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Abstract: In this paper, we study a discrete predator-prey system with Michaelis-Menten type
harvesting. First, the equilibrium points number, local stability and boundedness of the system are
discussed. Second, using the bifurcation theory and the center manifold theorem, the bifurcation
conditions for the system to go through flip bifurcation and Neimark-Sacker bifurcation at the interior
equilibrium point are obtained. A feedback control strategy is used to control chaos in the system, and
an optimal harvesting strategy is introduced to obtain the optimal value of the harvesting coefficient.
Finally, the numerical simulation not only shows the complex dynamic behavior, but also verifies
the correctness of our theoretical analysis. In addition, the results show that the system causes
nonlinear behaviors such as periodic orbits, invariant rings, chaotic attractors, and periodic windows
by bifurcation.

Keywords: discrete system; stability; flip bifurcation; Neimark-Sacker bifurcation; optimal
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1. Introduction

Population is a collection of individuals of the same species living together within a certain spatial
range. The study of population dynamics mainly describes the dynamic relationship between
population communities in predation systems and food web systems. Food web refers to the complex
relationship network between predation, competition, cooperation and reciprocity between biological
populations in biological systems. The study of food web population dynamics can give humans an
important understanding of the basic nature of ecosystems, promoting the evolution of life, protecting
the natural environment, and maintaining ecological balance at the macro level, and give certain
guiding opinions on the protection of endangered species at the micro level. Therefore, studying the
interactions between different biological populations through mathematical modeling is an important
area of research for ecosystems.
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In 1976, May showed in [1] that the first-order discrete equation model, although simple, can
produce a series of extremely complex dynamic behaviors, such as from stable points to unstable
bifurcation levels, and eventually produce chaos. However, in continuous-time models, achieving
such complex dynamic behavior requires differential equations of three dimensions and more than
three dimensions to cause chaos [2]. It can be seen that discrete systems described by the difference
equation are richer in dynamical phenomena. Consequently, the discrete dynamical system model has
attracted the attention and research of more scholars [3—11].

In [12], Gan et al. studied the stability in a simple food chain system with Michaelis-Menten
functional responses and nonlocal delays, using the Lyapunov functional to derive sufficient conditions
for global stability of positive steady state and semi-trivial steady state. In [13], Clark et al. described
mathematical models of exploited fish stocks, assuming that certain stocks can be obtained through
dynamic aggregation processes. The effects of aggregation on yield-effort relationships, abundance
indices, and fishery dynamics are discussed, as well as various management approaches for these
models. On the other hand, with the increasing demand for food and other resources, the exploitation
of biological resources is also increasing. More ecologists are very interested in studying these types
of models, such as predator-prey models, and consider the impact of exploiting (harvesting) resources
to protect the sustainable use of biological resources [14—17]. To do this, they applied optimal capture
and control strategies to achieve the recyclability of biological resources.

In [20], we studied the behavioral analysis of a class of discrete dynamical system with linear
harvest rates, and obtained many complex dynamic phenomena. Considering the finite nature of
resources and space, the linear capture rate has no upper bound, so we will further study the
Michaelis-Menten 3! type capture on the basis of the original, and this type of capture is a kind of
harvest that gradually rises until the saturation state with the increase of the number of captured
objects, which is bounded and more in line with the realistic ecological environment. So, in this paper
we consider a discrete-time predator-prey model with Michaelis-Menten type harvesting in preys,
which is given by

{ U1 = Uupexplr (1 — %) — 22 — 4% ],

_ rdu,
Vne1 = VpeXpla + 258 — by, — hal,

(1.1)

where the meanings of all parameters of model (1.1) are shown in Tablel.

The paper is organized as follows. In Section 2, we analyze the dynamics of system (1.1),
including the existence and local stability of the equilibrium points, and the boundedness of system
(1.1). In Section 3, using the bifurcation theory and the center manifold theorem, the flip bifurcation
and Neimark-Sacker bifurcation are analyzed, and the conditions for determining the bifurcation
direction and the stability of the bifurcation periodic solution are obtained. In Section 4, a feedback
control strategy is used to control chaos in the system, and an optimal harvesting strategy is
introduced to obtain the optimal value of the harvesting coefficient. In Section 5, we verify our
analytical results through numerical simulations. In the last Section, the article is ended with a brief
conclusion.

2. Model dynamics

Lemma 1 Solutions of system (1.1) with nonnegative initial conditions remain nonnegative. If
uyp =0, thenu, =0foralln > 0. If vy =0, thenv, =0foralln > 0. If uy > 0and vy > 0, then u,, > 0
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foralln > 0. If uy > 0 and vy > 0, then v, > O for all n > O.

Table 1. The interpretation of parameters.

parameters interpretation

u, v the densities of prey and predator population, respectively

r| the intrinsic growth rates of prey

a the intrinsic growth rates of predator

K the environmental carrying capacity of prey

r the consumption rate of prey

the competition between individuals due to overcrowding of predator

c the half saturation constant

d the conversion rate of predator

hy the capture rate of predator

m,i=1,2 suitable constants

q the catchability co-efficients of prey

E the degree of harvest effort
Proof. It can be directly demonstrated by system (1.1) structure. O
Lemma 2

(I) System (1.1) always has a trivial equilibrium point Ey(0,0). At this moment, the two species
will go extinct.

D) If g < rymy, then system (1.1) always has a positive semi-trivial equilibrium point E; (—_“;‘/Z, 0),
where o = % — K, = EENERm A — 0% — 48 > 0. At this time, the prey population reaches et VA

rymg 2

and the predator tends to go extinct.
(IIT) If @ > hy, then system (1.1) always has a positive semi-trivial equilibrium point E5(0, %). At

a—h

this time, the prey population tend to go extinct, and the predator population converge to ==.

24 _ hy)), where a > h,

(IV) System (1.1) has a positive nontrivial equilibrium point E*(u*, %(a +
and u is the positive solution to the quartic equation of one variabie

At + Ao + Asu® + Aqu+ As = 0,

where

Ay = —-bmy, Ay = bmy(rnK —2c¢) — bmE,
Az = rbK(m\E + 2cmy) — be(2miE + cmy) + ryKmy(hy — a) — driKm, — bqEK,
A4 = ribcKQ2mE + cmy) — b?>m E + rnKm E(hy — a) + racKma(hy — a)
- EK(dr%ml + 2bcq),
As = cEKm(r1bc + rhy, — rya) + bcquK.

When system (1.1) has a positive interior equilibrium point E*, two species coexist, i.e. two species do
not go extinct.
Proof. Direct computation. O

Lemma 3 [18] The equilibrium point (i, v) is called
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(I Sink (locally asymptotically stable) if |1;| < 1 and |1,| < 1;
(IT) Source (locally unstable) if [4;] > 1 and |4,| > 1;

(III) Saddleif |A;] > 1 and |A;] <1 (or |4 < 1and |2, > 1);
(IV) Non-hyperbolic if [4;]| = 1 or |[4,| = 1.

Jacobian matrix can be evaluated at E(0, 0) as

r]—% O
J(Ey) :( e . i D ) @.1)

The eigenvalues of J(Ej) are A, = ¢ and Ay = e* | The results regarding dynamical behaviors
are listed in Table 2.

Table 2. Properties of equilibrium point E((0, 0).

Conditions Eigenvalues Properties
A = €rl_% A = et

rnm <q a < ]’12 |/11| <1 |/12| <1 Sink

a>h |[A>] > 1 Saddle

a=h |[A2] =1 Non-hyperbolic
rim; > q a<h A > 1 |42] < 1 Saddle

a>h |4 > 1 Source

a=h |45 =1 Non-hyperbolic
rrmy =q a< ]’l2 |/11| =1 |/12| <1 Non—hyperbolic

a>h 2] > 1 Non-hyperbolic

a=h |[A] =1 Non-hyperbolic

From Table 2, we can get the following theorem.
Theorem 1. When rim; < g and a < h, are satisfied, the trivial equilibrium point E(0, 0) is
locally asymptotically stable.

The Jacobian matrix computed at E 1(%@, 0) is

) " 2gEmy(A%—a) _ nA’-a)
J(El) _ 2K 4m%E2+m§(A2—a)2+4m1sz(Az—a/) (A2-a)+2c
- rd(A2—a) '
0 expla + Aayrac hy]
. . 2 2
The eigenvalues of the Jacobian are A; = 1 — 289 4 2qEmy(A —a) and A, = expla +

2K 4m?E2+m3 (A2 —a)? +4mimy E(A2—a)

2_ . . . . oqe . . —_ . .

(’gf(_Aa )+‘2’)C — h,]. The properties of semi-trivial equilibrium point £ 1(%& 0) are summarized in Table
3.

From Table 3, we can have the following theorem.

Theorem 2. When 2142 _ 2qEmy (A" ) > 2and g + 24829 5 p, are satisfied, the

: 2K 4m? E24+m3(A2—a)+4m my E(A2—a) (A2-a)+2c 2 ’

semi-trivial equilibrium point E, (#Z, 0) is locally unstable.

Jacobian matrix can be evaluated at E,(0, “_bhz) as

(a—ha) q
explr; — 22 — 1] 0
J(Ey) = ( da m : (2.2)
n (ZC 2) 1 — (a _ hz)
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r(a-h)
bc
a—

b’”). The results of dynamical behaviors are listed in Table 4.

The eigenvalues of the Jacobian are A1, = exp[r; — mil] and 1, = 1 — (a — hy) at semi-trivial

equilibrium point E5(0,

Table 3. Properties of semi-trivial equilibrium point £ 1(%, 0).

Conditions Eigenvalues Properties
/11 /12
ri(A’—a) 2gEm;(A’—a) d =) - -
T BT (A=) A m B —a) 2 a+Grgm =h Mil<l l2l =1 Non-hyperbolic
»d(A2— .
at (rAZ(—cQJ:;Z <h [l <1 Sink
S d(A?=
5 at (riz(—az)é; > hy |12l > 1 Saddle
n@-a) 2gEmy(A*—a) d(N—a) _ - - -
2K I (A —ap AmmEA—a) 2 A+ g =l >1 |12l =1 Non-hyperbolic
d(A2—
at (rzz(—az)é)c <h |42l <1  Saddle
a+ GEeTS > h |A2] > 1  Source
5 . (A7—a)+2c 2 2
A’ -a) 2gEmy(A*—a) _ d(N—a) _ = - - -
2K 4m2 E2+m3 (A2 —)>+4mymy E(A*—a) — 2 a+ (A2—a)+2¢ — hy |4l=1 [42] =1 Non-hyperbolic
2d(A’—a) .
a+ (rAZ_a 5 <M |12l <1  Non-hyperbolic
»d(A2-a) .
a+ (Az_a)& > hy |22] > 1 Non-hyperbolic

Table 4. Properties of semi-trivial equilibrium point E,(0, %).

Conditions Eigenvalues Properties
A =explrn - 29 L] Ay =1-(a—hy)

n>2le L 0<a-hy<2 1] > 1 12| < 1 Saddle
a—hy >2 [A5] > 1 Source
a—hy, =2 [4p] =1 Non-hyperbolic

n<2 4L 0<a-hy<2 Al <1 | < 1 Sink
a—hy>2 [ > 1 Saddle
a—hy,=2 ] =1 Non-hyperbolic

=2 L 0<a-hy<2 =1 ] < 1 Non-hyperbolic
a—hy >?2 |[42] > 1 Non-hyperbolic
a—hy=12 |l =1 Non-hyperbolic

From Table 4, we can get the following theorem.
Theorem 3 The semi-trivial equilibrium point E;(0,
when r; < %;h” + % and 0 < a — hy, < 2 are satisfied.

a—hy\ : .
-2) is always locally asymptotically stable

J|w. evaluated at the positive equilibrium point E*(u*, v*) is

1- riut + roau*v* qEmu* _nut
J(E*) — K (u*+§)2 . (m E+mou*)? c+u* (23)
P 1= bv*
Then characteristic equation of J(E™) is given by
A> — TrAA + DetA = 0, (2.4)
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where . . £ .
T=TrA=2-21 , DUV | 42M0 .
K  (w+¢)? mE+mu)?
* ¥ Em-u* r2dcu*v
D=Detd =|1-12% 1Y AN )]~ pyty 4+ 2 .
K  (w+c¢? (mE+mu)? (c +u*)?

Lemma 4 [18] Suppose that F(1) = 2> = TA+ D, and F(1) > 0, A; and A, are roots of F(1) = 0.
Then the following results hold true:

(D [44] < T and || < 1 if and only if F(—1) >0and D < 1;

D) |44] < 1and |A;| > 1 (or|4;] > 1 and |4,] < 1) if and only if F(-1) < 0;

(III) |44 > 1 and |1,| > 1 if and only if F(—1) > O and D > 1;

(IV) A4 =—1and |4,| # 1 ifand only if F(-1) =0and D # 0, 2;

(V) 4, and A, are complex and |A;| = |A;| = 1 if and only if 72> —=4D < O and D = 1.

Lemma 5 [11] Let E*(u*,v") be the unique positive equilibrium point of system (1.1), then the
following propositions hold:
(1.) It is a sink if and only if
T|<D+1 and D< 1.

(2.) It is a source if and only if
IT|<D+1 and D>1, or |T|>D+1.
(3.) It is a saddle if and only if
T*>4D and |T|>|D+1].
(4.) It is non-hyperbolic if and only if
IT|=|D+1], or D=1 and |T|<2.
To sum up, we have the following theorem.

Theorem 4 System (1.1) at the the positive equilibrium point E*(u*, v*) is local asymptotically
stable when the conditions

4 ru* (2 + bv*) N (2 — bv )u v N gEmyu* (2 — bv*) byt 4 r%dcu*v* -0
K (c + u*)? (m E + mou*)? (u* + ¢)?
and
riu*(1 + bv") N (1 —bvu*v:  gEmyu™(1 — bv) . r%dcu*v* B
- —bv
K (c + u*)? (m E + mou*)? (u* +c)?
hold.

Proof. According to Lemma 3 and Lemma 4, E*(u*, v*) is local asymptotically stable if and only if
F() >0, F(-1) > 0 and D < 0, the conclusion of Theorem 4 obtained by calculation holds.

Lemma 6 [19] Assume that u, satisfies up > 0, and v, < u, exp[B(1 —Cu,)] for t € [t;, o0), where
C is a positive constant. Then lim sup u, < BLC exp(B - 1).

t—00
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Theorem 5 Every positive solution {(u,, v,)} of system (1.1) is uniformly bounded.

Proof. Suppose that {(«,, v,)} be an arbitrary positive solution corresponding to system (1.1). Then,
from first part of system (1.1), one has
Va qE

(1 = 52
Up+1 = UZEXDPLT - —) - —
" neXp K c+u, mE+mu,

U, vy
<u, | A
< upexplri( K) o un]
Uy
< upexplri(1 - ?)],
foralln =0,1,2,---. Suppose that uy > 0, then according to Lemma 6, we gain

n—oo

K
lim sup u, < —exp(r; — 1) := M;.
r

From the second part of system (1.1), we have

Zdun
Vat1 = Vuexpla + —bv, — h]
c+ u,
rdu
< v,expla + = —bv,]
n
I’ngl

< v.expla + - bv,].
c+

1

Assume that vy > 0, then using Lemma 6, we obtain

M, +c¢) + ndM
lim sup vnsbexp(a( 1+ )+ rdMy

-1):= M.
n—oo M1+C ) 2

That is to say that lim sup (u,,v,) < M, where M = max {M,, M,}. This completes the proof.

3. Bifurcation analysis

3.1. Flip bifurcation

The characteristic equation related to system (1.1) at the unique positive interior equilibrium point
E*(u*,v") is
F() = 2 =T ,v)Ad+ Du*,v*) = 0,
where .
Tw,v)=1-"2=+D+Y,
D',v') =¥ |1 - % + @]+,

K
o _ % ._ ndcu'v*
¥Y.=1-bvw 0O:= T
D = rou'v* qEmou*

T (ut+c)? (mou*+miE)? "

Assume that T%(u*, v*) > 4D(u*, v*), that is,

(1- 2 + &+ ¥) > 4¥[1 - 1+ 0] +40 (3.1)
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and T(u*,v*) + D(u*,v*) = —1, that is to say

=LA Q2+2%+0(1+¥)+0) . (3.2)

u*(1+%¥)

Then eigenvalue of F(1) =0are 4; = -land 4, =2+D+ ¥ - % The condition |A,| # 1 indicates
that

P[1-28 40|+ 0 % £1 . (3.3)

Consider the following set
Ap = {(a, b,c,d,K,ri,ry,my,my, hy,q, E) € R? 1 (3.1), (3.2) and (3.3) are satisfied }

When the perturbation parameter changes within a small field of Ag, the system (1.1) will have flip
bifurcation at E*. Let parameters (a, b, c,d, K, ri,r;,my,my, hy, q, E) € Ap and consider the following
systems:

— raduy,
Varl = Vu€xpla + v bv, — h,],

— Uy v, qE
{Mnn = upexpl(ry +r)(1 — ) - 2o — —_dE ]
where r* is a small perturbation parameter and |r*| < 1.

Let x =u—u" and y = v — v*. Then we gain

Xn+l | _ Wi Wi X f(x’y, r*)
(yn+1 )_( W21 W22)(y )+(g(_x,y’r*) )’ (34)

where

F ey, 1) = Wiax? + Wigxy + Wisy? + Wigx® + Wipx®y + Wigxy® + Wigy® + Zxr* + Zyyr*
+ Z3r*2 + Zyxyr' + Z5x2r* + Z6y2r* + Z7)cr’k2 + Zgyr*2 + Zgr*3 + O((|x], [yl |r*|)4),
g (6,9, 1) = Wasx? + Wayxy + Wasy® + Waex® + Warx®y + Wagxy? + Waoy® + O((Ixl, Iyl, D)),
rzl/t*
(c+u)’

riu’ N rou*v* N qEm,
K  (w+c¢)? (mE+mu)?

Wllzl_ :1+Q, W12:—
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Q n rnu'Q  rnv'(c—u) ruvQ qEmy(m E — mpu™)

W= "3k "2k Y 2w r oy 2w o T 2GmE + mr Y
N gEmyu*Q
2(m E + mou*)?’
r rirut r,qEm, riu*
Wie = Teruw (w + K (c+u)mE +mu)? Wis = 2+ u)’
Wi = Q, +Q? nQ nuwQQ,  nov' . revt o =2ut gE*m m,
6 3K 6K 2w +c¢)  6(c+u)?  6(c+u)t 2mE + mou)
74 9) rvic—u")Q  nrnuviQQ, qgEmy(mE —myu*)Q qEmu*QQ,
 6(c + u*)? " 6(u* + ¢)? " 6(c + u*)? " 6(mE + mou*)? 6(mE + myu*)?
N qgE*m;m,Q ~ qugu*Q ~ qEm5(m E — mou*)
6(mE + myu*)®  6(miE + myu*)? 6(m E + mou*)*
T L S U r(c—uw)-ruv i
2K(c+u*)  2(c +u*)? 2(c + u*)3 2K*(c +u*) K(c + u)?
riru?v 2rkutvt —rivic—ut)  nRutv? rqEm,
* (u* + ¢)? 2(c + u*)* C2c+u) 2t + o)mE + mour)?
+ rgEmu(l+u) rqEmuvi(1 + u*) __ngEmy(m E — myu’)
2(c + u*)*(mou* + mE)?  2(c + u*)>(mu* + mE)?>  2(c + u*)(mou* + mE)3
N rirgEmy(1 + u*)u” 3 i’zqzm%Ezu*
2K(c + u)(miEmau*)?  2(c + u*)(mau* + m E)*’
Wy = r% ~ r%u* N rgu*v* o r%u* N r%quz ’
20c+u)?  (c+u) 2w+ 2K(c+u)? 2w +c)2(mE + mour)?
Wi = — rgu*l CZi=1- 2u* B r(K — u")u* N ru vi(K — u*) N qEmy(K — u™) ’
6(c + u*)3 K K? K(u* + ¢)? K(mE + mou*)?
(K — u")u’ w (K — u*)? rﬁu*(K —u’)
L=, L=—FF, L=—F
K(c + u®) 2K? 2K(u* + c)?
Zi = rnQRu - K) rrnu(K—-u") B ragEmy(K — u*)
K(c + u*) K?(u* + ¢) K(c + u*)(m E + mou*)?’
w+ 1 r(K-uu? ruw@u +1)—rK(1+u)  rvi(c—u)K - u)
Zs = — + + +
2K 2K3 2K? 2K(c + )}
N qgEm,(u* — K)Y(m E — mou™) N (K — 3u®)u*v* N ragEmu™vi(K — u*)(1 + u*)
2K(m E + myu*)3 2K(c + u*)? 2K(c + u*)2(m E + myu*)?
rr(K — v (K —u)u™v?  rgEmut(K — u?)(1 + u®)
T T Kcru? | 2Ketrw)y 2KXmE + mou' p
, CEmK ) gEmy(K - 2u” —u?)
2K(m E + myu*)* 2K(m E + myu*)?
7 - 1w 3K-—wu' rnu(K- u*)? . ruvi(K — u*)? . gEmy(K — u*)?
2 2K 2K? 2K3 2K2(u* + c)? 2K2(m E + mou*)?’
ru* (K — u*)? u(c + u*)’ rydev* .
Zsz—m, "= —ex3 21:m, Wy =1->bv,
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rydevt ryd*c? ryde(1 — bv*) b(bv* - 2)
Vo= vy "m0 T w0 T 2
rdevt  rdicvt ndcdve rde(bv' = 1) r3d*cvi(2-v)
Was = (c + u)* B (c + u*)? * 6(c + u*)°®’ 7= (c + u*)? 20+ u)*
Wi = — rybdc N rb*dcev* = b*(3 - bvY)
(c+u)?  2c+u)? 6 '

Construct a nonsingular matrix D; and consider the following translation:

)al:)

D = Wi, Wi,
: -1-Wy L=-W,y )

Taking D;' on both sides of Eq (3.5), we obtain
ul (-1 0 u fi(x,y,r)
(V)_( 0 /lz)(V)+(g1(x,y,r*))’ G0

Ay, r) = [Wi3( — Wip) — Wi Wos]x? N [(Wia(do = Wip) — Wi Woslxy N Zi(A — Wipxr
Wi( + 1) Wil + 1) Wi + 1)
N [Wis(do — Wi1) — WinWas]y? N [Wie(do — Wip) — Wi Waglx? N Zy(Ay — Wipyr”
Win(da + 1) Win(dp + 1) Wiy + 1)
[Wi7(A, — Wiy) — WinWar]x?y N [Wis(Ado — Wip) — Wi Waglxy? N Zy( — Wy)r
Wiy + 1) Win(d2 + 1) Wiy + 1)
N [Wio(d — Wiy) — WinWaoly? N Zy(lo — Wi xyr” N Zs(l — Wi)xrt
Wi(d, + 1) Wi, + 1) Wia(4, + 1)
Zg(Ay — Wip)y“r* N Zy (Al — Wyp)xr*? N Zg(l — Wyy)yr*? N Zo(l — Wi+
Wi(dy + 1) Win(d, + 1) Wi + 1) Wil + 1)
+ O((Ixl, Iyl I DY),
[Wi3(2 + Wip) + WiaWas]x? N [(Wis(A2 + W) + WinWoylxy N Zi(A + Wypxr”
Wia(dx + 1) Wia(dx + 1) Wi + 1)
N [Wis(da + Wip) + WinWas]y? N [Wie(Ao + Wip) + Wi Waglx® N Zy(Ay + Wypyr”
Win(d, + 1) Wi + 1) Wiy + 1)
[Wi7(Ap + Wip) + Wi War]xPy N [Wis(Ao + Wip) + Wi Waglxy? N Zy( + Wy)r
Wiy + 1) Wi(dx + 1) Wiy + 1)
N [Wio(Az + Wiy) + WinWaoly? N Zy(o + Wipxyr” N Zs(A, + Wi)x°r'
Wi( + 1) Wi + 1) Wi(d + 1)
Ze(A2 + Wip)y“r* N Z3(A + Wy)xr*? N Zg( + Wyy)yr*? N Zo(p + Wi+
Wi(dy + 1) Win(dx + 1) Wi +1) Wiy +1)
+ O((Ixl, Iyl I DY),
x=Wp+v), y=U+Wv-(1+Wu.

where

where

gi(x,y,r’) =
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The center manifold theorem W€ is applied in a small field of »* = O at the equilibrium point E.
Then there exists W¢(0) as follows:

W) = {(x, v, r') € R?: y(x, r) = egr” + e x> + exxr* + esr'? + O((|x| + |r*|)3)}
and satisfies

H(y(x7 V*)) = y(_u +fl(-x’y(x7 r*)a r*)) - /12)’(35, r*) - gl(x’y(-xa r*)’ r*) = 0,
and we have

ey =0,
e = [Wis(1 + W) + WiaWs]Wip — [Wig(1 + Wip) + Wi Wogl(1 + Why)
-2
+ [Wis(1 + Wi) + WiaWas](1 + Wyy)?
(1 - )W, ’
0 = [(Wi2Zy = Z,(1 + W] + Wyy)
(1-2)2 ’
Z3(1 + Wyy)
€3 =

Win(1 = )%

Therefore, consider the following map on the center manifold W¢(0):

G: x> =X+ 851X + X" + 53577 + nyxr’ + 55> + O((|x| + |[r DY),

where
5 = [(Wi3(d2 — Wi) = Wi Wy ]Wi, B [Wis(Ady — Wiy) = WinWoul(1 + Wyy)
1+ /lz 1+ /12
+ [Wis(da — Wip) = WiaWosI(1 + Wip)?
Wir(1 + 4) '
55 zzl(/b - Wi _ Zy(A, = Wipad + Wll)’
1+ /12 le(l + /12)
53 = [Wi3(A2 — Wi) = Wi Wp3[2e, Wi, N (Wis(A2 = Wip) = Wi Wl(4, — Wipe,
1+A4, 1+ A4,
_ 2[Wis(Ay = Wip) = Wi Was](1 + W) (A2 — Wiyes + Z1(A, — Wipe;
W12(1 + /12) 1+ /12
(L — Wi )*e N Win(a = Wi)Zs  Ze(dp — Wi)(1 + Wiy)?
W12(1 + /12) 1+ /12 (1 + /12)W12
[Wis(Ay = W) = WinWasleo(1 + W) + Zy(Ao = Wi)(1 + Wyy)
B 1+ ’
50 = [Wi3(A2 = Wiy) = WiaWps3]2e, Wiy N [(Wis(A2 = Wi1) = WinWaul(A42 — Wipes
1+ Ao A + 1
_ [Wha(Aa = W) = WiaWosl(1 + Win)es N (2 = Wi)(Ziex + Z7)
A +1 A+1
[Wis(dy = Wi1) = Wi Wos](1 + Wi)(Ay — Wides  (Ap — W11)222€2
B A +1 W]z(/lz + 1)
_ Zg( = W)Wy + 1)

Wia(4y + 1) ’
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o = [Wis(12 — Wiy) — W12W26]W122 [(Wi7(Ap = Wi) = Wi Wyl + W)Wy,
s = _

1+, A +1
2[Wis(y = Wip) = Wi Wos1(d + Wi)(d, — Wine N [Wiz(la — Wiy) — WinWa3]2e. Wi
(I + )Wy, 1+
_[Wia(a = Wiy) = WiaWosl(d + Why)ey N [Wia(A2 = W) = Wia W ](42 — Wipey
A +1 b +1
N [Wis(Ado — Wip) = WinWag](1 + Wyy)? _ [Wio(dz = Wiy) = Win Wl(l + W11)3.
+1 Wia(d, + 1)

By flip bifurcation, we define two non-zero real numbers 6; and 6,, where

5 (1 ’G (1 OZG)Z)
=8, o=zt 557
00 6 0x® \20x?
Based on the above analysis, the following theorem can be obtained.
Theorem 6 System (1.1) undergoes a flip bifurcation at the positive internal equilibrium point
E*(u*,v*) if 6, # 0, 9, # 0 are satisfied and when parameter r* changes within a small field of r,.

Moreover, if 9, > 0 (resp., 0, < 0), then the period-two orbits that bifurcate from equilibrium point
E*(u*,v") are stable (resp., unstable).

= S% + S5.
0,0)

5 = G +18G62_G
Y7\ oxor T 20r 0x2

3.2. Neimark-Sacker bifurcation

Consider the characteristic equation at E*, then F(1) = 0 has two complex conjugate roots with
modulus one if the following conditions are satisfied:

-2 L owie=1 (3.7)
K
and .
rnu
T =|1- e +O+¥ =|1+D|<2. (3.8)
Let

Ans = {(a,b,c,d, K, ry,r2,my, my, hy, q, E) € R? : (3.7) and (3.8) are satisfied).

When the parameter changes in a small field of Ayg, system (1.1) will have Neimark-Sacker
bifurcation at the unique positive equilibrium point E*(u*, v*). Select parameter (a, b, c,d, K, ry, 12,
my,my, hy, q, E) € Ays and analyze the following system:

_ E
{um = uexpl(r +F)(1 — ) — 2o - _2E ],

— raduy,
Vpr1 = veexpla + vl bv, — hy],

where 7 is a small perturbation parameter and || < 1.
Let x =u—u" and y = v — v*. Then we gain
X1 = Wi + Wigy + Wiax® + Wigxy + Wisy? + Wiex? + Wipx%y + Wigxy® + Wigy?

+O((1x] + [y,
Yar1 = Warx + Way + Wasx® + Waaxy + Wasy? + Waex® + Warx?y + Wagxy? + Wagy®

+O((|xl + D),

(3.9)
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where W;;(i = 1,2, 1 < j <9) are given in (3.6) by substituting r| for r; + 7.
The characteristic equation of system (3.9) at (x,y) = (0, 0) is as follows:

~T(HA+ D) =0

where — .
T =1-"0 oy,
K
D(;‘»):(l—%m))\h@.

Since parameters (a, b, c,d, K, ry, r,, my,my, hy, q, E) € Ays , the roots of the characteristic equation

are
n2= 12 2 L aD® - D)

2 2
|12l = VD).

dl/l],zl “Pl/t* + 0
dr 1r=0 2K \/D(0)
In addition, it is required that 7 = O, /111,2 #1( =1,2,3,4) which is equal to 7(0) # -2, 0, -1, 2.
Because (a,b,c,d, K, ry,ro,m;,my, h,q, E) € Ayg, thus T(0) # -2, 2. We only require 7(0) # 0, -1, so
that

and we have

Suppose that
L=

1 - (3.10)
Letn = @, w = —HD(Oz)_TZ(O)’ we use the following transformation:
x| u | Wis 0 u
BRI A |
and system (3.10) becomes into
IS e A R
Visl w N Vi 8(u,v)
where
Wis Wis , Wi 3 Wy 2 Wig Wio 4 4
(u,v) = 2 4+ + + X+ + —xy" + —y + O((|x| + |[v])),
f W12 AR T T PR AR T Tt
2v) = [W13(77 Wi W23]x2 N [W14(77 W) W24]xy N [W15(77 Wi Wzs]yg
wWis w wWis w wWi, w
N [W16(77 W W26]x3 N [W17(77 W) W27]x2y N [W18(77 W) Wzs]xyz
wWis w wWi, w wWi, w
Wio(n — W) W,
P[22 T 22905 L o((Id + DY),
a)le w

x=Wpu, y=@—-Wiu-—ov.
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System (3.9) undergoes the Neimark-Sacker bifurcation if the following quantity A is not zero

(1 -22))A2

1
A= —Re[ =, 2PllPlz] - §|P11|2 — [Py + Re(A,Py), (3.11)

where {
Pll = Z[(fuu + fvv) + i(guu + gvv)]’

1 — _ —
Py = g[(fuu - fvv + 2§uv) + i(guu - gW - 2f”")]’

1 = - _ . — — -
P21 = g[(fuu - fvv - zguv) + l(guu — 8w + 2f”V)]’

17— - _ _ L _ — -
Py = E[(fuuu + fuvv + 8wt gvvv) + l(guuu + 8w~ fuuv - fvvv)]‘

If A # 0, Neimark-Sacker bifurcation will occur in system (1.1), and the following theorem holds:

Theorem 7 System (1.1) undergoes a Neimark-Sacker bifurcation at the positive equilibrium
point E*(u*,v*) if conditions (3.10) are satisfied and A # 0. Moreover, if A < O(resp., A > 0), an
attracting (resp., repelling) invariant closed curve bifurcates from the steady state for r; > 7 (resp.,
ry <7F).

4. Chaos control and optimal harvesting policy

4.1. Chaos control

In this section, we will adopt the feedback control method (2323 to stabilize the chaotic orbit at an
unstable equilibrium point by adding a feedback control term to the system (1.1). Therefore, system
(1.1) makes the following form:

c+uy my E+myu,

.1

d —_—
Vsl = VpeXpla + 2% — bvy — ha] = g(un, vi),

{un+l = upexplri(1 - ufn — L] = h(un, vy) = ]7(”11, Vi),

where h(u,, vnl: q1(u, — u*) + g»(v, — v*) is feedback controlling force, g; and g, are feedback gains.
Furthermore, f(u*,v*) = u*, and g(u*, v*) = v*.
The Jacobian matrix corresponding to system (4.1) at interior equilibrium point (x*, v*) is as follows:

Wi-q Wio-q
Wi Wi

JWw*,v) =
Thus, the characteristic equation related to A(u*, v¥) is:
2= (Wit + Wy = q)A+ (Wi = q)War — (Win — g2)Wa; = 0. 4.2)
Let A, and A, be the eigenvalues of characteristic equation (4.2), then

A+ L=Wi+Wun-q, =W —q)Wyn—Wi—q)Wa. (4.3)

Next, we must solve equations 4; = +1 and 4,4, = 1 to gain the critical stability line. At the same
time, it also ensures that the absolute value A; and A, are less than one.
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Suppose that 1,4, = 1, then we gain
L' : Wy Wy - WiaWsy — 1 = Waq1 — Waiqo.
Assume that A; = 1, then we have
L Wiy + Way — Wi Way + WiaWay — 1 = (1 = Wa)gy + Waiga.

Assume that A; = —1, then we obtain

’.

L Wi+ Wy + Wi Wy = WiaWay + 1= (1 + Wa)g) — Waigo.

Thus, the stable eigenvalues lie within the triangular region with the boundaries of the straight lines
L', L", L”. In addition, when the control parameters g; and ¢, take values in the triangular region,
system (4.1) will not create chaos phenomena.

4.2. Optimal harvesting policy

For the sustainable use of biological resources and the protection of the natural environment on
which human beings depend. Therefore, the development of renewable resources must be reasonable
and proportionate. Under the premise of achieving sustainable development of biological resources,
pursue maximum yield or best economic benefits. The biological and economic equilibrium combines
to form the bioeconomic equilibrium. Biological equilibrium ['4'7] can be obtained by solving u,,; =
Uy, Vpr1 = v, and when the economic rent is equal to zero (meaning that the total income equals the total
cost), the economic equilibrium can be obtained. If 4;, p are the cost of harvest per unit and unit price

of the prey population, respectively, then the total costis TC = h E and total income as TR = ml%flzun.
Then the economic rent at the moment ¢ can be expressed as 2 = TR - TC = (ﬁ —h)E. The
bioeconomic equilibrium can be obtained by solving the following simultaneous equations:
(=) - & -t = 0
a+ 28 — by, —hy =0, (4.4)
m]El-l)—(inzun —h =0.

At present, if #‘iﬂzun < hy, then we stop capturing because the cost of harvesting is greater than the
revenue which also means losses. Similarly, if o E’_i ‘fnzun > hy, then we will continue to capture because
of the harvest cost less than revenue which means profit. In order to find the bioeconomic equilibrium
point (u*,v*, E*) from system (4.4), we can perform the following steps: first, we solve the value of u*
from the third equation, and then substitute the value of u* into the second equation to get the value of
v*. Finally, substitute the values of #* and v* into the first equation to get the value of E*.

Next, we aim to maximize net income while maintaining ecological balance. Define the net income
function J = ) exp(—ét)(m — hy)E, where ¢ is the discount rate and exp(—o¢) is the discount
factor. At the same time, we use the discrete Pontryagin maximum principle [21] to acquire the optimal
capture effort. So the optimal capture problem is

n
max Z exp(—ot) (L
m E; + mou,

=1

- hl)Et,
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= _ Wy _nvo 9B
U1 = uexplri(1 K ctuy  myEi+mou, A’

radu
S.1. 3V = vexpla + (;2+_u: —bv; — hy],

uy =ug, vy =voand 0 < E; < Eyax, fort=0,1,...,N -1,

where u;, v; are state variables and E; is the control variable. The Hamiltonian function of the
correlation at this moment is

Pq U vy qE,
H, = exp(—0t)| ——— —h|E, + A e 1-—-)- —
! Xp(=01) (mlE, + mou, 1) ! 10+ [u, xP (rl( K) c+u mkE + m2ut)]

d
+ Ao+ [vtexp (a + Rdt bv, — hz)] .

c+ u;

Where A1y and Ay.1y are adjoint variables. In addition, the necessary condition for the optimal

problem is that Z—Z’t’ =0, %—C’t’ =0 and ‘Z—’Z” = 0 are valid at the same time. Optimal harvest E; is available

at optimal population size level (i, v;).

OH, —-pgmyEY riuy; Uy vy qgmau; EY
— eXp(—(St) % )2 + /11([‘*'1) 1 + l *\2 + * : #)2
ou; (m E7 + mau;) K (¢ +ur) (miE7 + mauy)
radcevy
+ ey =Y
(c+u;)?
OH, ru
= —Ay+1 l.+ﬂz 1 1-bv; =0,
o O " +1)( :)
OH, pgmyE? gmou’?
- = exp(—6r) ———— — | = i ———— =0.
OE; (mE7 + myuy) (mE7 + mauy)
=5 E*=h E* 12
As a consequence, we first solve the value of Ay, = 22202 qmzqr’nzujz(m' ) fom % =0,
1 t

OH,
ovy

and then substitute the value of 4., into the second equation = 0 to get the value of Ayy41) =

exp(—=t)[ pgma Ef —hi(m1 E; +mo u;‘)z]rz
gmauy (c+u; )(1-bvy)

= 0 to obtain the value of E;.

. Finally, substitute the values of A4y and Ay into the first equation

OH,
ouy

5. Numerical simulations

This section will show the bifurcation diagram, phase diagram and maximum Lyapunov exponent
diagram of system (1.1) to verify the correctness of theoretical analysis.

Suppose that the parameters (a, b, c, d, E, K, r,, g, my, my, hy) = (0.4, 0.2, 2, 0.1, 0.4, 5, 0.5,
0.1, 0.1, 0, 0.01) € Ap, ry as the bifurcation parameter, and the initial value is (3, 1). Meanwhile,
when r; < 1.5, the interior equilibrium point does not exist; when r; > 1.5, there is a unique interior
equilibrium point, and when r; = 1.5, the system (1.1) has a transcritical bifurcation at the boundary
equilibrium point E,. According to Theorem 6, when r; = 3.32, the system (1.1) will have a flip
bifurcation at the interior equilibrium point (3.188, 2.104). The bifurcation diagram and the maximum
Lyapunov exponent diagram are shown from Figure 1. Combined with Figures 1 and 2, when r; <
3.32, the interior equilibrium point is stable. However, when r; > 3.32, the interior equilibrium loses
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its stability, and orbits with periods of 2, 4, 8 appear. As the r; increases, the maximum Lyapunov
exponent value is greater than zero, and it can be seen from Figure 1(c) and Figure 2(c),(f) that system
(1.1) will generate chaos.

25

20

3.8

34

3.2

3

26

thmmi A ST T

3 3.2 34 3.6 38 3 35

36F

281

o

6
u u u
(a) rp =332 (b) r =3.35 (c) rp =46
4 12
'\
L 3.5
s s
a 3
200 400 600 800 1000 1200 1400 1600 1800 2000 2-50 200 400 600 800 1000 1200 1400 1600 1800 2000 00 200 400 600 800 1000 1200 1400 1600 1800 2000
time time time
d) rn =332 (e) r1 =3.35 ®) rn=46

Figure 2. Phase and solution diagram related to Figure 1 when r; takes different values.

Assume that the parameters (a, b, c, d, E, K, r,, q, m;, my, hy) = (1.7, 3.5, 1.2, 0.3, 2, 3, 2.6,
0.1, 5, 2, 0.01), r; as the bifurcation parameter, and the initial value is (2, 3). The bifurcation diagram
and the maximum Lyapunov exponent diagram are shown from Figure 3. Combined with Figures 4
and 35, it is clear from the figure that for smaller values of r| the system (1.1) is stable, with the increase
of r; the system (1.1) stability disappears and a flip bifurcation with a period of 2 occurs, which
subsequently disappears and tends to stabilize. Furthermore, when 2.43 < r; < 2.59, the equilibrium
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point is stable. However, when r; > 2.59, the system loses its stability, and a stable invariant loop
appears. At this moment, the system (1.1) produces Neimark-Sacker bifurcation and periodic solution.
When r; increases, system (1.1) produces quasi-periodic solutions and chaotic phenomena. As the ry
continues to increase, the maximum Lyapunov exponent value is greater than zero, the system (1.1)
will generate chaos.

< I

0 0.5 1 15 2 25 0 0.5 1 15 2 25 3 35 4 0 0.5 1 15 2 25 3 35 4 45 5

(@) r = 1.08 (b) 1 = 2.4 © r =2.63

(d =35 (e) r 2338 ® r Z 445
Figure 4. Phase diagram related to Figure 3 when r; takes various values.

20 25

Considering the parameter values
(a, b, c, d, E, K, 1y, q, my, my, h) = (1.7, 3, 1.2, 0.3, 1.5, 3, 1.9, 0.1, 1, 2, 0.01) € Ays with the
initial value is (2, 3), and ry as the bifurcation parameter. According to Theorem 7, when r; = 2.518,
the system (1.1) has Neimark-Sacker bifurcation at the interior equilibrium point (2.52, 0.69). Figure
6 is the bifurcation and MLE graph corresponding to u and v with r; € [2.2, 3.2], and Figure 7 is the
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phase graph related to Figure 6(a). It can be seen from Figures 6 and 7 that when r; < 2.518, the
equilibrium point is stable; when r; > 2.518, the equilibrium point loses its stability, and a stable
invariant loop appears. At this moment, system (1.1) arises a periodic solution. When r; increases,
system (1.1) generates quasi-periodic solutions and chaotic phenomena. Furthermore, as the r;
continues to increase, the maximum Lyapunov exponent value is greater than zero, the system (1.1)
will generate chaos.

25 4 5
35 45
2 4
3
15¢ 25
3 :\ 3 2 /

0.5 1

0
0 200 400 600 800 1000 1200 1400 1600 1800 2000 0 200 400 600 800 1000 1200 1400 1600 1800 2000 0 200 400 600 800 1000 1200 1400 1600 1800 2000
time time time

(a) r; =1.08 (b) =24 (c) r =2.63

10 14 25

20

0= 0 [ e
0 200 400 600 800 1000 1200 1400 1600 1800 2000 0 200 400 600 800 1000 1200 1400 1600 1800 2000 0 200 400 600 800 1000 1200 1400 1600 1800 2000
time time time

d) r =35 (e) r; =3.8 () r =445
Figure S. Solution diagram corresponding to Figure 4 when r; takes various values.

01

Maximum Lyapunov Exponents
-

22 23 24 25 26 27 28 29 3 31 32

(C)"

Figure 6. Neimark-Sacker bifurcation and MLE diagram.

To verify the chaotic control theory, we analyze Figure 6 and its numerical simulation parameters.
In Figure 6(c) when the bifurcation parameter r; = 3.1, the maximum Lyapunov exponent value is
greater than zero, system (1.1) will produce chaos. When the g; and ¢, are controlled in the triangular
region surrounded by three straight lines L', L, and L (see Figure 8), the chaos generated by system
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(4.1) will be controlled near the equilibrium point and become asymptotically stable state.

07 L
0.6

0.5

0.4

22 23 24 25 26 27 28 29 3

31 3.2

23 24 25 26 27

16 18 2 22 24 26 28 3 32 34 36

(a)r =23 (b) r =2.518 () r =26
1 . 1 (-— -y ! {— — B
L <~ W o T o <

(d) rn =275 (e) r1 =29 ) rn=3

Figure 7. Phase diagram related to Figure 6 when r; takes various values.
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Figure 8. The bounded region for the eigenvalues related to the controlled system (4.1) in

the (g1, ¢>) plane.

Considering the parameter values (a, b, c, d, ry, K, r, q, my, my, hy) =(0.95, 1.5, 1.2, 0.3, 0.7,

5, 0.5, 0.15, 1, 1, 0.1) with the initial value is (3, 2), and E as the bifurcation parameter. At this
time, the bifurcation phenomenon of system (1.1) will not occur. As the degree of capture effort £
increases, the population density of prey and predator will continue to decrease and will not tend to 0
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(see Figure 9).
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45
0.645
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3.7 0.642

E
() (b)
Figure 9. Bifurcation diagram.

6. Conclusions

In this paper, we study the stability and bifurcation of equilibrium points in a discrete predator-prey
model with Michaelis-Menten type harvesting. The stability analysis indicates that the model has a
trivial equilibrium point, two positive boundary equilibrium points and the boundary equilibrium point
is always unstable. The bifurcation analysis shows that when r; = 1.5, the boundary equilibrium
point E, will have a transcritical bifurcation, and when the coexistence equilibrium E* exists and loses
stability, system (1.1) will have a flip bifurcation (see Figure 1). System (1.1) has, in addition, Neimark-
Sacker bifurcation occur at the interior equilibrium point £* when bifurcation parameter r; changes in
Apns small ranges (see Figure 6). Numerical simulation reveals that when the internal growth rate of
prey r; gradually increases, system (1.1) will produce periodic, quasi-periodic windows and chaos.

Finally, we analyze chaos control theory and the existence of bioeconomic equilibrium points. In
order to maximize profit in a finite time, we built an optimal control problem with the harvest effort
as the control parameter, and theoretically obtained the optimal value of the control variable (harvest
effort). As a result, we detected that harvesting efforts for prey and predator populations had a specific
value that maximizes net income.
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