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Abstract: In this paper, the integral sliding mode (ISM, SM) controller is designed to address the
problem of implementing non-periodic sampled data for a class of networked linear systems with
matched and unmatched uncertainties. Due to the redesigned gain of the nominal controller, the
feedback control used by the nominal controller guarantees the asymptotic stability of the uncertain
networked linear system. The discontinuous control uses intermittent control based on the reaching
law to achieve the finite-time reachability of practical SM band. Based on the defined measurement
error, the event-triggered (ET) condition can be derived, and furthermore, it guarantees a sufficient
condition for the existence of the actual SM. On this basis, a quantization scheme is added to further
decrease the network transmission burden of the linear system. No Zeno behavior occurs in the system
owing to the existence of a positive lower bound of inter-event time. Compared with the conventional
integral sliding mode control (ISMC, SMC), the proposed control law can not only relieve the network
burden, but also decrease the transmission energy loss. Finally, simulation results of a numerical
example and a mass-spring damping system demonstrate the effectiveness of the proposed method.

Keywords: integral sliding mode control; event-triggered control; quantization feedback control;
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1. Introduction

With the development and use of network and wireless communications technologies, networked
control systems (NCS) have gradually attracted attention for applications such as power networks,
remote surgery, telephone networks, industrial and manufacturing systems, and new energy vehicles.
It has some advantages such as convenience and efficiency in comparison to the conventional systems.
In wireless network systems, signals can be exchanged through digital communication networks, which
also presents new challenges for control engineers such as data quantization, event-driven sampling,
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etc. [1–4].
In some practical applications, such as unmanned submarines, UAVs, etc., limited resources are

required for NCS due to the limited power supply of the device itself. The traditional control method is
to use time-triggered control, where the controller transmits control signals to the system in a periodic
manner, and the system transmits the state signals to the controller in a periodic manner. This leads to
waste of resources and reduces the running time of the device. Therefore, the ET mechanism has been
introduced, which helps reduce the burden on the network, saves resources and improves the efficiency
of device resource utilization compared with the traditional periodic transmission. The fundamental
principle behind the ET control approach is that the related sensors and controllers are only updated
when an ET error exceeds a predetermined threshold or condition, also referred to as an ET rule [5–13].

In NCS, a shared network is frequently required for data exchange on nodes distributed throughout
space, however the network’s constrained transmission capacity could result in network congestion
phenomenon. Consequently, quantization is required, and a quantizer is a device that maps a
transmitted signal to a subset set and takes segmented constants. By quantifying the triggered state of
the system instead of the system state itself, the computational load on the system transmission is
significantly reduced [14, 15].

The presence of unmatched uncertainty may affect the stability of linear system when the control
signal transmissions are made over a network channel. SMC is an effective control method in robust
nonlinear controllers [16–18]. It has a wide range of applications in theory and practical life owing
to its advantages of being insensitive to internal uncertainties and extrinsic disturbances, meeting the
matched condition, and being easy to operate. The classical SMC design usually consists of two
stages: the reaching stage and the sliding stage. In the reaching stage, the system state trajectory
moves toward the SM manifold, while in the sliding stage, the system state trajectory slides along
the SM manifold to the origin. When dealing with unmatched uncertainties, the SMC can be used
with classical control design methods such as LMI method, adaptive method, etc., or the ISMC can be
applied. The ISMC approach is to design a high-frequency switching gain to force the system state to
reach the ISM manifold, and in the presence of unmatched uncertainty, the integral action of the ISM
manifold continues to drive the system state to the equilibrium point [19].

There has been a lot of literature on ET control combined with SMC. In [20,21], the ET linear SMC
is discussed and the practical SM band is introduced; Using a dynamic time-varying trigger threshold,
ET ISMC of linear systems with perturbations is considered in [22]; And in [23], the ET ISMC for
T-S fuzzy systems in the presence of uncertainty is considered, and novel triggering conditions are
proposed. In [24], a class of networked linear systems is considered and a control input-based ET
SMC control is proposed, where the ET rule is dependent on the changes of the input values. A unified
class of ET SMC framework is proposed in [25], which can achieve finite-time reachability at the SM
manifold and can enable finite-time stabilization of the system state. In [26], the delayed memristive
neural network synchronization problem is investigated, and continuous-time sampling ET SMC is
proposed, and based on this, periodic-time sampling ET SMC is proposed.

The quantization control can also be combined with the SMC. In [27], a class of linear uncertain
systems with quantized feedback stability problem is studied by SMC. The influence of matched and
unmatched uncertainties can be practically eliminated by the quantization parameter adjustment
strategies. In [28], the problem of distributed quantization of SMC in complex networks is
investigated, and the ISM surface is quantized using an adaptive filter. In [29], the problem of
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synchronization of discrete-time recurrent neural networks with time-varying delay is investigated,
and the stability analysis is carried out using uniform quantizer and logarithmic quantizer,
respectively.

In the general, the ET SMC and the quantized SMC are two different types of robust control
methods. However, in recent years, the combination of the ET control, the quantized control, and the
SMC has gradually gained attention. In [30], an ET approach was used to study the robust
sedimentation problem of quantized feedback SMC for a class of uncertain linear systems, quantizing
the ET states rather than the states themselves, using linear SM manifold. In [21], a linear SM
manifold is also used, but the system states are first quantized and then an ET mechanism is added to
the quantized states. In [31], the quantization-based ET SM tracking control problem for mechanical
systems is investigated, and the ET rule uses the disparity between the quantized incremental
triggering state and the quantized incremental state. Using a dynamic uniform quantizer, the ET SMC
problem for a type of continuous-time system with actuator faults and output feedback signal
quantization is investigated in [32]. In [33], the problem of robust sedimentation of perturbed linear
time-invariant systems based on ET SMC is studied. A logarithmic quantizer is used to quantify the
state and the triggering state.

The aforementioned literature considers, only under matched uncertainty, the combination of
linear SMC, ET mechanism, and quantization mechanism, and this paper considers, in the existence
of unmatched uncertainty, the combination of ET control, ISMC, and quantization control. The main
challenges faced are as follows. 1) How to quantify the ET ISM manifold when the integral term is
challenging to measure; 2) In the existence of unmatched uncertainty, how the system state guarantee
a finite time to reach the practical SM band.

Based on [34], a matched and unmatched uncertain linear time-invariant system is considered, and
the main objective is to design quantization-based ET ISMC to handle matched and unmatched
uncertainties and perturbations. The main contributions of this paper are summarized as follows:

1) In this paper, the combination of quantization control, ET control, and ISMC is simultaneously
considered. The quantized ET ISMC algorithm based on the convergence law subject to matched
and mismatched uncertainties and perturbations is proposed to achieve finite time arrival of the linear
system state at the SM surface and to realize asymptotic stability of the linear system state.

2) This paper proposes a quantization method for the ISM surface. The system state and the integral
term are quantized separately for the ISM surface, and the virtual variable is introduced to replace the
integral term, and two static uniform quantizers are used to quantize the system state and the virtual
variable separately.

3) A positive lower bound on the inter-event time is derived to avoid Zeno behavior of the system.
The rest of the paper is organized as follows: Section 2 contains the preliminary and problem

statements, including the construction of the ISM surface and the signal quantization approaches. In
Section 3, the quantized ET ISMC is presented. And in Section 4, it is proved that the finite time to
reach the ISM surface and that the system will not occur Zeno phenomenon during the operation of the
system. Thus, simulation results of a numerical example and a mass-spring damping system are given
in Section 5. In Section 6, this paper is concluded.

Notations: The sets of real numbers and integers are indicated by R and Z respectively. The set of
positive real numbers and the set of positive integers are R>0 and Z>0. Rn denotes the n-dimensional
Euclidean space in the real numbers. ∥ · ∥ denotes the matrix norm , and | · | denotes the absolute value.
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2. System description and problem formulation

Consider an uncertain linear NCS of the following form

ξ̇(t) = Aξ(t) + (b + ∆b)u(t) + (b + ∆b) fm(t, ξ) + pun(t, ξ), (2.1)

where ξ(t) ∈ Rn is the system state, u(t) ∈ R indicates the control input, and ξ(0) = ξ0 is assumed to be
the initial value of the state ξ(t). Thus, the matrice A ∈ Rn×n is the system matrix and b ∈ Rn

represents the input matrix. The fm(t, ξ) denotes the matched perturbation caused by external
disturbance, and pun(t, ξ) denotes unmatched uncertainties. The modeling error ∆b is unknown and
has the same dimension as b. Unmatched uncertainties are caused by modeling errors, inaccurate
measurements, etc. Further, we can obtain the rewritten form of system (2.1) as follows

ξ̇(t) = Aξ(t) + bu(t) + b fm(t, ξ) + fu(t, ξ), (2.2)

where fu(t, ξ) = ∆b[u(t) + fm(t, ξ)] + pun(t, ξ). Suppose that the nominal system ξ̇(t) = Aξ(t) + bu(t) is
controllable.

In this paper, the following assumption is required in the rest of the paper.

Assumption 1. Suppose that the matching and mismatching uncertainty fm(t, ξ) and fu(t, ξ) have
known upper bounds, i.e., supt≥0 | fm(t, ξ)| ≤ Fm, and supt≥0 ∥ fu(t, ξ)∥ ≤ Fu, where Fm and Fu are
known positive constants.

Remark. 1 The above assumption are necessary for the proof of finite-time reachability of the SM
surface and minimum inter-event time.

Here related lemma and definition are introduced.

Lemma 1. [35]Consider linear non-autonomous system ξ̇ = f (t, ξ), f (0) = 0. Assume that there exists
a continuous positive definite function V(x) : Rn → R satisfying the following equation:

V̇(ξ) ≤ −η1Vκ(ξ) − η2V(ξ) (2.3)

where η1 > 0,η2 > 0,and κ ∈ (0, 1). Then the system is finite time stable. Furthermore, the convergence
time satisfies

t f ≤
1

η2(1 − κ)
ln[
η2V1−κ(ξ(0)) + η1

η1
]. (2.4)

In order to construct the ISM surface represented by Θ, the concepts of ideal and practical SM are
presented as in [36].

Definition 1. (Ideal SM) There exists t1 ∈ [t0,∞) such that the SM trajectory is Θ = 0 in the case of
t ≥ t1, then it is called the ideal SM.

Definition 2. (Practical SM) There exists t1 ∈ [t0,∞) such that the SM trajectory stays in the vicinity
of the SM surface with the bound given by ε in the case of t ≥ t1, then it is called the practical SM.
Here, ε is referred to as practical SM band.
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At the beginning, the ISM manifold is modeled as

Θ(t) = Gξ(t) −Gξ(0) −G
∫ t

0
(Aξ(τ) + bu0(τ))dτ, (2.5)

where G represents the projection matrix, and G is usually taken to be bT in a way that makes det(Gb) ,
0. The ISM surface has no reaching stage, the system state is on the ISM surface at the beginning,
which greatly reduces the chattering phenomenon.

In (2.2), the matched and unmatched uncertainties are assumed to be 0, and the control input of the
nominal system is u0, the equation of the state trajectory of the ideal system is

ξ̇(t) = Aξ(t) + bu0(t). (2.6)

Next, the nominal control u0(t) is designed so that the nominal system (2.6) is stable and SM motion
occurs. The control law is now designed as

u(t) = u0(t) + u1(t), (2.7)

where u1(t) is the discontinuous control employed to counteract the uncertainty impacting the system.
The control input u0(t) is intended to have state feedback controller in the following forms:

u0(t) = −Kξ(t), (2.8)

where K ∈ R1×n is the state feedback gain vector. Further, we choose the value of K such that (A− bK)
is Hurwitz.

Taking the derivative of Eq (2.5) along system (2.2) and using (2.8), the result thus derive as

Θ̇(t) = Gξ̇(t) −G(A − bK)ξ(t). (2.9)

Replacing (2.2) into (2.9), and the result derived is

Θ̇(t) = G(Aξ(t) + bu(t) + b fm(t, ξ) + fu(t, ξ)) −G(A − bK)ξ(t)
= Gbu(t) +Gb fm(t, ξ) +G fu(t, ξ) +GbKξ(t).

(2.10)

In [37], Gao has presented the constant plus proportional rate reaching law for continuous time
systems. By considering the matching disturbances, the reaching law is reformulated as

Θ̇(t) = −Q1Θ(t) − Qsgn(Θ(t)) +Gb fm(t, ξ) +G fu(t, ξ), (2.11)

where Q1 and Q will be mentioned below, equating relations (2.9) and (2.11) to solve for u(t), then the
ISMC result is obtained as

u(t) = −(Gb)−1(GbKξ(t) + Q1Θ(t) + Qsgn(Θ(t))). (2.12)

The resulting control law (2.12) guarantees a finite time for the system (2.2) to reach the SM surface,
and it forces the SM motion.

In this paper, SMC is investigated by ET control and quantization control, and the corresponding
system block diagram is presented in Figure 1.
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Figure 1. The block diagram of quantized ET control systems.

As can be seen from Figure 1, ξ(ti) and v(ti) are generated by the ET mechanism and transmitted to
different quantizers through the network channels, respectively, and the resulting qµ1(ξ(ti)) and qµ2(v(ti))
are used to generate the quantized SM surface.

A quantizer is a piecewise constant function q : Rr → D, where D is a finite subset of the vector
space Rr. Assuming that z is the variable to be quantized, the quantizer can be seen as a device that
converts a real-valued signal into a segmented constant-valued signal. Mathematically, it can be framed
as a function round(·) that takes the nearest integer, i.e.,

qµ(z) = µ · round(
z
µ

), (2.13)

where the quantizer parameter µ > 0 is defined as the quantization sensitivity and qµ(·) is a uniform
quantizer with its level µ. Denote the quantization error as

eµ = qµ(z) − z. (2.14)

Therefore, it can be obtained as
|eµ| = |qµ(z) − z| ≤ ∆µ, (2.15)

where ∆ =
√

p
2 , p is the dimensions of the vector z.

Defining Ti as the inter-event time, and Ti = ti+1 − ti. Denoting the ET error as

e(t) = GbKξ(ti) + Q1Θ(ti) −GbKξ(t) − Q1Θ(t). (2.16)

Setting the ET threshold, and furthermore, considering the positive constants α ∈ (0,∞) and σ ∈ (0, 1],
it follows that

||e(t)|| ≤ σα (2.17)

which is valid for all t > 0. Let the next ET moment be ti+1. Therefore, the next ET moment ti+1 is

ti+1 = inf[t > ti : ||e(t)|| ≥ σα]. (2.18)
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In a NCS, the transmission signal uses an ET protocol in which the ET control law is only updated at
the moment of sampling. In the controller, a zero-order keeper (ZOH) is employed in the ET controller
to maintain the feedback information between any two triggering moments. Then, it is represented by

u(t) = u(ti), (2.19)

for t ∈ [ti, ti+1) and i ∈ Z≥0, where ti, ti+1 ∈ T , T is the set of triggering moments, ξ(ti) is the value of the
state ξ(t) at the triggering moment. The value of the SM surface Θ(t) at the triggering moment is

Θ(ti) = Gξ(ti) −Gx(0) −G
∫ ti

0
(A − bK)ξ(τ)dτ. (2.20)

Then, consider quantization of the triggering state ξ(ti)

qµ1(ξ(ti)) = µ1 · round(
ξ(ti)
µ1

), (2.21)

where qµ1(ξ(ti)) is the quantized value of the triggering state ξ(ti). Then the corresponding quantization
error is

|qµ1(ξ(ti)) − ξ(ti)| ≤ ∆1µ1. (2.22)

where p1 is the dimensions of the vector ξ(ti), ∆1 =
√

p1

2 , µ1 > 0 is the quantization sensitivity.
To quantize the SM surface, the virtual variable v(t) is introduced as

v(t) =
∫ t

0
(A − bK)ξ(τ)dτ. (2.23)

Then the value of v(ti) at the triggering instant is

v(ti) =
∫ ti

0
(A − bK)ξ(τ)dτ. (2.24)

Consider quantization of the virtual variable v(ti) is

qµ2(v(ti)) = µ2 · round(
v(ti)
µ2

), µ2 > 0, (2.25)

where qµ2(v(ti))is the quantized value of the triggering state v(ti).
Therefore, the corresponding quantization error is

|qµ2(v(ti)) − v(ti)| ≤ ∆2µ2, (2.26)

where p2 is the dimensions of the vector v(ti), ∆2 =
√

p2

2 , µ2 > 0 is the quantization sensitivity. The
quantized triggering SM surface q(Θ(ti)) is

q(Θ(ti)) = Gqµ1(ξ(ti)) −Gξ(0) −Gqµ2(v(ti)). (2.27)
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3. Design of quantized event-triggered integral sliding mode control

In the ET control law (2.19), the quantized ET control law (3.1) can be obtained by replacing the
ET state ξ(ti) with the quantized ET state qµ1(ξ(ti)). Therefore, for the quantized ET implementation of
the ISM, the control law (2.12) can be written as

u(t) = −(Gb)−1(GbKqµ1(ξ(ti)) + Q1q(Θ(ti)) + Qsgn(q(Θ(ti)))) (3.1)

for all t ∈ [ti, ti+1), and i ∈ Z≥0.
The ET rule is designed so that the quantized ET control law (3.1) is updated at every ti only when

the ET error exceeds some pre-defined threshold value. qµ1(ξ(ti)) is the ET state ξ(ti) obtained after
quantization.

Remark. 2 During the sliding motion Θ(t) = Θ̇(t) = 0, based on the Eq (2.9), it can be derived that
the system state ξ(t) is bounded and can be represented as ∥ξ(t)∥ = ∥ exp((A − bK)t)ξ0(t)∥. Further, we
can choose K such that A − bK becomes Hurwitz matrix, so that the norm of the system state ξ(t) is
bounded, i.e., ∥ξ(t)∥ ≤ δ exp(−βt), where δ and β are positive constants. If the last event of state ξ(t)
happened at the moment ti, then

∥ξ(t)∥ ≤ ∥ξ(ti)∥, f or all t ∈ [ti, ti+1), (3.2)

i.e.
∥ξ(ti)∥ ≤ δ exp(−βti). (3.3)

From (2.20), (2.22), (2.26), (2.27), it is obtained that

|Θ(ti) − q(Θ(ti))| = |Gξ(ti) −Gξ(0) −Gv(ti) −Gqµ1(ξ(ti)) +Gξ(0) +Gqµ2(v(ti))
= |Gξ(ti) −Gqµ1(ξ(ti)) +Gqµ2(v(ti)) −Gv(ti)|
≤ ∥G∥∆1µ1 + ∥G∥∆2µ2,

(3.4)

we choose
M = ∥G∥∆1µ1 + ∥G∥∆2µ2, (3.5)

then we have
|Θ(ti) − q(Θ(ti))| ≤ M. (3.6)

Remark. 3 While the system state trajectory reaches the SM surface, if the control law is not updated,
the system state trajectory will cross the SM surface and move away from it. The ET error starts to
increase, and when the ET error exceeds the upper threshold, the signal is updated to redirect the
system trajectory towards the SM surface. This process keeps going until the system state trajectory
reaches its origin. From (2.16), it is known that

|Q1Θ(t) − Q1Θ(ti)| = GbKξ(ti) −GbKξ(t) − e(t). (3.7)

The sliding trajectory’s greatest deviation is

|Θ(t) − Θ(ti)| ≤ |
σα

Q1
| + |

GbK
Q1
|∥ξ(t) − ξ(ti)∥. (3.8)
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The quantization error of SM function Θ(t) can be obtained by (3.4) and (3.8)

|Θ(t) − q(Θ(ti))| = |Θ(t) − Θ(ti) + Θ(ti) − q(Θ(ti))|

≤ |
σα

Q1
| + |

GbK
Q1
|∥ξ(t) − ξ(ti)∥ + ∥G∥∆1µ1 + ∥G∥∆2µ2.

(3.9)

It can be derived that
P = |

σα

Q1
| + |

GbK
Q1
|δ exp(−βti) + M. (3.10)

The range of sgn(Θ(t)) , sgn(q(Θ(ti))) is

Ω = {Θ(t) : |Θ(t) − q(Θ(ti))| < P}. (3.11)

4. Main results

Theorem 1. Considering the system (2.2) in addition to the ISM manifold (2.5). Under the quantized
ET control law (3.1), the system state trajectory can reach the SM surface in finite time even in the
presence of unmatched perturbations, if there exist Q satisfying

Q ≥ |Gb|Fm + ∥G∥Fu + |Gb||K|∆1µ1 + Q1M + σα + η, (4.1)

where η is a positive scalar, and the practical SM is implemented in the vicinity of Θ(t) = 0 within a
band

Bξ = {ξ(t) ∈ Rn : |Θ(t)| ≤ |
σα

Q1
| + |

GbK
Q1
|∥ξ(t) − ξ(ti)∥}. (4.2)

Proof. Outside of the region Ω, then it will satisfy sgn(Θ(t)) = sgn(q(Θ(ti))). Choose the Lyapunov
candidate as V = 1

2Θ
2. Differentiating V along the system (2.2) and using the derivative of the ISM

surface in (2.9), then, we have

V̇(Θ(t)) = Θ(t)Θ̇(t)
= Θ(t)[Gξ̇(t) −G(A − bK)ξ(t)]
= Θ(t)[G(Aξ(t) + bu + b fm(t, ξ) + fu(t, ξ)) −G(A − bK)ξ(t)]
= Θ(t)[Gbu(t) +Gb fm(t, ξ) +G fu(t, ξ) +GbKξ(t)].

(4.3)

Substituting the designed control law in (3.1), it can be concluded that

V̇(Θ(t)) =Θ(t)[−GbKqµ1(ξ(ti)) − Q1q(Θ(ti)) − Qsgn(q(Θ(ti)))
+Gb fm(t, ξ) +G fu(t, ξ) +GbKξ(t)]
= − Θ(t)[GbKqµ1(ξ(ti)) +GbKξ(ti) −GbKξ(ti) −GbKξ(t)
− Q1Θ(t) + Q1Θ(ti) − Q1Θ(ti) + Q1Θ(t) + Q1q(Θ(ti))
−Gb fm(t, ξ) −G fu(t, ξ) + Qsgn(q(Θ(ti)))].

(4.4)

From (2.16), we can obtain

V̇(Θ(t)) = − Θ(t)[GbKqµ1(ξ(ti)) −GbKξ(ti) + e(t)
+ Q1Θ(t) + Q1q(Θ(ti)) − Q1Θ(ti) −Gb fm(t, ξ)
−G fu(t, ξ) + Qsgn(q(Θ(ti)))].

(4.5)
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Take (2.22), (2.17), and (3.6) into (4.5), one can further get that

V̇(Θ(t)) ≤ − Θ(t)[GbK∆1µ1 + e(t) + Q1Θ(t) + Q1M

+ Qsgn(q(Θ(ti))) −Gb fm(t, ξ) −G fu(t, ξ)].
(4.6)

Take the norm and sort it out,

V̇(Θ(t)) ≤|Θ(t)|∥e(t)∥ + |Θ(t)||Gb|∥K∥∆1µ1 + |Θ(t)|Q1M

+ |Θ(t)||Gb| fm(t, ξ) + |Θ(t)|∥G∥ fu(t, ξ) − Q1Θ
2(t) − |Θ(t)|Q.

(4.7)

It yields from Assumption 1 that

V̇(Θ(t)) ≤ − |Θ(t)|(Q − |Gb|∥K∥∆1µ1 − Q1M

− σα − |Gb|Fm − ∥G∥Fu) − Q1|Θ(t)|2.
(4.8)

Substituting (4.1) into (4.8), one gets

V̇(Θ(t)) ≤ − |Θ(t)|η − Q1|Θ(t)|2. (4.9)

Let η1 =
√

2η and η2 = 2Q1, then we obtain

V̇(Θ(t)) ≤ η1V
1
2 (t) − η2V(t). (4.10)

Combining with Lemma 1, we have

t f ≤
2
η2

ln[
η2V

1
2 (0) + η1

η1
]. (4.11)

When the system state trajectory has reached the SM manifold, the system state is asymptotically
stable within the practical SM band. Thus, this proof of Theorem 1 is completed. □

Remark. 4 From (3.8), set Θ(ti) = 0, and then, the maximum SM band can be derived. The maximum
band is given by (4.2).

Next, to guarantee that the system is Zeno-free, it must be demonstrated that the lower bound on the
inter-event time must be greater than a positive constant. The following proof shows that there exists
the lower bound on the inter-event time.

Theorem 2. Considering the system (2.2) in addition to the quantized ET ISMC in (3.1), if the inter-
event execution time is generated from (2.18), the lower bound of the inter-event time indicates that

Ti >
σα

k1δ + k2 + k3 + k4
, (4.12)

where
k1 = (|Gb|∥K∥ + Q1∥G∥)∥A∥ + (Q1∥GA∥ + Q1|Gb|∥K∥),
k2 = (|Gb|∥K∥ + Q1∥G∥)∥b∥ × ∥ − (Gb)−1(GbKqµ1(ξ(ti)) + Q1q(Θ(ti)) + Qsgn(q(Θ(ti))))∥,
k3 = (|Gb|∥K∥ + Q1∥G∥)∥b∥Fm,
k4 = (|Gb|∥K∥ + Q1∥G∥)Fu.
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Proof. Let Ti be the inter-event time, i.e. the time required for the event error to grow from zero to σα.
Define the set Γ = (t : ∥e(t)∥ = 0) where t ∈ [ti, ti+1). From (2.2) and (2.9), we have

∥
d
dt

e(t)∥ =∥
d
dt

(GbKξ(ti) + Q1Θ(ti) −GbKξ(t) − Q1Θ(t))∥

≤∥GbKξ̇(t) + Q1Θ̇(t)∥
≤∥GbKξ̇(t)∥ + ∥Q1(Gξ̇(t) −G(A − bK)ξ(t))∥
≤(|Gb|∥K∥ + Q1∥G∥)∥ξ̇(t)∥ + (Q1∥GA∥ + Q1|Gb|∥K∥)∥ξ(t)∥
≤(|Gb|∥K∥ + Q1∥G∥)∥Aξ(t) + bu(t) + b fm(t, ξ) + fu(t, ξ)∥
+ (Q1∥GA∥ + Q1|Gb|∥K∥)∥ξ(t)∥.

(4.13)

It yields from Assumption 1 that

∥
d
dt

e(t)∥ ≤[(|Gb|∥K∥ + Q1∥G∥)∥A∥ + (Q1∥GA∥ + Q1|Gb|∥K∥)]∥ξ(t)∥

+ (|Gb|∥K∥ + Q1∥G∥)∥b∥∥u(t)∥ + (|Gb|∥K∥ + Q1∥G∥)∥b∥Fm

+ (|Gb|∥K∥ + Q1∥G∥)Fu.

(4.14)

Using the designed control law in (3.1) and (3.3), thus we obtain

∥
d
dt

e(t)∥ ≤[(|Gb|∥K∥ + Q1∥G∥)∥A∥ + (Q1∥GA∥ + Q1|Gb|∥K∥)]δ exp(−βti)

+ (|Gb|∥K∥ + Q1∥G∥)∥b∥ × ∥ − (Gb)−1(GbKqµ1(ξ(ti))
+ Q1q(Θ(ti)) + Qsgn(q(Θ(ti))))∥
+ (|Gb|∥K∥ + Q1∥G∥)∥b∥Fm + (|Gb|∥K∥ + Q1∥G∥)Fu.

(4.15)

Noticing that e(ti) = 0, one can get that

∥e(t)∥ ≤
∫ t

ti
(k1δe−βt + k2 + k3 + k4)dt. (4.16)

Thus it yields that
∥e(t)∥ ≤ (k1δ + k2 + k3 + k4)(t − ti). (4.17)

The next event will occur only when the norm of the error exceeds a predefined threshold.
Therefore, Ti is expressed by (4.12), and that is the conclusion of the demonstration of the
theorem. □

5. Simulation examples

This section shows the effectiveness of the control strategy in two instances. The first example is a
numerical model, and the second example employs a mass-spring damper system.
Example 1

This numerical example is to demonstrate the proposed perturbed continuous-time linear system
under the quantized ET ISMC, and the system parameters are described as follows

A =


10 15 13
−20 −10 17

0 15 15

 , b =


0
−3
5

 ,
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fm(t, ξ) = 0.3 sin(2 ∗ π ∗ t), fu(t, ξ) =


0.5 sin(2πt)

0
0.5 sin(2πt)

 .

The initial state of the linear system is designed to be ξ0 = [−1, 1, 1]T , the projection matrix G is set
as G = bT = [0,−3, 5]. It was calculated that K = [165.26, 52.9310, 82.3188], other design parameters
are designed to be σ = 0.4, α = 50, and the reaching gain Q1 = 4. By calculation, the switching gain
Q is given as Q = 291. The quantization sensitivity µ1 and µ2 are both taken as 0.05.

Simulation results of the perturbed continuous-time linear system (2.2) with the designed quantized
ET control law in (3.1) are presented in Figures 2–6. It can be noticed from Figures 2 and 4 that the
system states can be well steered into the ISM surface in (2.5), then they finally slides to the origin.
Figure 3 represents the proposed variation of the quantized ET ISMC. The evolution of ∥e(t)∥ under the
quantized ET ISMC is presented in Figure 5. Further, it shows from Figure 6 that no Zeno execution
of ET condition occurs during the whole system implementation.

For resource-constrained systems, the fewer number of control signals updates means the system
has a longer lifespan and a more efficient utilization of resources. Based on this, this paper proposes
a performance index for comparing the number of control signals updates. In Table 1, we present the
comparison between the number of control updates obtained by the time-triggered control scheme, the
ET control scheme and the quantized ET control scheme. Thus, as can be observed in Table 1, the
number of control updates in the quantized ET control method is fewer than in the ET control method
and much fewer than in the time-triggered control method, which has resulted in reduced control
calculations and minimum use of resources without affecting the stability of the system.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Time(sec)

-8

-6

-4

-2

0

2

4

6

8

S
lid

in
g

 M
a

n
if
o

ld
 

S

Figure 2. Quantization ET of ISM surface.
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Figure 3. Quantized ET ISMC input.
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Figure 4. Quantization ET of states evolution under ISMC .
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Figure 5. Quantization ET of the evolution of ∥e∥ under ISMC.
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Figure 6. Quantization ET of inter-event time under ISMC.

Table 1. Comparison of system performance.

Triggering mechanism No. of control updates
Time triggered control scheme in (2.12) (τ = 0.001) 1001
ET control scheme in (2.19) 314
Quantization ET control scheme in (3.1) 208

Example 2
The second example considers a mass-spring damper system with the system configuration shown

in Figure 7. u represents input control, the states ξ1 and ξ2 represent the position and speed of the
car, respectively. M represents the mass of the cart, and k denotes the spring constant. The damping
coefficient associated with the system is set as h. The perturbation term is chosen as f . The disturbance
may be caused by the frictional forces acting on the mass-spring damper system. In practice, the spring
constant k and the damping coefficient h shift their nominal values with time, and the actual velocity
of the system is usually hard to acquire; therefore, system uncertainty D needs to be taken into account
when performing system modeling. Let M = 1kg, k = 0.333N/m, h = 1.1Ns/m, f = 0.5sin(10t),
D = 0.1sin(10t).

The system equation of state is

ξ̇(t) =
[

0 1
−0.333 −1.1

]
ξ +

[
0
1

]
(u + f ) +

[
D
0

]
. (5.1)

The initial state of the system is designed to be ξ0 = [2.2,−1.7]T . Other parameters are designed
as G = bT = [0, 1], k = [25.1467, 9.0], σ = 0.4, α = 5. Q1 = 4, Fm = 0.5, Fu = 0.1, Q = 3.5. The
quantization sensitivity µ1 and µ2 are both taken as 0.05.
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Figure 7. A mass-spring damper system.

Simulation results of the mass-spring damper system (5.1) with the designed quantized ET control
law in (3.1) are presented in Figures 8–12. From Figure 8 and Figure 10, it can be drawn that the
system state trajectory reaches the SM manifold in a finite time and is confined within the SM band.
Figure 9 represents the proposed variation of the quantized ET ISMC. The evolution of ∥e(t)∥ under
the quantized ET ISMC is presented in Figure 11. In addition, it is observed from Figure 12 that no
Zeno phenomenon occurs in the system during the operation of the system. Taking the performance
index of Table 1 for comparison,the number of control updates for all strategies, such as time-triggered
control strategy, ET control strategy, and quantized ET control strategy, are calculated and listed in
Table 2. As can be seen from Table 2, the ET control strategy with quantized state measurements
has much lesser control updates than the ET control strategy and lesser than the time-triggered control
strategy in terms of the minimum use of control computations and resources.

Table 2. Comparison of system performance.

Triggering mechanism No. of control updates
Time triggered control scheme in (2.12)( τ =0.001) 2001
ET control scheme in (2.19) 42
Quantization ET control scheme in (3.1) 25
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Figure 8. Quantization ET of ISM.
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Figure 9. Quantized ET ISMC input.
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Figure 10. Quantization ET of states evolution under ISMC.
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Figure 11. Quantization ET of the evolution of ∥e∥ under ISMC.
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Figure 12. Quantization ET of inter-event time under ISMC.

6. Conclusions

The stability problem of networked linear systems with matched uncertainty and unmatched
uncertainty under quantized ET ISMC and the Zeno phenomenon problem are studied in this paper.
To begin with, the priori knowledge such as finite-time reachability and actual SM band is introduced.
The ISM surface is constructed, and the convergence law is used to derive the control input. On the
basis of this, the system introduces the ET mechanism, and under the ET mechanism, the system state
and SM surface are quantized respectively, which leads to quantized ET ISMC. Then, it is
demonstrated that the system trajectory can reach the SM surface in a finite time, and no Zeno
phenomenon occurs during the system operation. Finally, a numerical example and an example of a
mass-spring damper are given to illustrate the effectiveness of the proposed quantized ET ISMC. In
future work, we will continue to study the combination of quantized control, ET control, and SMC,
and explore their applications under other conditions, such as nonlinear systems, fault-tolerant
control, fuzzy systems, etc.
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