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Abstract: In this paper we consider a free boundary problem for a nonlocal time-periodic competition
model. One species is assumed to adopt nonlocal dispersal, and the other one adopts mixed dispersal,
which is a combination of both random dispersal and nonlocal dispersal. We first prove the global
well-posedness of solutions to the free boundary problem with more general growth functions, and then
discuss the spreading and vanishing phenomena. Moreover, under the weak competition condition, we
study the long-time behaviors of solutions for the spreading case.
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1. Introduction

In this paper, we study the following free boundary problem for a nonlocal time-periodic
competition model
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

∂tu = d1M1(u) + u(a(t) − u − c(t)v), t > 0, s1(t) < x < s2(t),

∂tv = d2M2(v) + v(b(t) − v − d(t)u), t > 0, s1(t) < x < s2(t),

u(t, x) = v(t, x) = 0, t ≥ 0, x ≥ s2(t) or x ≤ s1(t),

s′2(t) = −µvx(t, s2(t)) + ρ1

∫ s2(t)

s1(t)

∫ +∞
s2(t)

J1(x − y)u(t, x)dydx

+ρ2

∫ s2(t)

s1(t)

∫ +∞
s2(t)

J2(x − y)v(t, x)dydx, t ≥ 0,

s′1(t) = −µvx(t, s1(t)) − ρ1

∫ s2(t)

s1(t)

∫ s1(t)

−∞
J1(x − y)u(t, x)dydx

−ρ2

∫ s2(t)

s1(t)

∫ s1(t)

−∞
J2(x − y)v(t, x)dydx, t ≥ 0,

u(0, x) = u0(x), v(0, x) = v0(x), |x| ≤ s0,

s2(0) = −s1(0) = s0,

(1.1)

where

M1(u) :=
∫ s2(t)

s1(t)
J1(x − y)u(t, y)dy − u(t, x),

M2(v) := τ∂2
xv + (1 − τ)

(∫ s2(t)

s1(t)
J2(x − y)v(t, y)dy − v(t, x)

)
.

We assume that a, b, c, d are T -periodic positive functions, and a, c ∈ C([0,T ]), b, d ∈ C
γ
2 ([0,T ])

with 0 < γ < 1. The kernel functions Ji : R→ R (i = 1, 2) satisfy that

Ji is Lipschitz continuous, Ji(x) = Ji(−x) ≥ 0, Ji(0) > 0,∫
R

Ji(x)dx = 1, supR Ji < ∞.
(K)

The initial functions u0, v0 satisfy u0 ∈ C1−([−s0, s0]), u0(±s0) = 0, u0 > 0 in (−s0, s0),
v0 ∈ C2([−s0, s0]), v0(±s0) = 0, v0 > 0 in (−s0, s0),

(1.2)

where C1−([−s0, s0]) is defined as the Lipschitz continuous function space. s0, µ and ρ1 are positive
constants, ρ2 is a nonnegative constant, ρ2 > 0 when τ < 1, and ρ2 = 0 when τ = 1.

Ecologically, (1.1) describes the competing process of two invasion species, which are initially
released in the region [−s0, s0] and then spread into a new environment with daily or seasonal changes
from two sides of [−s0, s0]. u and v represent the population densities of two competing species, where
all individuals in the population u adopt nonlocal dispersal, while, in the population v, a fraction of
individuals adopt nonlocal dispersal and the remaining fraction assumes random dispersal. The latter
strategy is called mixed dispersal, which was first proposed by Kao et al. [1]. The positive constants
d1, d2 are dispersal rates, and the constant 0 < τ ≤ 1 measures the fraction of individuals v adopting
random dispersal. a(t), b(t) represent the intrinsic growth rates of species, and c(t), d(t) represent the
competition between species. [s1(t), s2(t)] is the habitat of species at time t ≥ 0, and its boundary fronts
s1(t), s2(t) are called free boundaries. We assume that the expanding speed of the habitat [s1(t), s2(t)]
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is proportional to the outward flux of species across the boundary, which give rise to the free boundary
conditions in (1.1).

Problem (1.1) is a variation of the two species competition model studied by Kao et al. [1]: ∂tu = d1

(∫
RN J(x − y)u(t, y)dy − u

)
+ u(a(x) − u − v),

∂tv = d2

[
τ∂2

xv + (1 − τ)
(∫
RN J(x − y)v(t, y)dy − v

)]
+ v(b(x) − u − v).

They investigated how the mixed dispersal affects the invasion of a single species and how the mixed
dispersal strategies will evolve in a spatially periodic but temporally constant environment. A complete
classification of the global dynamics of competition mode with mixed dispersals was studied in [2].

If τ = 0 and a, b, c, d are constants, (1.1) reduces to the nonlocal diffusion system with free
boundaries in [3]. The authors proved the global well-posedness of solutions, and obtained criteria for
spreading and vanishing. Moreover, for the weak competition case, they determined the long-time
asymptotic limit of solutions when spreading occurs. If τ = 1 and a, b, c, d are constants, (1.1)
becomes a free boundary problem of the ecological model with nonlocal and local diffusions
considered in [4, 5]. They obtained the well-posedness of solutions and spreading-vanishing results.
Moreover, Cao et al. [6] considered a free boundary problem for a nonlocal dispersal competition
model in a homogeneous environment, where there is a native species distributed in the whole space
R. Some free boundary problems for epidemic models with nonlocal dispersals have also been
recently studied in [7, 8].

In the absence of the species v (i.e., v ≡ 0), and under the condition that a(t) is a constant, (1.1)
reduces to the following free boundary problem

∂tu = d1M1(u) + u(a − u), t > 0, s1(t) < x < s2(t),
u(t, x) = 0, t ≥ 0, x ≥ s2(t) or x ≤ s1(t),

s′2(t) = ρ1

∫ s2(t)

s1(t)

∫ +∞
s2(t)

J1(x − y)u(t, x)dydx, t ≥ 0,

s′1(t) = −ρ1

∫ s2(t)

s1(t)

∫ s1(t)

−∞
J1(x − y)u(t, x)dydx, t ≥ 0,

u(0, x) = u0(x), |x| ≤ s0,

s2(0) = −s1(0) = s0,

(1.3)

which has been studied in [9]. Problem (1.3) is a natural generalization of the random dispersal model
with free boundaries in [10], and similar results including the well-posedness of global solutions and
the spreading-vanishing results were established in [9], from which one can see that the nonlocal
dispersal brings some essential difficulties in analysis. The spreading speeds of free boundaries for
(1.3) were determined in [11] when spreading happens. After the completion of this paper, (1.3) with
the assumptions a(t, x) = α(t) + β(x) (α(t) is T -periodic) and supp J1 ⊂ [−r0, r0] was studied in [12].

Based on the work of Du and Lin [10], random dispersal models with free boundary(ies) have
been well studied. The model in [10] has been extended to single species models in a heterogeneous
environment [13–17], or with advection [18, 19], time delay [20] and general nonlinear terms [21, 22].
We also refer the readers to [23–25] and the references therein. Moreover, two-species competition
problems with free boundary(ies) have been considered in a homogeneous environment [26–30] and
heterogeneous time-periodic environment [31,32]. Competition problems with free boundary(ies) and
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advection were studied in [33, 34]. Free boundary problems for predator-prey problems [35, 36] and
epidemic models with random dispersal [37–40] have also been considered recently.

In this paper, we aim to investigate the well-posedness and dynamics of solutions to (1.1). We first
prove the global well-posedness of solutions to (1.1) with more general growth functions. To achieve
it, we shall establish the maximum principle for linear parabolic equations with mixed dispersal, and
prove that the nonlinear parabolic equations with mixed dispersal (see (2.5)) admit a unique positive
solution under the assumption that s′1(t), s′2(t) and u(t, x) are merely continuous functions by using the
approximation method, which plays an important role in the application of the fixed point theorem
(see the proof of Lemma 2.5). Then we establish the dichotomy and criteria for spreading and
vanishing. To discuss the spreading and vanishing, we need to consider the existence and asymptotic
properties of principal eigenvalues for time-periodic parabolic-type eigenvalue problems with
random/mixed dispersal. Since the intrinsic growth rates do not contain the spatial variable, we can
transform the parabolic-type eigenvalue problems into elliptic-type eigenvalue problems. This
transformation is also used in a discussion on the asymptotic behavior of the solution (see the proof of
Theorem 4.4). Moreover, by the comparison principle established in Lemma 3.3, we discuss the
asymptotic stability and uniqueness of periodic solutions to the nonlocal and mixed dispersal
equations in R (Lemma 4.6), which are used to investigate the long-time behaviors of the solution for
the spreading case under the weak competition condition (Theorem 4.7).

The rest of this paper is organized as follows. In Section 2, we prove the global existence and
uniqueness of solutions to problem (1.1) with more general growth functions. The comparison
principle and discussions on eigenvalue problems are given in Section 3. In the last section, we
investigate the spreading and vanishing of species.

2. Well-posedness

In this section, we give the global well-posedness of solutions to (1.1) with more general growth
functions. More precisely, we assume that the nonlinearities satisfy the following assumptions:

(f1) f1(t, x, 0, v), f2(t, x, u, 0) ≡ 0, f1(t, x, u, v) < 0 for all (t, x) ∈ R+ × R, u > K and v ≥ 0, and
f2(t, x, u, v) < 0 for all (t, x) ∈ R+ × R, u ≥ 0 and v > K with some constant K > 0;

(f2) For any given T0, l,K1,K2 > 0, there exists a constant L = L(T0, l,K1,K2) > 0 such that

∥ f2(·, x, u, v)∥
C
γ
2 ([0,T0])

≤ L

for all (x, u, v) ∈ [−l, l] × [0,K1] × [0,K2];
(f3) For any given K1,K2 > 0, there exists a constant L∗ = L∗(K1,K2) > 0 such that

| fi(t, x, u, v) − fi(t, y, u, v)| ≤ L∗|x − y|

for all (t, x, y, u, v) ∈ R+ × R × R × [0,K1] × [0,K2];
(f4) fi(t, x, u, v) is locally Lipschitz in u, v ∈ R+ uniformly for (t, x) ∈ R+×R, i.e., for any K1,K2 > 0,

there exists a constant L̂ = L̂(K1,K2) > 0 such that

| fi(t, x, u1, v1) − fi(t, x, u2, v2)| ≤ L̂(|u1 − u2| + |v1 − v2|)

for all (t, x, ui, vi) ∈ R+ × R × [0,K1] × [0,K2] (i = 1, 2).
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Obviously, the growth functions in (1.1) satisfy the conditions (f1)−(f4). We consider the following
problem 

∂tu = d1M1(u) + f1(t, x, u, v), t > 0, s1(t) < x < s2(t),

∂tv = d2M2(v) + f2(t, x, u, v), t > 0, s1(t) < x < s2(t),

u(t, x) = v(t, x) = 0, t ≥ 0, x ≥ s2(t) or x ≤ s1(t),

s′2(t) = −µvx(t, s2(t)) + ρ1

∫ s2(t)

s1(t)

∫ +∞
s2(t)

J1(x − y)u(t, x)dydx

+ρ2

∫ s2(t)

s1(t)

∫ +∞
s2(t)

J2(x − y)v(t, x)dydx, t ≥ 0,

s′1(t) = −µvx(t, s1(t)) − ρ1

∫ s2(t)

s1(t)

∫ s1(t)

−∞
J1(x − y)u(t, x)dydx

−ρ2

∫ s2(t)

s1(t)

∫ s1(t)

−∞
J2(x − y)v(t, x)dydx, t ≥ 0,

u(0, x) = u0(x), v(0, x) = v0(x), |x| ≤ s0,

s2(0) = −s1(0) = s0,

(2.1)

in which the assumptions on parameters and functions are the same as for (1.1).
Notations. Throughout the paper, we denote Ωs1,s2

T0
= {(t, x) : t ∈ (0,T0], x ∈ (s1(t), s2(t))}, Ωs1,s2

∞ =

{(t, x) : t ∈ (0,+∞), x ∈ (s1(t), s2(t))}, Ω
s1,s2

∞ = {(t, x) : t ∈ [0,+∞), x ∈ [s1(t), s2(t)]}, DT0 = (0,T0] ×
(−1, 1) and aT =

1
T

∫ T

0
a(t)dt. Under the transform x(t, z) = (s2(t)−s1(t))z+s2(t)+s1(t)

2 , we always denote
f̃ (t, z) = f (t, x(t, z)) = f (t, (s2(t)−s1(t))z+s2(t)+s1(t)

2 ). C1,1−(Ω
s1,s2

T0
) denotes the class of functions that are C1 in

t and Lipschitz continuous in x.

Theorem 2.1. For any given (u0, v0) satisfying (1.2), (2.1) has a unique global solution (u, v; s1, s2) ∈
C1,1−(Ω

s1,s2

T0
) ×C1+ γ2 ,2+γ(Ωs1,s2

T0
) × [C1+ γ2 ([0,T0])]2 for any 0 < T0 < +∞ and

0 < u ≤ K1, 0 < v ≤ K2, ∀ (t, x) ∈ Ωs1,s2
T0

,

0 < −vx(t, s2(t)), vx(t, s1(t)) ≤ K3, 0 < t ≤ T0,
(2.2)

where

K1 := max{∥u0∥L∞ ,K}, K2 := max{∥v0∥L∞ ,K},

K3 := 2K2 max
{√

L̂+d2(1−τ)
2d2τ

,
4∥v0∥C1([−s0 ,s0])

3K2

}
and L̂ = L̂(K1,K2) is the Lipschitz constant defined in (f4).

To prove Theorem 2.1, we first establish the maximum principle for linear parabolic equations with
mixed dispersal. For some s0 and T0, we define

Ss0
2,T0

:= {s2 ∈ C1([0,T0]) : s2(0) = s0, 0 < s′2(t) ≤ R(t)},

Ss0
1,T0

:= {s1 ∈ C1([0,T0]) : − s1 ∈ S
s0
2,T0
}

with

R(t) := µK3 + 2(s0ρ1K1 + s0ρ2K2 + µK3)e(ρ1K1+ρ2K2)t.

Mathematical Biosciences and Engineering Volume 20, Issue 9, 16471–16505.



16476

Lemma 2.2. Assume that (s1, s2) ∈ Ss0
1,T0
× Ss0

2,T0
. If v ∈ C1,2(Ωs1,s2

T0
) ∩ C(Ω

s1,s2

T0
) satisfies, for some

g ∈ L∞(Ωs1,s2
T0

), 
∂tv ≥ d2M2(v) + g(t, x)v, (t, x) ∈ Ωs1,s2

T0
,

v(t, s1(t)), v(t, s2(t)) ≥ 0, t ∈ (0,T0],

v(0, x) ≥ 0, x ∈ [−s0, s0],

(2.3)

then v ≥ 0 in Ω
s1,s2

T0
. If we further assume that v(0, x) . 0 in [−s0, s0], then v > 0 in Ωs1,s2

T0
.

Proof. (i) Let k > 0 be a large constant satisfying −k + g(t, x) < 0 for all (t, x) ∈ Ωs1,s2
T0

. Then
ϑ(t, x) := e−ktv(t, x) satisfies

∂tϑ ≥ d2M2(ϑ) + [−k − d2(1 − τ) + g(t, x)]ϑ.

Next we prove that ϑ ≥ 0 in Ω
s1,s2

T0
.

Suppose that ϑinf := inf(t,x)∈Ω
s1 ,s2
T0

ϑ(t, x) < 0. By the boundary conditions in (2.3), we know that

ϑinf = ϑ(t∗, x∗) < 0 for some (t∗, x∗) ∈ Ωs1,s2
T0

. Since ∂tϑ(t∗, x∗) ≤ 0 and ∂2
xϑ(t∗, x∗) ≥ 0, we have

∂tϑ(t∗, x∗) ≥ d2

[
τ∂2

xϑ(t∗, x∗) + (1 − τ)
∫ s2(t∗)

s1(t∗)
J2(x∗ − y)ϑ(t∗, y)dy

]
+[−k − d2(1 − τ) + g(t∗, x∗)]ϑ(t∗, x∗)

≥ d2τ∂
2
xϑ(t∗, x∗) + d2(1 − τ)ϑinf

∫
R

J2(x∗ − y)dy

+[−k − d2(1 − τ) + g(t∗, x∗)]ϑinf

= d2τ∂
2
xϑ(t∗, x∗) + [−k + g(t∗, x∗)]ϑinf,

which is a contradiction since [−k + g(t∗, x∗)]ϑinf > 0. Thus, ϑ ≥ 0 in Ω
s1,s2

T0
, which implies that

v ≥ 0 in Ω
s1,s2

T0
. (2.4)

(ii) Now assume that v(0, x) . 0 in [−s0, s0]. By (2.4) and the assumption J2(x) ≥ 0, we have

∂tv ≥ d2τ∂
2
xv + [g(t, x) − d2(1 − τ)]v.

Define the transform

x(t, z) = (s2(t)−s1(t))z+s2(t)+s1(t)
2 , that is, z(t, x) = 2x−s1(t)−s2(t)

s2(t)−s1(t) .

Let ṽ(t, z) = v(t, x(t, z)) and g̃(t, z) = g(t, x(t, z)). Then, ṽ(t, z) satisfies
∂tṽ ≥ d2τξ(t)∂2

z ṽ + ζ(t, z)∂zṽ + [g̃(t, z) − d2(1 − τ)]ṽ, (t, z) ∈ DT0 ,

ṽ(t,±1) ≥ 0, t ∈ (0,T0],

ṽ(0, z) = v(0, s0z) ≥ 0, z ∈ [−1, 1],

where

ξ(t) = 4
(s2(t)−s1(t))2 , ζ(t, z) = s′2(t)+s′1(t)

s2(t)−s1(t) +
(s′2(t)−s′1(t))z

s2(t)−s1(t) .

From the classical maximum principle, we know that ṽ > 0 in DT0 . Thus, v > 0 in Ωs1,s2
T0

. This
completes the proof.
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Next, we prove that nonlinear parabolic equations with mixed dispersal (see (2.5)) admit a unique
positive strong solution for any given continuous function u(t, x) and C1-functions
(s1(t), s2(t)) ∈ Ss0

1,T0
× Ss0

2,T0
. The proof is divided into two parts. First, in Lemma 2.3 we establish the

existence and uniqueness results on positive classical solutions by applying the upper-lower solutions
method, under the assumptions that u is Hölder continuous and (s1(t), s2(t)) ∈ Ŝs0

1,T0
× Ŝs0

2,T0
with

Ŝs0
2,T0

:= {s2 ∈ C1+ γ2 ([0,T0]) : s2(0) = s0, 0 < s′2(t) ≤ R(t)},

Ŝs0
1,T0

:= {s1 ∈ C1+ γ2 ([0,T0]) : − s1 ∈ Ŝ
s0
2,T0
}.

Then, we obtain the existence result in Lemma 2.4 by the approximation method.

Lemma 2.3. If (s1, s2) ∈ Ŝs0
1,T0
× Ŝs0

2,T0
, u ∈ C

γ
2 ,γ(Ω

s1,s2

T0
), f2 satisfies (f1)–(f4) and v0 satisfies (1.2), then

for any T0 > 0, the problem
∂tv = d2M2(v) + f2(t, x, u, v), (t, x) ∈ Ωs1,s2

T0
,

v(t, s1(t)) = v(t, s2(t)) = 0, t ∈ (0,T0],

v(0, x) = v0(x), x ∈ [−s0, s0]

(2.5)

has a unique solution v ∈ C1+ γ2 ,2+γ(Ωs1,s2
T0

). Moreover, v satisfies

0 < v ≤ K2 in Ωs1,s2
T0

,

0 < −vx(t, s2(t)), vx(t, s1(t)) ≤ K3 for t ∈ (0,T0].
(2.6)

Proof. For the existence and uniqueness, we mainly adopt the classical upper-lower solutions method.
Assume that v̄, v are respectively nonnegative upper and lower solutions of (2.5). Since u ∈ C

γ
2 ,γ(Ω

s1,s2

T0
)

and v̄, v ∈ C(Ω
s1,s2

T0
), we know that 0 ≤ u, v̄, v ≤ M with some constant M > 0 for all (t, x) ∈ Ω

s1,s2

T0
. By

(f4), we have, for some constant k > d2(1 − τ),

| f2(t, x, u, v1) − f2(t, x, u, v2)| ≤ [k − d2(1 − τ)]|v1 − v2|

for any (t, x) ∈ Ω
s1,s2

T0
and u, v1, v2 ∈ [0,M].

For any ϑ ∈ C(Ω
s1,s2

T0
) satisfying ϑ ∈ [0,M], we define a mapping Φ by v = Φϑ, where v ∈

C
1+γ

2 ,1+γ(Ω
s1,s2

T0
) is the unique solution of

∂tv − d2τ∂
2
xv + kv = d2(1 − τ)

(∫ s2(t)

s1(t)
J2(x − y)ϑ(t, y)dy − ϑ

)
+ f2(t, x, u, ϑ) + kϑ, (t, x) ∈ Ωs1,s2

T0
,

v(t, s1(t)), v(t, s2(t)) = 0, t ∈ (0,T0],

v(0, x) = v0(x), x ∈ [−s0, s0].
(2.7)

The existence and uniqueness of v ∈ C
1+γ

2 ,1+γ(Ω
s1,s2

T0
) is guaranteed by the Lp theory for linear

parabolic equations and the Sobolev embedding theorem. It is easy to check that Φ is monotone in the
sense that if any ϑ1, ϑ2 ∈ C(Ω

s1,s2

T0
) satisfy 0 ≤ ϑ1, ϑ2 ≤ M and ϑ2 ≥ ϑ1, then Φϑ2 ≥ Φϑ1.

Mathematical Biosciences and Engineering Volume 20, Issue 9, 16471–16505.



16478

We then construct two sequences {v(n)} and {w(n)} by defining v(1) = Φv̄, v(n) = Φv(n−1), w(1) =

Φv, w(n) = Φw(n−1), n ≥ 2. Thus, v ≤ w(1) ≤ w(2) ≤ · · · ≤ w(n) ≤ v(n) ≤ · · · ≤ v(2) ≤ v(1) ≤ v̄. We
conclude that the pointwise limits

(w∗(t, x), v∗(t, x)) = ( lim
n→∞

w(n)(t, x), lim
n→∞

v(n)(t, x))

exist at each point in Ωs1,s2
T0

and

v ≤ w∗ ≤ v∗ ≤ v̄ in Ωs1,s2
T0

.

Similar to the proof of Theorem 2.4.6 in [41], we can show that v∗,w∗ are classical solutions of (2.5)
and satisfy v∗ = w∗. Moreover, the solution in [v, v̄] is unique.

Clearly, v = 0 and v̄ = K2 are lower and upper solutions of (2.5), respectively. Then there exists a
unique solution v between 0 and K2. Note that f2 satisfies the assumption (f4). Lemma 2.2 implies that
v is the unique solution of (2.5).

Define

Ω :=
{
(t, x) : 0 < t ≤ T0, s2(t) − M−1 < x < s2(t)

}
and construct an auxiliary function

ψ(t, x) = K2[2M(s2(t) − x) − M2(s2(t) − x)2].

We will choose M such that ψ ≥ v holds over Ω.
Direct calculations show that

∂tψ = 2K2Ms′2(t)(1 − M(s2(t) − x)) ≥ 0, − ∂xxψ = 2K2M2, f2(t, x, u, v) ≤ L̂v.

Then,

∂tψ − d2M2(ψ) ≥ 2d2τK2M2 − d2(1 − τ)K2

∫ s2(t)

s1(t)
J2(x − y)dy

≥ 2d2τK2M2 − d2(1 − τ)K2 ≥ L̂K2

≥ L̂v ≥ ∂tv − d2M2(v) in Ω,

if M2 ≥
L̂+d2(1−τ)

2d2τ
. On the other hand,

ψ(t, s2(t) − M−1) = K2 ≥ v(t, s2(t) − M−1), ψ(t, s2(t)) = 0 = v(t, s2(t)).

Choosing

M := max
{√

L̂+d2(1−τ)
2d2τ

,
4∥v0∥C1([−s0 ,s0])

3K2

}
,

we can prove that v0(x) ≤ ψ(0, x) for x ∈ [s0 − M−1, s0]. By applying Lemma 2.2 to ψ − v over Ω, we
have v(t, x) ≤ ψ(t, x) for (t, x) ∈ Ω. Then vx(t, s2(t)) ≥ −2K2M. Moreover, since v(t, s2(t)) = 0 and
v > 0 in Ωs1,s2

T0
, we get vx(t, s2(t)) < 0. The estimates for vx(t, s1(t)) can be obtained similarly.
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Now, by the approximation method we get the unique strong solution of (2.5) provided that
s′1(t), s′2(t) and u are merely continuous functions, which plays an important role in the proof of
Lemma 2.5 later.

Lemma 2.4. If (s1, s2) ∈ Ss0
1,T0
× Ss0

2,T0
, u ∈ C(Ω

s1,s2

T0
), f2 satisfies (f1)–(f4) and v0 satisfies (1.2), then

(2.5) has a unique solution v ∈ W1,2
p (Ωs1,s2

T0
)∩C

1+γ
2 ,1+γ(Ω

s1,s2

T0
) with any p > 3. Moreover, v satisfies (2.6).

Proof. Step 1. (Uniqueness) Let

ṽ(t, z) = v(t, x(t, z)), f̃2(t, z, ũ, ṽ) = f2(t, x(t, z), u(t, x(t, z)), v(t, x(t, z))),

then the problem becomes

∂tṽ = d2τξ(t)∂2
z ṽ + ζ(t, z)∂zṽ + d2(1 − τ)

(
s2(t)−s1(t)

2

∫ 1

−1
J2( s2(t)−s1(t)

2 (z − s))ṽ(t, s)ds − ṽ
)

+ f̃2(t, z, ũ, ṽ), (t, z) ∈ DT0 ,

ṽ(t,±1) = 0, t ∈ (0,T0],

ṽ(0, z) = v0(s0z), z ∈ [−1, 1].

(2.8)

Assume that vi(t, x) ∈ W1,2
p (Ωs1,s2

T0
)∩C

1+γ
2 ,1+γ(Ω

s1,s2

T0
), i = 1, 2, are two solutions of (2.5), then ṽi(t, z) =

vi(t, x(t, z)) ∈ W1,2
p (DT0) ∩ C

1+γ
2 ,1+γ(DT0) are two solutions of (2.8). Let w̃ = ṽ1 − ṽ2, then w̃ satisfies the

following problem

∂tw̃ = d2τξ(t)∂2
z w̃ + ζ(t, z)∂zw̃ + d2(1 − τ)

(
s2(t)−s1(t)

2

∫ 1

−1
J2( s2(t)−s1(t)

2 (z − s))w̃(t, s)ds − w̃
)

+ f̃2(t, z, ũ, ṽ1) − f̃2(t, z, ũ, ṽ2), (t, z) ∈ DT0 ,

w̃(t,±1) = 0, t ∈ (0,T0],

w̃(0, z) = 0, z ∈ [−1, 1].

(2.9)

Multiplying the first equation in (2.9) by w̃χ[0,t], where χ[0,t] is the characteristic function in [0, t]
with any 0 < t ≤ T0, and then integrating over (0,T0] × [−1, 1] gives

1
2

∫ 1

−1
w̃2(t, z)

∣∣∣∣t
0
dz = −d2τ

∫ t

0

∫ 1

−1
ξ(t)(∂zw̃)2dzdt +

∫ t

0

∫ 1

−1
ζ(t, z)w̃∂zw̃dzdt

+d2(1 − τ)
∫ t

0

∫ 1

−1

(
s2(t)−s1(t)

2

∫ 1

−1
J2( s2(t)−s1(t)

2 (z − s))w̃(t, s)ds − w̃
)

w̃dzdt

+
∫ t

0

∫ 1

−1
[ f̃2(t, z, ũ, ṽ1) − f̃2(t, z, ũ, ṽ2)]w̃dzdt.

By Young’s inequality with 0 < ε < 4d2τ
(s2(T0)−s1(T0))2 ,∫ t

0

∫ 1

−1
ζ(t, z)w̃∂zw̃dzdt ≤ ε

∫ t

0

∫ 1

−1
(∂zw̃)2dzdt +C(ε)

∫ t

0

∫ 1

−1
w̃2dzdt.

By Hölder inequality and the continuity of J2,

d2(1 − τ)
∫ t

0

∫ 1

−1

(
s2(t)−s1(t)

2

∫ 1

−1
J2( s2(t)−s1(t)

2 (z − s))w̃(t, s)ds − w̃(t, z)
)

w̃(t, z)dzdt

≤ d2(1 − τ)C
∫ t

0
(
∫ 1

−1
|w̃(t, z)|dz)2dt − d2(1 − τ)

∫ t

0

∫ 1

−1
w̃2dzdt

≤ d2(1 − τ)C1

∫ t

0

∫ 1

−1
w̃2dzdt.
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By the Lipschitz continuity of f2 with respect to ṽ,∫ t

0

∫ 1

−1
[ f̃2(t, z, ũ, ṽ1) − f̃2(t, z, ũ, ṽ2)]w̃(t, z)dzdt ≤ L

∫ t

0

∫ 1

−1
w̃2dzdt.

Combining the above estimates, we have∫ 1

−1
w̃2(t, z)dz ≤ C

∫ t

0

∫ 1

−1
w̃2dzdt.

By Gronwall’s inequality, we know
∫ t

0

∫ 1

−1
w̃2dzdt = 0, which implies that w̃ = 0, a.e. in (0, t] ×

[−1, 1]. Since t ∈ (0,T0] is arbitrary and w̃ ∈ C(DT0), we can obtain that w̃ = 0 for all (t, z) in
[0,T0] × [−1, 1], which implies the uniqueness of the solution.

Step 2. (Existence) For any (s1, s2) ∈ Ss0
1,T0
× Ss0

2,T0
, we can find some sequences (s1,n, s2,n) ∈ Ŝs0

1,T0
×

Ŝs0
2,T0

such that s1,n → s1 and s2,n → s2 in C1([0,T0]). Moreover, for every u(t, x) ∈ C(Ω
s1,s2

T0
), we

can obtain ũ(t, z) = u(t, x(t, z)) ∈ C(DT0) and find some sequence ũn ∈ C
γ
2 ,γ(DT0) such that ũn → ũ in

C(DT0). Taking un(t, x) = ũn(t, 2x−s1,n(t)−s2,n(t)
s2,n(t)−s1,n(t) ), we know un ∈ C

γ
2 ,γ(Ω

s1,n,s2,n

T0
).

Consider the approximate problem
∂tv = d2

[
τ∂2

xv + (1 − τ)
(∫ s2,n(t)

s1,n(t)
J2(x − y)v(t, y)dy − v

)]
+ f2(t, x, un, v), (t, x) ∈ Ωs1,n,s2,n

T0
,

v(t, s1,n(t)) = v(t, s2,n(t)) = 0, t ∈ (0,T0],

v(0, x) = v0(x), x ∈ [−s0, s0].

(2.10)

By Lemma 2.3, we know that (2.10) has a unique classical solution vn ∈ C1+ γ2 ,2+γ(Ωs1,n,s2,n
T0

), and

0 < vn ≤ K2 in Ωs1,n,s2,n
T0

,

0 < −∂xvn(t, s2,n(t)), ∂xvn(t, s1,n(t)) ≤ K3 for t ∈ (0,T0].

Let ṽn(t, z) = vn(t, xn(t, z)) and

f̃2(t, z, ũn, ṽn) = f2(t, xn(t, z), un(t, xn(t, z)), vn(t, xn(t, z)))

with xn(t, z) = (s2,n(t)−s1,n(t))z+s2,n(t)+s1,n(t)
2 , then ṽn(t, z) ∈ C1+ γ2 ,2+γ(DT0) is the unique solution of

∂tṽn = d2τξn(t)∂2
z ṽn + ζn(t, z)∂zṽn

+d2(1 − τ)
(

s2,n(t)−s1,n(t)
2

∫ 1

−1
J2( s2,n(t)−s1,n(t)

2 (z − s))ṽn(t, s)ds − ṽn

)
+ f̃2(t, z, ũn, ṽn), (t, z) ∈ DT0 ,

ṽn(t,±1) = 0, t ∈ (0,T0],

ṽn(0, z) = v0(s0z), z ∈ [−1, 1],

(2.11)

and it satisfies

0 < ṽn ≤ K2 in DT0 ,

0 < − 2
s2,n(t)−s1,n(t)∂zṽn(t, 1), 2

s2,n(t)−s1,n(t)∂zṽn(t,−1) ≤ K3 for t ∈ (0,T0].
(2.12)
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Let

g(t, z) := d2(1 − τ)
(

s2,n(t)−s1,n(t)
2

∫ 1

−1
J2( s2,n(t)−s1,n(t)

2 (z − s))ṽn(t, s)ds
)
+ f̃2(t, z, ũn, ṽn),

we have g ∈ L∞(DT0). Applying the Lp theory for linear parabolic equations to (2.11), we know that
the solution ṽn satisfies ∥ṽn∥W1,2

p (DT0 ) ≤ C, where C is independent of n. By the weak compactness of

the bounded set in W1,2
p (DT0) and W̊1,1

p (DT0), and the compactly embedding theorem (W1,1
p (DT0) ↪→↪→

Lp(DT0)), there exists a subsequence, still denoted by {ṽn}, such that ṽn ⇀ ṽ in W1,2
p (DT0) ∩ W̊1,1

p (DT0),
∂zṽn → ∂zṽ in Lp(DT0) and ṽn → ṽ in Lp(DT0), which implies that ṽ ∈ W1,2

p (DT0) ∩ W̊1,1
p (DT0) is the

strong solution of (2.8). By the Sobolev embedding theorem, ṽ ∈ C
1+γ

2 ,1+γ(DT0).
Note that ṽn satisfies (2.12). From the fact ∂zṽn → ∂zṽ, ṽn → ṽ in Lp(DT0) (then a.e. in DT0) and

ṽ ∈ C
1+γ

2 ,1+γ(DT0), we have that 0 < ṽ ≤ K2 in DT0 and 0 < − 2
s2(t)−s1(t)∂zṽ(t, 1), 2

s2(t)−s1(t)∂zṽ(t,−1) ≤ K3

for t ∈ (0,T0]. Thus, v(t, x) = ṽ(t, z(t, x)) satisfies (2.6), which completes the proof.

In the following lemma, we prove the well-posedness for (2.1) with any fixed (s1, s2) ∈ Ss0
1,T0
× Ss0

2,T0

by using the fixed point theorem. Denote

X1
T0

:=
{
u ∈ C(Ω

s1,s2

T0
) : 0 ≤ u ≤ K1, u(0, x) = u0(x), u(t, s1(t)) = u(t, s2(t)) = 0

}
,

X2
T0

:=
{
v ∈ C(Ω

s1,s2

T0
) : 0 ≤ v ≤ K2, v(0, x) = v0(x), v(t, s1(t)) = v(t, s2(t)) = 0

}
,

Xs1,s2
T0

:= X1
T0
× X2

T0
.

Lemma 2.5. For any T0 > 0 and (s1, s2) ∈ Ss0
1,T0
× Ss0

2,T0
, the problem

∂tu = d1M1(u) + f1(t, x, u, v), (t, x) ∈ Ωs1,s2
T0

,

∂tv = d2M2(v) + f2(t, x, u, v), (t, x) ∈ Ωs1,s2
T0

,

u(t, s1(t)) = u(t, s2(t)) = 0, t ∈ [0,T0],

v(t, s1(t)) = v(t, s2(t)) = 0, t ∈ [0,T0],

u(0, x) = u0(x), v(0, x) = v0(x), x ∈ [−s0, s0]

(2.13)

has a unique solution (u, v) ∈ Xs1,s2
T0

, and it satisfies

0 < u ≤ K1, 0 < v ≤ K2 in Ωs1,s2
T0

,

0 < −vx(t, s2(t)), vx(t, s1(t)) ≤ K3 in (0,T0].
(2.14)

Moreover, v ∈ W1,2
p (Ωs1,s2

T0
) ∩C

1+γ
2 ,1+γ(Ω

s1,s2

T0
) with any p > 3.

Proof. For u∗ ∈ X1
T̃

with 0 < T̃ ≤ T0, from Lemma 2.4 we know that the initial-boundary value
problem (2.5) with (u,T0) replaced by (u∗, T̃ ) admits a unique solution v ∈ X2

T̃
. For such v ∈ X2

T̃
, we

consider 
∂tu = d1M1(u) + f1(t, x, u, v), (t, x) ∈ Ωs1,s2

T0
,

u(t, s1(t)) = u(t, s2(t)) = 0, t ∈ [0,T0],

u(0, x) = u0(x), x ∈ [−s0, s0].
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By Lemma 2.3 in [9], it has a unique solution u ∈ X1
T̃
. We define a mapping FT̃ : X1

T̃
→ X1

T̃
by

FT̃ u∗ = u. If FT̃ u∗ = u∗, then (u∗, v) solves (2.13) with T0 replaced by T̃ .
Next, we shall show that FT̃ has a fixed point inX1

T̃
for small T̃ . We assume that u∗i ∈ X

1
T̃
, ui = FT̃ u∗i ,

and vi is the unique solution of (2.5) with (u,T0) replaced by (u∗i , T̃ ). Denote θ∗ = u∗1 − u∗2, θ = u1 − u2

and w = v1 − v2. Note that w satisfies
∂tw = d2M2(w) + a0(t, x)w + b0(t, x)θ∗, (t, x) ∈ Ωs1,s2

T̃
,

w(t, s1(t)) = w(t, s2(t)) = 0, t ∈ [0, T̃ ],

w(0, x) = 0, x ∈ [−s0, s0],

where

a0(t, x) =
∫ 1

0
f2,v(t, x, u∗1, v2 + (v1 − v2)τ)dτ,

b0(t, x) =
∫ 1

0
f2,u(t, x, u∗2 + (u∗1 − u∗2)τ, v2)dτ.

Let θ̃∗(t, z) = θ∗(t, x(t, z)), w̃(t, z) = w(t, x(t, z)), ã0(t, z) = a0(t, x(t, z)) and b̃0(t, z) = b0(t, x(t, z)). It is
easy to see that w̃ satisfies the following:

∂tw̃ = d2τξ(t)∂2
z w̃ + ζ(t, z)∂zw̃ + [ã0(t, z) − d2(1 − τ)]w̃

+d2(1 − τ) s2(t)−s1(t)
2

∫ 1

−1
J2( s2(t)−s1(t)

2 (z − s))w̃(t, s)ds + b̃0(t, z)θ̃∗, (t, z) ∈ DT̃ ,

w̃(t,±1) = 0, t ∈ [0, T̃ ],

w̃(0, z) = 0, z ∈ [−1, 1].

Similar to the proof of Theorem 2.1 (Step 2) in [42], we can extend s2(t), s1(t), w̃(t, z), ã0(t, z),
b̃0(t, z) and θ̃∗(t, z) by defining s2(t) = s2(T̃ ), s1(t) = s1(T̃ ), w̃(t, z) = w̃(T̃ , z), ã0(t, z) = ã0(T̃ , z),
b̃0(t, z) = b̃0(T̃ , z) and θ̃∗(t, z) = θ̃∗(T̃ , z) for t ∈ [T̃ ,T1] with some T1 ≤ T0. Consider the above equation
on DT1 . By the Lp theory for linear parabolic equations, we have

∥w̃∥W1,2
p (DT1 ) ≤ C

(∥∥∥∥ s2(t)−s1(t)
2

∫ 1

−1
J2( s2(t)−s1(t)

2 (z − s))w̃(t, s)ds
∥∥∥∥

Lp(DT1 )
+ ∥θ̃∗∥Lp(DT1 )

)
≤ C

(
∥w̃∥C(DT1 )

∥∥∥∥ ∫ s2(t)−s1(t)
2 (z+1)

s2(t)−s1(t)
2 (z−1)

J2(y)dy
∥∥∥∥

Lp(DT1 )
+ ∥θ̃∗∥Lp(DT1 )

)
≤ C(2T1)

1
p (∥w̃∥C(DT1 ) + ∥θ̃

∗∥C(DT1 ))

with some positive constant C = C(T1). By the Sobolev embedding theorem, the Hölder semi-norm
[w̃]

C
γ
2 ,γ(DT1 )

≤ C′∥w̃∥W1,2
p (DT1 ) for some positive constant C′ = C′( 1

T1
). Note that

|w̃(t, z)| = |w̃(t, z) − w̃(0, z)| ≤ [w̃]
C
γ
2 ,γ(DT̃ )

t
γ
2 ≤ [w̃]

C
γ
2 ,γ(DT̃ )

T̃
γ
2 , ∀(t, z) ∈ DT̃ .

It follows that

∥w̃∥C(DT̃ ) ≤ [w̃]
C
γ
2 ,γ(DT̃ )

T̃
γ
2 = [w̃]

C
γ
2 ,γ(DT1 )

T̃
γ
2 ≤ C′∥w̃∥W1,2

p (DT1 )T̃
γ
2

≤ CC′T̃
γ
2 (2T1)

1
p (∥w̃∥C(DT1 ) + ∥θ̃

∗∥C(DT1 ))

= CC′T̃
γ
2 (2T1)

1
p (∥w̃∥C(DT̃ ) + ∥θ̃

∗∥C(DT̃ )).
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Choosing T̃ small such that CC′T̃
γ
2 (2T1)

1
p < 1

2 , we have

∥w̃∥C(DT̃ ) ≤ ∥θ̃
∗∥C(DT̃ ).

Similar to the proof of Lemma 2.3 (Step 3) in [5], we deduce

∥θ∥C(Ω
s1 ,s2
T̃ ) ≤

1
2∥θ
∗∥C(Ω

s1 ,s2
T̃ ),

for sufficiently small T̃ . By applying the contraction mapping theorem, we can show that FT̃ has a
unique fixed point u ∈ X1

T̃
.

Following the arguments in the proof of Lemma 2.3 (Step 5) in [5], we can prove that the unique
solution (u, v) of (2.13) can be extended to Ωs1,s2

T0
and (u, v) ∈ Xs1,s2

T0
. The estimates of

vx(t, s2(t)), vx(t, s1(t)) and the regularity of v have been established in Lemma 2.4.

Proof of Theorem 2.1. By Lemma 2.5, for any T0 > 0 and (s1, s2) ∈ Ss0
1,T0
× Ss0

2,T0
, we can find a unique

(u, v) ∈ Xs1,s2
T0

that solves (2.13), and (2.14) holds. For 0 < t ≤ T0, define the mapping

G(s1, s2) = (s̃1, s̃2)

by

s̃2(t) = s0 − µ
∫ t

0
vx(τ, s2(τ))dτ + ρ1

∫ t

0

∫ s2(τ)

s1(τ)

∫ +∞
s2(τ)

J1(x − y)u(τ, x)dydxdτ

+ρ2

∫ t

0

∫ s2(τ)

s1(τ)

∫ +∞
s2(τ)

J2(x − y)v(τ, x)dydxdτ,

s̃1(t) = −s0 − µ
∫ t

0
vx(τ, s1(τ))dτ − ρ1

∫ t

0

∫ s2(τ)

s1(τ)

∫ s1(τ)

−∞
J1(x − y)u(τ, x)dydxdτ

−ρ2

∫ t

0

∫ s2(τ)

s1(τ)

∫ s1(τ)

−∞
J2(x − y)v(τ, x)dydxdτ.

To prove this theorem, we need to prove that if T0 is sufficiently small, then G maps a closed subset
ΣT0 of Ss0

1,T0
×Ss0

2,T0
into itself and is a contraction mapping. The proof can be completed by using similar

arguments as that of Theorem 2.1 in [3, 5]. Here we omit the details.

3. Comparison principle and some eigenvalue problems

In this section, we first give two comparison principles, and then investigate the existence and
asymptotic properties of principal eigenvalues for some eigenvalue problems.

3.1. The comparison principle

In this subsection, we discuss the comparison principle for (1.1).

Lemma 3.1. Suppose that T0 ∈ (0,∞), s̄1, s̄2 ∈ C1([0,T0]), ū ∈ C(Ω
s̄1,s̄2

T0
), v̄ ∈ C1,2(Ωs̄1,s̄2

T0
) ∩ C(Ω

s̄1,s̄2

T0
),
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and (ū, v̄; s̄1, s̄2) satisfies the following:

∂tū ≥ d1

(∫ s̄2(t)

s̄1(t)
J1(x − y)ū(t, y)dy − ū

)
+ ū(a(t) − ū − c(t)v̄), (t, x) ∈ Ωs̄1,s̄2

T0
,

∂tv̄ ≥ d2

[
τ∂2

xv̄ + (1 − τ)
(∫ s̄2(t)

s̄1(t)
J2(x − y)v̄(t, y)dy − v̄

)]
+ v̄(b(t) − v̄ − d(t)ū), (t, x) ∈ Ωs̄1,s̄2

T0
,

s̄′2(t) ≥ −µv̄x(t, s̄2(t)) + ρ1

∫ s̄2(t)

s̄1(t)

∫ +∞
s̄2(t)

J1(x − y)ū(t, x)dydx

+ρ2

∫ s̄2(t)

s̄1(t)

∫ +∞
s̄2(t)

J2(x − y)v̄(t, x)dydx, 0 < t ≤ T0,

s̄′1(t) ≤ −µv̄x(t, s̄1(t)) − ρ1

∫ s̄2(t)

s̄1(t)

∫ s̄1(t)

−∞
J1(x − y)ū(t, x)dydx

−ρ2

∫ s̄2(t)

s̄1(t)

∫ s̄1(t)

−∞
J2(x − y)v̄(t, x)dydx, 0 < t ≤ T0,

ū(0, x) ≥ u0(x), v̄(0, x) ≥ v0(x), |x| ≤ s0,

s̄2(0) ≥ s0, s̄1(0) ≤ −s0.

(3.1)

Moreover, ū(t, s̄1(t)), ū(t, s̄2(t)) ≥ 0 and v̄(t, s̄1(t)) = v̄(t, s̄2(t)) = 0 for 0 < t ≤ T0. Then, the solution
(u, v; s1, s2) of (1.1) satisfies

s1(t) ≥ s̄1(t), s2(t) ≤ s̄2(t) in (0,T0],
u(t, x) ≤ ū(t, x), v(t, x) ≤ v̄(t, x) for (t, x) ∈ Ω

s1,s2

T0
.

Remark 3.2. We should mention that the condition v̄(t, s̄1(t)) = v̄(t, s̄2(t)) = 0 is necessary in the proof.
If τ = 0, as considered in [3], then the expressions of s′2(t), s′1(t) in (1.1) and s̄′2(t), s̄′1(t) in (3.1) do not
include the terms −µvx(t, s2(t)), −µvx(t, s1(t)) and −µv̄x(t, s̄2(t)), −µv̄x(t, s̄1(t)), respectively. In such a
case, the conditions v̄(t, s̄1(t)) = v̄(t, s̄2(t)) = 0 can be weakened into v̄(t, s̄1(t)), v̄(t, s̄2(t)) ≥ 0.

In what follows, we establish a comparison principle for the following nonlocal evolution equation ut = d1[
∫
Ω

J1(x − y)u(t, y)dy − u] + u(a(t) − u), (t, x) ∈ R ×Ω,

u(0, x) = u(T, x), x ∈ Ω,
(3.2)

where Ω is a bounded, connected open interval in R. Define the function spaces YΩ,Y+Ω,Y
++
Ω

:

YΩ =
{
Φ ∈ C1,0(R ×Ω) : Φ(t + T, x) = Φ(t, x) for any (t, x) ∈ R ×Ω

}
,

Y+
Ω
=

{
Φ ∈ YΩ : Φ ≥ 0 in R ×Ω

}
,

Y++
Ω
=

{
Φ ∈ YΩ : Φ > 0 in R ×Ω

}
,

where C1,0(R × Ω) denotes the class of functions that are C1 in t and continuous in x. We call a
T -periodic function ū ∈ Y++

Ω
an upper solution of (3.2) when ū ∈ Y++

Ω
satisfies

ūt ≥ d1[
∫
Ω

J1(x − y)ū(t, y)dy − ū] + ū(a(t) − ū)

for t ∈ R and x ∈ Ω. The lower solution can be defined by reversing the inequality.

Lemma 3.3. Let u ∈ Y+
Ω

and ū ∈ Y++
Ω

be a lower and an upper solution to (3.2), respectively. Then,
u ≤ ū in R ×Ω.
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Proof. The proof follows some ideas of Section 6.3 in [43], where the nonlocal stationary problem was
considered. Define

α∗ := inf{α > 0 : αū ≥ u in R ×Ω}.

We shall prove α∗ ≤ 1. If it does not hold, then

(α∗ū)t − d1[
∫
Ω

J1(x − y)α∗ū(t, y)dy − α∗ū] − α∗ū(a(t) − α∗ū)

≥ α∗ū(a(t) − ū) − α∗ū(a(t) − α∗ū) = α∗(α∗ − 1)ū2 > 0.
(3.3)

Since [0,T ]×Ω is compact, we know that α∗ is attainable, i.e., there exists (t0, x0) ∈ [0,T ]×Ω such
that α∗ū(t0, x0) = u(t0, x0).

(i) If (t0, x0) ∈ (0,T ) ×Ω, then ∂t(α∗ū − u)(t0, x0) = 0, since (t0, x0) is a minimum point of α∗ū − u.
(ii) If (t0, x0) ∈ {0,T } × Ω, by the T -periodicity and C1-smoothness of ū, u in t, we can also deduce

∂t(α∗ū − u)(t0, x0) = 0.
Thus, the following holds

(α∗ū)t(t0, x0) − d1[
∫
Ω

J1(x0 − y)α∗ū(t0, y)dy − α∗ū(t0, x0)] − α∗ū(t0, x0)(a(t0) − α∗ū(t0, x0))

= ut(t0, x0) − d1[
∫
Ω

J1(x0 − y)α∗ū(t0, y)dy − u(t0, x0)] − u(t0, x0)(a(t0) − u(t0, x0))

≤ d1

∫
Ω

J1(x0 − y)[u(t0, y) − α∗ū(t0, y)]dy ≤ 0,

which contradicts (3.3). Therefore, α∗ ≤ 1, which implies that u ≤ ū in [0,T ] ×Ω.

3.2. Some eigenvalue problems

In this subsection, we mainly study the properties of principal eigenvalues for some eigenvalue
problems. We always assume Ω to be a bounded, connected open set in R and define its length by |Ω|.

For (t, x) ∈ R ×Ω, we define

−(LΩ + α)[ϕ](t, x) = ϕt − d1[
∫
Ω

J1(x − y)ϕ(t, y)dy − ϕ] − α(t)ϕ, (3.4)

where α ∈ CT (R) := {α ∈ C(R) : α(t + T ) = α(t) > 0,∀t ∈ R}.
Let

λ1(−(LΩ + α)) = inf
{
Rλ : λ ∈ σ(−(LΩ + α))

}
,

where σ(−(LΩ+α)) is the spectrum of −(LΩ+α). By Theorem A(1) in [44], we know that λ1(−(LΩ+α))
is the principal eigenvalue of −(LΩ + α), which means that there exists an eigenfunction ϕ ∈ Y++

Ω

satisfying

−(LΩ + α)[ϕ] = λ1(−(LΩ + α))ϕ.

Lemma 3.4. (see Theorem B in [44]) Let q(t, x; q0) be a solution of qt = d1[
∫
Ω

J1(x − y)q(t, y)dy − q] + q(α(t) − q), t > 0, x ∈ Ω,

q(0, x) = q0(x), x ∈ Ω,
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where J1 satisfies (K), α ∈ CT (R), q0 ∈ C(Ω) is non-negative and q0 . 0.
(i) If λ1(−(LΩ + α)) < 0, then

qt = d1[
∫
Ω

J1(x − y)q(t, y)dy − q] + q(α(t) − q), t ∈ R, x ∈ Ω (3.5)

has a unique solution q̂ ∈ Y++
Ω

. Moreover,

lim
t→+∞
∥q(t, ·; q0) − q̂(t, ·)∥C(Ω) = 0.

(ii) If λ1(−(LΩ + α)) > 0, then (3.5) admits no solution in Y+
Ω
\ {0} and

lim
t→+∞
∥q(t, ·; u0)∥C(Ω) = 0.

Remark 3.5. For the case λ1(−(LΩ +α)) = 0, it has been shown in [44] that (3.5) admits no solution in
Y+
Ω
\ {0}, but the global dynamical behavior was not provided. Since α(t) is independent of the spatial

variable in this paper, we can also get ∥q(t, ·; q0)∥C(Ω) → 0. More details can be seen in the proof of
Theorem 4.4.

In what follows, we present some further properties of λ1.

Lemma 3.6. Let J1 satisfies (K) and α ∈ CT (R). Then
(i) λ1(−(LΩ + α)) is continuous, strictly decreasing in |Ω|;
(ii) lim|Ω|→+∞ λ1(−(LΩ + α)) = −αT , where αT =

1
T

∫ T

0
α(t)dt;

(iii) lim|Ω|→0 λ1(−(LΩ + α)) = d1 − αT .

Proof. Let ϕ ∈ Y++
Ω

be an eigenfunction of −(LΩ+α) associated with the principal eigenvalue λ1(−(LΩ+
α)). We define

ψ(t, x) = e−
∫ t

0 (α(s)−αT )dsϕ(t, x).

Obviously, ψ ∈ Y++
Ω

.
Multiplying the equation −(LΩ+α)[ϕ] = λ1(−(LΩ+α))ϕ by the function t 7→ e−

∫ t
0 (α(s)−αT )ds, we have

−ψt + d1[
∫
Ω

J1(x − y)ψ(t, y)dy − ψ] + αTψ + λ1(−(LΩ + α))ψ = 0.

Integrating both sides over [0,T ] with respect to t, and taking Ψ(x) = 1
T

∫ T

0
ψ(t, x)dt, we obtain

d1[
∫
Ω

J1(x − y)Ψ(y)dy − Ψ] + αTΨ + λ1(−(LΩ + α))Ψ = 0.

Denote by λ1(−(LΩ + αT )) the principal eigenvalue of

−(LΩ + αT )[Ψ](x) = −d1[
∫
Ω

J1(x − y)Ψ(y)dy − Ψ] − αTΨ = λΨ in Ω, (3.6)

then we have

λ1(−(LΩ + α)) = λ1(−(LΩ + αT )). (3.7)

According to Proposition 3.4 in [9], we can prove that λ1(−(LΩ + α)) satisfies the properties (i)–
(iii).
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Now, we consider another periodic-parabolic eigenvalue problem
−(L̃Ω + α)[φ](t, x) = φt − d2[τφxx + (1 − τ)(

∫
Ω

J2(x − y)φ(t, y)dy − φ)] − α(t)φ
= λφ in [0,T ] ×Ω,

φ(t, x) = 0 on [0,T ] × ∂Ω,
φ(0, x) = φ(T, x) in Ω.

(3.8)

As showed in Section II.14 of [45], based on the Krein-Rutman theorem, we can prove that (3.8)
admits a principal eigenvalue λ1(−(L̃Ω + α)) with the principal eigenfunction φ.

For later applications, we give the following lemma.

Lemma 3.7. Let J2 satisfies (K) and α ∈ CT (R). Then
(i) λ1(−(L̃Ω + α)) is a strictly decreasing continuous function in |Ω|. Moreover, lim|Ω|→0 λ1(−(L̃Ω +

α)) = +∞ and lim|Ω|→+∞ λ1(−(L̃Ω + α)) = −αT . Then, λ1(−(L̃Ω + α)) = 0 has a unique root |Ω| = s∗;
(ii) if λ1(−(L̃Ω + α)) < 0, then the problem φt − d2[τφxx + (1 − τ)(

∫
Ω

J2(x − y)φ(t, y)dy − φ)] = φ(α(t) − φ) in (0,+∞) ×Ω,
φ = 0 on (0,+∞) × ∂Ω

admits a unique T-periodic positive solution φ∗, and φ∗ is globally asymptotically stable.

Proof. (i) Let φ be an eigenfunction of (3.8) associated with the principal eigenvalue λ1(−(L̃Ω + α)).
Define

ψ(t, x) = e−
∫ t

0 (α(s)−αT )dsφ(t, x), ∀(t, x) ∈ R ×Ω.

Similar to (3.6), λ1(−(L̃Ω + α)) is the principal eigenvalue of −(L̃Ω + αT )[Ψ](t, x) = −d2[τΨxx + (1 − τ)(
∫
Ω

J2(x − y)Ψ(y)dy − Ψ)] − αTΨ = λΨ in Ω,
Ψ(x) = 0 on ∂Ω

(3.9)

with an eigenfunction Ψ(x) = 1
T

∫ T

0
ψ(t, x)dt. Denote by λ1(−(L̃Ω + αT )) the principal eigenvalue of

(3.9), then we have

λ1(−(L̃Ω + α)) = λ1(−(L̃Ω + αT )). (3.10)

The continuity of λ1(−(L̃Ω + αT )) with respect to |Ω| can be obtained by using a simple re-scaling
argument for the spatial variable x. Note that λ1(−(L̃Ω + αT )) can be expressed in a variational
formulation:

λ1(−(L̃Ω + αT )) = inf0.Ψ∈H1
0 (Ω)

d2τ
∫
Ω
Ψ2

x(x)dx−d2(1−τ)
∫
Ω

∫
Ω

J2(x−y)Ψ(y)Ψ(x)dydx∫
Ω
Ψ2(x)dx

+ [d2(1 − τ) − αT ].

By the zero extension of the principal eigenfunction, we can get the monotonicity of λ1(L̃Ω + αT )
from the variational formulation of the principal eigenvalue.
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Now we prove the asymptotic limits of λ1(−(L̃Ω + α)). We may assume that Ω = (0, ℓ). Since∫ ℓ

0

∫ ℓ

0
J2(x − y)Ψ(y)Ψ(x)dydx ≤

∫ ℓ

0

∫ ℓ

0
J2(x − y)Ψ

2(y)+Ψ2(x)
2 dydx ≤

∫ ℓ

0
Ψ2(x)dx,

we have

λ1(−(L̃(0,ℓ) + αT )) ≥ inf0.Ψ∈H1
0 ((0,ℓ))

d2τ
∫ ℓ

0 Ψ
2
x(x)dx∫ ℓ

0 Ψ
2(x)dx

− αT .

By the fact that

inf0.Ψ∈H1
0 ((0,ℓ))

∫ ℓ
0 Ψ

2
x(x)dx∫ ℓ

0 Ψ
2(x)dx

= π2

4l2 ,

we know

limℓ→0 λ1(−(L̃(0,ℓ) + αT )) = +∞ (3.11)

and

lim infℓ→+∞ λ1(−(L̃(0,ℓ) + αT )) ≥ −αT . (3.12)

On the other hand, by (K), for any fixed 0 < ε ≪ 1, we have∫ L

−L
J2(x)dx > 1 − ε

with some L = L(ε) > 0. For any large ℓ > 3L, we choose the test function φε(x) defined as follows

φε(x) =


x
ε
, x ∈ [0, ε],

1, x ∈ [ε, ℓ − ε],
ℓ−x
ε
, x ∈ [ℓ − ε, ℓ].

It is easy to check that φε ∈ H1
0((0, ℓ)) satisfies

∫ ℓ

0
φ2
ε(x)dx = ℓ − 4

3ε and
∫ ℓ

0
(∂xφε)2(x)dx = 2

ε
. Thus,

λ1(−(L̃(0,ℓ) + αT ))

≤
d2τ

∫ ℓ
0 (∂xφε)2(x)dx−d2(1−τ)

∫ ℓ
0

∫ ℓ
0 J2(x−y)φε(y)φε(x)dydx∫ ℓ

0 φ2
ε(x)dx

+ [d2(1 − τ) − αT ]

≤
2d2τ
ε −d2(1−τ)

∫ ℓ−L−ε
L+ε

∫ ℓ−ε
ε

J2(x−y)dydx

ℓ− 4
3 ε

+ [d2(1 − τ) − αT ]

≤
2d2τ
ε −d2(1−τ)

∫ ℓ−L−ε
L+ε

∫ L
−L J2(ξ)dξdx

ℓ− 4
3 ε

+ [d2(1 − τ) − αT ]

≤
2d2τ
ε −d2(1−τ)(ℓ−2L−2ε)(1−ε)

ℓ− 4
3 ε

+ [d2(1 − τ) − αT ]

→ −d2(1 − τ)(1 − ε) + [d2(1 − τ) − αT ] as ℓ → +∞.

Since ε is arbitrary, it follows that

lim supℓ→+∞ λ1(−(L̃(0,ℓ) + αT )) ≤ −αT ,

which together with (3.12) imply that

limℓ→+∞ λ1(−(L̃(0,ℓ) + αT )) = −αT . (3.13)

From (3.10), (3.11) and (3.13), we know that λ1(−(L̃(0,ℓ) + α)) = 0 has a unique root.
(ii) By using similar arguments as in the proofs of Lemma 3.3 in [16] and Theorem 28.1 in [45], we

can prove the result.
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4. Spreading and vanishing for (1.1)

We mainly investigate the spreading-vanishing dichotomy and criteria for spreading and vanishing
in this section. In view of (2.2), we see that the free boundaries s2(t),−s1(t) are strictly increasing
functions of t. Thus, s2,∞ := limt→+∞ s2(t) and s1,∞ := limt→+∞ s1(t) are well-defined. Clearly,
s2,∞,−s1,∞ ≤ +∞.

Similar to the proof of Proposition 3.1 in [35], we can prove the following result.

Lemma 4.1. Let d, µ, s0 ∈ R+, C ∈ R and α ∈ (0, 1). Assume that φ0 ∈ C2([−s0, s0]) satisfies
φ0(±s0) = 0 and φ0 > 0 in (−s0, s0), (s1, s2, φ) ∈ [C1+ γ2 ([0,+∞),R+)]2 × C1+ γ2 ,2+γ(Ωs1,s2

∞ ,R+) satisfies
−∞ < limt→+∞ s1(t) < limt→+∞ s2(t) < +∞, limt→+∞ s′1(t) = limt→+∞ s′2(t) = 0 and ∥φ∥C1([s1(t),s2(t)]) ≤ K
(∀t > 1) with some constant K > 0. If (φ, s1, s2) satisfies the following:

φt − dφxx ≥ Cφ, t > 0, s1(t) < x < s2(t),
φ = 0, t ≥ 0, x = s1(t) or x = s2(t),
s′1(t) ≤ −µφx(t, s1(t)), s′2(t) ≥ −µφx(t, s2(t)), t > 0,
−s1(0) = s2(0) = s0,

φ(0, x) = φ0(x), −s0 < x < s0,

then limt→+∞maxs1(t)≤x≤s2(t) φ(t, x) = 0.

Next, we give an estimate for v. The proof is a simple modification of that for Lemma 3.2 in [4], so
we omit it here.

Lemma 4.2. If s2,∞ − s1,∞ < +∞, then

∥v∥
C

1+γ
2 ,1+γ(Ω

s1 ,s2
∞ )
≤ C (4.1)

for some C > 0, and hence

∥vx(·, s1(·))∥
C
γ
2 (R+)
+ ∥vx(·, s2(·))∥

C
γ
2 (R+)
≤ C. (4.2)

Lemma 4.3. If s2,∞ − s1,∞ < +∞, then limt→+∞ s′1(t) = limt→+∞ s′2(t) = 0.

Proof. Obviously, −∞ < s1,∞ < s2,∞ < +∞. From (2.2), we know that s′1(t) and s′2(t) defined in (1.1)
are bounded. Let

φ1(t) = vx(t, s2(t)), φ2(t) =
∫ s2(t)

s1(t)

∫ +∞
s2(t)

J1(x − y)u(t, x)dydx,

φ3(t) =
∫ s2(t)

s1(t)

∫ +∞
s2(t)

J2(x − y)v(t, x)dydx.

By (4.2), we get that |φ1(t)− φ1(t0)| ≤ C1|t− t0|
γ
2 for any t, t0 > 0. We may assume t > t0. For φ2, we

have s2(t) > s2(t0) and s1(t) < s1(t0). Then,

φ2(t) − φ2(t0) =
∫ s2(t)

s1(t)

∫ +∞
s2(t)

J1(x − y)u(t, x)dydx −
∫ s2(t0)

s1(t0)

∫ +∞
s2(t0)

J1(x − y)u(t0, x)dydx

=
∫ s2(t0)

s1(t0)

∫ +∞
s2(t)

J1(x − y)[u(t, x) − u(t0, x)]dydx +
∫ s1(t0)

s1(t)

∫ +∞
s2(t)

J1(x − y)u(t, x)dydx

+
∫ s2(t)

s2(t0)

∫ +∞
s2(t)

J1(x − y)u(t, x)dydx −
∫ s2(t0)

s1(t0)

∫ s2(t)

s2(t0)
J1(x − y)u(t0, x)dydx

≤ ∥∂tu∥L∞(Ω
s1 ,s2
∞ )(t − t0)(s2(t0) − s1(t0)) + ∥u∥L∞(Ω

s1 ,s2
∞ )(s1(t0) − s1(t))

+2∥u∥L∞(Ω
s1 ,s2
∞ )(s2(t) − s2(t0))

≤ C2(t − t0),
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where ∥∂tu∥L∞(Ω
s1 ,s2
∞ ) is obtained by the first equation in (1.1) and the bound of u. Thus,

|φ2(t) − φ2(t0)| ≤ C2|t − t0|.

For φ3, it follows from (4.1) that |v(t, x)− v(t0, x)| ≤ C|t− t0|
1+γ

2 for any x ∈ [s1(t0), s2(t0)]. Similar to
φ2, we have

|φ3(t) − φ3(t0)| ≤ C3|t − t0|.

Therefore, s′2(t) = −µφ1 + ρ1φ2 + ρ2φ3 is uniformly continuous in [0,+∞). From limt→+∞ s2(t) =
s2,∞ < +∞, we know limt→+∞ s′2(t) = 0. Similarly, we can get limt→+∞ s′1(t) = 0.

Theorem 4.4. If s2,∞ − s1,∞ < +∞, then the solution of (1.1) satisfies

∥u(t, ·)∥C([s1(t),s2(t)]), ∥v(t, ·)∥C([s1(t),s2(t)]) → 0 as t → +∞.

Proof. Since J2 ≥ 0 and v > 0, from the second equation in (1.1), we deduce

∂tv − d2τ∂
2
xv ≥ Cv

for some constant C > 0. According to Lemma 4.1, we have

∥v(t, ·)∥C([s1(t),s2(t)]) → 0 as t → +∞.

We first show

λ1(−(L(s1,∞,s2,∞) + a)) ≥ 0, (4.3)

where −(L(s1,∞,s2,∞) + a) is defined in (3.4).
For convenient, we define s±ε2,∞ := s2,∞ ± ε, s±ε1,∞ := s1,∞ ± ε for any ε > 0. Assume that (4.3) does

not hold, there exists ε1 > 0 such that λ1(−(L(s+ε1,∞,s
−ε
2,∞) + a(t) − c(t)ε)) < 0 for all ε ∈ (0, ε1). For such

ε > 0, there exists Tε > 0 such that, for t > Tε,

s2(t) > s−ε2,∞, s1(t) < s+ε1,∞, ∥v(t, ·)∥C([s1(t),s2(t)]) < ε.

Then, u satisfies the following: ut ≥ d1

∫ s−ε2,∞

s+ε1,∞
J1(x − y)u(t, y)dy − d1u + u(a(t) − u − c(t)ε), t > Tε, x ∈ [s+ε1,∞, s

−ε
2,∞],

u(Tε, x) = u(Tε, x), x ∈ [s+ε1,∞, s
−ε
2,∞].

Since λ1(−(L(s+ε1,∞,s
−ε
2,∞) + a(t) − c(t)ε)) < 0, by Lemma 3.4(i) we know that the solution qε(t, x) of

problem qt = d1

∫ s−ε2,∞

s+ε1,∞
J1(x − y)q(t, y)dy − d1q + q(a(t) − q − c(t)ε), t > Tε, x ∈ [s+ε1,∞, s

−ε
2,∞],

q(Tε, x) = u(Tε, x), x ∈ [s+ε1,∞, s
−ε
2,∞]
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converges to q̂ε(t, x) uniformly in [s+ε1,∞, s
−ε
2,∞] when t → +∞, and q̂ε(t, x) ∈ Y++ε is the unique periodic

solution of

qt = d1

∫ s−ε2,∞

s+ε1,∞

J1(x − y)q(t, y)dy − d1q + q(a(t) − q − c(t)ε), t ∈ R, x ∈ [s+ε1,∞, s
−ε
2,∞].

By Lemma 3.3 in [9], we get

u ≥ qε in (Tε,+∞) × [s+ε1,∞, s
−ε
2,∞].

Hence, there exist two constants T̃ε > Tε and C > 0 such that

u(t, x) ≥
1
2

q̂ε(t, x) ≥ C > 0, ∀ t > T̃ε, x ∈ [s+ε1,∞, s
−ε
2,∞].

From the assumption (K) (the Lipschitz continuity of J1 and J1(0) > 0), we deduce that there
exist constants ϵ̄ ∈ (0, h0

4 ) and η0 > 0 such that J1(x − y) > η0 if |x − y| < ϵ̄. It follows that, for
0 < ε < min{ε1,

ϵ̄
2 } and t > T̃ε,

s′2(t) ≥ ρ1

∫ s2(t)

s1(t)

∫ +∞

s2(t)
J1(x − y)u(t, x)dydx ≥ ρ1

∫ s−ε2,∞

s+ε1,∞

∫ +∞

s2,∞

J1(x − y)u(t, x)dydx

≥ ρ1

∫ s−ε2,∞

s
− ϵ̄2
2,∞

∫ s
− ϵ̄2
2,∞

s2,∞

η0
1
2

q̂ε(t, x)dydx ≥ ρ1

∫ s−ε2,∞

s
− ϵ̄2
2,∞

∫ s
− ϵ̄2
2,∞

s2,∞

η0Cdydx

= ρ1(
ϵ̄

2
− ε)

ϵ̄

2
η0C.

It follows that s2,∞ = +∞, which is a contradiction. Then, (4.3) is proved.
Now we prove that the solution U of

Ut = d1

∫ s2,∞

s1,∞
J1(x − y)U(t, y)dy − d1U + U(a(t) − U), t > 0, x ∈ [s1,∞, s2,∞],

U(0, x) = u0(x), x ∈ [−s0, s0],

U(0, x) = 0, x ∈ [s1,∞, s2,∞] \ [−s0, s0]

satisfies limt→+∞U(t, x) = 0 uniformly for x ∈ [s1,∞, s2,∞]. Since (4.3) holds, we divide the discussion
into two cases:

(i) for the case λ1(−(L(s1,∞,s2,∞) + a)) > 0, the result can be directly deduced from Lemma 3.4(ii).
(ii) for the case λ1(−(L(s1,∞,s2,∞) + a)) = 0, we define

Ũ(t, x) = e−
∫ t

0 [a(θ)−aT ]dθU(t, x).

Then, Ũ satisfies
Ũt = d1

∫ s2,∞

s1,∞
J1(x − y)Ũ(t, y)dy − d1Ũ + Ũ(aT − e

∫ t
0 [a(θ)−aT ]dθŨ), t > 0, x ∈ [s1,∞, s2,∞],

Ũ(0, x) = u0(x), x ∈ [−s0, s0],

Ũ(0, x) = 0, x ∈ [s1,∞, s2,∞] \ [−s0, s0].
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For any t > 0, we can write t = mT + τ0 with 0 ≤ τ0 < T , and then

e
∫ t

0 [a(θ)−aT ]dθ = e
∫ mT+τ0

0 [a(θ)−aT ]dθ = e
∫ τ0

0 [a(θ)−aT ]dθ,

which together with the continuity of a(t) imply that M1 ≤ e
∫ t

0 [a(θ)−aT ]dθ ≤ M2 for some positive
constants M1 and M2. By Lemma 3.3 in [9], we know Ũ(t, x) ≤ Û(t, x), where Û(t, x) is the unique
solution of

Ût = d1

∫ s2,∞

s1,∞
J1(x − y)Û(t, y)dy − d1Û + Û(aT − M1Û), t > 0, x ∈ [s1,∞, s2,∞],

Û(0, x) = u0(x), x ∈ [−s0, s0],

Û(0, x) = 0, x ∈ [s1,∞, s2,∞] \ [−s0, s0].

Recall that from (3.7) we get λ1(−(L(s1,∞,s2,∞) + aT )) = λ1(−(L(s1,∞,s2,∞) + a)) = 0. By Proposition
3.5 in [9] (see also [43, 46]), we know that limt→+∞ Û(t, x) = 0 uniformly for x ∈ [s1,∞, s2,∞]. Thus,
Ũ(t, x) converges to 0 uniformly in [s1,∞, s2,∞] as t → +∞, which implies that limt→+∞U(t, x) =
limt→+∞ e

∫ t
0 [a(θ)−aT ]dθŨ(t, x) = 0 uniformly for x ∈ [s1,∞, s2,∞].

On the other hand, it is easy to know that
Ut ≥ d1

∫ s2(t)

s1(t)
J1(x − y)U(t, y)dy − d1U + U(a(t) − U), (t, x) ∈ Ωs1,s2

∞ ,

U(t, s1(t)) ≥ 0, U(t, s2(t)) ≥ 0, t > 0,

U(0, x) = u0(x), x ∈ [−s0, s0].

By Lemma 2.2 in [9], we know that u ≤ U in Ω
s1,s2

∞ . Thus, limt→+∞ ∥u(t, ·)∥C([s1(t),s2(t)]) = 0.

By Theorem 4.4, we have the spreading-vanishing dichotomy.

Corollary 4.5. Let (u, v; s1, s2) be the solution of (1.1). Then, the following alternative holds: either
(i) spreading: limt→+∞(s2(t) − s1(t)) = +∞, or (ii) vanishing: (s1,∞, s2,∞) := limt→+∞(s1(t), s2(t)) is a
bounded set and

lim
t→+∞

max
s1(t)≤x≤s2(t)

u(t, x) = lim
t→+∞

max
s1(t)≤x≤s2(t)

v(t, x) = 0.

If we further assume the weak competition condition

min
[0,T ]

a(t) > max
[0,T ]

c(t) ·max
[0,T ]

b(t), min
[0,T ]

b(t) > max
[0,T ]

d(t) ·max
[0,T ]

a(t), (4.4)

then we can establish the asymptotic estimates of the solution when spreading occurs. To achieve it,
we first give a lemma concerning the asymptotic stability of time-periodic solutions for the equations
with nonlocal/mixed dispersal in R.

Lemma 4.6. Assume that d > 0, 0 ≤ θ ≤ 1, α ∈ CT (R) and J satisfies (K).
(i) The T-periodic problem ∂tq = d

[
θ∂2

xq + (1 − θ)
(∫
R

J(x − y)q(t, y)dy − q
)]
+ q(α(t) − q), t ∈ [0,T ], x ∈ R,

q(0, x) = q(T, x), x ∈ R
(4.5)
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has a unique positive solution, which satisfies

q′ = q(α(t) − q), q(0) = q(T ).

(ii) For any bounded, uniformly continuous initial value q0 with infx∈R q0 > 0, the unique solution
q(t, x; q0) of ∂tq = d

[
θ∂2

xq + (1 − θ)
(∫
R

J(x − y)q(t, y)dy − q
)]
+ q(α(t) − q), t > 0, x ∈ R,

q(0, x) = q0(x), x ∈ R
(4.6)

satisfies limt→+∞ ∥q(t, ·; q0) − q∗(t)∥L∞(R) = 0, where q∗(t) is the positive solution of (4.5).

Proof. (i) We first consider the case θ = 0.
Step 1. we give a lower bound estimate of any bounded positive solutions of (4.5)θ=0.
Consider the stationary problem

−d
(∫ ℓ

−ℓ
J(x − y)q(y)dy − q

)
= q(mint∈[0,T ] α(t) − q), −ℓ < x < ℓ. (4.7)

From Proposition 3.6 in [9], (4.7) has a unique positive bounded solution qℓ(x) for sufficiently large
ℓ, and qℓ(x) → mint∈[0,T ] α(t) in C([−L, L]) for any L > 0 as ℓ → +∞. For any positive solution
q̂(t, x) of (4.5)θ=0, by Lemma 3.3, we have that q̂ ≥ qℓ on [0,T ] × [−ℓ, ℓ]. Letting ℓ → +∞, we get
q̂ ≥ mint∈[0,T ] α(t) > 0.

Step 2. we briefly show that (4.5)θ=0 has a minimal positive solution.
Consider the problem ∂tq = d

(∫ ℓ

−ℓ
J(x − y)q(t, y)dy − q

)
+ q(α(t) − q), 0 ≤ t ≤ T, − ℓ < x < ℓ,

q(0, x) = q(T, x), −ℓ ≤ x ≤ ℓ.
(4.8)

For sufficiently large ℓ, by Lemma 3.4(i), (4.8) admits a unique positive solution qℓ∗. By Lemma 3.3,
we can show that qℓ∗ is increasing in ℓ and qℓ∗ ≤ q̂ in [0,T ] × [−ℓ, ℓ] for any positive solution q̂(t, x) of
(4.5)θ=0 and any ℓ > 0. Thus, the limit function q∗ = limℓ→+∞ qℓ∗ is exactly a minimal positive solution
of (4.5)θ=0.

Step 3. we prove the uniqueness by using a technique introduced by Marcus and Véron [47].
Arguing indirectly, we assume that (4.5)θ=0 has a positive bounded solution q̂ such that q̂ . q∗. Then

there exists a constant k > 1 such that q∗ ≤ q̂ ≤ kq∗ in [0,T ] × R. By the strong maximum principle
(see Definition 1.4 and Theorem F in [44]), we have q∗ < q̂. Define q̄ = q∗ − (2k)−1(q̂ − q∗). By direct
calculations, we get

q∗ > q̄ ≥
k + 1

2k
q∗,

2k
2k + 1

q̄ +
1

2k + 1
q̂ = q∗. (4.9)

By the convexity of f (x) = x2 in x, we have q2
∗ ≤

2k
2k+1 q̄2 + 1

2k+1 q̂2. Then

∂tq̄ ≥ d
(∫
R

J(x − y)q̄(t, y)dy − q̄
)
+ q̄(α(t) − q̄)

≥ d
(∫ ℓ

−ℓ
J(x − y)q̄(t, y)dy − q̄

)
+ q̄(α(t) − q̄), 0 ≤ t ≤ T, x ∈ [−ℓ, ℓ],
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and q̄(0, x) = q̄(T, x) for x ∈ [−ℓ, ℓ]. By Lemma 3.3, we have that qℓ∗ ≤ q̄ in [0,T ] × [−ℓ, ℓ]. Since
qℓ∗ → q∗ in C1,0([0,T ] × [−L, L]) for any L > 0 as ℓ → +∞, it follows that q∗ ≤ q̄ in [0,T ] × R, which
contradicts (4.9). Thus, the positive solution of (4.5)θ=0 is unique.

In proving the uniqueness of the positive solution to (4.5)θ∈(0,1], we need to replace the auxiliary
problems (4.7) and (4.8) with −d

[
θ∂2

xq + (1 − θ)
(∫ ℓ

−ℓ
J(x − y)q(y)dy − q

)]
= q(mint∈[0,T ] α(t) − q), −ℓ < x < ℓ,

q(±ℓ) = 0

and 
∂tq = d

[
θ∂2

xq + (1 − θ)
(∫ ℓ

−ℓ
J(x − y)q(t, y)dy − q

)]
+q(α(t) − q), 0 ≤ t ≤ T, − ℓ < x < ℓ,

q(t,±ℓ) = 0, 0 ≤ t ≤ T,

q(0, x) = q(T, x), −ℓ ≤ x ≤ ℓ,

respectively, which have null Dirichlet boundary conditions. The proof is similar to that of the case
θ = 0. Here we omit the details.

(ii) For the case θ = 0, the proof can be seen in that of Theorem 2.3(3) in [48]. The case 0 < θ ≤ 1
can be proved similarly by using Lemma 2.3 in [49] (the comparison principle). Here we omit the
details.

Theorem 4.7. If (4.4) holds and s2,∞ − s1,∞ = +∞, then

q∗(t) ≤ lim infn→∞ u(t + nT, x) ≤ lim supn→∞ u(t + nT, x) ≤ q∗(t),
p∗(t) ≤ lim infn→∞ v(t + nT, x) ≤ lim supn→∞ v(t + nT, x) ≤ p∗(t)

uniformly in [0,T ] × [−ℓ, ℓ] for any ℓ > 0, where q∗(t), p∗(t), p∗(t) and q∗(t) are positive solutions of

dq∗

dt = q∗(a(t) − q∗), q∗(0) = q∗(T ),
dp∗

dt = p∗(b(t) − p∗), p∗(0) = p∗(T ),
dp∗
dt = p∗

(
b(t) − p∗ − d(t)q∗(t)

)
, p∗(0) = p∗(T )

and

dq∗
dt = q∗

(
a(t) − q∗ − c(t)p∗(t)

)
, q∗(0) = q∗(T ),

respectively.

Proof. In Theorem 3.2 of [32], similar results have been obtained for the random dispersal case. Since
the nonlocal dispersal is considered here, we give the details.

Step 1. For any ℓ > 0, lim supn→∞ u(t + nT, x) ≤ q∗(t) and lim supn→∞ v(t + nT, x) ≤ p∗(t) uniformly
in [0,T ] × [−ℓ, ℓ].

Let q(t, x) be the positive solution of ∂tq = d1

(∫
R

J1(x − y)q(t, y)dy − q
)
+ q(a(t) − q), t > 0, x ∈ R,

q(0, x) = ∥u0∥L∞([−s0,s0]) > 0, x ∈ R.
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By Lemma 4.6(ii), we know that limn→∞ q(t + nT, x) → q∗(t) uniformly for (t, x) ∈ [0,T ] × [−ℓ, ℓ].
Moreover, since q satisfies

∂tq ≥ d1

(∫ s2(t)

s1(t)
J1(x − y)q(t, y)dy − q

)
+ q(a(t) − q), (t, x) ∈ Ωs1,s2

∞ ,

by Lemma 2.2 in [9] we have that u ≤ q in Ωs1,s2
∞ . Thus, lim supn→∞ u(t + nT, x) ≤ q∗(t) uniformly in

[0,T ] × [−ℓ, ℓ].
Similarly, by applying Lemma 4.6(ii) and Lemma 2.2, we can prove the result for v.
Step 2. For any given ℓ > 0, lim infn→∞ v(t + nT, x) ≥ p∗(t) uniformly in [0,T ] × [−ℓ, ℓ].
By the assumption (4.4) and the fact that q∗ ≤ max[0,T ] a(t), we know that there exists ε0 > 0 such

that

bε(t) := b(t) − d(t)(q∗(t) + ε) ≥ min
[0,T ]

b(t) −max
[0,T ]

d(t) · (max
[0,T ]

a(t) + ε) > 0

for any 0 < ε ≤ ε0. For such a fixed ε, from Lemma 3.7(i) we can deduce that there exists Lε > ℓ such
that λ1(−(L̃(−l,l) + bε)) < 0 for all l ≥ Lε. Since s2,∞ − s1,∞ = +∞ and lim supn→∞ u(t + nT, x) ≤ q∗(t)
locally uniformly in [0,T ] × R, for any ε ∈ (0, ε0) and l > Lε there exists m ∈ N such that

s1(t) < −l, s2(t) > l, u(t, x) < q∗(t) + ε, ∀t ≥ mT, |x| ≤ l.

Let pεl be the unique positive solution of
∂t p = d2

[
τ∂2

x p + (1 − τ)
(∫ l

−l
J2(x − y)p(t, y)dy − p

)]
+p(bε(t) − p), t > mT, |x| < l,

p(t,±l) = 0, t > mT,

p(mT, x) = p(mT, x), |x| < l.

By the comparison principle derived from Lemma 2.2, v(t, x) ≥ pεl (t, x) for t ≥ mT and x ∈ [−l, l].
Since λ1(−(L̃(−l,l) + bε)) < 0, by Lemma 3.7(ii), we deduce that limn→∞ pεl (t + nT, x) = Pε

l (t, x) in
C1,2([0,T ] × [−l, l]), where Pε

l (t, x) is the positive solution of
∂tP = d2

[
τ∂2

xP + (1 − τ)
(∫ l

−l
J2(x − y)P(t, y)dy − P

)]
+P(bε(t) − P), 0 ≤ t ≤ T, |x| < l,

P(t,±l) = 0, 0 ≤ t ≤ T,

P(0, x) = P(T, x), |x| < l.

Since Pε
l is increasing with respect to l, we know that

lim
l→+∞

Pε
l = Pε in C1,2([0,T ] × [−ℓ, ℓ]),

where Pε is the positive solution of
∂tP = d2

[
τ∂2

xP + (1 − τ)
(∫
R

J2(x − y)P(t, y)dy − P
)]

+P(bε(t) − P), t ∈ [0,T ], x ∈ R,

P(0, x) = P(T, x), x ∈ R.
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By Lemma 4.6(i), Pε satisfies

dP
dt
= P(bε(t) − P), P(0) = P(T ).

Thus, limn→∞ v(t + nT, x) ≥ Pε(t, x) uniformly for (t, x) ∈ [0,T ] × [−ℓ, ℓ]. Letting ε → 0, we can
deduce the result.

Step 3. For any given ℓ > 0, lim infn→∞ u(t + nT, x) ≥ q∗(t) uniformly in [0,T ] × [−ℓ, ℓ].
By the assumption (4.4) and the fact that p∗ ≤ max[0,T ] b(t), we know that there exists ε1 > 0 such

that

aε(t) := a(t) − c(t)(p∗(t) + ε) ≥ min
[0,T ]

a(t) −max
[0,T ]

c(t) · (max
[0,T ]

b(t) + ε) > 0

for any 0 < ε ≤ ε1. For such a fixed ε, from Lemma 3.6 we can deduce that there exists lε > ℓ such
that λ1(−(L(−l,l) + aε)) < 0 for all l ≥ lε. Since s2,∞ − s1,∞ = +∞ and lim supn→∞ v(t + nT, x) ≤ p∗(t)
locally uniformly in [0,T ] × R, for any ε ∈ (0, ε1) and l > lε there exists m1 ∈ N such that

s1(t) < −l, s2(t) > l, v(t, x) < p∗(t) + ε, ∀t ≥ m1T, − l ≤ x ≤ l.

Let qεl be the positive solution of ∂tq = d1

(∫ l

−l
J1(x − y)q(t, y)dy − q

)
+ q(aε(t) − q), t > m1T, − l < x < l,

q(m1T, x) = u(m1T, x), −l < x < l.

Since λ1(−(L(−l,l)+aε)) < 0, by Lemma 3.4, we know that limn→∞ qεl (t+nT, x) = Qε
l (t, x) in C1,0([0,T ]×

[−l, l]), where Qε
l (t, x) is the positive solution of ∂tQ = d1

(∫ l

−l
J1(x − y)Q(t, y)dy − Q

)
+ Q(aε(t) − Q), 0 ≤ t ≤ T, − l < x < l,

Q(0, x) = Q(T, x), −l < x < l.

By Lemma 3.3, Qε
l (t, x) is increasing in l. Thus,

lim
l→+∞

Qε
l = Qε in C1,0([0,T ] × [−ℓ, ℓ]),

where Qε(t, x) is the positive solution of ∂tQ = d1

(∫
R

J1(x − y)Q(t, y)dy − Q
)
+ Q(aε(t) − Q), t ∈ [0,T ], x ∈ R,

Q(0, x) = Q(T, x), x ∈ R.

By Lemma 4.6(i), Qε satisfies

dQ
dt
= Q(aε(t) − Q), Q(0) = Q(T ).

Thus, limn→∞ u(t + nT, x) ≥ Qε(t, x) uniformly for (t, x) ∈ [0,T ] × [−ℓ, ℓ]. Letting ε → 0, we can
get the result.
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In what follows, we will provide some sufficient conditions for spreading and vanishing.

Theorem 4.8. If s2,∞ − s1,∞ < +∞, then s2,∞ − s1,∞ ≤ s∗, where |Ω| = s∗ is the unique root of
λ1(−(L̃Ω + b)) = 0 with −(L̃Ω + b) defined as in (3.8).

Proof. Assume that the conclusion is not true, there exist 0 < ε ≪ 1 and T0 ≫ 1 such that

s−ε2,∞ − s+ε1,∞ = s2,∞ − s1,∞ − 2ε > s∗ε,

s1(T0) < s+ε1,∞, s2(T0) > s−ε2,∞,

0 ≤ u < ε in [T0,+∞) × [s+ε1,∞, s
−ε
2,∞],

where |Ω| = s∗ε is the unique root of λ1(−(L̃Ω + b(t) − d(t)ε)) = 0. Then, v satisfies the following:
vt ≥ d2

[
τvxx + (1 − τ)

(∫ s−ε2,∞

s+ε1,∞
J2(x − y)v(t, y)dy − v

)]
+v(b(t) − d(t)ε − v), t > T0, x ∈ (s+ε1,∞, s

−ε
2,∞),

v(t, s+ε1,∞), v(t, s−ε2,∞) > 0, t ≥ T0,

v(T0, x) > 0, x ∈ (s+ε1,∞, s
−ε
2,∞).

Let p be the positive solution of
pt = d2

[
τpxx + (1 − τ)

(∫ s−ε2,∞

s+ε1,∞
J2(x − y)p(t, y)dy − p

)]
+p(b(t) − d(t)ε − p), t > T0, x ∈ (s+ε1,∞, s

−ε
2,∞),

p(t, s+ε1,∞) = p(t, s−ε2,∞) = 0, t ≥ T0,

p(T0, x) = v(T0, x), x ∈ (s+ε1,∞, s
−ε
2,∞).

By Lemma 2.2, we have

p ≤ v in [T0,+∞) × [s+ε1,∞, s
−ε
2,∞].

Since s−ε2,∞− s+ε1,∞ = s2,∞− s1,∞−2ε > s∗ε, we have λ1(−(L̃(s+ε1,∞,s
−ε
2,∞)+b(t)−d(t)ε)) < 0, and then Lemma

3.7(ii) implies that p(t + nT, x) → P(t, x) as n → ∞ uniformly in the compact subset of (s+ε1,∞, s
−ε
2,∞),

where P(t, x) is the positive solution of
Pt = d2

[
τPxx + (1 − τ)

(∫ s−ε2,∞

s+ε1,∞
J2(x − y)P(t, y)dy − P

)]
+P(b(t) − d(t)ε − P), t ∈ [0,T ], x ∈ (s+ε1,∞, s

−ε
2,∞),

P(t, s+ε1,∞) = P(t, s−ε2,∞) = 0, t ∈ [0,T ],
P(0, x) = P(T, x), x ∈ (s+ε1,∞, s

−ε
2,∞).

Therefore, lim infn→∞ v(t + nT, x) ≥ limn→∞ p(t + nT, x) = P(t, x) > 0 for all x ∈ (s+ε1,∞, s
−ε
2,∞).

Recall that, in Theorem 4.4, we have proved that s2,∞ − s1,∞ < +∞ implies

lim
t→+∞
∥u(t, ·)∥C([s1(t),s2(t)]) = lim

t→+∞
∥v(t, ·)∥C([s1(t),s2(t)]) = 0,

which is a contradiction. This completes the proof.
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Corollary 4.9. If s0 ≥
1
2 s∗, then spreading occurs, that is, s2,∞ − s1,∞ = +∞.

If aT ≥ d1, then Lemma 3.6 implies that λ1(−(LΩ + a)) < 0 for all ℓ := |Ω| > 0. Thus, the vanishing
can not happen by the proof of Theorem 4.4, which means that s2,∞ − s1,∞ = +∞ always holds.

Theorem 4.10. If aT ≥ d1, then spreading always happens.

On the other hand, if aT < d1, then Lemma 3.6 implies that λ1(−(LΩ + a)) > 0 for 0 < |Ω| ≪ 1,
and λ1(−(LΩ + a)) < 0 for |Ω| ≫ 1. Since λ1(−(LΩ + a)) is strictly decreasing in |Ω|, there exists some
ℓ∗ > 0 such that λ1(−(LΩ + a)) = 0 for |Ω| = ℓ∗, λ1(−(LΩ + a)) > 0 for |Ω| < ℓ∗ and λ1(−(LΩ + a)) < 0
for |Ω| > ℓ∗. From the proof of (4.3), we know that if s2,∞− s1,∞ < +∞ then s2,∞− s1,∞ ≤ ℓ

∗. Therefore,
if s0 ≥

ℓ∗

2 then we have s2,∞ − s1,∞ = +∞.

Theorem 4.11. Assume that aT < d1 and s0 < 1
2 min{ℓ∗, s∗}. Then there exists M0 > 0 such that

s2,∞ − s1,∞ < +∞ when µ + ρ1 + ρ2 ≤ M0.

Proof. Since λ1(−(L(−s0,s0) + a)) > 0, we can choose s0 < s̃0 <
ℓ∗

2 such that λ := λ1(−(L(−s̃0,s̃0) + a)) > 0.
Let φ be the eigenfunction associated with λ, and assume that φ satisfies ∥φ∥L∞([0,T ]×[−s̃0,s̃0]) = 1, that is,

−
(
L(−s̃0,s̃0) + a

)
[φ] = λφ.

Define ω(t, x) = Ke−
λt
2 φ(t, x) for some K > 0, then ω satisfies

ωt − d1

∫ s̃0

−s̃0
J1(x − y)ω(t, y)dy + d1ω − a(t)ω

= Ke−
λt
2

(
φt − d1

∫ s̃0

−s̃0
J1(x − y)φ(t, y)dy + d1φ − a(t)φ − λ

2φ
)

= 1
2λKe−

λt
2 φ > 0

in (0,+∞) × [−s̃0, s̃0]. Choose K > 0 large such that ω(0, x) = Kφ(0, x) > u0(x) in [−s̃0, s̃0]. Assume
that ū is the solution of

ūt = d1

∫ s̃0

−s̃0
J1(x − y)ū(t, y)dy − d1ū + a(t)ū, t > 0, x ∈ [−s̃0, s̃0],

ū(0, x) = u0(x), |x| ≤ s0,

ū(0, x) = 0, s0 < |x| ≤ s̃0.

Applying Lemma 3.3 in [9], we have

ū ≤ ω = Ke−
λt
2 φ ≤ Ke−

λt
2

in (0,+∞) × [−s̃0, s̃0].
On the other hand, since s0 <

s∗
2 , we have λ1(−(L̃(−s0,s0)+b)) > 0. Then, there exists 0 < ε0 ≪ 1 such

that for any 0 < ε ≤ ε0, the following eigenvalue problem has a postive principle eigenvalue λ̃1 > 0:
φt − d2

[
τφxx + (1 − τ)

(
(1 + ε)

∫
Ω

J2(x − y)φ(t, y)dy − φ
)]
− b(t)φ = λφ

in [0,T ] × (−s0, s0),
φ(t,±s0) = 0 in [0,T ],
φ(0, x) = φ(T, x) in [−s0, s0].
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Let φ̃(t, x) be the normalized eigenfunction associated with λ̃1. Since φ̃x(t, s0) < 0, φ̃x(t,−s0) > 0 in
[0,T ], we have

xφ̃x(t, x) ≤ αφ̃(t, x), ∀(t, x) ∈ [0,T ] × [−s0, s0]

with some constant α > 0.
For any (t, x) ∈ [0,+∞) × [−s(t), s(t)], we define

s(t) = s0ς(t), ς(t) = 1 + 2δ − δe−σt, v̄(t, x) = ke−σtφ̃(ξ(t), η(t, x))

with

ξ(t) =
∫ t

0
1

ς2(θ)dθ, η(t, x) = s0
s(t) x = x

ς(t) ,

where k > 0, σ > 0 and 0 < δ < 1
2 ( s̃0

s0
− 1) are positive constants to be determined later. Then, v(t, x)

satisfies

v̄t(t, x) − d2[τv̄xx + (1 − τ)(
∫ s(t)

−s(t)
J2(x − y)v̄(t, y)dy − v̄(t, x))] − v̄(t, x)(b(t) − v̄(t, x))

= ke−σt
[
− σφ̃(ξ, η) − ς′(t)

ς(t) ηφ̃η(ξ, η) + d2(1 − τ)
(

1+ε
ς2(t)

∫ s0

−s0
J2(η − η̃)φ̃(ξ, η̃)dη̃

−ς(t)
∫ s0

−s0
J2(ς(t)η − ς(t)η̃)φ̃(ξ, η̃)dη̃

)
+ d2(1 − τ)(1 − 1

ς2(t) )φ̃(ξ, η)

+( 1
ς2(t)b(ξ) − b(t))φ̃(ξ, η) + 1

ς2(t) λ̃1φ̃(ξ, η) + ke−σtφ̃2(ξ, η)
]

≥ ke−σt
[(
− σ − σα + d2(1 − τ)(1 − 1

ς2(t) ) +
1

ς2(t) λ̃1 + ( 1
ς2(t)b(ξ) − b(t))

)
φ̃(ξ, η)

+d2(1 − τ)
(

1+ε
ς2(t)

∫ s0

−s0
J2(η − η̃)φ̃(ξ, η̃)dη̃ − ς(t)

∫ s0

−s0
J2(ς(t)η − ς(t)η̃)φ̃(ξ, η̃)dη̃

)]
.

Define

G(t, ξ, η) = 1+ε
ς2(t)

∫ s0

−s0
J2(η − η̃)φ̃(ξ, η̃)dη̃ − ς(t)

∫ s0

−s0
J2(ς(t)η − ς(t)η̃)φ̃(ξ, η̃)dη̃.

Obviously, G(t, ξ, η) is a T -periodic function of ξ. Similar to the proof of Theorem 3.3 in [50], we can
show that

G(t, ξ, η) ≥ ε
ς2(t)

∫ s0

−s0
J2(η − η̃)φ̃(ξ, η̃)dη̃ − ς(t)

∫ s0

−s0

∣∣∣∣J2(η − η̃) − J2(ς(t)η − ς(t)η̃)
∣∣∣∣dη̃

−δ(δ2 + 3δ + 3).

Let

m = ε
4 minξ∈[0,T ] minη∈[−s0,s0]

∫ s0

−s0
J2(η − η̃)φ̃(ξ, η̃)dη̃ > 0.

By (K), there exists δ∗ ∈ (0, 1
2 ) such that for any 0 < δ ≤ δ∗,

ς(t)
∫ s0

−s0

∣∣∣∣J2(η − η̃) − J2(ς(t)η − ς(t)η̃)
∣∣∣∣dη̃ ≤ m

2 .

It follows that for any 0 < δ ≤ min{δ∗, m
10 },

G(t, ξ, η) ≥ 0, ∀(t, ξ, η) ∈ [0,+∞) × [0,T ] × [−s0, s0].
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By the fact that ς(t) → 1 as δ → 0, we can choose 0 < σ, δ ≪ 1 such that, for (t, x) ∈ [0,+∞) ×
(−s(t), s(t)),

v̄t(t, x) − d2[τv̄xx + (1 − τ)(
∫ s(t)

−s(t)
J2(x − y)v̄(t, y)dy − v̄(t, x))] − v̄(t, x)(b(t) − v̄(t, x))

≥ ke−σt
(
−σ − σα + 1

ς2(t) λ̃1 + ( 1
ς2(t)b(ξ) − b(t))

)
φ̃(ξ, η)

> 0.

Moreover, we choose k large enough such that

v̄(0, x) = kφ̃(0,
x

1 + 2δ
) ≥ v0(x), ∀x ∈ [−s0, s0].

Since s(t) < s0(1 + 2δ) < s̃0, we know that

ūt ≥ d1

∫ s(t)

−s(t)
J1(x − y)ū(t, y)dy − d1ū + ū(a(t) − ū), t > 0, x ∈ (−s(t), s(t)).

Note that

−v̄x(t, s(t)) = − k
ς(t)e

−σtφ̃η(ξ(t), s0) ≤ k
1−δe

−σt∥φ̃∥C1([0,T ]×[−s0,s0]),∫ s(t)

−s(t)

∫ +∞
s(t)

J2(x − y)v̄(t, x)dydx ≤ 2ks0(1 + 2δ)e−σt,∫ s(t)

−s(t)

∫ +∞
s(t)

J1(x − y)ū(t, x)dydx ≤ 2Ks0(1 + 2δ)e−
λt
2 .

Since 0 < σ ≪ 1, we may further assume that σ < λ
2 . Suppose that

0 < µ + ρ1 + ρ2 ≤
s0δσ

A

with

A := max
{

k
1−δ∥φ̃∥C1([0,T ]×[−s0,s0]), 2ks0(1 + 2δ), 2Ks0(1 + 2δ)

}
,

we have

s′(t) = s0δσe−σt ≥ A(µ + ρ1 + ρ2)e−σt

≥ k
1−δµe−σt∥φ̃∥C1([0,T ]×[−s0,s0]) + 2ks0(1 + 2δ)ρ2e−σt + 2Ks0(1 + 2δ)ρ1e−σt

≥ k
1−δµe−σt∥φ̃∥C1([0,T ]×[−s0,s0]) + 2ks0(1 + 2δ)ρ2e−σt + 2Ks0(1 + 2δ)ρ1e−

λt
2

≥ −µv̄x(t, s(t)) + ρ1

∫ s(t)

−s(t)

∫ +∞
s(t)

J1(x − y)ū(t, x)dydx

+ρ2

∫ s(t)

−s(t)

∫ +∞
s(t)

J2(x − y)v̄(t, x)dydx.

Similarly, we can prove

−s′(t) ≤ −µv̄x(t,−s(t)) − ρ1

∫ s(t)

−s(t)

∫ −s(t)

−∞
J1(x − y)ū(t, x)dydx

−ρ2

∫ s(t)

−s(t)

∫ −s(t)

−∞
J2(x − y)v̄(t, x)dydx.

Applying Lemma 3.1, we get that s2(t) ≤ s(t) and s1(t) ≥ −s(t), which implies s2,∞ − s1,∞ ≤ 2s̃0 <

+∞.
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To establish the criteria for spreading and vanishing, we give an abstract lemma which can be proved
by similar arguments as the proof of Lemma 3.2 in [51]. Here we omit the details of the proof.

Lemma 4.12. Assume that (K) holds and C ∈ R+. For any K , r0 ∈ R+ with K > r0, and any q0 ∈

C2([−r0, r0]) satisfying q0(±r0) = 0 and q0 > 0 in (−r0, r0), there exist µ0 > 0 and ρ0
2 > 0 such that if

either µ ≥ µ0 or ρ2 ≥ ρ
0
2 holds, and (q;α, β) satisfies

∂tq ≥ d2

[
τ∂2

xq + (1 − τ)
(∫ β(t)

α(t)
J2(x − y)q(t, y)dy − q

)]
−Cq, t > 0, α(t) < x < β(t),

q(t, α(t)) = q(t, β(t)) = 0, t ≥ 0,

β′(t) ≥ −µqx(t, β(t)) + ρ2

∫ β(t)

α(t)

∫ +∞
β(t)

J2(x − y)q(t, x)dydx, t ≥ 0,

α′(t) ≤ −µqx(t, α(t)) − ρ2

∫ β(t)

α(t)

∫ α(t)

−∞
J2(x − y)q(t, x)dydx, t ≥ 0,

q(0, x) = q0(x), |x| ≤ r0,

β(0) = −α(0) = r0,

(4.10)

then we have limt→+∞ α(t) ≤ −K and limt→+∞ β(t) ≥ K .

Theorem 4.13. Let |Ω| = ℓ∗ and |Ω| = s∗ be the unique roots of λ1(−(LΩ+a)) = 0 and λ1(−(L̃Ω+b)) = 0,
respectively.
(i) For d1 ≤ aT , the spreading always happens.
(ii) For d1 > aT ,

(ii.1) if s0 ≥
1
2 min{ℓ∗, s∗}, then the spreading happens;

(ii.2) if s0 <
1
2 min{ℓ∗, s∗}, then there exist M∗ > M∗ > 0 such that the vanishing happens when

µ + ρ1 + ρ2 ≤ M∗ and the spreading happens when µ + ρ1 + ρ2 ≥ M∗.

Proof. From Theorem 4.10, we can get (i). Now we consider the case d1 > aT .
(ii.1) For the case s0 ≥

1
2ℓ
∗, we have s2,∞ − s1,∞ > 2s0 ≥ ℓ∗, and then λ1(−(L(s1,∞,s2,∞) + a)) < 0.

However, from (4.3) we deduce λ1(−(L(s1,∞,s2,∞) + a)) ≥ 0 for the vanishing case. Thus, spreading
happens. If s0 ≥

1
2 s∗, then Corollary 4.9 implies that the spreading always occurs.

(ii.2) From (2.2), we have s′2(t) > −µvx(t, s2(t)) + ρ2

∫ s2(t)

s1(t)

∫ +∞
s2(t)

J2(x − y)v(t, x)dydx,

s′1(t) < −µvx(t, s1(t)) − ρ2

∫ s2(t)

s1(t)

∫ s1(t)

−∞
J2(x − y)v(t, x)dydx

and  s′2(t) > ρ1

∫ s2(t)

s1(t)

∫ +∞
s2(t)

J1(x − y)u(t, x)dydx,

s′1(t) < −ρ1

∫ s2(t)

s1(t)

∫ s1(t)

−∞
J1(x − y)u(t, x)dydx.

(4.11)

Since u, v are positive and bounded, we have

v(b(t) − v − d(t)u) ≥ −Cv

and

u(a(t) − u − c(t)v) ≥ −Cu (4.12)
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with some constant C > 0. Thus, (v; s1, s2) satisfies (4.10). For any given constant K > 1
2 min{ℓ∗, s∗},

by Lemma 4.12 there exist µ0, ρ0
2 > 0 such that

s2,∞ − s1,∞ ≥ 2K (4.13)

for any µ ≥ µ0 or ρ2 ≥ ρ
0
2. Moreover, since (u; s1, s2) satisfies (4.11) and (4.12), from Lemma 4.2 in [4]

we can deduce that there exists ρ0
1 such that (4.13) still holds for any ρ1 ≥ ρ

0
1.

Taking M0 = µ0 + ρ0
1 + ρ

0
2, by (ii.1) we know that s2,∞ − s1,∞ = +∞ for µ + ρ1 + ρ2 ≥ M0. Note that

in Theorem 4.11 we have that s2,∞ − s1,∞ < +∞ for µ+ ρ1 + ρ2 ≤ M0. Applying the continuity method,
we can get the desired results.
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