t))
h−1

2 (t)h1(t)y4(x, t)y2(x, t) − δ2(ζ(t))y5(x, t)

− (v(ζ(t)) − ln(1 − ∅2k))y5(x, t)]dt +
b(ζ(t))ρ2(ζ(t))

NH(ζ(t)) + m(ζ(t))
h−1

2 (t)h1(t)y4(x, t)y2(x, t)dB2(t),

(3.1)
with initial value

(y1(x, 0), y2(x, 0), y3(x, 0), y4(x, 0), y5(x, 0)) = (S H,0(x), IH,0(x),RH,0(x), S v,0(x), Iv,0(x)), (3.2)

and boundary condition

∂y1(x, t)
∂ν

=
∂y2(x, t)
∂ν

=
∂y3(x, t)
∂ν

=
∂y4(x, t)
∂ν

=
∂y5(x, t)
∂ν

= 0, x ∈ ∂Γ, t > 0. (3.3)
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And, hi(t), i = 1, 2, are left continuous can be expressed as follows:

h1(t) =
{

(1 + ∅1k)[t]−t t , tk, k ∈ N, t > 0
(1 + ∅1k)−1 t = tk.

h2(t) =
{

(1 − ∅2k)[t]−t t , tk, k ∈ N, t > 0
(1 − ∅2k)−1 t = tk.

In fact, the relationship between system (2.5) and system (3.1) has the following lemma.

Lemma 3.1. The system (3.1) described by initial value (3.2) and boundary condition (3.3) can be
transformed into an equivalent system (2.5) represented by boundary condition (2.3).

Proof. Denote

(S H(x, t), IH(x, t),RH(x, t), S v(x, t), Iv(x, t)) = (y1(x, t), y2(x, t), y3(x, t), h1(t)y4(x, t), h2(t)y5(x, t)).

It is easy to get that yi(x, t), i = 1, 2, 3, 4 is continuous on (tk, tk+1) ⊂ [0,+∞). For every t , tk,

dS v(x, t) = h′1(t)y4(x, t)dt + h1(t)dy4(x, t)
= −h1(t) ln(1 + ∅1k)y4(x, t)dt + h1(t){[D4(ζ(t))△y4(x, t) + A(ζ(t))h−1

1 (t)

−
βv(ζ(t))b(ζ(t))

NH(ζ(t)) + m(ζ(t))
y4(x, t)y2(x, t) − (v(ζ(t)) − ln(1 + ∅1k)y4(x, t)

− δ2(ζ(t))y4(x, t)]dt −
b(ζ(t))

NH(ζ(t)) + m(ζ(t))
ρ2(ζ(t))y4(x, t)y2(x, t)dB2(t)}

= [D4(ζ(t))△S v(x, t) + A(ζ(t)) −
βv(ζ(t))b(ζ(t))

NH(ζ(t)) + m(ζ(t))
S v(x, t)IH(x, t) − v(ζ(t))S v(x, t)

− δ2(ζ(t))S v(x, t)]dt −
b(ζ(t))

NH(ζ(t)) + m(ζ(t))
ρ2(ζ(t))S v(x, t)IH(x, t)dB2(t).

Moreover, for tk ≥ 0,

S v(x, t−) = lim
t→t−k

h1(t)y4(x, t) = (1 + ∅1k)(tk−1)−tky4(x, tk) = (1 + ∅1k)−1y4(x, tk) = S v(x, tk),

and
S v(x, t+k ) = lim

t→t+k
h1(t)y4(x, t) = (1 + ∅1k)tk−tky4(x, tk) = y4(x, tk).

It follows that
S v(x, t+k ) = (1 + ∅1k)S v(x, tk), for t = tk.

For Iv(x, t), we can follow the same process as we did for S v(x, t).

It can be shown that the well-posedness of positive solution for the system (3.1) by proving system
(2.5) has a unique positive solution. The required lemma is provided below.

Lemma 3.2. For any initial value (3.2), the solution of system (2.5), satisfies that

lim sup
t→∞

∫
Γ

(S H(x, t) + IH(x, t) + RH(x, t) + S V(x, t) + IV(x, t)) dx < B,

where B = (µhNH+A)|Γ|
µ

and |Γ| represents the volume of Γ.

Mathematical Biosciences and Engineering Volume 20, Issue 9, 16978–17002.
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The proof procedure is omitted, the interested reader can refer to [29]. Based on this Lemma 3.2,
the following theorem holds.

Theorem 3.1. For any initial value (3.2) and t ≥ 0, system (2.5) has a unique positive solution z(x, t).

The proof is given in the Appendix. This is the basis of the whole paper, which makes the subse-
quent analysis meaningful.

4. Finite-time contraction stability

Before giving sufficient conditions to ensure FTCS, the following necessary lemma is introduced.

Lemma 4.1. [30] Assume that there exist positive constants gr, r = 1, 2, . . . , s, such that x ∈ Γ and
|xr| < gr. Given a function z(x) ∈ Rn which belongs to C2(Γ) and vanishes on ∂Γ, has∫

Γ

z⊤(x)
∂2z(x)
∂x2 dx ≤ −

s∑
r=1

1
g2

r

∫
Γ

z⊤(x)z(x)dx.

Furthermore, to facilitate subsequent studies, it is necessary to give the following definitions.

Definition 4.1. Given positive numbers T , B1 and B2 with B1 > B2, system (2.5) is guaranteed to be
finite-time stable concerning (T, B1, B2), if for any t ∈ [0,T ],

sup
( ∫
Γ

S 2
H(x, 0) + I2

H(x, 0) + R2
H(x, 0) + S 2

v(x, 0) + I2
v (x, 0)dx

)
≤ B1,

we have
E
( ∫
Γ

S 2
H(x, t) + I2

H(x, t) + R2
H(x, t) + S 2

v(x, t) + I2
v (x, t)dx

)
≤ B2.

Definition 4.2. Given positive constants T , B1, B2, B3, ω with B2 > B1 > B3, ω ∈ (0,T ), system (2.5)
is said to be finite-time contraction stability with respect to (B1, B2, B3, ω,T ), if

sup
( ∫
Γ

S 2
H(x, 0) + I2

H(x, 0) + R2
H(x, 0) + S 2

v(x, 0) + I2
v (x, 0)dx

)
≤ B1,

we have
E
( ∫
Γ

S 2
H(x, t) + I2

H(x, t) + R2
H(x, t) + S 2

v(x, t) + I2
v (x, t)dx

)
≤ B2 ∀t ∈ [0,T ]. (4.1)

Moreover,

E
( ∫
Γ

S 2
H(x, t) + I2

H(x, t) + R2
H(x, t) + S 2

v(x, t) + I2
v (x, t)dx

)
≤ B3. ∀t ∈ [T − ω,T ]. (4.2)

Definition 4.3. [22] For any T ≥ t ≥ 0, the average impulsive interval of the sequence tk (k ∈ N+) on
(t,T ] is l, when N0 ∈ N

+ and l ∈ N, there is

T − t
l
− N0 ≤ n(T, t) ≤

T − t
l
+ N0,

where n(T, t) denotes the number of pulse moments.

Mathematical Biosciences and Engineering Volume 20, Issue 9, 16978–17002.



16986

Remark 4.4. Note that for a given pulse sequence, N0 is not unique. As N0 increases, the number of
impulsive instant sequences it contains also increases. In particular, for the case N0 = 1, it is required
that there be no less than one pulse control input on each interval of l.

Definition 4.5. [22] For any t ≥ s, t, s ∈ [0,T ], it can be concluded that the pulse number function
n(t, s) of the bounded pulse interval satisfies

t − s
lM
− 1 ≤ n(t, s) ≤

t − s
lm
,

where lM = maxk∈K(tk − tk−1) and lm = mink∈K(tk − tk−1), k ∈ K = {1, 2, . . . , n(T, 0)}.

Lemma 4.2. [31] Consider a stochastic differential equation in the form of Markov switching

dX(t) = f (X(t), t, ζ(t))dt + g(X(t), t, ζ(t))dB(t), X(0) = x0,

where B(·) and ζ(·) are the d-dimensional Brownian motion and the right continuous Markov chain,
respectively, and f (·, ·) : Rn × S→ Rn, g(·, ·) : Rn × S→ Rn×d. If V ∈ C2,1 (Rn × R+ × S;R+), define an
operator LV from Rn × R+ × S to R by

LV(x, t, i) = Vt(x, t, i) + Vx(x, t, i) f (x, t, i) +
1
2

trace
[
gT(x, t, i)Vxx(x, t, i)g(x, t, i)

]
+

N∑
j=1

γi jV(x, t, j),

dV(X(t), t, ζ(t)) = LV(X(t), t, ζ(t))dt + Vx(X(t), t, ζ(t))g(X(t), t, ζ(t))dB(t).

Lemma 4.3. [32] Comparison theorem: Let V ∈ class V0 and suppose that

D+V(t, x) ≤ g(t,V(t, x)), t , tk

V (t, x + Ik(x)) ≤ Ψk(V(t, x)), t = tk,

where g : R+ × R+ → R is continuous, lim(t,y)→(t+k ,x) g(t, y) = g
(
t+k , x

)
exists and Ψk : R+ → R+ is

nondecreasing. Let u(t) be the maximal solution of system (4.3)
u̇ = g(t, u), t , tk,

u(t+k ) = Ψk(u(tk)), t = tk,

u(t+0 ) = u0 ≥ 0.
(4.3)

For any t ≥ t0, V(t0, x0) ≤ u0 is established, then V(t, x(t)) ≤ u(t).

4.1. Finite-time contractive stability with average impulsive interval

The sufficient conditions for FTCS are established by means of the average pulse interval method.
Assign

r1 = Q̌(µ̌2
hŇ2

H + Ǎ2)|Γ|, r21 = 1 − 2µ̌ − 2 β̌H b̌
ŇH+m̌

B − 2D̂1

r∑
i=1

1
l2i
, Q̌ = maxi∈S{Q(i)}, Q̂ = mini∈S{Q(i)}

r22 =
b̌

ŇH+m̌
(β̌H + β̌v)B +

2b̌2ρ̌2
2

(ŇH+m̌)2 B2 − 2µ̌ − γ̌H − 2D̂2

r∑
i=1

1
l2i
, r23 = γ̌H − 2µ̌ − 2D̂3

r∑
i=1

1
l2i

r24 = 1 − 2v̌ − 2 β̌vb̌
ŇH+m̌

B − 2D̂4

r∑
i=1

1
l2i
, r25 =

b̌
ŇH+m̌

(β̌H + β̌v)B +
2b̌2ρ̌2

1
(ŇH+m̌)2 B2 − 2v̌ − 2D̂5

r∑
i=1

1
l2i
,

r2 = max
{
r21, r22, r23, r24, r25

}
+ qii +

∑m
j,i qi jQ̌Q̂−1, φ = max{1, (1 + ∅i)2, i = 1, 2}.
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Theorem 4.6. The system (2.5) is FTCS about (B1, B2, B3, ω,T ), when φ ≥ 1, if one of the following
conditions is satisfied
C1. lnφ

l + r2 ≤ δ̂ ≤ min{r2 −
r1

B1−Q̂B2φ
−N0 e−

lnφ
l T
, r2 −

r1

B1−Q̂B3φ
−N0 e−

lnφ
l T
}.

C2. 0 < δ̂ ≤ min{r2 −
r1

φ−N0 Q̂B2e−( lnφ
l +r2)T

−B1

, r2 −
r1

φ−N0 Q̂B3e−( lnφ
l +r2)T

−B1

, r2 +
lnφ

l }.

Proof. Choose

W(x, t, i) = Q(i)(
∫
Γ

S 2
H(x, t) + I2

H(x, t) + R2
H(x, t) + S 2

v(x, t) + I2
v (x, t)dx).

Application Itô formula can get the result

dW(x, t, i)

= 2Q(i)
∫
Γ

S H(x, t)
[
[D1(i)△S H(x, t) + µh(i)NH(i) −

βH(i)b(i)
NH(i) + m(i)

S H(x, t)Iv(x, t) − µ(i)S H(x, t)]dt

−
b(i)

NH(i) + m(i)
ρ1(i)S H(x, t)Iv(x, t)dB1(t)

]
dx + 2Q(i)

∫
Γ

IH(x, t)
[
[D2(i)△IH(x, t) +

βH(i)b(i)
NH(i) + m(i)

× S H(x, t)Iv(x, t) − (µ(i) + γH(i) + δ1(i))IH(x, t)]dt +
b(i)

NH(i) + m(i)
ρ1(i)S H(x, t)Iv(x, t)dB1(t)

]
dx,

+ 2Q(i)
∫
Γ

RH(x, t)
[
D3(i)△RH(x, t) + γH(i)IH(x, t) + δ1(i)IH(x, t) − µ(i)RH(x, t)dt

]
dx + 2Q(i)

×

∫
Γ

S v(x, t)
[
[D4(i)△S v(x, t) + A(i) −

βv(i)b(i)
NH(i) + m(i)

S v(x, t)IH(x, t) − δ2(i)S v(x, t) − v(i)S v(x, t)]dt

−
b(i)

NH(i) + m(i)
ρ2(i)S v(x, t)IH(x, t)dB2(t)

]
dx + 2Q(i)Iv(x, t)

[
(
∫
Γ

D5(i)△Iv(x, t) +
βv(i)b(i)

NH(i) + m(i)

× S v(x, t)IH(x, t) − (δ2(i) + v(i))Iv(x, t)]dt +
b(i)

NH(i) + m(i)
ρ2(i)S v(x, t)IH(x, t)dB2(t)

]
dx + Q(i)

× (
∫
Γ

2(b(i)ρ1(i))2

(NH(i) + m(i))2 S 2
H(x, t)I2

v (x, t) +
2(b(i)ρ2(i))2

(NH(i) + m(i))2 S 2
v(x, t)I2

H(x, t))dxdt +
m∑

j=1

qi jW (x, t, i)dt.

Follows Lemma 3.2 and Lemma 4.1, we can obtain

dW(x, t, i)

≤ Q(i){−2
r∑

i=1

1
l2
i

∫
Γ

[D1(i)S 2
H(x, t) + D2(i)I2

H(x, t) + D3(i)R2
H(x, t) + D4(i)S 2

v(x, t) + D5(i)I2
v (x, t)]dxdt

+

∫
Γ

µ̌2
hŇ2

H + S 2
H(x, t) − 2

βH(i)b(i)
NH(i) + m(i)

BS 2
H(x, t) − 2µ(i)S 2

H(x, t)dxdt +
∫
Γ

βH(i)b(i)
NH(i) + m(i)

BI2
H(x, t)

+
βH(i)b(i)

NH(i) + m(i)
BI2

v (x, t)) − 2(µ(i) + γH(i) + δ1(i))I2
H(x, t)dxdt +

∫
Γ

(γH(i) + δ1(i))(I2
H(x, t) + R2

H(x, t))

− 2µ(i)R2
H(x, t)dxdt +

∫
Γ

Ǎ2 + S 2
v(x, t) − 2

βv(i)b(i)
NH(i) + m(i)

BS 2
v(x, t) − 2(δ2(i) + v(i))S 2

v(x, t)dxdt
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+

∫
Γ

βv(i)b(i)
NH(i) + m(i)

B(I2
H(x, t) + I2

v (x, t)) − 2(v(i) + δ2(i))I2
v (x, t)dxdt +

∫
Γ

2(b(i)ρ1(i))2

(NH(i) + m(i))2 B2I2
v (x, t)

+
2(b(i)ρ2(i))2

(NH(i) + m(i))2 B2I2
H(x, t)dxdt − 2

∫
Γ

b(i)ρ1(i)
NH(i) + m(i)

S 2
H(x, t)Iv(x, t)dxdB1(t) + 2

∫
Γ

b(i)ρ1(i)
NH(i) + m(i)

× S H(x, t)IH(x, t)Iv(x, t)dxdB1(t) − 2
∫
Γ

b(i)ρ2(i)
NH(i) + m(i)

S 2
v(x, t)IH(x, t)dxdB2(t) + 2

∫
Γ

b(i)ρ2(i)
NH(i) + m(i)

× S v(x, t)Iv(x, t)IH(x, t)dxdB2(t)} + (qii +

m∑
j,i

qi jQ̌Q̂−1)W (x, t, i)dt

≤ Q̌
{
(µ̌2

hŇ2
H + Ǎ2)|Γ| +

∫
Γ

(1 − 2µ̌ − 2
β̌Hb̌

ŇH + m̌
B − 2D̂1

r∑
i=1

1
l2
i

)S 2
H(x, t)dxdt +

∫
Γ

(
b̌

ŇH + m̌
β̌H B

+
b̌

ŇH + m̌
β̌vB +

2b̌2ρ̌2
2

(ŇH + m̌)2
B2 − 2µ̌ − γ̌H − δ̌1 − 2D̂2

r∑
i=1

1
l2
i

)I2
H(x, t)dxdt +

∫
Γ

(γ̌H − 2µ̌

− 2D̂3

r∑
i=1

1
l2
i

)R2
H(x, t)dxdt +

∫
Γ

(1 − 2v̌ − 2
β̌vb̌

ŇH + m̌
B − 2δ̌2 − 2D̂4

r∑
i=1

1
l2
i

)S 2
v(x, t)dxdt

+

∫
Γ

(
b̌

ŇH + m̌
(β̌H + β̌v)B − 2v̌ +

2b̌2ρ̌2
1

(ŇH + m̌)2
B2 − 2δ̌2 − 2D̂5

r∑
i=1

1
l2
i

)I2
v (x, t)dxdt

}
+ (qii +

m∑
j,i

qi jQ̌Q̂−1)W (x, t, i)dt + B(t)

≤ [r1 + (r2 − δ̂)W (x, t, i)]dt + B(t) (4.4)

where

B(t) = −2
∫
Γ

b(i)ρ1(i)
NH(i) + m(i)

S 2
H(x, t)Iv(x, t)dxdB1(t) + 2

∫
Γ

b(i)ρ1(i)
NH(i) + m(i)

S H(x, t)IH(x, t)Iv(x, t)dxdB1(t)

− 2
∫
Γ

b(i)ρ2(i)
NH(i) + m(i)

S 2
v(x, t)IH(x, t)dxdB2(t) + 2

∫
Γ

b(i)ρ2(i)
NH(i) + m(i)

S v(x, t)Iv(x, t)IH(x, t)dxdB2(t)

For t = tk, it is easy to derive that

W(S H(x, t+k ), IH(x, t+k ),RH(x, t+k ), S v(x, t+k ), Iv(x, t+k ))

=

∫
Γ

Q(i)S 2
H(x, tk)dx +

∫
Γ

Q(i)I2
H(x, tk)dx +

∫
Γ

Q(i)R2
H(x, tk)dx

+

∫
Γ

Q(i)(1 + ∅1k)2S 2
v(x, tk)dx + +

∫
Γ

Q(i)(1 + ∅2k)2I2
v (x, tk)dx

≤ φW(tk),

(4.5)

where φ = max{1, (1 + ∅i)2, i = 1, 2}. Taking expectation on Eqs (4.4) and (4.5), we get

dEW(t) ≤ r1 + (r2 − δ̂)EW(t) t , tk,

EW(t+k ) ≤ φEW(tk) t = tk.

Set u(t) be the solution of system (4.6)du(t) = [r1 + (r2 − δ̂)u(t)]dt t , tk,

u(t+k ) = φu(tk) t = tk.
(4.6)
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Using the comparison thereom yields
EW(t) ≤ u(t).

It can be seen in terms of the method of variation of constant on (4.6)

u(t) = −
r1

r2 − δ̂
φn(t,0) +

(
u(0) +

r1

r2 − δ̂

)
β(t, 0), (4.7)

where
β(t, 0) = φn(t,0)e(r2−δ̂)t = en(t,0) lnφ+(r2−δ̂)t, t ≥ 0.

For any t ∈ [0,T ], we have
t
l
− N0 ≤ n(t, 0) ≤

t
l
+ N0.

When φ ≥ 1 i.e., lnφ
l > 0, it can be calculated that

β(t, 0) = en(t,0) lnφ+(r2−δ̂)t ≤ e( t
l+N0) lnφ+(r2−δ̂)t = e

(
lnφ

l +r2−δ̂
)

t+N0 lnφ,

φn(t,0) = en(t,0) lnφ ≤ e( t
l+N0) lnφ = e

lnφ
l t+N0 lnφ.

Thus, we have
u (t) ≤ −φN0 r1

r2−δ̂
e

lnφ
l t + φN0

(
u (0) + r1

r2−δ̂

)
e
( lnφ

l +r2−δ̂
)
t. (4.8)

If lnφ
l + r2 − δ̂ ≤ 0, from (4.8), one obtains

Q(i)E(
∫
Γ

S 2
H(x, t) + I2

H(x, t) + R2
H(x, t) + S 2

v(x, t) + I2
v (x, t)dx) ≤ u(t)

≤ φN0
(
u(0) −

r1

r2 − δ̂

)
e

lnφ
l t ≤ φN0

(
B1 −

r1

r2 − δ̂

)
e

lnφ
l T .

For C1, we obtain (4.1) and (4.2).
If lnφ

l + r2 − δ̂ > 0, from (4.8), one obtains

EW(t) ≤ u(t)
≤ φN0(u(0) +

r1

r2 − δ̂
)e

( lnφ
l +r2−δ̂

)
t
≤ φN0(u(0) +

r1

r2 − δ̂
)e

( lnφ
l +r2−δ̂

)
T

≤ φN0
(
B1 +

r1

r2 − δ̂

)
e
( lnφ

l +r2
)
T .

Based on C2, the inequality (4.1) and (4.2) are verified and this completes the proof.

From (4.1), the corollary concerning finite-time stability (FTS) is obtained.

Corollary 4.1. The system (2.5) is FTS about (B1, B2,T ), when φ ≥ 1, if one of the following conditions
is satisfied
C − 1. lnφ

l + r2 ≤ δ̂ ≤ r2 −
r1

B1−Q̂B2φ
−N0 e−

lnφ
l T

.

C − 2. 0 < δ̂ ≤ min{r2 −
r1

φ−N0 Q̂B2e−( lnφ
l +r2)T

−B1

, r2 +
lnφ

l }.

Remark 4.7. When dengue fever occurs, some parameters are known, such as the use of pesticides
and the intensity and frequency of release of sterile mosquitoes. According to the result of this paper
(Theorem 4.6), it can be judged whether the spread of dengue fever can be controlled within a limited
time, which has a certain guiding role in the prevention of the disease. Moreover, it can be seen from
the Theorem 4.6 and Corollary 4.1 that if the system is FTCS then the system must be FTS.
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4.2. Finite-time contractive stability with bounded pulse interval

In this part, based on the bounded pulse interval method, a criterion for FTCS about
(B1, B2, B3, ω,T ) is given.

Theorem 4.8. The system (2.5) is FTCS about (B1, B2, B3, ω,T ), when φ ≥ 1, if one of the following
conditions is satisfied
C′1. lnφ

lm
+ r2 ≤ δ̂ ≤ min{r2 −

r1

B1−Q̂B2e
−

lnφ
lm

T
, δ̂ ≤ r2 −

r1

B1−Q̂B3e
−

lnφ
lm

T
}.

C′2. 0 < δ̂ ≤ min{r2 −
r1

Q̂B2e
−( lnφ

lm
+r2)T

−B1

, r2 −
r1

Q̂B3e
−( lnφ

lm
+r2)T

−B1

, r2 +
lnφ
lm
}

where φ, r1 and r2 have the same definitions as in Theorem 4.6.

Proof. On the basis of Definition 4.5, obviously

t
lM
− 1 ≤ n(t, 0) ≤

t
lm
.

When φ ≥ 1 i.e., lnφ
l > 0, it is seen that

β(t, 0) = en(t,0) lnφ+(r2−δ̂)t ≤ e
t

lm
lnφ+(r2−δ̂)t = e

(
lnφ
lm
+r2−δ̂

)
t,

φn(t,0) = en(t,0) lnφ ≤ e
t

lm
lnφ = e

lnφ
lm

t.
(4.9)

Similarly, combining Eqs (4.7) and (4.9) shows that

u (t) ≤ − r1
r2−δ̂

e
lnφ
lm

t +
(
u (0) + r1

r2−δ̂

)
e
( lnφ

lm
+r2−δ̂

)
t. (4.10)

If lnφ
lm
+ r2 − δ̂ ≤ 0, from (4.10), one obtains

Q(i)E(
∫
Γ

S 2
H(x, t) + I2

H(x, t) + R2
H(x, t) + S 2

v(x, t) + I2
v (x, t)dx) ≤ z(t)

≤
(
u(0) −

r1

r2 − δ̂

)
e

lnφ
lm

t
≤

(
B1 −

r1

r2 − δ̂

)
e

lnφ
lm

T .

The condition C′1 means that (4.1) and (4.2) hold.
If lnφ

lm
+ r2 − δ̂ > 0, from (4.10), one obtains

EW(t) ≤ z(t)
≤ (u(0) +

r1

r2 − δ̂
)e

( lnφ
lm
+r2−δ̂

)
t
≤ (u(0) +

r1

r2 − δ̂
)e

( lnφ
lm
+r2−δ̂

)
T

≤
(
B1 +

r1

r2 − δ̂

)
e
( lnφ

lm
+r2

)
T .

Then, under condition C′2, (4.1) and (4.2) are true and this completes the proof.

Similarly, the FTS of the bounded pulse interval method can be deduced from (4.1).

Corollary 4.2. The system (2.5) is FTS about (B1, B2,T ), when φ ≥ 1, if one of the following conditions
is satisfied
C − 3. lnφ

lm
+ r2 ≤ δ̂ ≤ r2 −

r1

B1−Q̂B2e
−

lnφ
lm

T
.

C − 4. 0 < δ̂ ≤ min{r2 −
r1

Q̂B2e
−( lnφ

lm
+r2)T

−B1

, r2 +
lnφ
lm
}.
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Remark 4.9. From Definition 4.5, it can be seen that the impulsive sequence is related to the minimum
impulsive interval lm. Then, combined with Theorem 4.8, it is known that for an unstable impulse effect,
i.e., φ ≥ 1, when other parameters remain the same, the larger minimal impulsive interval lm (fewer
pulses) means that finite-time contraction stability is easier to achieve.

5. Numerical simulations

Table 1. Description of parameters in system (2.5).

Parameters Values Parameters Values Parameters Values Parameters Values
D1(1) 0.12 µ(1) 0.1 D1(2) 0.11 µ(2) 0.15
D2(1) 0.32 A(1) 1.2 D2(2) 0.3 A(2) 1.3
D3(1) 0.15 v(1) 0.08 D3(2) 0.13 v(2) 0.1
D4(1) 0.15 γH(1) 0.048 D4(2) 0.13 γH(2) 0.048
D5(1) 0.12 βH(1) 0.5 D5(2) 0.11 βH(2) 0.6
b(1) 0.3 βv(1) 0.7 b(2) 0.5 βv(2) 0.6
µhNH(1) 1 ρ1(1) 1.6 µhNH(2) 1 ρ1(2) 1.4
(NH + m)(1) 6 ρ2(1) 1 (NH + m)(2) 6.1 ρ2(2) 0.8
δ1(1) 0.3 δ2(1) 0.4 δ1(2) 0.2 δ2(2) 0.3

This section aims to demonstrate the validity of the theoretical findings we obtained in the previous
sections. We assume that r = 1 and x ∈ Γ = [−0.3, 0.3]. The Markov process ζ(t) takes values in S

= {1, 2} with generator Γ =
(
−0.4 0.4
0.6 −0.6

)
(see Figure 1). The parameters of system (2.5) for the two

states are given in Table 1 as in Refs. [29, 33, 34].

0 20 40 60 80 100

t

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

t

Figure 1. The sample paths of ζ(t).

5.1. Analysis of FTCS

In this part, the FTCS for system (2.5) are explained through two examples.

Example 5.1. The average pulse interval is used to study finite-time contraction stability. Take the
impulsive sequence {tk} = {0.6, 1.2, 1.8, 2.4, 3, 3.6}, i.e., l = 0.6. By setting T = 3 years, B1 = 6.5,
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B2 = 7, B3 = 5.5, ϕ1k = ϕ2k = 0.1 and selecting Q̌ = Q̂ = 1.5, N0 = 1, simple calculation shows
that r1 = 1.2105, r2 = 0.21, r2 −

r1

φ−N0 Q̂B2e
−( lnφ

lm
+r2)T

−B1

= 0.467, r2 −
r1

φ−N0 Q̂B3e
−( lnφ

lm
+r2)T

−B1

= 0.452 and

r2 +
lnφ

l = 0.526, this implies that C2 in Theorem 4.6 holds. Hence, system (2.5) is FTCS w.r.t
(6.5,7,5.5,1,3). Figure 2 displays the initial concentrations of populations are less than B1 and not
more than B2 in [0,T ] and reach B3 in [T − ω,T ]. Namely, before reaching the terminal time, the
system can reach a certain threshold which is smaller than the initial threshold, which means that the
spread of dengue can be controlled effectively within a limited period of time.

(a) (b) (c)

(d) (e)

0 0.5 1 1.5 2 2.5 3

time

4

4.5
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5.5
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6.5
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||z
(x

,t)
||2

||z(x,t)||2

B
2

B
1

B
3

(f)

Figure 2. The state trajectories of system (2.5) with control and the average impulsive inter-
val with initial value (8, 5, 0, 4.5, 4).

Example 5.2. In this example, the pulse sequence is derived from the bounded pulse interval method.
{tk} = {0.6, 1.3, 1.9, 2.6, 3.3}, i.e., lm = 0.6, lM = 0.7.We also take T = 3 years, B1 = 6.5, B2 = 7, B3 =

5.5 and other parameter values use the same parameter values as Example 5.1. The calculation yields
r1 = 1.2105, r2 = 0.21, r2 −

r1

Q̂B2e
−( lnφ

lm
+r2)T

−B1

= 0.489, r2 −
r1

Q̂B3e
−( lnφ

lm
+r2)T

−B1

= 0.462 and r2 +
lnφ

l = 0.526,

this implies that C′2 in Theorem 4.8 holds. Thus, system is FTCS w.r.t (6.5,7,5.5,1,3) (see Figure 3).
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(a) (b) (c)

(d) (e)

0 0.5 1 1.5 2 2.5 3

time

4

4.5

5

5.5

6

6.5

7

||z
(x

,t)
||2

||z(x,t)||2

B
2

B
1

B
3

(f)

Figure 3. The trajectories of system (2.5) with initial value (8, 5, 0, 4.5, 4) with control and
the bounded impulsive interval.

5.2. The influence of pulse

To investigate the impact of pulse on (2.5), the same parameter values shown in Figure 2 are used
and let Iik = 0. By simple calculation, it can be found that all conditions of Theorem 4.8 are not satis-
fied, i.e., system (2.5) about (6.5,7,5.5,1,3) is not FTCS, as shown in Figure 4. For this case, compared
to the conditions of Figure 2, we just alter the impulsive condition, but discover that the system cannot
be FTCS without impulsive effects. It shows that under the same circumstances, impulsive perturbation
is important to the system’s stability for a finite period.

(a) (b) (c)

Continued on next page
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(d) (e)
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Figure 4. The state trajectories of system (2.5) without impulse with initial value
(8, 5, 0, 4.5, 4).

5.3. The effect of the control variables

According to Theorem 4.6 and Theorem 4.8, it can be noticed that the values of control variables
are key to the FTS and FTCS of system (2.5). The following discussion is divided into two cases.

(a) (b) (c)

(d) (e)
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3
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Figure 5. The state trajectories of system (2.5) with initial value (8, 5, 0, 4.5, 4) without
control.

Case 1: In this part, we can see by Figure 5 that if without controls (i.e., δ1 = δ2 = 0 and other
parameters of the system are as same as in Figure 2), then it is neither FTS w.r.t (6.5, 7, 3) nor FTCS
w.r.t (6.5, 7, 5.5, 1, 3).

Mathematical Biosciences and Engineering Volume 20, Issue 9, 16978–17002.



16995

Case 2: We choose the same parameters as in Figure 2 except δ1(1) = 0.2, δ2(1) = 0.3, δ1(2) =
0.1, δ2(2) = 0.2. Then system is FTS about (6.5, 7, 3) and not FTCS about (6.5, 7, 5.5, 1, 3) (see Figure
6).

Case 1 implied that system (2.5) itself is impossible to be stable in a finite period of time without
control. Case 2 illustrates that if the control intensity is low, dengue fever cannot be finally controlled
at a lower level (below the initial value). It can be observed that the stochastic dengue epidemic model
can be FTCS only by choosing appropriate values of control variables.

(a) (b) (c)

(d) (e)
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Figure 6. The trajectories of system (2.5) with initial value (8, 5, 0, 4.5, 4) with δ1(1) =
0.2, δ2(1) = 0.3, δ1(2) = 0.1, δ2(2) = 0.2.

5.4. The influence of noise

Now consider the impact of environmental noise intensity on FTCS of (2.5). Based on the param-
eters from Table 1, choose ρ1(1) = 2, ρ2(1) = 1.6, ρ1(2) = 1.8, ρ2(2) = 1.3. Then Figure 7 illustrates
system is not FTCS but FTS, which means that the finite-time behaviors of dengue is heavily influenced
by external environmental disturbances.
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Figure 7. The state trajectories of system (2.5) with initial value (8, 5, 0, 4.5, 4) with ρ1(1) =
2, ρ2(1) = 1.6, ρ1(2) = 1.8, ρ2(2) = 1.3.

6. Conclusions and discussion

This article investigated the FTCS of a reaction-diffusion dengue model with impulse and Markov
switching. Sufficient conditions with respect to control variable for finite-time contraction stability are
obtained via two representations of pulse sequences (i.e., the average pulse interval and bounded pulse
interval) make use of the Lyapunov functional method and inequality techniques. All these conditions
show the impacts of environmental noise intensity (ρ1, ρ2) and impulsive factor (φ,N0, l, lm) on the
FTCS. FTCS can be realized only when appropriate control measures are selected, that is, the spread
of dengue fever can be effectively controlled within a limited time. Moreover, delay [35–38] is also a
widespread phenomenon that can lead to dramatic changes in dynamic behavior. It is challenging to
consider the impact of time delays on FTCS, which will also be our future research direction.
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Appendix A: The proof of Theorem 3.1

Proof. Due to the coefficients of (3.1) are locally Lipschitz continuous, for (3.2), system (3.1) admits
a unique solution y(x, t) on [0, τe), where τe is the explosion time.

Let q0 > 0 be sufficiently large such that y(x, 0) lies within [ 1
q0
, q0]. For each q ≥ q0, define a

stopping time

τq = in f {t ∈ [0, τe] : min{yi(x, t)} ≤
1
q

or max{yi(x, t)} ≥ q}, i = 1, 2, 3, 4.

Set inf ∅ = ∞. It can be seen that τq is increasing as q→ +∞. Let τ∞ = limt→+∞, then τ∞ ≤ τe a.s. and
y(x, t) > 0. For arbitrary T > 0, t ∈ [0, tq ∧ T ), let

V(x, t, i) = G(i)(
∫
Γ

y2
1(x, t) + y2

2(x, t) + y2
3(x, t) + y2

4(x, t) + y2
5(x, t)dx).

According to Itô formula we have

dV(x, t, i)

= 2G(i)
∫
Γ

y1(x, t)
[
[D1(i)△y1(x, t) + µh(i)NH(i) −

βH(i)b(i)
NH(i) + m(i)

y1(x, t)h2(t)y5(x, t) − µ(i)y1(x, t)]dt

−
b(i)

NH(i) + m(i)
ρ1(i)y1(x, t)h2(t)y5(x, t)dB1(t)

]
dx + 2G(i)

∫
Γ

y2(x, t)
[
[D2(i)△y2(x, t) +

βH(i)b(i)
NH(i) + m(i)

× y1(x, t)h2(t)y5(x, t) − (µ(i) + γH(i))y2(x, t) − δ1(i))y2(x, t)]dt +
b(i)

NH(i) + m(i)
ρ1(i)y1(x, t)h2(t)

× y5(x, t)dB1(t)
]
dx + 2G(i)

∫
Γ

y3(x, t)
[
D3(i)△y3(x, t) + (γH(i) + +δ1(i))y2(x, t) − µ(i)y3(x, t)dt

]
dx

+ 2G(i)
∫
Γ

y4(x, t)
[
[D4(i)△y4(x, t) + A(i)h−1

1 (t) −
βv(i)b(i)

NH(i) + m(i)
y4(x, t)y2(x, t) − δ2(i)y4(x, t)

− (v(i) − ln(1 + ∅1k))y4(x, t)]dt −
b(i)

NH(i) + m(i)
ρ2(i)y4(x, t)y2(x, t)dB2(t)

]
dx + 2G(i)

∫
Γ

y5(x, t)

×
[
[D5(i)△y5(x, t) +

βv(i)b(i)
NH(i) + m(i)

h−1
2 (t)h1(t)y4(x, t)y2(x, t) − v(i)y5(x, t) + ln(1 − ∅2k)y5(x, t)

− δ2(i)y5(x, t)]dt +
b(i)

NH(i) + m(i)
ρ2(i)h−1

2 (t)h1(t)y4(x, t)y2(x, t)dB2(t)
]
dx +G(i)(

∫
Γ

2(b(i)ρ1(i))2

(NH(i) + m(i))2

× y2
1(x, t)h2

2(x, t)y2
5(x, t) +

(b(i)ρ2(i))2

(NH(i) + m(i))2 y2
4(x, t)y2

2(x, t) +
(b(i)ρ2(i))2

(NH(i) + m(i))2 h−2
2 (t)h2

1(t)y2
4(x, t)

× y2
2(x, t))dxdt +

m∑
j=1

qi jG(i)(
∫
Γ

y2
1(x, t) + y2

2(x, t) + y2
3(x, t) + y2

4(x, t) + y2
5(x, t))dxdt.

(6.1)
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Assign

LV(x, t, i)

= 2G(i){
∫
Γ

y1(x, t)
[
[D1(i)△y1(x, t) + µh(i)NH(i) −

βH(i)b(i)
NH(i) + m(i)

y1(x, t)h2(t)y5(x, t) − µ(i)y1(x, t)]dt

−
b(i)

NH(i) + m(i)
ρ1(i)y1(x, t)h2(t)y5(x, t)dB1(t)

]
dx +

∫
Γ

y2(x, t)
[
[D2(i)△y2(x, t) +

βH(i)b(i)
NH(i) + m(i)

× y1(x, t)h2(t)y5(x, t) − (µ(i) + γH(i))y2(x, t) − δ1(i))y2(x, t)]dt +
b(i)

NH(i) + m(i)
ρ1(i)y1(x, t)h2(t)

× y5(x, t)dB1(t)
]
dx +

∫
Γ

y3(x, t)
[
D3(i)△y3(x, t) + (γH(i) + +δ1(i))y2(x, t) − µ(i)y3(x, t)dt

]
dx

+

∫
Γ

y4(x, t)
[
[D4(i)△y4(x, t) + A(i)h−1

1 (t) −
βv(i)b(i)

NH(i) + m(i)
y4(x, t)y2(x, t) − δ2(i)y4(x, t)

− (v(i) − ln(1 + ∅1k))y4(x, t)]dt −
b(i)

NH(i) + m(i)
ρ2(i)y4(x, t)y2(x, t)dB2(t)

]
dx +

∫
Γ

y5(x, t)

×
[
[D5(i)△y5(x, t) +

βv(i)b(i)
NH(i) + m(i)

h−1
2 (t)h1(t)y4(x, t)y2(x, t) − v(i)y5(x, t) + ln(1 − ∅2k)y5(x, t)

− δ2(i)y5(x, t)]dt +
b(i)

NH(i) + m(i)
ρ2(i)h−1

2 (t)h1(t)y4(x, t)y2(x, t)dB2(t)
]
dx} +

m∑
j=1

qi jG(i)

× (
∫
Γ

y2
1(x, t) + y2

2(x, t) + y2
3(x, t) + y2

4(x, t) + y2
5(x, t))dxdt.

(6.2)
In view of the partial integral formula, some basic inequalities, we deduce that

LV(x, t, i)

≤ G(i){
∫
Γ

−2D1(i)(▽y1(x, t))2 − 2D2(i)(▽y2(x, t))2 − 2D3(i)(▽y3(x, t))2 − 2D4(i)(▽y4(x, t))2

− 2D5(i)(▽y5(x, t))2]dxdt +
∫
Γ

µ̌2
hŇ2

H + y2
1(x, t)dxdt +

∫
Γ

βH(i)b(i)
NH(i) + m(i)

B(y2
1(x, t) + y2

2(x, t))

+

∫
Γ

(γH(i) + δ1(i))(y2
2(x, t) + y2

3(x, t))dxdt +
∫
Γ

Ǎ2h−2
1 + y2

4(x, t) + 2 ln(1 + ∅1k)y2
4(x, t))dxdt

+

∫
Γ

βv(i)b(i)
NH(i) + m(i)

B(y2
2(x, t) + h−2

2 y2
5(x, t)) + 2 ln(1 − ∅2k)y2

5(x, t))dxdt +
∫
Γ

2(b(i)ρ1(i))2

(NH(i) + m(i))2

× B2y2
1(x, t) +

(b(i)ρ2(i))2

(NH(i) + m(i))2 B2y2
4(x, t) +

(b(i)ρ2(i))2

(NH(i) + m(i))2 B2h−2
2 y2

2(x, t)dxdt}

+ (qii +

m∑
j,i

qi jǦĜ−1)G(i)(
∫
Γ

y2
1(x, t) + y2

2(x, t) + y2
3(x, t) + y2

4(x, t) + y2
5(x, t))dxdt

≤ Ǧ{(µ̌2
hŇ2

H + Ǎ2h−2
1 )|Γ| +

∫
Γ

(1 +
β̌Hb̌

ŇH + m̌
B +

2b̌2ρ̌2
1

(ŇH + m̌)2
B2)y2

1(x, t)dxdt

+

∫
Γ

(
b̌

ŇH + m̌
B(β̌H + β̌v) + γ̌H + δ̌1 +

b̌2ρ̌2
2

(ŇH + m̌)2
B2h−2

2 )y2
2(x, t)dxdt

+

∫
Γ

(γ̌H + δ̌1)y2
3(x, t) +

∫
Γ

(1 + 2 ln(1 + ∅1k) +
b̌2ρ̌2

2

(ŇH + m̌)2
B2)y2

4(x, t)dxdt
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+

∫
Γ

(
β̌vb̌

ŇH + m̌
Bh−2

2 + 2 ln(1 − ∅2k))y2
5(x, t)dxdt} + (qii +

m∑
j,i

qi jǦĜ−1)V (x, t, j)dt

≤ c0 + c1V (x, t, i) dt

where
c0 = Ǧ(µ̌2

hŇ2
H + Ǎ2h−2

1 )|Γ|,

c1 = max
{
1 + β̌H b̌

ŇH+m̌
B + 2b̌2ρ̌2

1
(ŇH+m̌)2 B2, b̌

ŇH+m̌
B(β̌H + β̌v) + γ̌H + δ̌1 +

b̌2ρ̌2
2

(ŇH+m̌)2 B2h−2
2 ,

1 + 2 ln(1 + ∅1k) +
b̌2ρ̌2

2
(ŇH+m̌)2 B2, β̌vb̌

ŇH+m̌
Bh−2

2 + 2 ln(1 − ∅2k)
}
.

Therefore, we can know that

dV(x, t, i) = LV(x, t, i) − 2G(i)[
∫
Γ

(y1(x, t) − y2(x, t))
b(i)ρ1(i)

NH(i) + m(i)
y1(x, t)h2(x, t)y5(x, t)dB1(t)dx

+

∫
Γ

y5(x, t)
b(i)ρ2(i)

NH(i) + m(i)
h−1

2 (t)h1(t)y4(x, t)y2(x, t)dB2(t)dx

−

∫
Γ

b(i)ρ2(i)
NH(i) + m(i)

y2
4(x, t)y2(x, t)dB2(t)dx]

(6.3)
Moreover,

E[V(τq ∧ T )]
≤ V(0) + c0 + c1V (t) dt

≤ c2 + c1

∫ τq∧T

0
V (t) dt

≤ c2 + c1

∫ T

0
E[V(τq ∧ t)]dt.

Using Gronwall inequality yields that

E[V(τq ∧ T )] ≤ c2ec1T . (6.4)

Denote
µq = inf

{
V(x, t, i), ∥y(x, t)∥ ≥ q

}
.

It can be obtained that
lim

q→+∞
µq = +∞. (6.5)

Then from (6.4), we have
µqP(τq ≤ T ) ≤ c2ec1T .

Therefore, by (6.5) and choosing q→ +∞ yields that

P(τq ≤ T ) = 0,

thus P(τ∞ > T ) = 1.
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