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Abstract: We study an ecosystem of three keystone species: salmon, bears and vegetation. Bears con-
sume salmon and vegetation for energy and nutrient intake, but the food quality differs significantly
due to the nutritional level difference between salmon and vegetation. We propose a stoichiometric
predator-prey model that not only tracks the energy flow from one trophic level to another but also
nutrient recycling in the system. Analytical results show that bears may coexist with salmon and veg-
etation at a steady state, but the abundance of salmon may differ under different regimes. Numerical
simulations reveal that a smaller vegetation growth rate may drive the vegetation population to extinc-
tion, whereas a large vegetation growth rate may drive the salmon population to extinction. Moreover,
a large vegetation growth rate may stabilize the system where the bear, salmon and vegetation popula-
tions oscillate periodically.
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1. Introduction

A keystone species is one on which other species in the ecosystem largely depend. So much so that
if removed there are drastic effects on the ecosystem [1]. Bears, salmon and vegetation are unique in
an ecosystem because all three are keystone species dependent on one another [2]. In this ecosystem,
salmon and vegetation are both food resources for bears, but the food quality differs significantly.

Salmon are much more nutrient-rich compared to vegetation, i.e., the nitrogen/phosphorous etc.
concentration within salmon’s bodies is much higher compared to vegetation. However, salmon must
maintain homeostasis of element concentration within the body so that they must excrete excessive
nutrients into the environment if the element concentration exceeds a threshold. On the other side,
vegetation is less nutrient-rich but can absorb the remaining nutrient in the environment so the nutrient
level within vegetation may differ significantly over time at an order of different magnitude [3–5].

Bears share common characteristics with salmon where bears are also nutrient-rich but must main-
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tain a homeostasis of element concentration within their bodies [3–5]. When consuming poor-quality
food where the element concentration is low, the energy conversion from food consumption to the bear
biomass cannot be maximized. In the bear-salmon-vegetation ecosystem, salmon is good-quality food,
whereas vegetation is poor-quality food. Therefore, when studying the bear-salmon-vegetation ecosys-
tem, it is important to devise a model that depicts not only the energy transfer but also the nutrient flow
between trophic levels.

One of the well-known models that study stoichiometric population dynamics is the one proposed
by Loladze and Kuang [6]. The model builds on classical predator-prey models of one consumer and
one food resource but incorporates a single limiting element phosphorus into modeling to distinguish
food quantity and food quality. Following [6], stoichiometric models have been studied extensively,
see [7–13] for example. More recently, Phan, Elser and Kuang extended the previous producer-grazer
model framework by including multiple shared limiting elements in the modeling [14]. The formulated
model excludes the non-smoothness in the original stoichiometric model but replicates qualitatively
similar dynamics in a wide range of parameters [14]. We follow the modeling framework of the
aforementioned studies but extend the model to include a specific nutrient-rich food resource, which
agrees with the bear-salmon-vegetation ecosystem. In particular, we choose nitrogen as the limiting
element of the system because nitrogen is vital for all salmon, bears and vegetation.

We organize the paper in the following. In Section 2, we formulate a stoichiometric model of
one consumer and two food resources, where one food resource is of good quality but the other food
resource is of poor quality. In Section 3, we analyze the existence and local stability of the steady-
state solutions. In Section 4, we conduct numerical simulations that confirm the analytical results.
Moreover, numerical simulations also reveal interesting dynamics when certain parameters vary in a
range. We end this paper in Section 5 with conclusions and discussions.

2. Model formulation

In the bear-salmon-vegetation ecosystem, salmon and vegetation are both food resources for bears
but bears do not consume certain organs of salmon. Rather, bears leave salmon corpses around vege-
tation so that the vegetation absorbs any remaining nitrogen that ultimately contributes to the growth
of its population. Moreover, bears and salmon are much more nutrient-rich compared to vegetation.
However, salmon and bears must maintain homeostasis in nitrogen concentration within their bodies
and excrete excessive nitrogen into the environment. Vegetation is less nutrient-rich but can absorb the
remaining nitrogen in the environment so the nitrogen concentration in vegetation may vary at an order
of different magnitude.

We first formulate a model that includes the energy transfer among trophic levels when nitrogen is
abundant among all three species. Denote S (t),V(t), B(t) by the salmon population density (measured
in carbon per litre), the vegetation population density (measured in carbon per litre) and the bear
population density (measured in carbon per litre) respectively. The model is

S ′(t) = αS − f (S )B,

V ′(t) = γV
[
1 −

V
K

]
− g(V)B + ε f (S )B + ψB,

B′(t) = e1 f (S )B + e2g(V)B − λB,

(2.1)
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where α is the growth rate of the salmon population, f (S ) is the consumption rate of salmon by the
bear, γ is the intrinsic growth rate of the vegetation, K is the carrying capacity of the environment,
g(V) represents the consumption rate of vegetation by the bear, e1 and e2 are the energy conversion
rate from the consumption of the salmon and the vegetation respectively and λ is the natural death rate
of the bear. In (2.1), ε represents the rate of contribution to the vegetation growth due to the element
recycling from the nearby salmon corpses left by bears. Furthermore, the bears produce excrement
after digesting the salmon, which provides another source for vegetation to absorb the nitrogen, which
contributes positively to vegetation growth at a rate of ψ [2].

The above model (2.1) assumes a linear growth rate for the salmon and a logistic growth for the
vegetation. Having spent most of their lives feeding and growing at sea, salmon return to spawn and
die. Salmons return to their natal streams carrying marine-derived nutrients in their body tissues. In
particular, adult salmon are rich in nitrogen [2]. Salmon do not compete for resources which implies
it is safe to assume a linear growth rate of γ. Vegetation, on the other hand, competes for resources
limited by solar energy and follows a logistic growth rate. However, the vegetation population is not
only limited by light but is also regulated by nitrogen concentration.

Because of the homeostasis of bears and salmon, we can safely assume that the N: C (nitrogen:
carbon) ratio within bears and salmon are θ1 and θ2 respectively. It follows that the remaining nitrogen
in the environment is N − θ1B(t)− θ2S (t). Moreover, following [6], we assume that the N: C (nitrogen:
carbon) ratio within the vegetation never falls below a level NV . Combining the assumptions, we obtain
another carrying capacity of the vegetation limited by nitrogen as

N − θ1B(t) − θ2S (t)
NV

.

Together with the carrying capacity limited by solar energy, we obtain an improved carrying capac-
ity for the vegetation population

min
{

K,
N − θ1B(t) − θ2S (t)

NV

}
.

Following [6], we assume that all of the nitrogen within the system gets recycled immediately and
there is no pool of free nitrogen in the environment.

It follows that the N: C ratio in vegetation is

N − θ1B(t) − θ2S (t)
V(t)

.

Vegetation serves as good-quality food for bears if

N − θ1B(t) − θ2S (t)
V(t)

≥ θ1,

or equivalently

N − θ1B(t) − θ2S (t)
θ1V(t)

≥ 1,

and is poor-quality food otherwise. If vegetation is good-quality food, the biomass conversion from the
vegetation to the bear follows the maximum energy intake e2. However, if vegetation is poor-quality
food, the biomass conversion is reduced by a ratio
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N − θ1B(t) − θ2S (t)
θ1V(t)

.

Hence, biomass conversion efficiency is not a constant but depends on both energetic and nutrient
limitations. Note that we can assume that salmon is a good-quality food source for bears since salmon
is nutrient-rich. Following [6], we formulate the biomass conversion from vegetation consumption as

e2 min
{

1,
N − θ1B(t) − θ2S (t)

θ1V(t)

}
.

Taking all the aforementioned evidence into consideration, we arrive at the model below

S ′(t) = αS − f (S )B,

V ′(t) = γV

1 − V

min
{
K, N−θ1B−θ2S

NV

} − g(V)B + ε f (S )B + ψB,

B′(t) = e1 f (S )B + e2 min
{

1,
N − θ1B − θ2S

θ1V

}
g(V)B − λB,

(2.2)

where the parameters are listed in Table 1.
In the following analysis, we assume a linear functional response for both predation of the salmon

and the vegetation, i.e., f (S ) = βS and g(V) = δV. We analyze a special case where the element
recycling for the vegetation is minimum and can be ignored, i.e., ε = 0 and ψ = 0.

Table 1. Parameters of model (2.2).

Parameter Description Restrictions
α Growth rate of salmon α > 0
β Predation rate on salmon β > 0
γ Intrinsic growth rate for vegetation γ > 0

K
Carrying capacity of vegetation limited
by solar energy

K > 0

N Total mass of nitrogen within the system N > 0
θ1 N: C ratio in bears θ1 > 0
θ2 N: C ratio in salmon θ2 > 0
NV Minimum N:C ratio in vegetation NV > 0
δ Predation rate on vegetation δ > 0

ε
Contribution to vegetation growth
from dead salmon organ

ε ≥ 0

ψ
Contribution to vegetation growth
from bear excretion

ψ ≥ 0

e1
Maximum biomass conversion efficiency
via salmon consumption

1 > e1 > 0

e2
Maximum biomass conversion efficiency
via vegetation consumption

1 > e2 > 0

λ Natural mortality rate of bears λ > 0
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In the following analysis, we restrict the positive invariant set Ω to be

Ω = {(S ,V, B) : S > 0,V > 0, B > 0, θ1B + θ2S + NVV < N},

where the population densities are bounded by the total element concentration N in the ecosystem.

3. Mathematical analysis

3.1. Steady state solutions

We first analyze steady-state solutions of (2.2) when ε = 0, ψ = 0. The steady-state solutions are
determined by

αS − βS B = 0, (3.1)

γV

1 − V

min
{
K, N−θ1B−θ2S

NV

} − δVB = 0, (3.2)

e1βS B + e2 min
{

1,
N − θ1B − θ2S

θ1V

}
δVB − λB = 0. (3.3)

Here, (3.1) implies that S = 0 or B = α/β. If salmon is at extinction, i.e., S = 0, then (3.3) implies that

B = 0 or e2 min
{

1,
N − θ1B
θ1V

}
δV − λ = 0.

If the bear population is at extinction, i.e., B = 0, then (3.2) simplifies to

γV
[
1 −

V
min{K,N/NV}

]
= 0.

Therefore, we obtain an extinction equilibrium E0(0, 0, 0) and a vegetation-only equilibrium
E1(0,min{K,N/NV}, 0) that always exist.

If

e2 min
{

1,
N − θ1B
θ1V

}
δV − λ = 0,

then we have

V∗ =
λ

e2δ
, if δV ≤

δ

θ1
(N − θ1B), (3.4)

or

B̃ =
N
θ1
−

λ

e2δ
, if δV >

δ

θ1
(N − θ1B). (3.5)

When (3.4) holds, (3.2) reduces to

γV∗
1 − V∗

min
{
K, N−θ1B

NV

} − δV∗B = 0. (3.6)
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If K < (N − θ1B)/NV , then (3.6) leads to

B∗ =
γ

δ

(
1 −

V∗

K

)
. (3.7)

Therefore, a boundary equilibrium E2(0,V∗, B∗) exists ifB∗ < min
{

N
θ1
−

λ

e2δ
,

N
θ1
−

KNV

θ1

}
,

V∗ < K.
(3.8)

If K > (N − θ1B)/NV , then (3.6) simplifies to

γV∗ −
γNV(V∗)2

N − θ1B
= δV∗B, (3.9)

which is equivalent to
Ω1B2 + Ω2B + Ω3 = 0,

where Ω1 = θ1δV∗,Ω2 = −V∗(θ1γ + δN),Ω3 = γV∗(N − NVV∗). By the invariant set Ω, we have
B < N/θ1. We solve for B and reject the larger root to obtain

B∗∗ =
−Ω2 −

√
Ω2

2 − 4Ω1Ω3

2Ω1
.

Therefore, a boundary equilibrium E3(0,V∗, B∗∗) exists if

N
θ1
−

KNV

θ1
< B∗∗ <

N
θ1
−

λ

e2δ
.

Finally, when (3.5) holds, (3.2) reduces to

γV

1 − V

min
{
K, N−θ1 B̃

NV

} − δVB̃ = 0. (3.10)

Solving for V and rejecting the trivial solution leads to

Ṽ =
γ − δB̃
γ

min
{

K,
N − θ1B̃

NV

}
.

Therefore, a boundary equilibrium E4(0, Ṽ , B̃) exists if

N
θ1
>

λ

e2δ
, Ṽ >

λ

e2δ
.

Next, we analyze the existence of steady-state solutions when the bear population exists, i.e., B̂ =

α/β. Substituting B̂ into (3.3) gives

e1βB̂S + e2 min
{
δB̂V,

δB̂
θ1

(N − θ1B̂ − θ2S )
}
− λB̂ = 0. (3.11)
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If δB̂V > [δB̂(N − θ1B̂ − θ2S )]/θ1, solving for S in (3.11) leads to

S̄ =
θ1λ − e2δ(N − θ1B̂)

e1βθ1 − e2δθ2
. (3.12)

We further substitute S̄ into (3.2) and obtain

γV

1 − V

min
{
K, (N − θ1B̂ − θ2S̄ )/NV

} − δB̂V = 0. (3.13)

By solving for V and denoting the positive solution by V̄ , we obtain

V̄ = min
{

K,
N − θ1B̂ − θ2S̄

NV

} (
1 −

δB̂
γ

)
.

Therefore, a positive equilibrium E5(S̄ , V̄ , B̂) exists if

θ1λ − e2δ(N − θ1B̂)
e1βθ1 − e2δθ2

> 0, V̄ >
N − θ1B̂ − θ2S̄

θ1
.

If δB̂V < [δB̂(N − θ1B̂ − θ2S )]/θ1, (3.3) simplifies to

e1βS + e2δV − λ = 0.

Solving for S gives

S =
λ − e2δV

e1β
. (3.14)

We substitute (3.14) into (3.2) and obtain

γV
[
1 −

V
min{K, [N − θ1B̂ − θ2(λ − e2δV)/(e1β)]/NV}

]
− δB̂V = 0. (3.15)

If K < (N−θ1B̂)/NV−[θ2(λ−e2δV)]/(e1βNV), or equivalently [e1βKNV−(N−θ1B̂)e1β+λθ2]/[e2δθ2] <
V, then (3.15) reduces to

γV
(
1 −

V
K

)
− δB̂V = 0.

Solving for V and denoting the positive solution by V̂ gives

V̂ =
K
γ

(γ − δB̂). (3.16)

Therefore, a positive equilibrium E6(Ŝ , V̂ , B̂) exists if
(θ1e1β − θ2e2δ)V̂ < e1βN − θ2λ − θ1e1βB̂,

V̂ <
λ

e2δ
,

e1βKNV − (N − θ1B̂)e1β + λθ2

e2δθ2
< V̂ .
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If K > (N − θ1B̂)/NV − [θ2(λ − e2δV)]/(e1βNV), or equivalently V < [e1βKNV − (N − θ1B̂)e1β +

λθ2]/[e2δθ2], then (3.15) reduces to

γV
[
1 −

V
(N − θ1B̂)/NV − θ2(λ − e2δV)/(e1βNV)

]
− B̂δV = 0. (3.17)

Solving for V and denoting the positive solution by V+ leads to

V+ =
(γ − B̂δ)

[
e1β(N − θ1B̂) − θ2λ

]
γe1βNV − (γ − B̂δ)θ2e2δ

.

Therefore, a positive equilibrium E7(S +,V+, B̂) exists if
θ1B̂ + θ2S + + θ1V+ < N,

V+ < min
{
λ

e2δ
,

e1βKNV − (N − θ1B̂)e1β + λθ2

e2δθ2

}
.

3.2. Stability of the steady-state solutions

Next, we analyze the local stability of the steady-state solutions. Direct calculations lead to the
Jacobian matrix

J =


α − βB 0 −βS

J21 J22 J23

J31 J32 J33

 , (3.18)

where

J21 =


0, if K <

N − θ1B − θ2S
NV

,

−
γθ2NVV2

(N − θ1B − θ2S )2 , if K >
N − θ1B − θ2S

NV
,

J22 =


γ −

2γV
K
− δB, if K <

N − θ1B − θ2S
NV

,

γ −
2γNVV

N − θ1B − θ2S
− δB, if K >

N − θ1B − θ2S
NV

,

J23 =


−δV, if K <

N − θ1B − θ2S
NV

,

−
γθ1NVV2

(N − θ1B − θ2S )2 − δV, if K >
N − θ1B − θ2S

NV
,

J31 =


e1βB, if 1 <

N − θ1B − θ2S
θ1V

,

e1βB −
e2δθ2

θ1
B, if 1 >

N − θ1B − θ2S
θ1V

,

J32 =


e2δB, if 1 <

N − θ1B − θ2S
θ1V

,

0, if 1 >
N − θ1B − θ2S

θ1V
,
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J33 =


e1βS + e2δV − λ, if 1 <

N − θ1B − θ2S
θ1V

,

e1βS +
e2δ

θ1
(N − 2θ1B − θ2S ) − λ, 1 >

N − θ1B − θ2S
θ1V

.

Then, the characteristic equation follows as |µI − J| = 0. By substituting each equilibrium into the
characteristic equation, we are able to obtain the following theorems that state the stability results. The
theorem below shows the stability of the bear-extinction equilibria.

Theorem 3.1. The trivial equilibrium E0(0, 0, 0) and the vegetation-only equilibrium E1(0,
min{K,N/NV}, 0) are unstable.

Proof. By evaluating (3.18) at the trivial equilibrium E0 and solving the characteristic equation |µI −
J| = 0, we obtain the characteristic roots

µ1 = α, µ2 = γ, µ3 = −λ,

which demonstrates that E0 is unstable.
Similar calculations give the characteristic roots at E1

µ1 = α, µ2 = −γ, µ3 =


e2δmin

{
K,

N
NV

}
− λ, if θ1 min

{
K,

N
NV

}
< N,

e2δ

θ1
N − λ, if θ1 min

{
K,

N
NV

}
> N,

which shows that E1 is unstable.

The following theorem shows the stability results of the salmon-extinction equilibria E2, E3, E4.

Theorem 3.2. The salmon-extinction equilibrium E2 is locally asymptotically stable if α/β < B∗ and
is unstable if otherwise. The salmon-extinction equilibrium E3 is locally asymptotically stable if α/β <
B∗∗ < γ/δ and is unstable if otherwise. The salmon-extinction equilibrium E4 is locally asymptotically
stable if α/β < B̃ < γ/δ and is unstable if otherwise.

Proof. Direct calculations lead to the characteristic equation at E2

(µ − (α − βB∗))(µ2 − J22µ − J23J32) = 0,

where J22 = γ − (2γV∗)/K − δB∗, J23 = −δV∗, J32 = e2δB∗. By using (3.7), we can simplify J22 =

γ−(2γV∗)/K−δB∗ = γ−(2γV∗)/K−γ(1−V∗/K) = −(γV∗)/K < 0. It follows that µ1 = α−βB∗, µ2+µ3 =

−(γV∗)/K < 0, µ2µ3 = δV∗e2δB∗ > 0. Therefore, E2 is locally asymptotically stable if µ1 < 0, i.e.,
(α/β) < B∗ and is unstable if otherwise.

Similarly, by evaluating (3.18) at E3, we obtain the characteristic equation at E3

(µ − (α − βB∗∗))(µ2 − J22µ − J23J32) = 0,
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where

J22 = γ −
2γNVV∗

N − θ1B∗∗
− δB∗∗, J23 = −

γθ1NV(V∗)2

(N − θ1B∗∗)2 − δV
∗,

J32 = e2δB∗∗.

This implies that µ1 = α − βB∗∗, µ2 + µ3 = J22, µ2µ3 = −J23J32 > 0. By using (3.9), we can further
simplify J22 = γ−2(γ−δB∗∗)−δB∗∗ = δB∗∗−γ. Therefore, E3 is locally asymptotically stable if µ1 < 0
and µ2 + µ3 < 0, which are equivalent to α/β < B∗∗ < γ/δ.

Finally, direct calculations give the characteristic equation at E4

(µ − (α − βB̃))(µ − J22)(µ − J33) = 0,

where

J22 =


γ −

2γṼ
K
− δB̃, if K <

N − θ1B
NV

,

γ −
2γNV Ṽ
N − θ1B̃

− δB̃, if K >
N − θ1B

NV
,

J33 = λ −
e2δN
θ1

.

We can further simplify J22 by using (3.10) to obtain J22 = δB̃ − γ. Moreover, J33 < 0 is satisfied
automatically when E4 exists. Therefore, E4 is locally asymptotically stable if α/β < B̃ < γ/δ and is
unstable otherwise.

Finally, the following theorem shows the local stabilities of the positive equilibria E5, E6, E7.

Theorem 3.3. The positive equilibrium E5(S̄ , V̄ , B̂) is locally asymptotically stable if e1βθ1 > e2δθ2

and is unstable if otherwise. The positive equilibrium E6(Ŝ , V̂ , B̂) is locally asymptotically stable if

e2δ(δ − β)K(γ − δB̂)
γ

+ βλ > 0

and is unstable if otherwise. The positive equilibrium E7(S +,V+, B̂) is always unstable.

Proof. Direct calculations give the characteristic equation at E5

(µ − J22)(µ2 − J33µ − J13J31) = 0,

where

J22 =


γ −

2γV̄
K
− δB̂, if K <

N − θ1B̂ − θ2S̄
NV

,

γ −
2γNV V̄

N − θ1B̂ − θ2S̄
− δB̂, if K >

N − θ1B̂ − θ2S̄
NV

,

J33 = e1βS̄ +
e2δ

θ1
(N − 2θ1B̂ − θ2S̄ ) − λ,

J13 = −βS̄ , J31 = B̂
e1βθ1 − e2δθ2

θ1
.
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By using (3.12), we can simplify J33 as J33 = −e2δB̂ < 0. Moreover, by using (3.13), we can
simplify J22 to

J22 =


−
γV̄
K

< 0, if K <
N − θ1B̂ − θ2S̄

NV
,

−
γNV V̄

N − θ1B̂ − θ2S̄
< 0, if K >

N − θ1B̂ − θ2S̄
NV

.

The above analyses show that E5 is locally asymptotically stable if J31 > 0 or equivalently e1βθ1 >

e2δθ2.

Similarly, by evaluating (3.18) at E6, we obtain the characteristic equation

µ3 − (J22 + J33)µ2 + (J22J33 − J23J32 − J13J31) µ + J13J31J22 = 0,

where

J13 = −βŜ < 0, J22 = γ −
2γV̂

K
− δB̂, J23 = −δV̂ < 0,

J31 = e1βB̂ > 0, J32 = e2δB̂ > 0, J33 = e1βŜ + e2δV̂ − λ.

By the Routh-Hurwitz stability criterion, E6 is locally asymptotically stable if
−(J22 + J33) > 0,
J22J33 − J23J32 − J13J31 > 0,
J13J31J22 > 0,
−(J22 + J33)(J22J33 − J23J32 − J13J31) > J13J31J22.

(3.19)

Here we can simplify J22 and J33 by using (3.16) and (3.14) respectively to obtain

J22 = −
γV̂
K

< 0, J33 = 0,

which further reduce (3.19) to 
−J22 > 0,
J23J32 + J13J31 < 0,
J13J31J22 > 0,
J22J23J32 > 0.

Therefore, E6 is locally asymptotically stable if J23J32 + J13J31 < 0 or equivalently

e2δ(δ − β)K(γ − δB̂)
γ

+ βλ > 0.

Finally, similar to the above analyses, we obtain the characteristic equation at E7

µ3 − J22µ
2 − (J23J32 + J13J31)µ + J13(J31J22 − J21J32) = 0,

where

J13 = −βS + < 0, J21 = −
γθ2NVV2

(N − θ1B − θ2S )2 < 0,

J22 = γ −
2γNVV

N − θ1B − θ2S
− δB, J23 = −

γθ1NVV2

(N − θ1B − θ2S )2 − δV < 0,

J31 = e1βB̂ > 0, J32 = e2δB̂ > 0, J33 = e1βS + + e2δV+ − λ.
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By the Routh-Hurwitz criterion, E7 is locally asymptotically stable if
−J22 > 0,
−(J23J32 + J13J31) > 0,
J13(J31J22 − J21J32) > 0,
J22(J23J32 + J13J31) > J13(J31J22 − J21J32).

Here it is obvious that −(J23J32 + J13J31) > 0. Next, by substituting (3.14) and (3.17) into J22, we can
simplify

J22 = γ −
2γNVV

N − θ1B − θ2S
− δB

=
e1βNVγV

e1βN − e1βθ1B̂ − θ2λ + θ2e2δV
−

2γNVV
N − θ1B̂ − θ2S

< 0,

which is satisfied when E7 exists. Moreover, J22(J23J32 + J13J31) > J13(J31J22 − J21J32) is equivalent to
J22J23 + J13J21 > 0. It remains to verify that J13(J31J22− J21J32) > 0 or equivalently J31J22− J21J32 < 0.
Here J31J22− J21J32 < 0 can be simplified to 0 < −γθ2NVe2δV2 by substituting (3.14) and (3.17), which
leads to the contradiction. Therefore, E7 is always unstable when exists. Thus, completes the proof.

4. Numerical simulations

4.1. Simulation of (2.2) with a linear predation

Now we explore the dynamics of (2.2) numerically. For the numerical simulation, we will be
assuming that the salmon-bear-vegetation ecological system lies within the riparian forests of Alaska.
More specifically, we will be looking at a 100km2 region of Lynx Creek, a tributary of the Wood River
Lakes system in the Bristol Bay region of southwestern Alaska, USA (59◦29′N, 158◦55′W) [2]. This
is a well-documented region where we will be able to get accurate values for our parameters. Based on
data from [2], we explore the following scenarios by using biologically realistic parameters.

Figure 1 shows that the salmon-extinction boundary equilibrium is locally asymptotically stable.
In particular, 1(a) demonstrates that E2 is locally asymptotically stable, whereas both E3, E4 do not
exist under the parameter set. Figure 1(b) indicates that E3 is locally asymptotically stable, whereas
both E2, E4 do not exist under the parameter set. Moreover, Figure 1(c) shows that E4 is locally
asymptotically stable, whereas both E2, E3 do not exist under the parameter set. Via our extensive
numerical experiments, we find that E2 cannot coexist with either/both E3, E4.

Figure 2 demonstrates that all salmon, vegetation and bear populations coexist together. Figure 2(a)
shows that the positive equilibrium E5 is locally asymptotically stable, whereas E6 does not exist under
the parameter set. Figure 2(b) shows that the positive equilibrium E6 is locally asymptotically stable,
whereas E5 does not exist under the parameter set.
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(a) Stable E2
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(b) Stable E3
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Figure 1. Locally asymptotically stable E2, E3, E4 respectively. Parameter values for
1(a): α = 0.008, β = 0.3507, γ = 1.1036,K = 6.8951,N = 0.9533, θ1 = 0.2371, θ2 =

0.1371,NV = 0.0115, δ = 0.6217, e1 = 0.5676, e2 = 0.8817, λ = 0.5088. Parameter values
for 1(b): α = 0.9746, β = 0.6764, γ = 1.4623,K = 35.4971,N = 0.9610, θ1 = 0.2046, θ2 =

0.1046,NV = 0.0367, δ = 0.7535, e1 = 0.4830, e2 = 0.3214, λ = 0.6319. Parameter values
for 1(c): α = 0.8815, β = 0.9483, γ = 9.7637,K = 33.1267,N = 0.6990, θ1 = 0.2623, θ2 =

0.1623,NV = 0.0873, δ = 0.8055, e1 = 0.1425, e2 = 0.1705, λ = 0.1755.
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(a) Stable E5

0 50 100 150

time

0

0.2

0.4

0.6

0.8

1

1.2

S
,V

,B

Salmon/vegetation/bear population over time

Salmon

Vegetation

Bear

(b) Stable E6

Figure 2. Locally asymptotically stable E5, E6 respectively. Parameter values for 2(a): α =

0.3860, β = 0.8874, γ = 4.7299,K = 18.1625,N = 0.9595, θ1 = 0.5330, θ2 = 0.4330,NV =

0.0720, δ = 0.6159, e1 = 0.8917, e2 = 0.2849, λ = 0.7341. Parameter values for 2(b): α =

0.5441, β = 0.9575, γ = 0.9652,K = 1.6234,N = 0.9988, θ1 = 0.6647, θ2 = 0.5647,NV =

0.0758, δ = 0.9076, e1 = 0.8909, e2 = 0.4548, λ = 0.3478.
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(a) Small γ
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(b) Large γ

Figure 3. Salmon, vegetation and bear populations over time with small γ (3(a)) or large
γ (3(b)). The parameters are the same as Figure 2(b) except γ, where γ = 0.5 for 3(a) and
γ = 1.2 for 3(b).

Next, we explore how the vegetation growth rate impacts the long-term dynamics of (2.2). We gen-
erate Figure 3 by using the same set of parameter as Figure 2(b) but varying γ. Figure 3(a) demonstrates
that a small vegetation growth rate drives the vegetation population to extinction, whereas salmon co-
exist with bears, but the populations oscillate periodically. On the other hand, the salmon population
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goes to extinction, but the vegetation coexists with bears at a steady state when γ is large. The results
are reasonable biologically because a small vegetation growth rate cannot sustain the persistence of the
vegetation population. However, a large vegetation growth rate facilitates the nitrogen recycling of the
vegetation, which supports the bear population via consumption but drives the salmon population to
extinction due to the scarcity of nitrogen.

Finally, Figure 4(a) demonstrates another scenario where the salmon, bear and vegetation coexist
but the populations oscillate periodically. However, Figure 4(b) shows that a larger vegetation growth
rate may stabilize the oscillating populations to a steady state.
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Figure 4. Salmon, vegetation and bear populations over time with small γ (4(a)) or large γ
(4(b)). The parameters values are α = 2, β = 1.2,K = 15,N = 1.2, θ1 = 0.1, θ2 = 0.15,NV =

0.1, δ = 0.9, e1 = 0.8, e2 = 0.1, λ = 1.8, γ = 1.6 for 4(a), and γ = 4 for 4(b).

4.2. Simulation of (2.2) with a logistic growth of the salmon population and Holling type II predation

Next, we explore the extended model of (2.2) where the salmon population follows a logistic growth

S ′(t) = αS
(
1 −

S
K1

)
− f (S )B.

We consider that the predation of the salmon and the vegetation now follow the Holling type II
functional response [15]

f (S ) =
βS

h1 + S
, g(V) =

δV
h2 + V

,

where h1, h2 represent the half-saturating constants respectively.
Figure 5(a) demonstrates the bifurcation diagram of the salmon population with respect to the

salmon carrying capacity K1. Moreover, Figure 5(b) demonstrates the bifurcation diagram of the vege-
tation population with respect to K1. The bifurcation diagram of the bear population with respect to K1

is similar to Figure 5(a) and is thus omitted. Figure 5 shows that the salmon, vegetation and bear pop-
ulations coexist at a steady state if the salmon carrying capacity is relatively small. However, when K1
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increases and passes 4.1, the vegetation population goes to extinction, whereas the salmon population
coexists with the bear population at a steady state. Moreover, when K1 further increases and passes
5.7, the vegetation population remains at extinction, but the salmon and bear populations oscillate pe-
riodically. The results are biologically reasonable because if the salmon carrying capacity is relatively
small, the salmon, vegetation and bear compete for the nutrients but coexist due to the scarcity of the
salmon population. However, if the salmon carrying capacity is at the intermediate range, the competi-
tion for nutrients drives the vegetation population to extinction because the salmon and bear are more
nutrient-rich. Finally, a large salmon carrying capacity destabilizes the coexistence steady-state of the
salmon and bear due to the enrichment of salmon.
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Figure 5. Bifurcation diagram of the salmon population/vegetation population with respect
to the salmon carrying capacity K1 for 5(a) and 5(b) respectively. The parameters values are
the same as 3(a) except β = 4.7875, δ = 4.538, h1 = 5, h2 = 5.

Next, to compare the dynamics of the salmon-vegetation-bear model with the grazer-consumer
model in [6], we run the simulation by using the same set of parameters as in [6], except the salmon
carrying capacity K1 and the half-saturating constant of the salmon consumption h1. Figure 6 shows the
bifurcation diagram of the salmon population/vegetation population/bear population with respect to the
vegetation carrying capacity K respectively. If K is relatively small, Figure 6 shows that the salmon,
bear and vegetation populations coexist at a steady state. However, when K increases and passes 0.24,
the salmon population goes to extinction, whereas the vegetation and bear populations coexist at a
steady state. If K further increases and passes 0.55, the vegetation and bear coexist but the populations
oscillate periodically. If K further increases and passes 0.97, the vegetation and bear populations
coexist but return to the steady state status. Finally, if K becomes relatively large and passes 1.5, the
salmon population is no longer extinct but coexists with the vegetation and bear populations at a steady
state.

Overall, when K is within the intermediate range, i.e., the salmon population is at extinction, Fig-
ures 6(a), 6(b) and 6(c) demonstrate similar dynamics with the producer-grazer model in [6]. The
vegetation-bear coexistent steady state loses stability due to energy enrichment. However, a larger car-
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rying capacity limited by the light energy drives the oscillating vegetation and bear populations to a
steady state because of the competition for nutrients. Different from the results in [6], the bear pop-
ulation does not go to extinction but coexists with either/both salmon or/and vegetation populations
when K is relatively small or large. The results suggest that a low or high carrying capacity limited
by light energy facilitates the persistence of all salmon, vegetation and bear populations. Moreover, an
intermediate carrying capacity limited by light energy drives the salmon population to extinction.
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Figure 6. Bifurcation diagram of the salmon population/vegetation population/bear popula-
tion with respect to the vegetation carrying capacity K for 6(a), 6(b) and 6(c) respectively.
Parameters values: α = 0.8, β = 0.95, γ = 1.2,N = 0.025, θ1 = 0.03, θ2 = 0.03,NV =

0.0038, δ = 0.81, e1 = 0.9, e2 = 0.8, λ = 0.25,K1 = 0.3, h1 = 0.25, h2 = 0.25.
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5. Conclusions and discussion

In this paper, we study an ecosystem of bears, salmon and vegetation, where bears consume salmon
and vegetation for survival. Because salmon return to their natal streams to spawn and carry marine-
derived nutrients, it is important to characterize the nutritional level difference between salmon, bears,
and vegetation. In general, salmon and bears are more nutrient-rich compared to vegetation but must
maintain homeostasis of the nutritional level within their bodies. On the other side, vegetation is less
nutrient-rich but can recycle the remaining nutrient in the environment and the nutritional level within
the body may differ significantly.

We propose a stoichiometric predator-prey model that tracks both the energy flow and the nutrient
recycling from one trophic level to another. Analytical results show that boundary equilibria E0, E1

where bears are extinct exist but are always unstable. Moreover, boundary equilibria E2, E3, E4 where
salmon are extinct but bears persist may exist and remain locally asymptotically stable if certain condi-
tions are satisfied. Positive equilibria E5, E6, E7 where salmon, bears and vegetation coexist may exist
if certain conditions are satisfied. Analyses show that E5 and E6 may remain locally asymptotically
stable under certain conditions, but E7 is always unstable.

Numerical simulations demonstrate that a small vegetation growth rate may drive the vegetation
population to extinction where the salmon population and the bear population coexist in the periodic
setting. Moreover, a large vegetation growth rate may drive the salmon population to extinction but
the vegetation coexists with the bears at a steady state. Alternatively, the salmon, bears and vegetation
populations may coexist periodically. In this scenario, a large vegetation growth rate may stabilize the
system and drive the salmon, bear and vegetation to coexist at a steady state.

In this paper, for the analytical analysis, we adopt the linear functional response for the predation
of the salmon and the predation of the vegetation in (2.2) for simplicity. However, a linear functional
response has its limitation and is more suitable for an ecosystem with a sparse population density. A
Holling type II functional response has a saturating effect when population density becomes large and
therefore may be suitable for a broader regime [15]. Figures 5 and 6 in the simulation also confirm
that rich dynamics may occur if the Holling type II functional response is adopted. Because of the
nonlinearity of the Holling type II functional response, we expect that the analytical analysis becomes
more challenging but on the other hand may deepen our understanding of the ecosystem of keystone
species, which leaves as future works.
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