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1. Introduction

Desertification is a phenomenon that is increasing over time and causing a negative impact around
the world. This phenomenon affects a large part of the global population and has important con-
sequences for the global economy. Different institutions, such as, the United Nations, United Na-
tions Convention to Combat Desertification and National Commission for Arid Zones, have developed
strategies to combat desertification. The damage caused can be reversed and raise awareness about this
serious situation. One way to study this type of phenomenon is through mathematical models, which
have a low cost, and it is not necessary to wait years for vegetation growth.

In his paper from 1999, the American ecologist Christopher A. Klausmeier introduced the first
two-component model named after him, to describe vegetation growth in arid and semi-arid zones [1].
The Klausmeier model consists of two nonlinear differential equations with the variables ”w” and ”u”,
which denote the density of water and vegetation, respectively.

This model has been studied by several authors, including Jonathan A. Sherratt, who focused on an-
alyzing the parameter region in which vegetation patterns exist [2–4]. Some other authors have focused
on studying generalized Klausmeier models, including modified terms related to water infiltration and
functional dependence of the inertial times on vegetation biomass and soil [5] and including linear and

http://http://www.aimspress.com/journal/mbe
http://dx.doi.org/10.3934/mbe.2023734


16448

non linear diffusion of water [6].
Many natural phenomena are governed by behaviors that do not obey a model with integer deriva-

tives. An important tool for their study is fractional calculus which has gained importance in the field
of applications. Using fractional derivatives, some models have been studied and approximated more
accurately than with integer derivatives. In this direction we refer to [7], where a fractional logistic
model is considered. Other relative works include a fractional Gaussian model for the motion of elec-
trons [8], a Drude model [9] and a fractional model involving study of the tuberculosis [10]. Some
of the first and most popular fractional derivatives are the Riemann-Liouville and Caputo derivatives,
which are based on the Cauchy formula for the iterated integral.

Some other definitions of fractional derivatives are given by limits. These definitions entail per-
turbing the increment by means of certain positive functions. These types of derivatives are known as
local fractional derivatives. Given its diverse characteristics, the topic of local fractional derivatives
has been of increasing interest for mathematicians. Recently, this concept has gained much relevance.
Properties such as the Leibniz product rule, the chain rule and the quotient rule prevail, although the
memory condition inherent to the usual fractional derivatives is lost. Also, we would like to mention
that local fractional integral transforms have been introduced and studied in [11, 12].

In this paper we will work with the following generalized fractional derivative Gα
T (t,α) for α ∈ (0, 1]:

Gα
T f (t) = lim

h→0

f (t) − f (t − hT (t, α))
h

,

where T is a positive continuous function. This derivative admits some well-known local fractional
derivatives as particular cases. Here are a few examples:

i) If T (t, α) = t1−α, then we get the Khalil derivative [13].
ii) If T (t, α) = [k(t)]1−α and k : [a, b] → R is a continuous nonnegative map, then we recover the

general conformable fractional derivative defined in [14].
iii) We have the beta derivative if T (t, α) =

(
t + 1

Γ(α)

)1−α
[15].

iv) The nonconformable fractional derivative is obtained if T (t, α) = exp(t−α) [16].

One of the advantages of using this derivative Gα
T is that it allows us to vary the order and the

function T (t, α) according to the requirements of each problem. We study a generalized Klausmeier
model by focusing on the derivative Gα

T . First, we will make a qualitative analysis of the solutions
and establish stability conditions for the equilibrium points of the proposed model. Consequently, the
stability of solutions via second member variation and some classical methods will be discussed. In
the last section, an inverse problem using Bayesian inference is considered.

2. Definitions and basic properties

As mentioned in the introduction a definition of local fractional derivative, called the “ generalized
derivative” is given as follows [17].

Definition 1. Suppose that there is a real interval I, a function f : I → R, α ∈ R+ and the function
T (t, α) that is continuous and positive on the interval I; the generalized derivative, denoted as Gα

T f , of
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the function f and order α at the point t of the interval I, is defined by

Gα
T f (t) := lim

ε→0

1
εdαe

dαe∑
j=0

(−1) j

(
dαe

j

)
f
(
t − jεT (t, α)

)
. (2.1)

If a = inf{t ∈ I} (respectively, b = sup{t ∈ I}), then Gα
T f (a) (Gα

T f (b)) is defined by using ε → 0−

(ε → 0+) instead of ε → 0 in the limit.

Throughout this paper, I ⊆ R denotes a real interval and α ∈ R+. The following result in [17]
contains some basic properties of the derivative Gα

T .

Theorem 1. Let f : I → R and t0 ∈ I such that T (t0, α) , 0. The following statements hold:

i) If (Gα
1 f )(t0) exists, then f is Gα

T -differentiable at t0 and (Gα
T f )(t0) = (T (t0, α))dαe(Gα

1 f )(t0).
ii) If α is in (0, 1], then the function f is Gα

T -differentiable at the point t0 if and only if the function f
is differentiable at the point t0; in this case, we have that (Gα

T f )(t0) = T (t0, α) f ′(t0).

In [10], an integral operator JαT,a is defined as follows. Let a, t ∈ I; the integral operator JαT,a is given
as

JαT,a( f )(t) =

∫ t

a

f (ω)
T (ω, α)

dω (2.2)

for every locally integrable function f on the interval I.

Proposition 1. Let a ∈ I and α ∈ (0, 1]; then,

Gα
T
(
JαT,a( f )

)
(t) = f (t), t ∈ I

for every f that is continuous on the interval I.

Some nice generalizations have been obtained. For example, in [18] a generalized Laplace trans-
form was defined as follows. Consider the function T that is continuous and positive on the interval
(0,∞) such that it satisfies for some ε > 0 that∫ ε

0

dτ
T (τ, α)

< ∞, and
∫ ∞

0

dτ
T (τ, α)

= ∞ ∀α ∈ (0, 1];

we define a function Eα as below:

Eα(c, t) = exp
(
c
∫ t

0

dω
T (ω, α)

)
, c, t ∈ R.

Definition 2. Given 0 < α ≤ 1 and a function f : [0,∞)→ R that is measurable, then the generalized
Laplace transform of the function f is defined as follows:

LαT [ f ](s) =

∫ ∞

0
Eα(−s,T ) f (t)

dt
T (t, α)

(2.3)

if LαT [| f |](s) < ∞.

In Subsection 3.3 we also use the Padé approximants.
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Definition 3. Let
∑∞

k=0 akxk be the Maclaurin series of a function f (x) and let C ≥ 0 and D ≥ 1 be two
integers. The [C/D] Padé approximant is the following rational function:

[C/D](x) =

∑C
i=0 aixi

1 +
∑D

i=1 bixi
(2.4)

such that f ( j)(0) = {[C/D]}( j)(0), j = 0, ...,C + D. Thus

∞∑
k=0

akxk = [C/D](x) + o(xC+D+1).

3. Klausmeier model with the generalized derivative

The well-known reaction-diffusion-advection model by Klausmeier describes two-dimensional veg-
etation pattern formation as a function of the resource water. This model is given as follows:

dw
dt =

average
rainfall︷︸︸︷

a −

evaporation︷︸︸︷
bw −

absorption by
plant biomass︷︸︸︷

cu2w +

advection by
flow downhill

(surface runoff)︷︸︸︷
v
∂w
∂x

,

du
dt = −du︸︷︷︸

plant
biomass loss

+ eu2w︸︷︷︸
plant

biomass growth

+ k
(
∂2u
∂x2 +

∂2u
∂y2

)
︸           ︷︷           ︸

spread of
plants

(biomass diffusion)

.
(3.1)

Here w and u represent water density and plant biomass, respectively. In this model the constant a
represents the precipitation rate, b denotes the rate of water evaporation, c is the rate of water absorption
by vegetation and v represents the velocity of the water flowing downhill. On the other hand, d is the
mortality rate of the vegetation, e is the rate of use of the water consumed by the vegetation (e = jc,
where j is the yield of plant biomass per unit water consumed) and k represents the dispersion of the
vegetation. The simplified model with ordinary derivatives describes the dynamics between vegetation
and water, without taking into account the spatial dispersion (in the absence of advection and diffusion):

dw
dt = a − bw − cu2w,
du
dt = −du + eu2w.

(3.2)

For standard literature on the subject one may refer to the references [19–22]. The Klausmeier model
(3.2) with the generalized derivative (2.1) takes the following form:

Gα
T (t,α)w(t) = a − bw − cu2w,

Gβ
T (t,β)u(t) = −du + eu2w,

(3.3)

where α, β ∈ (0, 1]. From now on, the system (3.3) will be referred to as the “generalized Klausmeier
model”. To standardize the notation, we will use the following as the initial condition throughout the
paper: (w, u)|t=t0 = (w0, u0). The use of this generalized derivative allows us to vary T and the order in
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such a way that we can obtain some interesting properties, although in some cases the model becomes
nonautonomous. We define the region of interest of the model as follows:

γ =
{
(w, u) ∈ R2 : w > 0, u ≥ 0

}
,

and, the parameters are defined below:

Ω =
{
(a, b, c, d, e) ∈ R5 : a, b, c, d, e > 0

}
.

3.1. Nonspatial equilibria and differential flow-induced instability

A model is in a steady state if the state variables which define the behavior of the model are un-
changing in time. Patterns can arise when a homogeneous steady state is unstable. Klausmeier showed
that regular vegetation patterns in the semi-arid environments can result from traveling-wave instabil-
ity [1]. On slopes, water flow downhill causes striped patterns which move uphill and not all of the
possible patterns are stable as solutions of the system.

We will now focus on analyzing Lyapunov stability according to the first approach. A detailed
justification of the stated procedure and the claimed stability is in [23]. Unlike the Caputo derivative,
the Routh-Hurwitz stability criterion remains invariant. It should be pointed out that the following
stability analysis is essentially the same as in the classical case, but for the convenience of the reader
it was included here due to obtain some untreated conditions. Considering the regions of interest, the
equilibrium points of (3.3) are given by the solutions of the system:

a − bw − cu2w = 0, (3.4)
−du + eu2w = 0. (3.5)

The following proposition gives necessary and sufficient conditions for their existence.

Proposition 2. Given the system (3.3), the following statements hold:

i) If u = 0 there exists a unique equilibrium point

P1 =

(a
b
, 0

)
.

ii) There exist two different equilibrium points

P2 =

a +

√
a2 − 4bcd2

e2

2b
,

2db

ea + e
√

a2 − 4bc d2

e2


and

P3 =

a −
√

a2 − 4bcd2

e2

2b
,

2db

ea − e
√

a2 − 4bc d2

e2


if and only if u , 0 and a > 2d

√
bc

e .
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iii) There exists a unique equilibrium point P4 =
(

a
2b ,

2db
ea

)
if u , 0 and a = 2d

√
bc

e .

Briefly, we will show some conditions for the stability of the equilibrium points P j ( j = 1, ..., 4).
First, the Jacobian matrix of the system (3.3) is given by

J =

(
−b − cu2 −2cwu

eu2 2ewu − d

)
;

then this matrix evaluated at P1 gives us

J(P1) =

(
−b 0
0 −d

)
.

The eigenvalues of J(P1) are negative. Therefore, P1 is asymptotically stable. Now we evaluate the
system at points P2 and P3:

J(Pi) =

(
−b − cu2

i
−2cd

e
eu2

i d

)
,

where ui stands for the coordinate u associated with each equilibrium point Pi for i = 2, 3. Thus the
characteristic polynomial is given by

p(λ) = λ2 + (cu2
i + b − d)λ + (−bd + cdu2

i ),

which has the following solutions

λ± =
−

(
cu2

i + b − d
)
±

√(
cu2

i + b − d
)2
− 4

(
−db + cdu2

i

)
2

.

Now the stability depends on λ±. First, we see that if
(
cu2

i + b − d
)2
− 4

(
−db + cdu2

i

)
= 0 then

λ± =
−

(
cu2

i + b − d
)

2

which implies that Pi is asymptotically stable if

u2
i >

d − b
c

, (3.6)

and it is otherwise unstable. We can see that if
(
cu2

i + b − d
)2
− 4

(
−db + cdu2

i

)
< 0 then analogous to

the previous case, the stability conditions will be given by the condition (3.6). The last case is when(
cu2

i + b − d
)2
− 4

(
−db + cdu2

i

)
> 0; then, λ1,2 denotes different real eigenvalues. Thus if

− db + cdu2
i > 0, (3.7)

then (
cu2

i + b − d
)2
− 4

(
−db + cdu2

i

)
<

(
cu2

i + b − d
)2
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hence, √(
cu2

i + b − d
)2
− 4

(
−db + cdu2

i

)
<

∣∣∣cu2
i + b − d

∣∣∣ .
If it is also satisfied that

cu2
i + b − d > 0, (3.8)

then

−
(
cu2

i + b − d
)
±

√(
cu2

i + b − d
)2
− 4

(
−db + cdu2

i

)
< 0.

Hence Pi, i = 2, 3, will be asymptotically stable, whereas if cu2
i + b − d < 0 then both points are

unstable. Now if −db + cdu2
i < 0 we have(

cu2
i + b − d

)2
− 4

(
−db + cdu2

i

)
>

(
cu2

i + b − d
)2

;

hence, √(
cu2

i + b − d
)2
− 4

(
−db + cdu2

i

)
>

∣∣∣cu2
i + b − d

∣∣∣ .
Thus,

−
(
cu2

i + b − d
)

+

√(
cu2

i + b − d
)2
− 4

(
−db + cdu2

i

)
> 0

and

−
(
cu2

i + b − d
)
−

√(
cu2

i + b − d
)2
− 4

(
−db + cdu2

i

)
< 0,

arriving at instability of the study points. In conclusion, when the condition(
cu2

i + b − d
)2
− 4

(
−db + cdu2

i

)
> 0

is satisfied, then the points Pi, i = 2, 3, are asymptotically stable if

u2
i > max

{
d − b

c
,

b
c

}
(3.9)

is fulfilled for i = 2, 3.
Finally, we analyze point P4. We have

J(P4) =

 −b − 4c d2b2

e2a2
−2cd

e
4d2b2

ea2 2d

 ,
which has the following characteristic polynomial:

p(λ) = λ2 +

(
b − 2d +

4cb2d2

a2e2

)
λ − 2bd.

The solutions of p(λ) = 0 are

λ± =
−

(
b − 2d + 4cb2d2

a2e2

)
±

√(
b − 2d + 4cb2d2

a2e2

)2
+ 8bd

2
.
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Of course, P4 is unstable.
Turing instability is mostly studied in extended Klausmeier models in which there is diffusion

throughout the dynamics and the diffusion constants differ [24–26]. In the generalized Klausmeier
model, Turing instability is not possible because diffusion only exists in the biomass equation. How-
ever, a differential flow exists in this model with advection and diffusion. In other words, the biomass
advection and the water advection differ, which can result in instabilities. We assume small perturba-
tions:

w(t, x, y) = w∗ + w̃(t, x, y),
u(t, x, y) = u∗ + ũ(t, x, y).

Then, the following equation (3.10) describes the evolution of perturbations:Gα
T (t,α)w̃

Gβ
T (t,β)ũ

 = J
(
w̃
ũ

)
+

(
v 0
0 0

) (
∂w̃
∂x
∂ũ
∂x

)
+

(
0 0
0 k

) (
∆w̃
∆ũ

)
, (3.10)

where J is the Jacobian evaluated at the equilibrium point with pi j denoting the entries of the matrix.
Next we apply the following nonuniform exponential perturbation in time:

w̃(t, x, y) = ũ(t, x, y) = exp[r1t + r2(x + iy)], r1, r2 ∈ R.

Thus the eigenvalue equation is as follows:

|M − λI| =

∣∣∣∣∣∣p11 + vr2 − λ p12

p21 p22 − λ

∣∣∣∣∣∣ = 0,

where M denotes the system matrix. The eigenvalues λ± are given by

λ± =
tr(M) ±

√
(tr(M))2 − 4|M|

2
.

The instability now depends on the parameters v and r2 such that there exists an eigenvalue with a
positive real part. Differential flow-induced instability exists for the reference values. For example, at
equilibrium point P1 = (a/b, 0), we have

M =

(
−b + vr2 0

0 −d

)
;

therefore, if vr2 > b then P1 becomes unstable in this sense.

3.2. Stability of solutions via second member variation

We have the generalized Klausmeier model (3.3) and let us now consider the perturbed model given
by

Gα
T (t,α)w(t) = a − bw − cu2w + θ1(t,w, u),

Gβ
T (t,β)u(t) = −du + eu2w + θ2(t,w, u),

(3.11)
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where the perturbations θ1(t,w, u) and θ2(t,w, u) are continuous functions in a closed domain D. Sup-
pose that in D we have ∣∣∣∣∣θ1(t,w, u)

T (t, α)

∣∣∣∣∣ ≤ ε1,

∣∣∣∣∣θ2(t,w, u)
T (t, β)

∣∣∣∣∣ ≤ ε2

for ε1, ε2 > 0. Therefore, if (w, u) and (w̃, ũ) are solutions of models (3.3) and (3.11), respectively,
which satisfy the same initial condition

(w, u)|t=t0 = (w̃, ũ)|t=t0 = (w0, u0),

then

|w(t) − w̃(t)| ≤
ε1

M1
(exp(M1|t − t0|) − 1),

|u(t) − ũ(t)| ≤
ε2

M2
(exp(M2|t − t0|) − 1),

(3.12)

where M1 = max(t,w,u)∈D

∣∣∣∣b+cu2

T (t,α)

∣∣∣∣ and M2 = max(t,w,u)∈D

∣∣∣∣d−2euw
T (t,β)

∣∣∣∣. By (3.12), if the perturbations are suffi-
ciently small then the difference between the solutions of models (3.3) and (3.11) will be small over a
finite interval of variation of t. In this situation, the system can be seen under the action of short dura-
tion perturbations. A respective stability analysis under constant action perturbations is also available
where the results of Malkin and Duboshin can be generalized to this approach [27–29]. In general, the
latter circumstance allows us to solve approximately complicated fractional differential equations by
replacing them with rationally chosen equations. We illustrate this with a particular example.

Consider T (t, α) = exp[(α − 1)t]. We want to find in the orthohedron D = {0 ≤ t ≤ 2, 1 ≤ w ≤
2, 1 ≤ u ≤ 2} an approximate solution to the generalized Klausmeier model:

Gα
T (t,α)w(t) = 10−2(1 − 2w − u2w),

Gβ
T (t,β)u(t) = 10−2(−2u + u2w),

(w, u)|t=0 = (1.5, 1.6).

(3.13)

Let us analyze the following simple model:

Gα
T (t,α)w(t) = 10−2w,

Gβ
T (t,β)u(t) = 10−2u,

(w, u)|t=0 = (1.5, 1.6).

(3.14)

The model (3.14) has the solution

(w, u) =

(
1.5 · exp

{
0.01(exp[(1 − α)t] − 1)

(1 − α)

}
, 1.6 · exp

{
0.01(exp[(1 − β)t] − 1)

(1 − β)

})
which, for the values of 0 ≤ t ≤ 2 remains inside D. We will consider this solution as the approximate
solution of the generalized Klausmeier model (3.13) in D. We now proceed as follows:∣∣∣10−2 exp[(1 − α)t]

∣∣∣ < 10−2 exp(2),
∣∣∣10−2 exp[(1 − β)t]

∣∣∣ < 10−2 exp(2), 0 ≤ t ≤ 2;
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on the other hand we have the following in D:

10−2 · |1 − 2w − u2w − w| ≤ 0.15,
10−2 · | − 2u + u2w − u| ≤ 0.14.

Therefore

|w(t) − w̃(t)| <
15

exp(2)
{exp[0.01 exp(2)|t|] − 1} < 0.324,

|u(t) − ũ(t)| <
14

exp(2)
{exp[0.01 exp(2)|t|] − 1} < 0.302

for 0 ≤ t ≤ 2. Note that the solution of the generalized Klausmeier model (3.13) remains within D.
The error is acceptable but not desirable. The difficulty of this method lies in finding the perturbed
model that sufficiently minimizes the error in the study region.

3.3. Homotopy perturbation method

In his PhD dissertation from 1992, Liao introduced the homotopy analysis method (HAM), which
employs the definition of a homotopy to generate a convergent homotopy-Maclaurin series solution
for nonlinear systems [30]. Nowadays it is a very effective and well-known method, to such an extent
that it has been applied to Navier-Stokes equations. In 1999, He proposed the homotopy perturbation
method (HPM), which maintains the essence of the HAM [31]. Liu suggested artificial parameter
methods and Liao contributed the HAM to eliminate small parameter assumption [32–34]. He treated
two effective techniques, i.e., the variational iteration method and HPM in which no small parameter
assumptions are required [35]. A brief mathematical description of the HPM is shown below.

Consider the boundary value problem given by

D(w) − f (r) = 0, r ∈ Ω, (3.15)

E
(
w,
∂w
∂r

)
= 0, r ∈ ∂Ω, (3.16)

where D denotes a general differential operator, E represents a boundary operator and f (r) is an analytic
function. Usually, the operator D can be decomposed into two parts, i.e., a linear part denoted by L
and a nonlinear part denoted by N . Equation (3.15) may then be rewritten as follows:

L(w) +N(w) − f (r) = 0. (3.17)

We can construct a homotopyH(w̃, ρ) : Ω × [0, 1]→ R in the form of (3.17) such that it satisfies

H(w̃, ρ) = (1 − ρ)[L(w̃) − L(ŵ)] + ρ[L(w̃) +N(w̃) − f (r)] = 0, (3.18)

or equivalently
L(w̃) + (ρ − 1)L(ŵ) + ρ[N(w̃) − f (r)] = 0, (3.19)

where ŵ is an initial approximation of (3.15) in such a way that it satisfies the given boundary condi-
tions. Note that

H(w̃, 0) = L(w̃) − L(ŵ) = 0
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and
H(w̃, 1) = L(w̃) +N(w̃) − f (r) = 0,

that is, we have a homotopy between the nonlinear system and a linearization. As ρ changes from 0
to 1, w̃ changes from ŵ(r) to w(r), so one equation deforms into the other. Since ρ ∈ [0, 1] is a small
parameter, we expand w̃ in a Taylor series about ρ = 0. We have the homotopy-Maclaurin series as
follows:

w̃ = w̃0 + ρw̃1 + ρ2w̃2 + ....

Thus, the approximate solution of (3.15) may then be obtained as

w = lim
ρ→1

w̃ = w̃0 + w̃1 + w̃2 + .... (3.20)

The convergence of the series solution (3.20) has been given in [31]. The convergent rate depends upon
the nonlinear operator N(w).

Next, we apply the modified HPM [36] to solve the generalized Klausmeier model (3.3), subject to
the following initial conditions:

(w(t), u(t))|t=0 = (w0, u0). (3.21)

We construct homotopies as below:

Gα
T (t,α)w̃(t) = Gα

T (t,α)ŵ(0) + a − bw̃ + ρ[−cũ2w̃)],

Gβ
T (t,β)ũ(t) = Gβ

T (t,β)û(0) − dũ + ρ[eũ2w̃], ρ ∈ [0, 1].
(3.22)

We consider solutions of (3.22) in the series form as follows:

w̃ = w̃0 + ρw̃1 + ρ2w̃2 + ... (3.23)
ũ = ũ0 + ρũ1 + ρ2ũ2 + .... (3.24)

Then, we get

Gα
T (t,α)(w̃0 + ρw̃1 + ρ2w̃2 + ...) = Gα

T (t,α)ŵ(0) + a − b(w̃0 + ρw̃1 + ρ2w̃2 + ...)
+ρ[−c(ũ0 + ρũ1 + ρ2ũ2 + ...)2(w̃0 + ρw̃1 + ρ2w̃2 + ...)],

Gβ
T (t,β)(ũ0 + ρũ1 + ρ2ũ2 + ...) = Gβ

T (t,β)û(0) − d(ũ0 + ρũ1 + ρ2ũ2 + ...)

+ρ[e(ũ0 + ρũ1 + ρ2ũ2 + ...)2(w̃0 + ρw̃1 + ρ2w̃2 + ...)].

Hence

w̃0 = ŵ(0) + aJαT,0(1)(t) − bJαT,0(w̃0)(t)⇒ w̃0 = (w0 − a/b) exp
[
−b

∫ t

0
(T (s, α))−1ds

]
+ a/b,

ũ0 = û(0) − dJαT,0(ũ0)(t)⇒ ũ0 = u0 exp
[
−d

∫ t

0
(T (s, β))−1ds

]
,

Gα
T (t,α)(w̃1) = −bw̃1 − cũ2

0w̃0

⇒ w̃1 = exp
[
−b

∫ t

0
(T (s, α))−1ds

]
·

{∫ t

0

1
T (s, α)

[
−cu2

0(w0 − a/b) exp
(
−2d

∫ s

0
(T (v, β))−1dv

)
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−
cau2

0

b
exp

(
−2d

∫ s

0
(T (v, β))−1dv + b

∫ s

0
(T (v, α))−1dv

)]
ds

+T (0, α)(a − bw0 − cu2
0w0)

}
,

Gβ
T (t,β)(ũ1) = −dũ1 + eũ2

0w̃0

⇒ ũ1 = exp
[
−d

∫ t

0
(T (s, β))−1ds

]
·

{∫ t

0

1
T (s, β)

[
eu2

0(w0 − a/b) exp
(
−d

∫ s

0
(T (v, β))−1dv

−b
∫ s

0
(T (v, α))−1dv

)
+

eau2
0

b
exp

(
−d

∫ s

0
(T (v, β))−1dv

)]
ds

+T (0, β)(−du0 + eu2
0w0)

}
,

...

Gα
T (t,α)(w̃ j) = −bw̃ j − c


∑

0≤i<( j−1)/2

ũ2
i w̃ j−2i−1 + 2

∑
i,k

i+k< j−1

ũiũkw̃ j−i−k−1


⇒ w̃ j = −c exp

[
−b

∫ t

0
(T (s, α))−1ds

]
·


∫ t

0

exp[b
∫ s

0
(T (v, α))−1dv]

T (s, α)

 ∑
0≤i<( j−1)/2

ũ2
i w̃ j−2i−1

+2
∑

i,k
i+k< j−1

ũiũkw̃ j−i−k−1

 ds + W j

 ,

Gβ
T (t,β)(ũ j) = −dũ j + e


∑

0≤i<( j−1)/2

ũ2
i w̃ j−2i−1 + 2

∑
i,k

i+k< j−1

ũiũkw̃ j−i−k−1


⇒ ũ j = e exp

[
−d

∫ t

0
(T (s, β))−1ds

]
·


∫ t

0

exp[d
∫ s

0
(T (v, β))−1dv]

T (s, β)

 ∑
0≤i<( j−1)/2

ũ2
i w̃ j−2i−1

+2
∑

i,k
i+k< j−1

ũiũkw̃ j−i−k−1

 ds + U j

 ,
...

where W j and U j are real constants which depend on the initial conditions. Successively, w̃ j and ũ j are
found due to the recursive process in order to obtain that

w(t) =

∞∑
j=0

w̃ j(t), u(t) =

∞∑
j=0

ũ j(t). (3.25)
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Some suggestions to ensure convergence are as follows. The product of T (t, β) and the water density
w(t) must be small because the parameter ρ may be large. The norms of c(Gα

T (t,α)w + bw)−1u2 and
2e(Gβ

T (t,β)u + du)−1uw must be smaller than 1 to ensure that the series converges [31]. We truncate
the series solution (3.25) and use the k-th order of the perturbation only, such that the approximate
solutions are given by

w(t) ≈ W(t) =

k∑
j=0

w̃ j(t), u(t) ≈ U(t) =

k∑
j=0

ũ j(t). (3.26)

Now we take the generalized Laplace transform (2.3) of W(t) and U(t). The next step is to find the Padé
approximants ofLαT [W] andLαT [U]. Using the [C/D] Padé approximants with C > 0 and C +D < k+2
we will arrive at a better approximation of the solution than that achieved by truncating its series.
Finally, by applying the inverse generalized Laplace transform to the [C/D] Padé approximants, we
obtain a better approximation [36].

3.4. Adams-Bashforth formulas

The Adams-Bashforth method is an explicit linear multistep method. The Euler method is a partic-
ular case of this method. For our fractional model we have

wn+1 = wn + h(T (tn, α))−1[a − bwn − cu2
nwn]

un+1 = un + h(T (tn, β))−1[−dun + eu2
nwn].

(3.27)

The generalized Adams-Bashforth method up to four steps, is as follows:

wn+2 = wn+1 + h
[
3
2

(T (tn+1, α))−1(a − bwn+1 − cu2
n+1wn+1) −

1
2

(T (tn, α))−1(a − wn − cu2
nwn)

]
,

un+2 = un+1 + h
[
3
2

(T (tn+1, β))−1(−dun+1 + eu2
n+1wn+1) −

1
2

(T (tn, β))−1(−dun + eu2
nwn)

]
, (3.28)

wn+3 = wn+2 + h
[
23
12

(T (tn+2, α))−1(a − bwn+2 − cu2
n+2wn+2)

−
16
12

(T (tn+1, α))−1(a − bwn+1 − cu2
n+1wn+1) +

5
12

(T (tn, α))−1(a − bwn − cu2
nwn)

]
,

un+3 = un+2 + h
[
23
12

(T (tn+2, β))−1(−dun+2 + eu2
n+2wn+2)

−
16
12

(T (tn+1, β))−1(−dun+1 + eu2
n+1wn+1) +

5
12

(T (tn, β))−1(−dun + eu2
nwn)

]
, (3.29)

wn+4 = wn+3 + h
[
55
24

(T (tn+3, α))−1(a − bwn+3 − cu2
n+3wn+3)

−
59
24

(T (tn+2, α))−1(a − bwn+2 − cu2
n+2wn+2) +

37
24

(T (tn+1, α))−1(a − bwn+1 − cu2
n+1wn+1)

−
9

24
(T (tn, α))−1(a − bwn − cu2

nwn)
]
,
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un+4 = un+3 + h
[
55
24

(T (tn+3, β))−1(−dun+3 + eu2
n+3wn+3)

−
59
24

(T (tn+2, β))−1(−dun+2 + eu2
n+2wn+2) +

37
24

(T (tn+1, β))−1(−dun+1 + eu2
n+1wn+1)

−
9

24
(T (tn, β))−1(−dun + eu2

nwn)
]
. (3.30)

The Adams-Bashforth method needs more than one value when the step is greater than 1. Missing
values can be found by performing any of the above steps. For the stability analysis of these numer-
ical methods we refer the reader to [37]. These formulas will be used in the next section in some
computational algorithms.

4. Data analysis and computational statistics

In this section we will present the computational analysis for the generalized Klausmeier model.

4.1. MATLAB implementation

Using MATLAB, we have written a script to enable numerical calculation of the solution of the
generalized Klausmeier model (see Annexes). For the implementation we have used the efficient ode45
function based on the Runge-Kutta method. Some graphs of generalized models with different T
functions are shown below. An observable feature is that the models in Figures 2 and 3 resemble the
ordinary one, whereas the last model of Figure 4 with different T functions is quite pathological. Note
that in this last model with T (t, α) = (t2 + 0.01)1−α and T̃ (t, β) = (sin2 t + 0.01)1−β, the final value of w
is greater than the final value of u. Whether or not this generalized Klausmeier model in Figure 4 has
a physical or ecological interpretation is left as an open question.

4.2. Bayesian inversion

System (3.3) can be nondimensionalized to

Gα
T (t,α)w(t) = a − w − u2w,

Gβ
T (t,β)u(t) = −mu + u2w.

(4.1)

The nondimensionalized model (4.1) has only two parameters: a, which controls water input; and m,
which measures plant losses. The Bayesian approach will be used to estimate the parameters of model
(4.1). In this framework, the parameters in the model are described in terms of a probability model.
Let Y = (y1, . . . , yn)′ be a set of observations where yi = (yi1, yi2)′, which represents a solution for the
model (4.1) at the time ti for ti ∈ [0,T ], i = 1, . . . , n, with an additive error. Therefore, the observation
models can be written as

yi = η(x(ti; κ)) + εi, i = 1, 2, . . . , n,

where x(ti; κ) = (w(ti), u(ti))′ is a solution for (3.3), parameters of interest κ = (α, β, a,m)′, η denotes
the function of observation and εi represents independent Gaussian errors. These have a mean equal
to zero and covariance matrix (Σ) denoted by εi ∼ N2(0,Σ). The parameters associated with the
priori distribution are usually known as “hyperparameters”, and the distributions associated with the
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Figure 1. Klausmeier model with the parameters a = 0.80, b = 0.55, c = 0.75, d =

0.45, e = 1.00 and initial conditions (w, u)|t=0 = (0.50, 1.00).
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Figure 2. Generalized Klausmeier model with the same parameters and initial conditions as
Figure 1, but with T (t, α) = (t + 0.01)1−α for (α, β) = (0.2, 0.5).

parameters have to be chosen according to the a priori information about the possible values of the
parameters. Given the knowledge it has of the parameters, uniform distributions will be used that are
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Figure 3. Generalized Klausmeier model with the same parameters and initial conditions as
Figure 1, but with T (t, α) = exp((1 − α)t) for (α, β) = (0.2, 0.5).
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Figure 4. Generalized Klausmeier model with the same parameters and initial conditions as
Figure 1, but with T (t, α) = (t2 + 0.01)1−α for α = 0.2 and T̃ (t, β) = (sin2 t + 0.01)1−β for
β = 0.5.

non-informative. Specifically, α ∼ U(0, 1), β ∼ U(0, 1), a ∼ U(0, 2), m ∼ U(0, 2) and U denotes the

Mathematical Biosciences and Engineering Volume 20, Issue 9, 16447–16470.



16463

uniform distribution; then, the joint a priori distribution can be written as

p(κ) = p(α)p(β)p(a)p(m).

Hence, the likelihood function is given by

L(κ | Y) =
|Σ|−n/2

(2π)n exp
[
−

1
2

n∑
i=1

(yi − η(x(ti; κ)))′Σ−1(yi − η(x(ti; κ)))
]
,

and the posterior distribution using Bayes theorem is calculated as

π(κ | Y) =
L(κ | Y)p(κ)∫

Θ
L(κ | Y)p(κ) dκ

, (4.2)

where Θ denotes the parameter space of κ. The denominator in (4.2) just scales the posterior density to
make it a suitable density, and the sampling density is proportional to the likelihood function. Bayes
theorem is usually stated as follows:

π(κ | Y) ∝ L(κ | Y)p(κ).

The posterior distribution is usually approximated by sampling posterior draws of κ from π(κ | Y) by
using a Markov Chain Monte Carlo (MCMC) algorithm [38] through the use of the JAGS package [39]
in R software. The posterior distribution can be used with the objective to obtain some estimates
associated with the parameters of the model and credibility intervals.

4.2.1. Model checking

Evaluating the efficiency of a proposed model is essential, especially for Bayesian data analyses.
Any meaningful Bayesian study must include some validation of the fit of the model to the data.
Different tools are available for this purpose. In this work we use posterior predictive model checking
(PPMC), a popular Bayesian model-checking tool suggested by [40] to calculate model data fit. PPMC
can provide some graphical or numerical assurance about the model misfit. This method compares
the observed data with the replicated data that are generated by the model. If we find systematic
differences between the simulations and the data, then this would indicate potential flaws in the model.
A discrepancy measure is defined to make the comparison between the model and data, and it is a
scalar summary of the parameters and data. An important issue to consider is the choice of discrepancy
measure. Here, we apply the observed score distribution (OSD) that was applied in this context in [41].
This discrepancy measure is given by

OS D =

m∑
i=1

[yi − E(yi)]2

E(yi)
,

where yi denotes the value of total biomass production or precipitations and E is the expected value
of yi. Also we take into account the DIC, that is, the deviance information criterion in the model
selection, which can provide a dependable criterion of out-of-sample efficiency; also, it is simple to
compute given samples from the posterior distribution of the model parameters. The DIC combines
a measure of the goodness of fit and a measure of model complexity. Models with a smaller DIC are
favored over models with a larger DIC [42].
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4.2.2. A real data example

For this comparison study, a site was selected in Somalia with coordinates
(8◦08′26′′N; 47◦21′47′′E), which is located in the Haud pastoral region. This site mainly in-
cludes banded vegetation and has a ground slope near 0%. The vegetation is mainly perennial grass,
which typically has an average lifetime of 1-7 years [43]. The Food and Agriculture Organization
(FAO) portal to monitor water productivity through open access of remotely sensed derived data
(WaPOR) provides data for precipitation (w) and total biomass production (u) annually [44]. We used
a set of data from 2009 to 2022 for these parameters at the selected point (see Figures 5 and 6).
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Figure 5. Precipitation.
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Figure 6. Total biomass production.

Four models of system (4.1) were analyzed. Model I corresponds to the ordinary model. Model
II was studied with T (t, α) = t1−α, while Model III was analyzed with T (t, α) = exp(t−α). Finally,
Model IV was developed with T (t, α) = exp((α − 1)t). For each model, using the solutions of the
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direct problem given by any of the formulas of the Adams-Bashforth method, as described by (3.27)-
(3.28)-(3.29)-(3.30), the likelihood functions were obtained. The MCMC method through the JAGS
package within R software was used to get the posterior distributions for each parameter of interest.
Specifically, two chains were used, each with 10000 iterations, and the first 100 were discarded; then,
19800 posterior samples were generated to get the summary statistics associated with the parameters
of interest. Standard convergence diagnostics were performed; for example, the value of Rhat for each
parameter of interest was quite close to 1 for all models considered. The parameter estimation for each
model is shown in Table 1, where MOD is an abbreviation for the mean orthogonal distance.

In Figures 7 and 8, we show estimations, where the gray band is a 90% probability interval (that
is, 90% of the total chains obtained are shown) and the blue line corresponds to the mean (estimated
prediction). As we can see, only the graphs of Model II are shown; this is because this is the one with
the best results.

Table 1. Parameter estimation for each model.

Models

Parameters I II III IV

α – 0.552 0.499 0.498
β – 0.547 0.497 0.497
a 1.003 1.489 1.498 1.504
m 0.983 1.472 1.482 1.488
DIC 135.71 135.72 135.71 135.69
MOD (precipitation) 44.19 41.03 41.07 42
MOD (biomass) 2.68 2.69 2.69 2.83
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Figure 7. Prediction of precipitation for Model II with a 90% probability interval.

A simulation of 1000 replicated data points was conducted based on the marginal distribution for
each parameter of interest. To evaluate the fit of each model, PPMC was applied. The values of the
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Figure 8. Prediction of total biomass production for Model II with a 90% probability interval.

discrepancy measure OSD were calculated and, from this, the MODs from the line of 45◦ to the points
given by the OSDs were calculated. A quantitative measure of the fit was provided via the MOD
(included in Table 1). A large value of the MOD suggests bad fit of the model to the data. The MOD
values indicate that all models fit the biomass data better than the precipitation data.

5. Conclusions

In this work we studied a generalized Klausmeier model by focusing on the local fractional deriva-
tive Gα

T (t,α). First, a stability analysis was performed by considering the Lyapunov approximation and
the method of variation of the second members. The instability of the system induced by the differ-
ential flow was studied, as well as the HPM. Adams-Bashforth formulas were given for this fractional
context. Subsequently, an inverse problem based on real data in a region of Somalia was solved by
considering different functions of T (t, α). As a result, it was obtained that for the data set considered,
the model with the best fit was Model II associated with the function T (t, α) = t1−a, which corresponds
to the conformable fractional derivative named after Khalil. In general, the different models consid-
ered fitted the data associated with plant biomass well; however, less favorable results were obtained
for precipitation. We conclude with a number of open questions that will guide our future research.
These include the following:

1. What would happen if other functions were considered and would some indicators improve?
2. How can we find a function that fits much better to the data studied?
3. In our study we considered T to be equal for both environmental condition cases but with different
α; could it improve some results to vary T in the simulations?

4. What interesting facts would be found if extended Klausmeier models were generalized by global
or hybrid derivatives?

All of these questions allow us to go deeper into these more general systems.
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MATLAB script for the nonspatial generalized Klausmeier model
%% MATLAB SCRIPT FOR SOLVING THE NONSPATIAL GENERALIZED KLAUSMEIER MODEL

function gklausmeier

global a b c d e

%% Parameters

a= ; % Enter a value for a

b= ; % Enter a value for b

c= ; % Enter a value for c

d= ; % Enter a value for d

e= ; % Enter a value for e

%% Initial conditions

u_0 = ; % Enter a value for u at t=0

w_0 = ; % Enter a value for w at t=0

%% Function T(t,alpha)

T_1= ; % Enter function T(t,alpha)

T_2= ; % Enter function T(t,beta)

%% Solve system

tmax = 15;

[T,Y] = ode45(@gklausmeier,[0 tmax],[u_0 w_0]); %%ode45 is based on an explicit Runge-Kutta formula,

the Dormand-Prince pair. In general, ode45 is the best function to apply as a first try for most

problems.

u = Y(:,1);

w = Y(:,2);

%% Plot results

figure;

subplot(3,1,1);

plot(T,u,’green’);

xlabel(’Time, t’);

ylabel(’Vegetation biomass’);

title(strcat(’Final values: u=’,num2str(u(end)),’ w=’,num2str(w(end))));

subplot(3,1,2);

plot(T,w,’blue’);

xlabel(’Time, t’);

ylabel(’Water density’);

subplot(3,1,3);

plot(T,u,’green’,T,w,’blue’);

xlabel(’Time, t’);

ylabel(’Dynamics’);

%% Function gklausmeier

function dy = gklausmeier(t,r)

global a b c d e

dy = zeros(2,1);

dy(1) =(T_2)ˆ(-1)*[-d*r(1)+e*r(1)*r(1)*r(2)];

dy(2) =(T_1)ˆ(-1)*[a-b*r(2)-c*r(1)*r(1)*r(2)];
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