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Abstract: Mathematical models have become indispensable tools for analyzing pest control strategies.
However, in the realm of pest control studies, the consideration of a plant population being affected
by a model that incorporates pests, natural enemies and disease in the pest population has been rela-
tively limited. Therefore, this paper aims to formulate and investigate a hybrid impulsive eco-epidemic
model that incorporates disease in the pest population. Initially, we examine the existence and stability
of the pest-eradication periodic solution. Subsequently, to explore the impact of chemical and biologi-
cal control methods, we propose an updated eco-epidemic model that incorporates varying frequencies
of pesticide sprays and the release of both infected pests and natural enemies for pest control. We
establish threshold values for the susceptible pest eradication periodic solution under different scenar-
ios, illustrating the global attractiveness of this solution. Finally, we discuss the obtained results and
suggest potential avenues for future research in this field.

Keywords: eco-epidemic model; intermittent control strategy; susceptible and infective pests;
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1. Introduction

Controlling insects and other arthropods plays a crucial role in agriculture due to the potential
ecological and economic consequences of pest outbreaks [1–5]. Integrated pest management (IPM)
offers a highly effective and safer approach by employing a combination of pest control techniques
including biological, cultural and chemical methods. This strategy involves carefully selecting and
implementing tactics that are specifically tailored to the unique characteristics of the cropping systems,
pest complexes and biological environments involved [6–9].

The main objective of IPM is to keep pest populations below the economic injury level (EIL) [10]
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rather than eradicating them entirely. The selection of suitable tactics is based on the pest densities
reaching the economic threshold (ET) [11], which minimizes the negative impact of insecticides on
non-target pests and helps maintain environmental quality. The effectiveness of IPM has been demon-
strated in various applications [12–15].

Biological control, employing microbial pathogens that target pest species, is a crucial pest control
technique that has received significant attention in both experimental and theoretical studies. Draw-
ing inspiration from the classical SIR (susceptible-infected-recovered) model introduced by Kermack
and McKendrick [16], the pest population is divided into susceptible and infected pests. As a result,
epidemiological models have attracted substantial interest from researchers in the field [17–22].

However, conventional ecological models primarily focus on two-species interactions, with many
studies emphasizing predator-prey dynamics using Lotka-Volterra type functional responses. Limited
attention has been given to IPM models involving a three-species food web. Gakkhar and Naji [23]
investigated the dynamics of a tri-trophic food web comprising a generalist-specialist-prey system, in-
corporating a modified Holling type II functional response. Apreutesei [24] explored the necessary
optimality conditions for a tri-trophic food web system. In 2013, Priyadarshi and Gakkhar [25] an-
alyzed the dynamics of a tri-trophic food web system that included a Leslie-Gower type generalist
predator. In 2016, Liang et al. [26] proposed an eco-epidemiological model for a plant-pest-predator
system, considering the impulsive effect. These studies highlight the importance of considering three-
species interactions in IPM models and their ecological implications.

To achieve effective pest control, it is vital to have a thorough understanding of the ecological
dynamics within the cropping system, encompassing the pests, their predators, the environment, and
their intricate interrelationships. However, certain control strategies, such as pesticide spraying, natural
enemy releases and infected pest releases are implemented instantaneously or over relatively short
periods. Hence, determining the optimal timing and frequency of these actions becomes crucial. In
this study, we employ impulsive differential equations to model human interventions and develop a
novel mathematical model that captures the dynamics of these actions and their impact on pest control.

The paper is organized as follows. In the following section, we will present a novel three-species
mathematical model along with its main biological assumptions. Additionally, we will explore the sta-
bility of the susceptible pest-eradication periodic solution in Section 3. Section 4 presents an updated
eco-epidemic model that incorporates various frequencies of pesticide sprays, releases of infected pests
and releases of natural enemies. The threshold value for achieving the susceptible pest-eradication pe-
riodic solution is provided for different scenarios, showcasing the global attractivity of this solution.
Subsequently, a concise discussion of the obtained results is presented, followed by potential directions
for future research.

2. Eco-epidemiological model with IPM strategies at a fixed moment

Recently, there has been a growing interest in investigating IPM models using a three-species food
web, which includes a predator (the natural enemy of the pest), the pest itself and a basal producer (a
renewable biotic resource such as plants or vegetation). Several papers have delved into this topic [23–
28]. In this context, let R represent the state of the basal producer, while P and N denote the densities
of the pest and natural enemy, respectively. In 2006, Apreutesei [24] investigated the following pest-
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natural enemy-plant model 
P′(t) = P(t)

[
αP − βN N(t) + γRR(t)

]
,

N′(t) = N(t)
[
− αN + βPP(t)

]
,

R′(t) = R(t)
[
αR − βRP(t)

]
,

(2.1)

where αP is the intrinsic growth rate for the pest, αN is the death rate for the natural enemy and αR is the
growth rate for the plant. βN describes the search rate of the natural enemy, βP denotes the efficiency
rate with which captured pests are converted to the new natural enemy, βR describes the search rate of
the pest and γR denotes the efficiency rate. Assume that all the coefficients are positive constants.

A novel eco-epidemiological model is proposed, which incorporates the utilization of microbial
control through pathogenic agents and the release of natural enemies in integrated pest management.
Building upon the research conducted by Xiao et al. [17–19] and Apreutesei [24], the pest species P
is classified into two categories: susceptible pests and infected pests, with the introduction of a pest
pathogen acting as a biotic insecticide within the pest population. Additionally, the following model
takes into account the presence of a food source for the pests

S ′(t) = rS S (t)
[
1 − S (t)+I(t)

K

]
+

µS S (t)R(t)
aR+R2(t) − βS (t)I(t) − S (t)N(t)

aS +S 2(t) ,

I′(t) = βS (t)I(t) − δI I(t),
N′(t) =

µNS (t)N(t)
aS +S 2(t) − δN N(t),

R′(t) = rRR(t) − S (t)R(t)
aR+R2(t) ,

(2.2)

the parameter definitions for model (2.2) are summarized in Table 1. Specifically, in this model, R(t)
represents a basal producer, which corresponds to a renewable biotic resource such as plants or vege-
tation [26]. Additionally, the non-monotonic (sigmoidal) saturation function is defined as follows

Ψ(X) �
X

aX + X2 , X = S (t),R(t).

This function is a simplified form of the Monod-Haldane or Holling IV function proposed by Sokol
and Howell [29] and it describes the collective defense behavior of the prey population when their
density is relatively high. Here, aX > 0 denotes the half-saturation constant of species X. It is important
to note that only the susceptible pests have the ability to feed on the plants with a Holling type-IV
response function, while the infected pests are assumed to be too weak to hunt for food.

Building upon the pest-natural enemy model and the implementation of IPM strategies, the com-
bined approach of periodic pesticide spraying, release of infected pests and release of natural enemies
is employed to effectively control the pest population. The reformulation of model (2.2) is as follows

S ′(t) = rS S (t)
[
1 − S (t)+I(t)

K

]
+

µS S (t)R(t)
aR+R2(t) − βS (t)I(t) − S (t)N(t)

aS +S 2(t) ,

I′(t) = βS (t)I(t) − δI I(t),
N′(t) =

µNS (t)N(t)
aS +S 2(t) − δN N(t),

R′(t) = rRR(t) − S (t)R(t)
aR+R2(t) ,


t , nT,

S (t+) = (1 − pS )S (t),
I(t+) = (1 + qI)I(t) + θI ,

N(t+) = (1 + qN)N(t) + θN ,

R(t+) = (1 + qR)R(t) + θR,

 t = nT.

(2.3)
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The parameter definitions for model (2.3) are summarized in Table 1. It is important to emphasize
here that model (2.3) incorporates the impulsive effect at fixed time intervals T , representing the simul-
taneous application of periodic pesticide sprays, release of infected pests and release of natural enemies
to control the pest population. At time points t = nT , the susceptible pest population experiences an
instantaneous killing rate pS due to pesticide spraying. Importantly, following pesticide spraying, the
susceptible pests become weakened and more susceptible to predation by their natural enemies.

Table 1. Parameter definitions for models (2.2) and (2.3).

Parameter Definition Parameter Definition
S (t) density of the susceptible pest I(t) density of the infected pest

N(t) density of the natural enemy population R(t) renewable biotic resource [26]

rS intrinsic growth rate for S (t) rR intrinsic growth rate for R(t)

K carrying capacity for S (t) δI death rate of I(t)

δN death rate of N(t) β transmission coefficient

T pulse period µS efficiency rate for S (t)

µN efficiency rate for N(t) aS half-saturation constant

pS killing rate for S (t) as pesticide is applied aR half-saturation constant

pN killing rate for N(t) as pesticide is applied pI killing rate for I(t) as pesticide is applied

qI proportional increase rate of I(t) θI release amount of I(t)

qN proportional increase rate of N(t) θN release amount of N(t)

qR proportional increase rate of R(t) θR release amount of R(t)

3. The stability of susceptible pest-eradication periodic solution

Since it is well-known that the infective pest does not cause harm to the plant, our main objective in
this section is to examine the stability of the periodic solution for eradicating the susceptible pest and
establish the conditions for its global attractivity.

In the following, we investigate the existence and stability of of the susceptible pest-eradication
solution, denoted as S (t) � 0 for all t ≥ 0. We derive three subsystems from model (2.3):{

I′(t) = −δI I(t), t , nT,
I(t+) = (1 + qI)I(t) + θI , t = nT,

(3.1)

{
N′(t) = −δN N(t), t , nT,
N(t+) = (1 + qN)N(t) + θN , t = nT,

(3.2)

and {
R′(t) = rRR(t), t , nT,
R(t+) = (1 + qR)R(t) + θR, t = nT.

(3.3)

It follows from the first equation of model (3.1) that I(t) = exp(−δI(t − nT ))I(nT +) for t ∈ (nT, (n +

1)T ]. Consequently, we can conclude that I((n + 1)T ) = exp(−δIT )I(nT +).
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Now, combining the second equation of model (3.1) with the previously mentioned equations results
in the following

I((n + 1)T +) = (1 + qI) exp(−δIT )I(nT +) + θI .

By denoting I((n + 1)T +) as I(n + 1), we can rewrite the above equation as the following difference
equation

I(n + 1) = F(I(n)) � (1 + qI) exp(−δIT )I(nT +) + θI . (3.4)

Equation (3.4) represents the stroboscopic map of model (3.1). It captures the relationship between
the density of infected pests at two consecutive pulse points. Specifically, the presence of a positive
steady state in Eq (3.4) indicates the existence of a positive periodic solution in model (3.1). Thus, our
initial investigation focuses on determining the positive steady state of the stroboscopic map (3.4). The
derivative of F(I(n)) with respect to I(n) is

F′(I(n)) = (1 + qI) exp(−δIT ).

According to the stability theory of differential equations, it is necessary to ensure that the condition
|F′(I(n))| < 1 holds true, which is equivalent to the inequality

λI = (1 + qI) exp(−δIT ) < 1.

Furthermore, we continue to investigate the non-negative fixed point of the stroboscopic map
(3.4). For simplicity, we denote the fixed point as Ĩ. It can be deduced from Eq (3.4) that
Ĩ = (1 + qI) exp(−δT )Ĩ + RI . This implies that the stroboscopic map (3.4) possesses a single non-
negative fixed point, given by

Ĩ =
θI

1 − (1 + qI) exp(−δIT )
.

Analogously, we can obtain the non-negative fixed points of the corresponding stroboscopic map
for subsystems (3.2) and (3.3)

Ñ =
θN

1 − (1 + qN) exp(−δNT )
, R̃ =

θR

1 − (1 + qR) exp(rRT )
,

given that
λN = (1 + qN) exp(−δNT ) < 1, λR = (1 − qR) exp(rRT ) < 1

for t ∈ (nT, (n + 1)T ], respectively. Hence, we can conclude the following result.
Lemma 3.1. Model (3.1) exists a positive periodic solution I∗. Furthermore, for every positive solution
I(t) of model (3.1), it holds that limt→+∞ |I(t) − I∗(t)| = 0. Here, I∗(t) is defined as I∗(t) = exp(−δI(t −
nT ))Ĩ, where

Ĩ =
θI

1 − (1 + qI) exp(−δIT )

for t ∈ (nT, (n + 1)T ) and n ∈ Z.
Similarly, we can deduce that

N∗(t) = exp(−δN(t − nT ))Ñ =
θN exp(−δN(t − nT ))

1 − (1 + qN) exp(−δNT )
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and

R∗(t) = exp(rR(t − nT ))R̃ =
θR exp(rR(t − nT ))

1 − (1 + qR) exp(rRT )

for all n ∈ Z.
In order to analyze the global asymptotic stability of the periodic solution (0, I∗(t),N∗(t),R∗(t)) of

model (2.3), we establish the following two results.
Theorem 3.2. If min{λS , λI , λR, λN} < 1, then the susceptible pest-eradication periodic solution
(0, I∗(t),N∗(t),R∗(t)) of model (2.3) is locally asymptotically stable, where

λS = (1 − pS ) exp
{
rS

{
T +

(1+Kβ)[exp(−δT )−1]Ĩ
KδI

+
[exp(−δNT )−1]Ñ

aS δN

}
+

rS µS
√

aRrR

[
arctan

(
R̃ exp(rRT )
√

aR

)
− arctan

(
R̃
√

aR

)]}
.

Theorem 3.3. The periodic solution (0, I∗(t),N∗(t),R∗(t)) of model (2.3) is globally asymptotically
stable provided that

RS = (1 − pS ) exp
{

rS T +
β[exp(−δIT ) − 1]Ĩ

δI
+

[exp(−δNT ) − 1]Ñ
(aS + K2)δN

+
[exp(rS T ) − 1]R̃

aRrR

}
< 1.

The proofs for Theorems 3.2 and 3.3 can be found in Appendix A. It is worth noting that in practical
pest control, the main objective is to manage the population size of pests within a certain range rather
than completely eradicating them. This approach helps maintain the balance of the ecosystem and
aligns with the fundamental principles of IPM. Therefore, the pest-eradication periodic solution only
exists in theory for the system.

4. Eco-epidemiological model with optimum pulse timing of IPM strategies at different fixed
moment

We now extend model (2.3) by incorporating periodic spraying of pesticides and the release of
infected pests and natural enemies at specific fixed time intervals, as suggested by Tang et al. [30].
Consequently, we obtain the following revised model.

S ′(t) = rS S (t)
[
1 − S (t)+I(t)

K

]
+

µS S (t)R(t)
aR+R2(t) − βS (t)I(t) − S (t)N(t)

aS +S 2(t) ,

I′(t) = βS (t)I(t) − δI I(t),
N′(t) =

µNS (t)N(t)
aS +S 2(t) − δN N(t),

R′(t) = rRR(t) − S (t)R(t)
aR+R2(t) ,


t , τn, t , λm,

S (t+) = (1 − pS )S (t),
I(t+) = (1 − pI)I(t),
N(t+) = (1 − pN)N(t),
R(t+) = R(t),

 t = τn,

I(t+) = (1 + qI)I(t) + θI ,

N(t+) = (1 + qN)N(t) + θN ,

R(t+) = R(t) + θR,

 t = λm,

(4.1)
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We assume that the application of pesticides has an impact on the populations of pests and natural
enemies. Some parameters remain the same as in model (2.3), other paramaters see Table 1 for details.

Due to the implementation of different strategies for insecticide applications and releases of infected
pests in model (4.1) [30, 31], we need to consider two cases regarding the timing of IPM applications.
Case 1. Spraying pesticides more frequently than releasing infected pests and natural enemies.
Case 2. Releases of infected pests and natural enemies more frequent than spraying pesticides.

4.1. Threshold conditions of Case 1

To facilitate the analysis, we assume that the infected pests and natural enemies are released peri-
odically, with a period denoted as TN . We define λm+1 − λm = TN , where m ∈ Z represents an integer.
Additionally, we have τn+kp = TN + τn.

Now, we define some variables: ∆i = τi+1 − τi Eh
i = (hTN + τi, hTN + τi+1], where i = 0, 1, 2, · · · , kp

∆0 = τ1, ∆kp = TN − τkp , τ0 = 0, τkp+1 = TN h represents a non-negative number. Furthermore, we
analyze model (4.1) by dividing it into three subsystems where S (t) = 0 as follows

I′(t) = −δI I(t), t , τn, t , λm,

I(t+) = (1 − pI)I(t), t = τn,

I(t+) = (1 + qI)I(t) + θI , t = λm,

(4.2)


N′(t) = −δN N(t), t , τn, t , λm,

N(t+) = (1 − pN)N(t), t = τn,

N(t+) = (1 + qN)N(t) + θN , t = λm,

(4.3)

and 
R′(t) = rRR(t), t , τn, t , λm,

R(t+) = R(t), t = τn,

R(t+) = R(t) + θR, t = λm.

(4.4)

From the first equation of model (4.2) within the interval Eh
0, we can deduce that

I(t) = I(hT +
N) exp[−δI(t − hTN)]

and
I(t) = I[(hTN + τi)+] exp[−δI(t − hTN − τi)], t ∈ Eh

i , i = 1, 2, · · · , kp − 1.

Furthermore, we get

I(t) = I[(hTN + τkp)
+] exp[−δI(t − hTN − τkp)], t ∈ Eh

kp
.

At the moment hTN + τi, where i = 1, 2, · · · , kp, corresponding to the application of a pesticide, we
observe

I[(hTN + τi)+] = (1 − pI)iI(hT +
N) exp[−δI(

i−1∑
j=0

∆ j)]

and

I
[
[(h + 1)TN]+] = (1 + qI)(1 − pI)kp I(hT +

N) exp[−δI(
kp−1∑
j=0

∆ j)] exp(−δI∆kp) + θI .

Mathematical Biosciences and Engineering Volume 20, Issue 9, 16506–16527.
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Denote I[(hTN)+] = I(h), we can get the following difference equation

I(h + 1) = (1 + qI)(1 − pI)kp exp(−δITN)I(h) + θI .

It is evident that the linear difference equation mentioned above possesses a unique equilibrium

I∗1 =
θI

1 − (1 + qI)(1 − pI)kp exp(−δITN)
.

This equilibrium is considered stable globally, given that λ1
I = (1 + qI)(1 − pI)kp exp(−δITN) < 1.

Therefore, model (4.2) has a globally stable periodic solution denoted as ĨN1(t) and

ĨN1(t) =

{
I∗1 exp(−δI(t − hTN)), t ∈ Eh

0,

I((τi)+) exp(−δI(t − hTN − τi)), t ∈ Eh
i ,

where

I[(τi)+] = I∗1(1 − pI)i exp[−δI(
i−1∑
j=0

∆ j)], i = 1, 2, · · · , kp,

particularly, I[(τ0)+] = I∗1.
Analogously, we can obtain a globally stable periodic solution denoted as ÑN1(t), for model (4.3).

This is achieved under the condition that λ1
N = (1 + qN)(1 − pN)kp exp(−δNTN) < 1 and

ÑN1(t) =

{
N∗1 exp(−δN(t − hTN)), t ∈ Eh

0,

N((τi)+) exp(−δN(t − hTN − τi)), t ∈ Eh
i ,

where

N[(τi)+] = N∗1(1 − pN)i exp[−δN(
i−1∑
j=0

∆ j)], i = 1, 2, · · · , kp

and
N[τ0)+] = N∗1 =

θN

1 − (1 + qN)(1 − pN)kp exp(−δNTN)
.

Model (4.3) has a globally stable periodic solution, denoted as R̃N1(t), under the condition that
λ1

R = exp(rRTN) < 1 and

R̃N1(t) =

{
r∗S exp(rR(t − hTN)), t ∈ Eh

0,

R((τi)+) exp(rR(t − hTN − τi)), t ∈ Eh
i ,

where

R[(τi)+] = r∗S exp[rR(
i−1∑
j=0

∆ j)], i = 1, 2, · · · , kp. R[(τ0)+] = r∗S =
θR

1 − exp(rRTN)
.

To analyze the local and global asymptotic stability of the periodic solution (0, I∗(t),N∗(t),R∗(t)) of
model (4.1), we derive the following two results.
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Theorem 4.1. If min{λ1
S , λ

1
I , λ

1
R, λ

1
N} < 1, then the periodic solution (0, I∗(t),N∗(t),R∗(t)) is locally

asymptotically stable for model (4.1), where

λ1
S = (1 − pS ) exp

{
rS TN +

kp∑
i=0

{
rS (1+Kβ)exp(−δ1τi+1)−exp(−δIτi)I((τi)+)

KδI

+
rS {exp(−δNτi+1)−exp(−δNτi)}N((τi)+)

aS δN
+

rS µS
√

aRrR

[
arctan

(
R((τi+1)+) exp(rRτi+1)

√
aR

)
− arctan

(
R((τi)+) exp(rRτi+1)

√
aR

)]}}
.

Theorem 4.2. The periodic solution (0, I∗(t),N∗(t),R∗(t)) is globally asymptotically stable for model
(4.1) provided that

R1
S

= (1 − pS )kp exp
{

rS TN +
kp∑
i=0

{
β{exp(−δ1τi+1)−exp(−δIτi)}I((τi)+)

δI

+
[exp(−δNτi+1)−exp(−δNτi)]N((τi)+)

(aS +K2)δN
+

µS [exp(rτi+1)−exp(rτi)]R((τi)+)
aRrR

}}
< 1.

The proofs for Theorems 4.1 and 4.2 can be found in Appendix B.
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Figure 1. The effect of the killing rate pI on R1
S
. Parameters are: rS = 0.04,TN = 5, β =

0.2, δI = 0.2, δN = 0.08, rR = 0.02, aR = 2, aS = 2,K = 6,∆ = TN/kp, θI = 5, θR = 0.8, θN =

2, pI = 0.7, pN = 0.3, pR = 0.5, pS = 0.001, µ1 = 0.8, qI = 0.3, qN = 0.4.

Next, we study the impact of important and critical paramters on the threshold R1
S
. To accomplish

this, we select the killing rate pI for the infected pest, and the pesticide application frequency kp

as bifurcation parameters, while keeping all other parameters fixed as shown in Figure 1. In fact,
the effects of kp and pI on R1

S
are depicted in Figure 1. The results indicate that if the pesticide

kills the infected pests with a relatively lower killing rate pI (such as p2 = 0.2). Then the threshold
value R1

S
is a monotonically increasing function with respect to kp, as illustrated in Figure 1(a). If
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pI is increased (in this case, p2 = 0.7, 0.9), Figure 1(b),(c) demonstrates that the threshold value
R1
S

becomes nonmonotonic with respect to kp. This indicates that there exists an optimal number of
pesticide applications within the releasing period TN . It can be observed that in this case, the optimal
control strategy is to apply pesticides two or three times over the period TN . In this scenario, the
threshold value R1

S
consistently remains greater than 1, as depicted in Figure 1(b). However, Figure

1(c) illustrates that R1
S

is less than 1 if pesticide applications are applied twice. This demonstrates that
if pesticide applications lead to significant effects on the infected pests, then the number of pesticide
applications should be increased.

Furthermore, we can conduct two-parameter bifurcation analyses for R1
S
, as illustrated in Figure

2. In each subplot, we vary two key parameters simultaneously and observe their impact on R1
S
. All

simulation results presented in Figure 2 indicate that R1
S

is highly sensitive to slight variations in the
release constants θI , θS , θN , the releasing period TN and the killing rates pI , pS and pN . Moreover,
these findings emphasize that for a given releasing period, the number of pesticide applications within
the period TN , the releasing constants θI , θS , θN and the killing rates pI , pS , pN are crucial for effective
pest control. This information can assist pest control experts in designing and determining the optimal
timing for spray applications and the appropriate release rates.

Figure 2. The effect of two parameters on R1
S
. Parameters are: rS = 0.04,TN = 5, β =

0.02, δI = 0.9, δN = 0.08, rR = 0.02, aR = 1, aS = 2,K = 10,∆ = TN/kp, qI = 0.3, qN =

0.4, µI = 0.8. (a) θI = 1, θR = 0.8, θN = 2, pN = 0.3, pS = 0.001; (b) θI = 1, θR = 0.8, θN =

2, pI = 0.2, pS = 0.001; (c) θI = 1, θR = 0.8, pI = 0.2, pN = 0.3; (d) θI = 1, θR = 0.8, pI =

0.2, pN = 0.3; (e) θN = 2, pI = 0.2, pN = 0.3, pS = 0.001; (f) θI = 1, θN = 2, pI = 0.2, pN =

0.3, pS = 0.001.

Although we mentioned in Section 3 that the pest-eradication periodic solution only exist in theory
and are difficult to achieve in practical pest control, we have conducted numerical studies to inves-
tigate the existence of the pest-eradication periodic solution, which means that the susceptible pest-

Mathematical Biosciences and Engineering Volume 20, Issue 9, 16506–16527.



16516

eradication periodic solution is globally attractive, as shown in Figure 3. The theoretical existence of
periodic solutions is indeed correct. In fact, as long as the parameters of the model satisfy the threshold
conditions by changing the control strategy in practical pest control, the corresponding pest-eradication
periodic solution of system can be obtained.
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Figure 3. Pest-eradication periodic solution of model (4.1). Parameters are: rS = 2,TN =

5, β = 0.2, δI = 0.1, δN = 0.1, rR = 0.02, aR = 0.2, aS = 3,K = 10,∆ = TN/kp, θI = 2, θR =

0.1, θN = 3, pI = 0.4, pN = 0.3, pR = 0.5, pS = 0.9, µS = 0.6, µN = 0.5, qI = 0.7, qN =

0.4, kp = 5.

4.2. Threshold conditions of Case 2

We assume that the pesticide is sprayed periodically, with the period recorded as Tp. This means
that τn+1 − τn = Tp for every n belonging to the set of integers Z. During each pesticide spraying
period of Tp, susceptible pests and natural enemies are introduced kp times. Consequently, we have the
relationship

λn+kp = Tp + λn.

Define

∆i = λi+1 − λi, Fh
i = (hTp + λi, hTp + λi+1], i = 0, 1, 2, · · · , kq,

where ∆0 = λR,∆kq = Tp−λkq , τ0 = 0, τkq+1 = Tp, h is non-negative number, based on these definitions,
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we can conclude 
I′(t) = −δI I(t), t , τn, t , λm,

I(t+) = (1 − pI)I(t), t = τn,

I(t+) = (1 + qI)I(t) + θI , t = λm,

(4.5)


N′(t) = −δN N(t), t , τn, t , λm,

N(t+) = (1 − pN)N(t), t = τn,

N(t+) = (1 + qN)N(t) + θN , t = λm,

(4.6)

and 
R′(t) = rRR(t), t , τn, t , λm,

R(t+) = R(t), t = τn,

R(t+) = R(t) + θR, t = λm.

(4.7)

It follows from model (4.1) that

I([(h + 1)Tp]+) = (1 − pI)[c1I((hTp)+) + c2] = (1 − pI)c1I((hTp)+) + (1 − pI)c2,

where

c1 = (1 + qI)kp exp(−δITp), c2 = θI

kq−1∑
i=0

exp
(
− (1 + qI)iδI

kq∑
j=kq−i

∆ j

)
.

Denote y([(h + 1)Tp]+) as y(h + 1). Then, the above equation can be rewritten as the following
difference equation

I(h + 1) = (1 − pI)c1I(h) + (1 − pI)c2.

It is evident that the above equation has a unique global equilibrium given by

I∗2 =
(1 − pI)θI

∑kq−1
i=0 exp

(
− (1 + qI)iδI

∑kq

j=kq−i ∆ j

)
1 − (1 − pI)(1 + qI)kq exp(−δITp)

.

This equilibrium is considered unique and globally stable under the condition that

λ2
I = (1 − pI)(1 + qI)kp exp(−δITp) < 1.

Therefore, model (4.5) has a globally stable periodic solution

ĨN2(t) =

{
I∗2 exp(−δI(t − hTp)), t ∈ Fh

0 ,

I2[(λk)+] exp(−δI(t − hTp − τi)), t ∈ Fh
i ,

where

I2[(λk)+] = I∗2(1 + qI)k exp(−δI

k−1∑
i=0

∆i) + θI

( K∑
i=1

[(1 + qI)i exp(−δI

k−1∑
j=k−i

∆ j)] + 1
)
,

k = 1, 2, · · · , kp, particularly I2[(λ0)+] = I∗2.
Analogously, model (4.6) has a a globally stable periodic solution

ÑN2(t) =

{
N∗2 exp(−δI(t − hTp)), t ∈ Fh

0 ,

N2[(λk)+] exp(−δN(t − hTp − τi)), t ∈ Fh
i

Mathematical Biosciences and Engineering Volume 20, Issue 9, 16506–16527.



16518

as λ2
N = (1 − pN)(1 + qN)k exp(−δNTp) < 1. Here,

N2[(λk)+] = I∗2(1 + qN)k exp(−δN

k−1∑
i=0

∆i) + θN

( K∑
i=1

[(1 + qN)i exp(−θS

k−1∑
j=k−i

∆ j)] + 1
)
,

k = 1, 2, · · · , kp and

N2[(λ0)+] = N∗2 =
(1 − pN)θN

∑kq−1
i=0 exp

(
− (1 + qN)iδI

∑kq

j=kq−i ∆ j

)
1 − (1 − pN)(1 + qN)kq exp(−δNTp)

.

Model (4.7) has a a globally stable periodic solution

R̃N2(t) =

{
r∗R exp(rR(t − hTp)), t ∈ Fh

0 ,

rR[(λk)+] exp(rR(t − hTp − τi)), t ∈ Fh
i

as λ2
R = (1 − qR) exp(rRTP) < 1. Here,

rR[(λk)+] = r∗R exp(rR

k−1∑
i=0

∆i) + θR

( K∑
i=1

[exp(rR

k−1∑
j=k−i

∆ j)] + 1
)
, k = 1, 2, · · · , kp

and

rR[(λ0)+] = r∗R =
(1 − pI)θR

∑kq−1
i=0 exp

(
rR

∑kq

j=kq−i ∆ j

)
1 − exp(rRTp)

.

Hence, we have determined the local and global stability conditions for the periodic solution of
model (4.1).
Theorem 4.3. If min{λ2

S , λ
2
I , λ

2
R, λ

2
N} < 1, then the periodic solution (0, I∗(t),N∗(t),R∗(t)) of model (4.1)

is locally asymptotically stable, where

λ2
S = (1 − pS ) exp

{
rS Tp +

kp∑
i=0

{
rS (1+Kβ)[exp(−δ1λi+1)−exp(−δIλi)]I2[(λi)+]

KδI

+
rS [exp(−δNλi+1)−exp(−δNλi)]N2[(λi)+]

aS δN
+

rS µS
√

aRrR

[
arctan

(
rR[(λi)+] exp(rRλi+1)

√
aR

)
− arctan

(
rR[(λi)+] exp(rRλi)

√
aR

)]}}
< 1.

Theorem 4.4. The periodic solution (0, I∗(t),N∗(t),R∗(t)) of model (4.1) is globally asymptotically
stable provided that

R2
S = exp

{
rS TP +

kp∑
i=0

{
β[exp(−δ1λi+1)−exp(−δIλi)]I2[(λi)+]

δI
+

[exp(−δNλi+1)−exp(−δNλi)]N2[(λi)+]
(aS +K2)δN

+

µS [exp(rRλi+1)−exp(rRλi)]R[(λi)+]
aRrR

}}
< 1.

By employing the same methods as those used in Section 4.1, we can investigate the impact of
key parameters on the threshold value R2

S
and discuss its biological implications. Figure 4 provides

detailed information on how different release constants θI affect the threshold value R2
S
. Regarding

the parameters δI , δS , rR, Figure 4 suggests that even small changes can significantly influence R2
S
,

indicating that a slight increase in the release constant θI of infected pests can considerably reduce
the threshold parameter R2

S
. The larger the release rate θI of infective pests, the smaller the resulting

threshold value, thereby benefiting pest control efforts.
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Figure 4. The effects of kp and θI on R2
S . Parameters are: rS = 0.14,TN = 5, β = 0.2,Tp =

10, aR = 10, aS = 2,K = 5,∆ = Tp/kq, θR = 0.2, θN = 2, pI = 0.6, pN = 0.3, pS = 0.001, µS =

0.8, qI = 0.003, qN = 0.004. (a) δI = 0.2, δS = 0.08, rR = 0.13; (b) δI = 0.3, δS = 0.08, rR =

0.13; (c) δI = 0.2, δS = 0.1rR = 0.13; (d) δI = 0.2, δS = 0.08, rR = 0.2.

5. Concluding remarks

The objective of this paper is to introduce and analyze an eco-epidemiological pest-natural enemy-
plant model that investigates the synergistic combination of chemical and biological control methods.
Our model examines the effects of varying frequencies of pesticide sprays and releases of infected
pests and natural enemies on the suppression of pest populations. Through the use of impulsive differ-
ential equations, we establish threshold conditions for achieving a periodic solution that eradicates the
susceptible pest population under different scenarios.

We examine two distinct strategies for releasing natural enemies and two different tactics for pest
control. One strategy involves more frequent pesticide sprays, while the other focuses on more frequent
releases of susceptible pests. We establish sufficient conditions for the global attraction of the periodic
solution that eradicates the susceptible pest population. This finding implies that complete elimination
of the pest population is achievable under certain conditions regarding the release quantities of infected
pests and natural enemies. In fact, in practical pest control, it is difficult to achieve the complete
eradication of pests if the implemented control strategies cannot precisely bring the relevant parameter
set to meet the theoretical threshold. In other words, the complete eradication of pests is a challenging
goal to achieve.

The theoretical findings presented in Section 4 offer several pest management control strategies.
Nevertheless, complete eradication of the pest population is often unattainable in practice. Instead,
the primary objective is to prevent the pest population from reaching harmful levels and to maintain
its density below the economic threshold. To address this goal, we propose the development of a
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state-dependent impulsive differential equation, which will serve as a threshold control model. This
approach will be explored as a potential future direction for our research.
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Appendix

Appendix A

The proof of Theorem 3.2. To establish the local stability of the periodic solution, we employ the
small amplitude perturbation method. Let

S (t) = s(t), I(t) = i(t) + I∗(t),N(t) = n(t) + N∗(t),R(t) = r(t) + R∗(t),

where s(t), i(t), n(t), and r(t) represent small perturbations. By employing Taylor expansions and dis-
regarding higher-order terms, we can linearize model (2.3), resulting in the following set of linearized
equations 

s′(t) = s(t)A(t),
i′(t) = βs(t)I∗(t) − δIi(t),
n′(t) =

µN s(t)N∗(t)
aS

− δNn(t),
r′(t) = rRr(t) − s(t)R∗(t)

aR+(R∗(t))2 ,

 t , nT,

s(t+) = (1 − pS )s(t),
i(t+) = (1 + qI)i(t),
n(t+) = (1 + qN)n(t),
r(t+) = (1 + qR)r(t),

 t = nT.

(A.1)

where

A = rS

{
1 −

(1 + Kβ)
K

+
µS R∗(t)

aR + (R∗(t))2 −
N∗(t)

aS

}
.

Let Φ(t) be the fundamental solution matrix of (A.1), Φ(t) must satisfy

dΦ(t)
dt

=


A 0 0 0

βI∗(t) −δI 0 0
µN I∗(t)

aS
0 −δN 0

R∗(t)
aR+(R∗(t))2 0 0 rR

 Φ(t),
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Φ(0) = I4 is the identical matrix. For all t ∈ (nT, (n + 1)T ], the fundamental solution matrix is

Φ(t) =


exp

[ ∫ t

nT
A(τ)dτ

]
0 0 0

∗ exp(−δI(t − nT )) 0 0
∗ ∗ exp(−δN(t − nT )) 0
∗ ∗ ∗ exp(rR(t − nT ))

 .
Furthermore, the last four equations of model (A.1) can be expressed as follows

s[(n + 1)T +]
i[(n + 1)T +]
n[(n + 1)T +]
r[(n + 1)T +]

 = diag{1 − pS , 1 + qI , 1 + qN , 1 + qR}


s[(n + 1)T ]
i[(n + 1)T ]
n[(n + 1)T ]
r[(n + 1)T ]

 .
Hence, the eigenvalues of

M = diag{1 − pS , 1 + qI , 1 + qN , 1 + qR}Φ((n + 1)T )

are
λI = (1 + qI) exp(−δIT ), λN = (1 + qN) exp(−δNT ), λR = (1 + qR) exp(rRT ),

λS = (1 − pS ) exp
( ∫ (n+1)T

nT
A(τ)dτ

)
= (1 − pS ) exp

{
rS

{
T +

(1+Kβ)[exp(−δT )−1]Ĩ
KδI

+
[exp(−δNT )−1]Ñ

aS δN

}
+

rS µS
√

aRrR

[
arctan

(
R̃ exp(rRT )
√

aR

)
− arctan

(
R̃
√

aR

)]}
.

Since min{λS , λI , λR, λN} < 1, then the periodic solution is locally stable. The proof is complete.

The proof of Theorem 3.3. The periodic solution (0, I∗(t),N∗(t),R∗(t)) exhibits local asymptotic sta-
bility, and we are primarily concerned with its global attractiveness. Let

φ(t, ε) � rS − β(I∗(t) − ε1) +
µS [R∗(t) + ε1]

aR
−

N∗(t) − ε1

aS + K2 ,

where ε1 > 0. Furthermore, we have I′(t) = βS (t)I(t) − δI I(t) ≥ −δI I(t). By utilizing the comparison
principle and Lemma (3.1), we can establish the existence of n1 such that I(t) ≥ I∗(t)−ε1 for all t ≥ n1T .
Similarly, we can find a n2 (here n2 > n1) such that N(t) ≥ N∗(t)−ε1 for all t ≥ n2T . Additionally, there
exists a n3 (here n3 > n2) such that R(t) ≤ R∗(t) − ε1 for all t ≥ n3T . Consequently, we can conclude
that

S ′(t) = rS S (t)
[
1 − S (t)+I(t)

K

]
+

µS S (t)R(t)
aR+R2(t) − βS (t)I(t) − S (t)N(t)

aS +S 2(t)

≤ rS S (t) − βS (t)I(t) +
µS S (t)R(t)

aR
−

S (t)N(t)
aS +K2

≤ S (t)
{
rS − β(I∗(t) − ε1) +

µS [R∗(t)+ε1]
aR

−
N∗(t)−ε1
aS +K2

}
for t ≥ n3T . The first equation of model (2.3) can be expressed as follows{

S ′(t) ≤ φ(t, ε1)S (t), t , nT,
S (t+) = (1 − pS )S (t), t , nT.

By integrating over the interval (n3 + k)T to (n3 + k + 1)T , we can obtain

S [(n3 + k + 1)T +] ≤ S [(n3 + k)T +](1 − pS ) exp
( ∫ (n3+k+1)T

(n3+k)T
φ(t, ε1)dt

)
= S [(n3 + k)T +]R5

= S [T +]Rn3+k
5 ,
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where

R5 = (1 − pS ) exp
( ∫ (n3+k+1)T

(n3+k)T
φ(t, ε1)dt

)
.

Since R5 < 1, we get S (t)→ 0 as k → ∞. Thus, for an arbitrary positive constant ε2 small enough,
there exists a n3 (n3 > n2) such that S (t) < ε2 for all t ≥ n3T .

Next, we will demonstrate that I(t) approaches I∗(t). For 0 < ε2 < δI/β, there exists 0 < S (t) < ε1

such that 0 < S (t) < ε1 for t > n4T (here n4 > n3). By considering the second equation of model (2.3),
we can conclude that

(−βε2 − δI)I(t) ≤ I′(t) = βS (t)I(t) − δI I(t) < (βε2 − δI)I(t).

Let I1(t) and I2(t) be the solutions of the following equations, respectively{
I′(t) = −(βε2 + δI)I(t), t , nT,
I(t+) = (1 + qI)I(t) + θI , t , nT,

and {
I′(t) = −(−βε2 + δI)I(t), t , nT,
I(t+) = (1 + qI)I(t) + θI , t , nT.

From here it is easy to show that

I∗1(t) =
θR exp

[
− (βε2 + δI)(t − nT )

]
1 + (1 + qI) exp(−δIT )

, I∗2(t) =
θR exp

[
− (−βε2 + δI)(t − nT )

]
1 + (1 + qI) exp(−δIT )

.

It can be easily deduced that I(t) approaches I∗(t) as t tends to infinity.
Similarly, we can prove that N(t) tends to N∗(t) as t approaches infinity. For R(t), the following

inequality holds

R(t)
(
rR −

ε2

aR

)
< Ṙ(t) < rRR(t)

for t > n5T (here n5 > n4). By combining the solution of model (3.3) with the comparison theorem,
we obtain the following result

exp[(rR −
ε2

aR
(t − nT ))]R̃ < R(t) < exp[rR(t − nT )]R̃.

Therefore, as ε2 approaches 0, we have R(t) → R∗(t). In fact, if R5 < 1, then I(t) → I∗(t),
N(t) → N∗(t), and R(t) → R∗(t) as t → 0. This implies that the periodic solution (0, I∗(t),N∗(t),R∗(t))
is globally asymptotically stable. Thus, the proof is complete.

Appendix B

The proof of Theorem 4.1. We define

S (t) = s(t), I(t) = i(t) + I∗(t),N(t) = n(t) + N∗(t),R(t) = r(t) + R∗(t),
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where s(t), i(t), n(t), and r(t) represent small perturbations. By linearizing model (4.1) through Taylor
expansions and neglecting higher-order terms, the resulting linearized equations are given by

s′(t) = s(t)A1(t),
i′(t) = βs(t)I∗(t) − δIi(t),
n′(t) =

µN s(t)N∗(t)
aS

− δNn(t),
r′(t) = rRr(t) − s(t)R∗(t)

aR+[R∗(t)]2 ,

 t , τn, t , λm,

s(t+) = (1 − pS )s(t),
i(t+) = (1 − pI)i(t),
n(t+) = (1 − pN)n(t),
r(t+) = r(t),

 t = τn,

s(t+) = s(t),
i(t+) = (1 + qI)i(t),
n(t+) = (1 + qN)n(t),
r(t+) = r(t),

 t = λm,

(B.1)

where

A1(t) = rS

{
1 −

(1 + Kβ)ĨN1(t)
K

+
µS R̃N1(t)

aR + [R̃N1(t)]2
−

ÑN1(t)
aS

}
.

Let Φ(t) be the fundamental solution matrix of (B.1). In this case, Φ(t) must satisfy the following

dΦ(t)
dt

=


A1(t) 0 0 0
βI∗(t) −δI 0 0
µN I∗(t)

aS
0 −δN 0

R∗(t)
aR+[R∗(t)]2 0 0 rR

 Φ(t),

where Φ(0) = I4 is the identical matrix. For all t ∈ Eh
i , the fundamental matrix is

Φ(t) =


exp(

∫ t

hTp
A1(τ)dτ) 0 0 0
∗ exp(−δI(t − hTp)) 0 0
∗ ∗ exp(−δN(t − hTp)) 0
∗ ∗ ∗ exp(rR(t − nTp))

 .
Furthermore, system (B.1) can be expressed as

s[(h + 1)T +
p ]

i[(h + 1)T +
p ]

n[(h + 1)T +
p ]

r[(h + 1)T +
p ]

 = M


s[(hTp)+]
i[(hTp)+]
n[(hTp)+]
r[(hTp)+]

 ,
where

M = diag{(1 − pS )kp , (1 + qI)(1 − pI)kp , (1 + qN)(1 − pN)kp , 1}Φ(h + 1)T.

Given that min λ1
S , λ

1
I , λ

1
R, λ

1
N < 1, indicating that all eigenvalues of matrix M

λ1
S = R9 = (1 − ps)kp exp

( ∫ (n+1)T

nT
A1(τ)dτ

)
= (1 − pS ) exp

{
rS Tp +

kp∑
i=0

{
rS (1+Kβ)exp(−δ1τi+1)−exp(−δIτi)I((τi)+)

KδI

+
rS {exp(−δNτi+1)−exp(−δNτi)}N((τi)+)

aS δN
+

rS µS
√

aRrR

[
arctan

(
R((τi+1)+) exp(rRτi+1)

√
aR

)
− arctan

(
R((τi)+) exp(rRτi+1)

√
aR

)]}}
< 1,
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λ1
I = (1 + qI)(1 − pI)kp exp(−δIT ) < 1,

λ1
N = (1 + qN)(1 − pN)kp exp(−δNT ) < 1, λ1

R = R8 = exp(rRT ) < 1,

thus, the periodic solution (0, I∗(t),N∗(t),R∗(t)) is locally asymptotically stable. Hence, the proof is
complete.

The proof of Theorem 4.2. We define

φ(t, ε1) �
{
rS − β(ĨN1(t) − ε1) +

µS [R̃N1(t) + ε1]
aR

−
ÑN1(t) − ε1

aS + K2

}
,

where ε1 > 0. By utilizing the comparison principle, we can establish the existence of n1 such that
I(t) ≥ I∗(t) − ε1 for all t ≥ n1T . Similarly, there exists a n2 (here n2 > n1) such that N(t) ≥ N∗(t) − ε1

for all t ≥ n2T . Additionally, there is a n3 (here n3 > n2) such that R(t) ≤ R∗(t) + ε1 for all t ≥ n3T .
Hence, we can conclude that

S ′(t) = rS S (t) +
µS S (t)R(t)
aR+R2(t) − βS (t)I(t) − S (t)N(t)

aS +S 2(t)

≤ rS S (t) − βS (t)I(t) +
µS S (t)R(t)

aR
−

S (t)N(t)
aS +K2

≤ S (t)
{
rS − β(ĨN1(t) − ε1) +

µS [R̃N1 (t)+ε1]
aR

−
ÑN1 (t)−ε1

aS +K2

}
for t ≥ n3T . It is follows from model (4.1) that

S ′(t) ≤ ϕ(t, ε1)S (t), t , τn, t , λm,

S (t+) = (1 − pS )S (t), t = τn,

S (t+) = S (t), t = λm,

Taking integral on Eh
i , i = 1, 2, · · · , kp that

S [(hTN + τi+1)+] ≤ S [(hTN + τi)+](1 − pS ) exp
( ∫ hTN+τi+1

hTN+τi
φ(t, ε1)dt

)
and

S [((h + 1)TN)+] ≤ S [(hTN)+](1 − pS )kp exp
( ∫ (h+1)TN

hTN
φ(t, ε1)dt

)
.

We define

λ1
S = (1 − pS )kp exp

(∫
hTN

(h+1)TNφ(t, ε1)dt
)
, t ∈ ((n3 + k)T, (n3 + k + 1)T ], k ∈ Z+.

If λ1
S < 1, we can observe that S (t)→ 0 as k → ∞. Consequently, for any sufficiently small positive

constant ε2, there exists an n3 (here n3 > n2) such that S (t) < ε2 for all t ≥ n3T .
Next, we will prove that I(t) approaches I∗(t). For 0 < ε2 <

δI
β

, there exists ε1 such that 0 < S (t) < ε1

for t > n4T (here n4 > n3). Consequently, we have

(−βε2 − δI)I(t) ≤ I′(t) = βS (t)I(t) − δI I(t) < (−βε2 − δI)I(t).

Let I1(t) and I2(t) denote the solutions of the following equations, respectivelyd
I′(t) = −(βε2 + δI)I(t), t , τn, t , λm

I(t+) = (1 − pI)I(t), t = τn,

I(t+) = (1 + qI)I(t) + θI , t = λm,
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and 
I′(t) = −(δI − βε2)I(t) t , τn, t , λm,

I(t+) = (1 − pI)I(t), t = τn,

I(t+) = (1 + qI)I(t) + θI , t = λm.

Therefore, we can conclude that

I∗∗1 (t) =
θI

1 − (1 + qI)(1 − pI)kp exp[−(βε2 + δI)TN]
,

I∗∗2 (t) =
θR

1 − (1 + qI)(1 − pI)kp exp[−(δI − βε2)TN]
.

So it gives that limε2→0 I∗∗i (t) = I∗(t) from limt→∞ I(t) = I∗(t).
Analogously, we can prove that N(t)→ N∗(t) as t → ∞.
For R(t), it gives that

R(t)
(
rR −

ε2

aR

)
< Ṙ(t) < rRR(t)

for t > n5T (here n5 > n4), and we have

exp[(rR −
ε2

aR
(t − nTN))]R̃ < R(t) < exp[rR(t − hTN)]R̃.

Therefore, we can conclude that limε2→0 R(t) = R∗(t). In summary, if λ1
S < 1, it follows that

I(t) → I∗(t), N(t) → N∗(t), and R(t) → R∗(t) as t → 0. This implies that the periodic solution
(0, I∗(t),N∗(t),R∗(t)) is globally asymptotically stable. Hence, the proof is complete.
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