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Abstract: In this paper, we propose a multi-patch SVEIR epidemic model that incorporates
vaccination of both newborns and susceptible populations. We determine the basic reproduction
number R0 and prove that the disease-free equilibrium P0 is locally and globally asymptotically stable
if R0 < 1, and it is unstable if R0 > 1. Moreover, we show that the disease is uniformly persistent in
the population when R0 > 1. Numerical simulations indicate that vaccination strategies can effectively
control disease spread in all patches while population migration can either intensify or prevent disease
transmission within a patch.
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1. Introduction

Infectious diseases are a significant global public health threat that greatly impact people’s lives
and economies. Since the beginning of the 20-th century, convenient transportation has made
traveling more frequent and common, leading to an increased risk of infectious disease transmission
among regions. As a result, it is essential to investigate how population mobility affects disease
transmission and whether it can increase disease persistence or not. In most classical deterministic
epidemic models, the spatial structure is assumed to be homogeneous, but this does not take into
account the spatial heterogeneity of population and disease spread [1, 2]. To address this limitation,
patch epidemic models have been recently proposed to investigate disease transmission in spatially
heterogeneous populations [3–11].

Hethcote in [12] formulated an epidemic model with population migration among two patches.
The patches can be towns, cities or relatively isolated regions. Ruan et al. [13] considered a
multiregional model to analyze the effect of global travel on the geographical SARS. Wang and
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Zhao [14] developed an epidemic model of muti-patches and determined the diseases’ threshold for
persistence and extinction. Under the assumption that the migration rates of populations are the same,
they proved that population migration does not alter the global attractivity of the disease-free
equilibrium. Salmani et al. [15] introduced an SEIRS model with population migration among p
patches. The authors determined the range of the basic reproduction number and proved that the
disease-free equilibrium is globally asymptotically stable if R0 < 1. However, the global stability of
the endemic equilibrium is not considered because of the high dimension of the model. Michael and
Shuai [16] studied an SIR epidemic model in a patchy environment. Using a graph-theoretic approach
to the method of Lyapunov functions, they discussed the uniqueness and global stability of the
endemic equilibrium. Gao [17] presented a multi-patch epidemic model in order to consider travel
frequency variations among residents, and he illustrated the influence of heterogeneity in human
movement on the geographic spread of diseases. Wang et al. [18] proposed an n-patch SEIQR
epidemic model to investigate the effect of entry-exit screening on the spread and control of diseases.

As is known to us, vaccination strategies prove to be the most effective control measure against many
infectious diseases. Over the past few decades, many researchers have formulated various epidemic
models with vaccination and analyzed their dynamical behavior, see [19–24]. However, most of these
studies have only examined the impact of vaccination on control of disease spread in an isolated patch,
ignoring spatial variation. Taking this into account, Cui et al. [25] established the following SIR
epidemic model with vaccination in a patchy environment

dS i
dt = (1 − pi) µiNi − βi

Ii
Ni

S i − µiS i +
n∑

j,i

(
mi jS j − m jiS i

)
,

dIi
dt = βi

Ii
Ni

S i − (µi + γi) Ii,

dRi
dt = piµiNi + γiIi − µiRi +

n∑
j,i

(
mi jR j − m jiRi

)
, i = 1, 2, . . . , n.

(1.1)

where Ni is the total population in the i-th patch; S i, Ii, and Ri denote the sizes of the susceptible,
infected, and recovered individuals in patch i, respectively. They investigated the effect of the
increasing mobility of populations on the vaccination strategy. Manuel et al. [26] considered an
n-patch SIR epidemic model with constant and proportional vaccination controls. The authors
illustrated the effect of vaccination control on disease eradication in a patchy environment.

In reality, many infectious diseases have an incubation period, such as influenza, tuberculosis,
malaria and hepatitis B [27]. During the incubation period, the individuals may travel from one patch
to another, which has a significant impact on disease spread. There are several that include both
latency and mobility of individuals, see [28–31]. Zhang et al. [28] and Lou and Zhao [29] proposed a
reaction-diffusion model with incubation periods. San and Wang [30] presented a two-group SIR
epidemic model with incubation periods over a patchy environment. Li and Zou [31] synthesized
latency, demographic structure and spatial heterogeneity into the SIR model and investigated the
dynamics of the derived model. Motivated by the above works, we extend the model in paper [25] by
including the vaccinated class and the exposed class, and formulate a multi-patch SVEIR model that
incorporates vaccination for newborns and susceptible individuals. The model formulated in this
paper can contribute to studying the impacts of migration and vaccination on disease transmission.

The paper is organized as follows. In Section 2, we introduce an n-patch epidemic model with
vaccination. In Section 3, we derive the disease-free equilibrium and the basic reproduction number.
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In Section 4, we discuss the local and global stability of the disease-free equilibrium and establish
uniform persistence of the disease. In Section 5, we perform some numerical simulations to confirm
the theoretical results and investigate the impacts of migration and vaccination. Finally, the paper ends
with a summary of our conclusions.

2. Mathematical model

In this section, an n-patch SVEIR epidemic model that incorporates vaccination for newborns and
susceptible individuals is formulated. Assume that the total population in patch i is divided into five
compartments: susceptible, vaccinated, exposed (infected but non-infectious), infectious, and
recovered. The number of individuals in each compartment at time t is denoted by S i(t),Vi(t),
Ei(t), Ii(t) and Ri(t), respectively. The flow diagram of the disease transmission in each patch is
depicted in Figure 1.

Figure 1. Diagram of the disease transmission in the i-th patch.

All individuals are assumed to be born susceptible, and a fraction pi of newborns in patch i are
vaccinated, where pi ∈ (0, 1]. Susceptible individuals in patch i receive vaccination at rate qi. The
parameter Λi denotes the influx of newborns into patch i, and βi denotes the transmission coefficient
in patch i. Since the vaccination fails to confer complete immunity to all vaccinated recipients,
vaccinated individuals may become infected due to contacting with infected individuals. Thus, we use
a scaling factor ki to reflect the vaccine efficacy, where ki ∈ [0, 1]. For ki = 0, the vaccine can provide
complete protection against infection, that is, susceptible individuals will not be infected after
vaccination. For ki = 1, the vaccine will have no effect. The parameter σi is the rate that exposed
individuals become infectious in patch i and γi is the recovery rate of the infectious individuals in
patch i. The parameters dS

i , d
V
i , d

E
i , d

I
i and dR

i are mortality rates of the susceptible, vaccinated,
exposed, infected and recovered individuals, respectively, in the i-th patch. The migration rates of
susceptible, vaccinated, exposed, infected and recovered populations from patch j to patch i are given
by ai j, bi j, ci j, di j and ei j, respectively. All the parameters are assumed to be non-negative.
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Based on the above assumptions and Figure 1, an SVEIR epidemic model is presented as follows,

dS i
dt = (1 − pi)Λi − βiS iIi −

(
dS

i + qi

)
S i +

n∑
j=1

(
ai jS j − a jiS i

)
,

dVi
dt = piΛi − kiβiViIi − dV

i Vi + qiS i +
n∑

j=1

(
bi jV j − b jiVi

)
,

dEi
dt = βiS iIi + kiβiViIi −

(
dE

i + σi

)
Ei +

n∑
j=1

(
ci jE j − c jiEi

)
,

dIi
dt = σiEi −

(
dI

i + γi

)
Ii +

n∑
j=1

(
di jI j − d jiIi

)
,

dRi
dt = γiIi − dR

i Ri +
n∑

j=1

(
ei jR j − e jiRi

)
, i = 1, 2, . . . , n.

(2.1)

Notice that the equations for Ri are independent of the first four equations of system (2.1) and hence,
the dynamics is governed by the following system,

dS i
dt = (1 − pi)Λi − βiS iIi −

(
dS

i + qi

)
S i +

n∑
j=1

(
ai jS j − a jiS i

)
,

dVi
dt = piΛi − kiβiViIi − dV

i Vi + qiS i +
n∑

j=1

(
bi jV j − b jiVi

)
,

dEi
dt = βiS iIi + kiβiViIi −

(
dE

i + σi

)
Ei +

n∑
j=1

(
ci jE j − c jiEi

)
,

dIi
dt = σiEi −

(
dI

i + γi

)
Ii +

n∑
j=1

(
di jI j − d jiIi

)
, i = 1, 2, . . . , n.

(2.2)

3. Equilibria and basic reproduction number

In this section, we show that the system (2.2) has a unique disease-free equilibrium, and then, using
the next generation matrix method, we derive the basic reproduction number R0.

In order to find the disease-free equilibrium with all Ii = 0 of system (2.2), we consider the following
linear system: 

(1 − pi)Λi −
(
dS

i + qi

)
S i +

n∑
j=1

(
ai jS j − a jiS i

)
= 0,

piΛi − dV
i Vi + qiS i +

n∑
j=1

(
bi jV j − b jiVi

)
= 0,

−
(
dE

i + σi

)
Ei +

n∑
j=1

(
ci jE j − c jiEi

)
= 0,

σiEi = 0, i = 1, 2, . . . , n.

(3.1)

Then Ei = 0 (i = 1, 2, . . . , n) and
(1 − pi)Λi −

(
dS

i + qi

)
S i +

n∑
j=1

(
ai jS j − a jiS i

)
= 0,

piΛi − dV
i Vi + qiS i +

n∑
j=1

(
bi jV j − b jiVi

)
= 0, i = 1, 2, · · · , n.

(3.2)

Converted into the form of matrix system, we can get H1S = B,

H2V = C,
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where
S = (S 1, S 2, . . . , S n)T , B = ((1 − p1)Λ1, (1 − p2)Λ2, . . . , (1 − pn)Λn)T ,

V = (V1,V2, . . . ,Vn)T ,C = (p1Λ1 + q1S 1, p2Λ2 + q2S 2, . . . , pnΛn + qnS n)T ,

H1 =



dS
1 + q1 +

n∑
j,1

a j1 −a12 · · · −a1n

−a21 dS
2 + q2 +

n∑
j,2

a j2 · · · −a2n

...
...

...

−an1 −an2 · · · dS
n + qn +

n∑
j,n

a jn


,

H2 =



dV
1 +

n∑
j,1

b j1 −b12 · · · −b1n

−b21 dV
2 +

n∑
j,2

b j2 · · · −b2n

...
...

...

−bn1 −bn2 · · · dV
n +

n∑
j,n

b jn


.

It is clear that all off-diagonal entries of H1 are negative, and the sum of the entries in each column
is positive. Hence, it follows from [32] that H1 is a nonsingular M-matrix and H−1

1 > 0. Similarly, H2

is also a nonsingular matrix and H−1
2 > 0. Therefore, linear system (3.2) has a unique positive solution

S 0 = (S 0
1, S

0
2, . . . , S

0
n)T = H−1

1 B, V0 = (V0
1 ,V

0
2 , . . . ,V

0
n )T = H−1

2 C, where S 0
i ,V

0
i satisfies

0 =
dS 0

i

dt
= (1 − pi)Λi −

(
dS

i + qi

)
S 0

i +

n∑
j=1

(
ai jS 0

j − a jiS 0
i

)
,

0 =
dV0

i

dt
= piΛi − dV

i V0
i + qiS 0

i +

n∑
j=1

(
bi jV0

j − b jiV0
i

)
.

(3.3)

Thus, system (2.2) always has a unique disease-free equilibrium P0 = (S 0
1,V

0
1 , 0, 0, . . . , S

0
n,V

0
n , 0, 0).

Adding all the equations of (2.2), we have

dN(t)
dt
= Λ −

n∑
j=1

[
dS

i S i + dV
i Vi + dE

i Ei + (dI
i + γi)Ii

]
+

n∑
i=1

 n∑
j=1

(
ai jS j − a jiS i

)
+

n∑
j=1

(
bi jV j − b jiVi

)
+

n∑
j=1

(
ci jE j − c jiEi

)
+

n∑
j=1

(
di jI j − d jiIi

)
= Λ −

n∑
j=1

[
dS

i S i + dV
i Vi + dE

i Ei + (dI
i + γi)Ii

]
≤ Λ − d∗N,

(3.4)

where Λ =
n∑

i=1
Λi, d∗ = min

{
dS

i , d
V
i , d

E
i , d

I
i + γi

}
and N(t) =

n∑
i=1

(S i + Vi + Ei + Ii). By the comparison

principle, it is easy to see that lim supt→∞ N(t) ≤ Λ
d∗ .
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From the first equation of system (2.2), we obtain

dS i

dt
≤ (1 − pi)Λi −

(
dS

i + qi

)
S i +

n∑
j=1

(
ai jS j − a jiS i

)
= (H1S 0 − H1S )i, (3.5)

where (H1S 0 − H1S )i is the i-th element of H1S 0 − H1S . Thus, dS i
dt ≤ 0 if S i = S 0

i , S j ≤ S 0
j , i, j =

1, 2, . . . , n, and j , i. Similarly, dVi
dt ≤ 0 if Vi = V0

i ,V j ≤ V0
j .

From the aforementioned analysis, the compact feasible region

Γ =

(S 1,V1, E1, I1, . . . , S n,Vn, En, In) ∈ R4n
+ : N(t) ≤

Λ

d∗
, 0 ≤ S i ≤ S 0

i , 0 ≤ Vi ≤ V0
i , i = 1, 2, . . . , n


is positively invariant with respect to system (2.2).

The basic reproduction number R0 is known as the threshold of disease outbreak, which has
important implications for disease control. In the following, the next-generation matrix method in van
den Driessche and Watmough [33] is used to calculate the reproduction number of system (2.2).

Define

F =
[
0 F1

0 0

]
,V =

[
V11 0
V21 V22

]
,where

F1 = diag(β1S 0
1 + k1β1V0

1 , β2S 0
2 + k2β2V0

2 , . . . , βnS 0
n + knβnV0

n ),

V11 =



dE
1 + σ1 +

n∑
j,1

c j1 −c12 · · · −c1n

−c21 dE
2 + σ2 +

n∑
j,2

c j2 · · · −c2n

...
...

...

−cn1 −cn2 · · · dE
n + σn +

n∑
j,n

c jn


.

V21 = diag(−σ1,−σ2, . . . ,−σn),

V22 =



dI
1 + γ1 +

n∑
j,1

d j1 −d12 · · · −d1n

−d21 dI
2 + γ2 +

n∑
j,2

d j2 · · · −d2n

...
...

...

−dn1 −dn2 · · · dI
n + γn +

n∑
j,n

d jn


.

It is clear that both V11 and V22 are nonsingular M-matrixes [32], which means that their inverses are
nonnegative. Therefore, the matrix V is a nonsingular matrix. The next generation matrix is given by

FV−1 =

[
−F1V−1

22 V21V−1
11 F1V−1

22
0 0

]
,

Thus, the basic reproduction number R0 is defined as the spectral radius of the matrix FV−1, that is,

R0 = ρ(FV−1) = ρ(−F1V−1
22 V21V−1

11 ).
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4. Stability analysis

In this section, the local and global stability of the disease-free equilibrium P0 are discussed, and the
uniform persistence of system (2.2) is established. In order to discuss the stability of the disease-free
equilibrium, we introduce the following lemma.

Lemma 4.1. If F is a non-negative matrix and V is a nonsingular matrix, then

s(F − V) < 0⇐⇒ ρ(FV−1) < 1, s(F − V) > 0⇐⇒ ρ(FV−1) > 1, (4.1)

where s(A) := max {Re(λ) : λ is an eigenvalue of matrix A} .

Theorem 4.1. The disease-free equilibrium P0 is locally asymptotically stable if R0 < 1 and it is
unstable if R0 > 1.

Proof. From the third and the fourth equations of system (2.2), we obtain
.

X = (F − V)X, (4.2)

where X = (E1, E2, . . . , En, I1, I2, . . . , In)T .

It follows from Lemma 4.1 that s(F − V) < 0(> 0) if and only if R0 < 1(> 1). Thus, if R0 < 1, all
the eigenvalues of the matrix F −V lie in the left half plane, and therefore, the disease-free equilibrium
P0 is locally asymptotically stable. Similarly, if R0 > 1, at least one eigenvalue of matrix F − V lies in
the right half plane, and the disease-free equilibrium P0 is unstable. □

Theorem 4.2. Suppose that R0 < 1, then the disease-free equilibrium P0 is globally asymptotically
stable.

Proof. Since V−1F = V−1FV−1V , according to the properties of similar matrixs, we have ρ(V−1F) =
ρ(FV−1) = R0. Then from the Perron-Frobenius theorem [32], we can obtain that the non-negative
irreducible matrix V−1F has a positive left eigenvector (w1,w2, . . . ,w2n), which corresponds to the
spectral radius ρ(V−1F), that is,

(w1,w2, . . . ,w2n)V−1F = (w1,w2, . . . ,w2n)ρ(V−1F).

Let us consider a Lyapunov function

L =
n∑

i=1

uiEi +

n∑
i=1

viIi, (4.3)

where (u1, u2, . . . , un, v1, v2, . . . , vn) = (w1,w2, . . . ,w2n)V−1.

Calculating the differentiation of L along the solutions of system (2.2), we obtain

dL
dt
=

n∑
i=1

ui
dEi

dt
+

n∑
i=1

vi
dIi

dt

=

n∑
i=1

ui

βiS iIi + kiβiViIi −
(
dE

i + σi

)
Ei +

n∑
j=1

(
ci jE j − c jiEi

)
+

n∑
i=1

vi

σiEi −
(
dI

i + γi

)
Ii +

n∑
j=1

(
di jI j − d jiIi

) .
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Since S i ≤ S 0
i and Vi ≤ V0

i , when R0 < 1, we have

dL
dt
≤

n∑
i=1

ui

βiS 0
i Ii + kiβiV0

i Ii −
(
dE

i + σi

)
Ei +

n∑
j=1

(
ci jE j − c jiEi

)
+

n∑
i=1

vi

σiEi −
(
dI

i + γi

)
Ii +

n∑
j=1

(
di jI j − d jiIi

)
= (u1, u2, . . . , un)(F1I − V11E) − (v1, v2, . . . , vn)(V21E + V22I)
= (u1, u2, . . . , un, v1, v2, . . . , vn)(F − V)X
= (w1,w2, . . . ,w2n)V−1(F − V)X
= (w1,w2, . . . ,w2n)(V−1F − E)X
= (w1,w2, . . . ,w2n)(R0 − 1)X ≤ 0,

(4.4)

where E = (E1, E2, . . . , En)T , I = (I1, I2, . . . , In)T .

Hence, dL
dt = 0 if and only if S i = S 0

i ,Vi = V0
i and Ei = 0, Ii = 0. When S i = S 0

i , from the first
equation of system (2.2), we have

0 = dS 0
i

dt = (1 − pi)Λi − βiS 0
i Ii −

(
dS

i + qi

)
S 0

i +
n∑

j=1

(
ai jS 0

j − a jiS 0
i

)
.

It can be obtained that Ii = 0 for i = 1, 2, . . . , n. This implies that the largest compact invariant set in
{(S 1,V1, E1, I1, . . . , S n,Vn, En, In) ∈ Γ : S i = S 0

i ,Vi = V0
i , Ei = Ii = 0, i = 1, 2, . . . n} is the singleton

{P0}. From LaSalle’s Invariance Principle [34], we obtain that P0 is globally attractive. Therefore, P0

is globally asymptotically stable in Γ once R0 < 1.
□

Theorem 4.3. Suppose that ci j > 0, di j > 0 (i, j = 1, 2, . . . , n, j , i). If R0 > 1, then system (2.2) is
uniformly persistent, i.e., there exists a constant c > 0 such that every solution
φt(x0) ≡ (S 1,V1, E1, I1, . . . , S n,Vn, En, In) of system (2.2) satisfies

lim inf
t→∞

Ei ≥ c, lim inf
t→∞

Ii ≥ c, i = 1, 2, . . . , n,

where x0 = (S 1(0),V1(0), E1(0), I1(0), . . . , S n(0),Vn(0), En(0), In(0)) ∈ Rn
+×Rn

+×
(
Rn
+ \ {0}

)
×
(
Rn
+ \ {0}

)
,

and system (2.2) admits at least one endemic equilibrium.

Proof. According to the uniform persistence theorem formulated in Wang and Zhao [14, 35], we prove
our result as follows. For convenience, we denote the solution (S 1,V1, E1, I1, . . . , S n,Vn, En, In) of
system (2.2) by (S ,V, E, I). Define

X = {(S ,V, E, I) : S i ≥ 0,Vi ≥ 0, Ei ≥ 0, Ii ≥ 0, i = 1, 2, . . . , n} ,
X0 = {(S ,V, E, I) ∈ X : Ei > 0, Ii > 0, i = 1, 2, . . . , n} ,
∂X0 = X \ X0.

It suffices to prove that system (2.2) is uniformly persistent with respect to (X0, ∂X0). By the form of
(2.2), it is clear that both X and X0 are positively invariant. ∂X0 is relatively closed in X. Moreover,
system (2.2) is point dissipative in Section 3.
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The set M∂ = {x0 ∈ ∂X0 : φt(x0) ∈ ∂X0,∀t > 0} and M = {(S ,V, 0, 0) : S ≥ 0,V ≥ 0}. We next
claim that M∂ = M. Clearly, M ⊂ M∂. it suffices to show that M∂ \ M = ∅. Assume that x0 ∈ M∂ \ M,
then there is an i0, 1 ≤ i0 ≤ n and a t0 ≥ 0 such that Ei0(t0) > 0, Ii0(t0) > 0. The set {1, 2, . . . , n} can be
decomposed into two sets L1 and L2, where

Ei(t0) = Ii(t0) = 0, ∀i ∈ L1,

Ei(t0) > 0, Ii(t0) > 0, ∀i ∈ L2.

Clearly, L1 and L2 are both nonempty. For any j ∈ L1, i0 ∈ L2, we have

dE j(t0)
dt

≥

n∑
m=1

c jmEm(t0) ≥ c ji0 Ei0(t0) > 0,

dI j(t0)
dt

≥

n∑
m=1

d jmIm(t0) ≥ d ji0 Ii0(t0) > 0.
(4.5)

Hence there exist an ϵ0 such that E j(t) > 0, I j(t) > 0, j ∈ L1 for t0 < t < t0 + ϵ0. Obviously, we can
restrict ϵ0 small enough such that Ei(t) > 0, Ii(t) > 0, i ∈ L2 for t0 < t < t0 + ϵ0. Therefore, we know
that φt(x0) < ∂X0 for t0 < t < t0 + ϵ0, which contradicts the assumption that x0 ∈ M∂.

It is easy to verify that P0 is the unique equilibrium in M∂.Next, we will show that WS (P0)∩X0 = ∅,

where WS (P0) is the stable manifold of P0. Choose δ small enough such that lim supt→∞ |φt(x0)−P0| > δ

for x0 ∈ X0. Suppose that this does not hold. Then we have |φt(x0) − P0| ≤ δ for all t ≥ 0. This implies
that, for any sufficiently small positive constant ϵ, there exists a T > 0 such that

S 0
i − ϵ ≤ S i(t), V0

i − ϵ ≤ Vi(t), for ∀ t > T.

From system (2.2), we obtain

dEi
dt ≥ βiIi(S 0

i − ε) + kiβiIi(V0
i − ε) −

(
dE

i + σi

)
+

n∑
j=1

(
ci jE j − c jiEi

)
,

dIi
dt = σiEi −

(
dI

i + γi

)
+

n∑
j=1

(
di jI j − d jiIi

)
, for ∀ t > T.

(4.6)

Let

G =
[
−V11 F1 − εG1

−V21 −V22

]
= F − V − ε

[
0 G1

0 0

]
,

where G1 = diag {β1(k1 + 1), . . . , βn(kn + 1)} . Then it follows from (4.2) and (4.6) that dX
dt ≥ GX.

Applying Lemma 4.1 yields that s(F − V) > 0 if and only if R0 > 1. Hence there exists a small enough
ε1 such that s(G) > 0 for ε1 ∈ [0, ε]. Therefore, matrix G has a positive eigenvalue s(G), which has
a positive eigenvector. By the comparison principle, it is clear that (Ei, Ii) → (∞,∞) as t → ∞, i =
1, 2, . . . , n. This contradicts the previous assumption. Consequently, lim supt→∞ |φt(x0) − P0| > δ, that
is, WS (P0) ∩ X0 = ∅.

Obviously, every orbit in M∂ converges to {P0} and {P0} is an isolated invariant set and acyclic.
Thus, Theorem 4.6 of Thieme [36] implies that system (2.2) is uniformly persistent with respect to
(X0, ∂X0). The proof is completed. By Theorem 2.4 in Zhao [35], system (2.2) has an equilibrium
E∗ = (S ∗1,V

∗
1 , E

∗
1, I
∗
1, . . . , S

∗
n,V

∗
n , E

∗
n, I
∗
n). The equations governing S i and Vi in system (2.2) ensure

that S ∗i > 0 and V∗i > 0 for i = 1, 2, . . . , n. This indicates that E∗ is an endemic equilibrium of
system (2.2). □
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Table 1. Values of migration rates.

Para. a12 a13 a21 a23 a31 a32 b12 b13 b21 b23 b31 b32

Value 0.025 0.027 0.022 0.039 0.034 0.032 0.06 0.1 0.08 0.15 0.12 0.16

Para. c12 c13 c21 c23 c31 c32 d12 d13 d21 d23 d31 d32

Value 0.05 0.06 0.04 0.1 0.08 0.12 0.03 0.05 0.05 0.09 0.06 0.1

Table 2. Values of parameters in system (2.2).

Para. pi Λi βi qi ki σi γi dS
i dV

i dE
i dI

i

i = 1 0.6 30 0.004 0.01 0.03 0.14 0.15 0.013 0.06 0.02 0.12
i = 2 0.7 20 0.005 0.018 0.04 0.2 0.18 0.012 0.1 0.01 0.15
i = 3 0.8 40 0.008 0.04 0.05 0.28 0.2 0.005 0.13 0.03 0.1

5. Numerical simulations

In this section, we give some numerical simulations to show the feasibility of our theoretical results
and illustrate the impacts of vaccination and migration on disease prevalence.

We consider a special case of system (2.2) with n = 3, where the values of migration rates are
given in Table 1 and the remaining parameter values are shown in Table 2. The initial condition is
considered as (S 1(0),V1(0), E1(0), I1(0), S 2(0),V2(0), E2(0), I2(0), S 3(0),V3(0), E3(0), I3(0)) =

(800, 120, 100, 80, 1000, 400, 248, 250, 1200, 300, 240, 200). Based on these parameter values, we can
calculate that P0 = (317, 259, 0, 0, 258, 265, 0, 0, 244, 304, 0, 0) and R0 = 0.5 < 1. Figure 2 shows that
the trajectories of system (2.2) ultimately converge to P0, which is globally asymptotically stable. So
the disease will eventually die out. Now, we assume that the transmission coefficients βi, are relatively
high, e.g., β1 = 0.0012, β2 = 0.0015, β3 = 0.0025, and keep the remaining parameter values
unchanged. Then we can calculate that R0 = 1.53 > 1. As seen in Figure 3, system (2.2) has a positive
equilibrium, which confirms that the disease is uniformly persistent.

Figure 2. Time evolution of the population for each patch when R0 < 1.
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Figure 3. Time evolution of the population for each patch when R0 > 1.

5.1. The effects of vaccination

Next, the effects of vaccination on infectious populations are shown in Figures 4 and 5. Assume
p1 = p2 = p3 and keep the other parameters in Tables 1 and 2 unchanged. From Figure 4, it can
be observed that the numbers of infectious population decrease as the vaccination rate increases. The
results imply that vaccination strategy plays an important role in preventing disease spread. Then,
assume q1 = q2 = q3. The impact of different vaccination strategies is shown in Figure 5. The blue
solid represents that no vaccination strategy is implemented; the green solid represents vaccination of
only susceptible populations; the red solid represents vaccination of only newborns; and the black solid
represents that both vaccination strategies are implemented simultaneously. It can be seen from Figure
5 that the simultaneous execution of both vaccination strategies is the most effective way to reduce
the number of infectious populations. Therefore, it should be suggested that both kinds of vaccination
strategies should be implemented simultaneously.

Figure 4. The effect of vaccination rate on infectious populations.

Figure 5. The effect of different vaccination strategies on infectious populations.
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5.2. The effects of migration

The effects of migration on disease transmission are presented in Figure 6. Figure 6(a)–(c) show
that as the migration rate increases, the numbers of infectious populations in patch 1 and patch 2 both
decrease. However, with the increase in migration rate, the number of infectious populations in patch 3
increases. Hence, population migration can inhibit disease spread in patch 1 and patch 2, while spread
in patch 3. Then, assume β1 = 0.0008, β2 = 0.001, β3 = 0.0015. It is shown that R0 increases with the
increase of migration rate in Figure 6d. Thus, in order to prevent the outbreak of disease, we should
limit or prohibit the migration of infectious populations from patch 1 to patch 3.

(a) (b)

(c) (d)

Figure 6. The effect of migration rate on disease transmission.

6. Conclusions

In this paper, we present an SVEIR epidemic model with vaccination in a patchy environment to
investigate the impacts of vaccination strategy and population migration on disease dynamics. Based
on the basic reproduction number R0, we prove that the disease-free equilibrium P0 is locally as well
as globally asymptotically stable if R0 < 1. In the case of R0 > 1, we show that the system (2.2) is
uniformly persistent. The numerical simulation results validate our stability analysis. In addition,
numerical simulations indicate that vaccination is helpful for disease control in all patches and
simultaneous execution of two vaccination strategies can be more effective in controlling the disease.
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However, population migration does not always have a positive impact on disease spread. An increase
in migration rate can either promote or inhibit disease transmission within a patch.

The impacts of vaccination strategy and population migration have been investigated in our paper.
It can be concluded that vaccination can effectively control the spread of diseases. However, in the
early stage of some emerging infectious diseases, vaccines have not been developed, so it is necessary
to consider more control measures to prevent the outbreaks of diseases. In future work, we will extend
the model by taking into account other control measures such as treatment and isolation.
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