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Abstract: To address the issues of unstable, non-uniform and inefficient motion trajectories in 
traditional manipulator systems, this paper proposes an improved whale optimization algorithm for 
time-optimal trajectory planning. First, an inertia weight factor is introduced into the surrounding prey 
and bubble-net attack formulas of the whale optimization algorithm. The value is controlled using 
reinforcement learning techniques to enhance the global search capability of the algorithm. 
Additionally, the variable neighborhood search algorithm is incorporated to improve the local 
optimization capability. The proposed whale optimization algorithm is compared with several 
commonly used optimization algorithms, demonstrating its superior performance. Finally, the 
proposed whale optimization algorithm is employed for trajectory planning and is shown to be able to 
produce smooth and continuous manipulation trajectories and achieve higher work efficiency. 
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1. Introduction 

Manipulators are multi-degree-of-freedom robots capable of autonomous operation and task 
execution. They have been utilized in fields including manufacturing, medical care and aerospace [1]. 
These manipulators operate autonomously and perform tasks efficiently. In manufacturing, 
manipulators streamline production, handle materials and ensure consistent quality. In medical care, 
they enable precise and minimally invasive surgeries, leading to faster recovery and improved 
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outcomes. Aerospace benefits from manipulators for assembling and maintaining components in 
challenging environments. However, as industrial level and job requirements continue to increase, the 
performance requirements for manipulators in various industries are becoming increasingly stringent. 
As a result of these requirements, several experts and scholars have dedicated a lot of time and effort 
to researching issues such as trajectory planning, path planning [2] and tracking control [3] of 
manipulators [4]. 

An important aspect of manipulator design is trajectory planning. It holds the key to minimizing 
operation time, reducing energy consumption and maximizing productivity. In manufacturing, 
optimized trajectory can streamline production processes and improve overall efficiency. In medical 
applications, precise trajectory planning allows for minimally invasive procedures with enhanced 
patient safety. Similarly, in aerospace, accurate trajectory planning ensures smooth and agile 
movements in challenging environments. It can be divided into multi-objective trajectory planning and 
single-objective trajectory planning. The planning of single-objective trajectory is mainly concerned 
with time, energy [5] and impact [6], while multi-objective trajectory planning combines multiple 
single-objective goals to meet different working environments [7,8]. Time-optimal trajectory planning 
is a crucial focus of current research due to its profound impact on manipulator performance. By 
enabling manipulators to complete tasks in the shortest possible time, this optimization technique 
significantly improves work efficiency, leading to enhanced productivity and reduced operational costs. 
With industries seeking streamlined processes and faster task execution, time-optimal trajectory 
planning plays a pivotal role in maximizing the potential of manipulators, making it a critical area of 
exploration and innovation in the field. 

The paper [9] proposes an adaptive cuckoo algorithm, which has good convergence and 
convergence ability and combines with a quintic B-spline curve to obtain a smooth time-optimal 
trajectory. The paper [10] combines the original teaching-learning-based optimization algorithm with 
the variable neighborhood search (VNS) algorithm to improve escape ability from local optima and 
combines with a quintic B-spline curve to obtain time-optimal trajectory for the manipulator. The 
paper [11] proposes a local chaotic particle swarm optimization (PSO) algorithm, which solves the 
problem of early convergence into local optima in traditional particle swarm algorithm and combines 
with piecewise polynomial interpolation function to generate time-optimal trajectory. The paper [12] 
proposes an improved sparrow search algorithm, which uses tent chaotic mapping to optimize the 
generation of initial population, combines with an adaptive step factor to make the algorithm have 
good convergence effect and finally obtains a good operating trajectory. 

In 2016, Mirjalili proposed a novel intelligent optimization algorithm known as whale 
optimization algorithm (WOA). Compared with other optimization algorithms such as the PSO, 
cuckoo search and genetic algorithm, the WOA has the advantages of fast convergence speed, simple 
algorithm and high convergence accuracy. These features make it an ideal choice for time-optimal 
trajectory planning in manipulators. The WOA exhibits rapid convergence, allowing the discovery of 
global optima within a limited number of iterations, thus reducing computation time. Additionally, its 
high accuracy ensures that planned trajectories closely approximate optimal solutions. In the context 
of time-optimal trajectory planning, precise trajectories are crucial for efficient manipulator motion. 
By improving the WOA, we can effectively address challenges in time-optimal trajectory planning, 
leading to improved motion efficiency and better alignment with industrial application requirements. 
The paper [13] proposed an improved whale optimization algorithm (IWOA), which designed dynamic 
inertia weights for two behaviors by improving the contraction-expansion mechanism and the spiral 
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updating mechanism, thus enhancing the search ability of the algorithm. However, it was observed that 
in later stages, the algorithm tended to get trapped in local optima. In paper [14], a multi-strategy 
whale optimization algorithm (MSWOA) was proposed, which incorporated adaptive weights, Lévy 
flight and evolutionary population dynamics to enhance the algorithm’s search capability. However, 
it was found that the algorithm failed to converge to the global optimum in some test functions. The 
paper [15] proposed a modified whale optimization algorithm (MWOA) that employs probabilistic 
prey selection and adjusts the initialization of the population and the search strategy during the 
development phase to reduce the likelihood of getting trapped in local optima, thereby enhancing the 
algorithm's robustness. Nevertheless, the algorithm exhibits a relatively high time complexity while 
tackling optimization problems. Although all of these algorithms have achieved good results, they may 
not perform well in some target optimization problems. 

Therefore, this study presents an enhanced version of the whale optimization algorithm 
(RLVWOA) that combines reinforcement learning and the VNS algorithms. First, an inertia weight is 
designed for the surrounding prey and bubble-net attack behavior of whales and the control weight 
value is optimized using the q-learning and SARSA algorithms to enable each generation of 
populations to obtain suitable inertia weight, thereby enhancing the global search capability of the 
algorithm. Then, combined with the VNS algorithm, the local search capability of the algorithm is 
improved through continuous neighborhood search. Compared to the standard WOA, the RLVWOA 
can adaptively control surrounding prey and bubble-net attack behaviors and with the assistance of VNS 
algorithm, it can effectively escape from local optima, thereby achieving robust search capabilities. 
Finally, the RLVWOA is used in conjunction with a quintic non-uniform B-spline (NURBS) curve to 
perform time-optimal trajectory planning for the manipulator and its feasibility is verified in MATLAB. 

The primary contribution of this study lies in the development of the RLVWOA algorithm, which 
innovatively integrates reinforcement learning algorithm and VNS algorithm. This integration leads to 
substantial performance improvements and presents an enhanced solution for the time-optimal 
trajectory planning problem in manipulators. The proposed enhancements significantly accelerate 
convergence and optimize the algorithm's capabilities, while mitigating the risk of getting trapped in 
local optima, thereby facilitating the discovery of more efficient trajectory paths. Consequently, this 
paper introduces a novel method for manipulator trajectory planning, leading to heightened work 
efficiency and smoother operations and exhibiting promising prospects for widespread application 
across various industries, encompassing manufacturing, medical care and aerospace. 

The subsequent sections of this paper are organized as follows: Section 2 introduces the basic 
concepts of NURBS interpolation. Section 3 provides an overview of WOA, reinforcement learning 
and VNS algorithms. In Section 4, the proposed method for improving the WOA is described and a 
comparison between the RLVWOA and other commonly used single-objective algorithms is conducted 
on test functions. Section 5 focuses on the modeling of the PUMA560 robotic arm and compares the 
trajectory planning results obtained using the RLVWOA and traditional single-objective algorithms. The 
final section highlights the contribution of this study and suggests potential directions for future work. 

2. Interpolation function 

2.1. Basic concepts of NURBS curves 

The NURBS interpolation is a widely used curve or surface fitting technique, which is also widely 
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used in the manipulator trajectory planning. Compared with traditional B-spline curves, NURBS 
curves have greater flexibility and accuracy and can better fit complex curve shapes. Based on the 
mathematical model of control points and nodes, it can generate smooth and continuous trajectories. 
By optimizing the weight of control points and the distribution of nodes, the optimal manipulator 
trajectory planning can be achieved, thereby improving the accuracy and efficiency of the manipulator. 
Using the NURBS interpolation for trajectory planning can help solve complex manipulator motion 
problems, while also improving the reliability and stability of the manipulator. A k-th NURBS curve 
can be expressed as a segmented rational polynomial function [16], as shown in Eq (1). 
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Where the weight factor of the NURBS curve is denoted by ω, di is the control vertex of the 
NURBS curve, k is the degree of the NURBS curve, x is the parameter of the NURBS curve and Ni,k(x) 
is the basis function of the k-th NURBS curve. Here, Ni,k (x) can be obtained by the De Boor-Koch 
formula from the node vector X = [x0, x1, ⸱⸱⸱, xn+k, xn+k+1], as shown in Eqs (2) and (3) and 0/0 is defined 
as 0 [17]. 
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The NURBS interpolating curve is defined by the control points di (i = 0, 1, 2, ⸱⸱⸱, n), where n = 
m + k + 1. The normalized knot vector has the form x0 = x1 = ⸱⸱⸱ = xk = 0, xn+1 = xn+2 = ⸱⸱⸱ = xn+k+1 = 1  
and the other knot values can be obtained by normalizing the time interval hi between the path points 
by employing the chord length parameterization method [18], as shown in Eq (4): 
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2.2. The quintic NURBS curve matrix 

The equation for calculating the derivative of a NURBS curve of degree k is expressed by Eq (5) [19]: 
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According to Eq (6): 
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It can be derived that when solving for NURBS curves with n + 1 unknowns, four boundary 
conditions need to be added to ensure a unique solution to the equation system. Therefore, according 
to the actual motion conditions of the manipulator, the following four boundary conditions are added 
as shown in Eq (7): 
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Where v and a represent the angular velocity and angular acceleration of the manipulator. 
Substituting Eq (7) into Eq (1), the matrix equation for solving all control points can be obtained as 
shown in Eq (8). 
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Where Mi = [Ni,5(x), Ni+1,5(x), Ni+2,5(x), Ni+3,5(x), Ni+4,5(x)], i = 2, 3, ⸱⸱⸱, n–2, x corresponds to the time 
associated with X, M1 = [-1 1 0 ⸱⸱⸱ 0 0 0], Mn-1 = [0 0 0 ⸱⸱⸱ 0 -1 1], M0 = [1 0 0 ⸱⸱⸱ 0 0 0], Mn = [0 0 0 ⸱⸱⸱ 
0 0 1], Q1 = Qn-1 = 0, all other variables are known data points. 

The joint motion trajectory angle curves of the manipulator can be obtained using Eq (1). By 
using Eq (5) to solve the derivatives of the curve equation up to the third order, the angular velocity, 
angular acceleration and angular jerk curves for each joint can be acquired. 

3. Basic algorithms 

3.1. Whale optimization algorithm 

In 2016, Mirjalili et al. proposed the WOA, which is a recently developed metaheuristic search 
algorithm. The authors studied and analyzed the optimization ability of WOA from different 
perspectives such as structure and mathematical models. Experimental results showed that WOA not 
only has strong search ability and positive feedback, but also can achieve global optimization [20].  

The most remarkable feature of a humpback whale is its sociality. Typically, a group of six or so 
humpback whales search for prey and confirm the target’s position. Other groups of whales approach 
the prey through encircling contraction and spiral contraction and eventually succeed in eating the prey 
at the appropriate time. The algorithm consists of the following three stages: 

(1) Surrounding prey 
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It is assumed that the optimal solution corresponds to the position of the target prey in the WOA. 
Each whale updates its relative position with respect to the target position using Eqs (9) and (10): 

( ) ( )*D C X t X t= ´ -                              (9) 

( ) ( )1X t X t A D+ = - ´                            (10) 

In these two equations, X* (t) represents the best position, X (t) represents the present position and 
t represents the present iteration. A and C are adjustment factors, defined as: 

12A a rand a= ⋅ -                               (11) 

22C rand= ⋅                                   (12) 

where, rand1 and rand2 are random values uniformly distributed between 0 and 1 and a is a 
decreasing factor with a gradual reduction from 2 to 0, represented as: 

max

2
2

t
a

t
= ´                                    (13) 

In the equation, tmax represents the maximum number of iterations. 
(2) Bubble-net attack 
In the WOA, the bubble-net attack is categorized into the contraction and encirclement 

mechanism and the spiral updating mechanism. The contraction and encirclement mechanism is the 
same as the formula for surrounding the prey, but with the range of A changed from [–a,a] to [–1,1]. 
The spiral updating mechanism is represented by Eq (14): 

( ) ( ) ( )*1 cos 2bl
qX t X t D e lq p+ = +                      (14) 

Here, l is a random number between –1 and 1. The constant b is used to represent the logarithmic 
spiral shape. Dq represents the distance between the whale and the prey, which is expressed by Eq (15). 

( )*( )qD X t X t= -                              (15) 

Assuming that a whale chooses between the shrink-wrap and spiral update mechanisms with a 
probability of 50% during the hunting of a target prey, the position update is given by the Eq (16). 
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(3) Searching for prey 
The whale decides to use the shrink and encircle mechanism or search for prey mechanism based 

on the size of parameter A. When A ≥ 1, the whale cannot obtain the optimal position of the prey and 
therefore needs to randomly search for the target within its range, as expressed in Eqs (17) and (18). 

( ) ( )mD C X t X t= ⋅ -
                            (17) 
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( ) ( )1 mX t X t A D+ = - ⋅                            (18) 

3.2. Reinforcement learning algorithm 

The reinforcement learning algorithm is proposed by Misky in 1954, which mainly consists of 
agent, environment, state, action and reward components [21]. 

Reinforcement learning is a type of machine learning algorithm inspired by biology that aims to 
learn through experimentation within the possible state-action pairs to find a mapping from states to 
actions that maximizes the cumulative reward [22]. In reinforcement learning, an agent interacts with 
its environment by exploring and making decisions based on the present state. The agent first explores 
and observes the current state St, then makes an action decision actiont based on the perceived current 
state. The environment changes its state from St to St+1 in response to the agent's action and returns a 
reward (or punishment) signal rt to the agent. The agent adjusts its action decisions based on the reward 
feedback from the environment and trains itself to maximize current and future rewards. This process 
is called a Markov decision process. The basic principle is shown in the Figure 1. 

 

Figure 1. The basic principle of reinforcement learning. 

Q-learning and SARSA are both value-based reinforcement learning algorithms. Their goal is to 
find the optimal policy by learning and optimizing the value function. Q-learning algorithm is an 
offline learning algorithm based on a greedy strategy, which learns the optimal value function by 
updating the state-action pairs. At each time step, the agent observes the current state and selects the 
next action based on the current policy function and value function. The agent then observes the next 
state St+1 and receives the corresponding immediate reward rt. On the other hand, SARSA algorithm 
is an online learning algorithm, which selects the next action and learns based on the current state and 
policy function. Therefore, SARSA’s learning process is a continuous and constantly updated process, 
which can dynamically adapt to changes in the environment [23]. Specifically, the value function 
update formula for Q-learning and SARSA are as shown in Eqs (19) and (20): 
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( ) ( ) ( ) ( ), , ', ' ,Q s a Q s a r Q s a Q s aa gé ù¬ + + -ë û                 (20) 

In these equations, Q(s,a) represents the value function of taking action in state S, α is the learning 
rate, γ is the discount factor, r is the immediate reward and 

max
'a  is the operation of taking the maximum 

value among all possible action’ in the next state S’. 

3.3. Variable neighborhood search algorithm 

The VNS algorithm is a heuristic optimization algorithm based on neighborhood search that can 
effectively solve many complex optimization problems. The original proposal of the algorithm can be 
attributed to Mladenovic and Hansen. It has gained extensive utilization in subsequent research 
endeavors [24]. The principle of the VNS algorithm is to search on different neighborhood structures 
and gradually approach the optimal solution by continuously expanding or reducing the neighborhood 
structure. During the search process, the VNS algorithm jumps out of local optimal solutions and seeks 
better solutions. 

The main steps of the VNS algorithm are as follows: 
Step 1. Initialization: Randomly generate an initial solution and set the initial neighborhood 

structure. 
Step 2. Neighborhood structure: Generate new solutions by changing the current neighborhood 

structure. In each neighborhood structure, define a set of operations, such as insertion, deletion, 
exchange, etc., to generate new solutions. 

Step 3. Neighborhood search: Search in the current neighborhood structure to find the best 
solution. If a better solution is found, go to Step 4. Otherwise, go to Step 5. 

Step 4. Neighborhood expansion: Expand the neighborhood structure to better search for possible 
solutions. 

Step 5. Neighborhood contraction: Contract the neighborhood structure to better search for 
possible solutions. 

Step 6. Convergence check: Check if the algorithm has converged. If not, go back to Step 2. 
Otherwise, output the optimal solution. 

The core idea of VNS algorithm is to continuously expand and contract the neighborhood 
structure to better search for possible solutions. In each neighborhood structure, a set of operations is 
defined and the best solution is selected based on greedy strategy. 

4. Improved algorithm 

The three behaviors of the WOA have a crucial impact on finding the optimal position, while the 
value of the inertia weight also plays a vital role in the optimization and search capability of the 
algorithm. The IWOA with dynamic inertia weight proposed in paper [13] introduces an inertia weight 
value in the surrounding prey and bubble-net attack behaviors, as shown in Eqs (21) and (22). Although 
this accelerates the convergence speed and improves the convergence capability of the algorithm, the 
inertia weight value is simply linearly decreased based on the current iteration, which may not be 
suitable for the current population. Therefore, this paper improves the IWOA algorithm by using 
reinforcement learning to optimize the control of the inertia weight value, making it more suitable for 
the current population and enhancing the convergence speed and optimization capability of the 
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algorithm. Additionally, the VNS algorithm is introduced to improve the local search capability of the 
algorithm and obtain better optimal solutions. 

( ) ( )1X t X t A Dw+ = ´ - ´                           (21) 

( ) ( ) ( )*1 cos 2bl
qX t X t D e lw q p+ = ´ +                       (22) 

4.1. The design of the Q-table 

The initial Q-table is a zero matrix of size m × n, where m is the number of states and n is the 
number of actions. When the environment and actions change, the Q-table is updated according to Eqs 
(19) and (20), as shown in Eq (23). 
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According to the results proposed in [25], SARSA algorithm has faster convergence rate, while 
Q-learning has better overall performance. Moreover, [23] has verified that the combination of SARSA 
and Q-learning algorithms yields better convergence. The algorithm presented in this study utilizes 
both Q-learning and SARSA algorithms. However, it employs them at separate stages, as illustrated in 
Eq (24), where tmax represents the total number of iterations. 
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4.2. The design of the states 

To ensure that the WOA obtains better optimization capability and faster convergence speed with 
appropriate inertia weight values, the state design of the reinforcement learning algorithm needs to be 
considered. The design of the state should take into account the convergence, diversity and balance of 
the WOA. Therefore, the following aspects are taken into account in the design of the state: 
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1 2 3t t t tS C D Bw w w= + +                           (28) 

In this equation, t represents the iteration number of the algorithm, f (xi 
t) represents the fitness 

function value of the i-th individual in the t-th iteration and Ct represents the ratio of the sum of 
fitness values of all individuals in the t-th iteration to that in the initial iteration, which reflects the 
convergence of the algorithm. Dt represents the ratio of the maximum fitness value of the t-th 
generation to that of the first generation, which reflects the diversity of the algorithm. Bt represents 
the ratio of the mean value to the standard deviation of each generation, which reflects the balance 
of the population in each generation. Equation (28) calculates the state value of each generation by 
weighted sum. Considering the importance of convergence and diversity of the algorithm, ω1 and ω2 
are set to 0.35 and ω3 is set to 0.3. 

4.3. The design of the actions 

Action refers to the agent’s response, which is determined by the present state. With each 
successive population iteration, the agent selects suitable inertial weight values based on the 
environment. Larger values of ω may cause the algorithm to be trapped in a local optimal solution, 
while smaller values may affect the algorithm’s global search ability. Therefore, ω is defined as 10 
actions between (0–1), where the first action, a1, generates a random number from (0.0–0.1) and the 
second action, a2, generates a random number from (0.1–0.2) and so on. The detailed action values are 
shown in the Table 1. 

Table 1. The table of actions. 

Actions ω ranges Actions ω ranges 

1a
 

( )0.0 0.1-  
6a ( )0.5 0.6-  

2a
 

( )0.1 0.2-  
6a ( )0.6 0.7-  

3a
 

( )0.2 0.3-  
7a ( )0.7 0.8-  

4a
 

( )0.3 0.4-  
9a ( )0.8 0.9-  

5a
 

( )0.4 0.5-  
10a ( )0.9 1.0-  

4.4. The design of the rewards 

The agent does not choose actions on its own, but selects the appropriate action based on the Q-
table and the current state, in order to obtain more positive feedback. Designing a reward function as 
shown in Eq (29) can simultaneously take into account the convergence, diversity and balance of the 
algorithm, making the algorithm more capable of searching. The goal of this paper is to minimize the 
function value and the smaller state value, the better the performance of the algorithm. Therefore, when 
St-1 is greater than St, the reward is positive, otherwise it is negative. 
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1t tr S S-= -                                 (29) 

4.5. Action selection strategy 

When the algorithm starts, the values in the Q-table are initialized to zero, which means the agent 
has no experience to rely on and must explore and learn by experience. By continuously investigating 
unknown environments, the agent gains more experience, it learns valuable knowledge to inform its 
actions. The ε-greedy strategy is a method that balances exploration and exploitation, as shown in 
Eq (30). 
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π                       (30) 

Where ε represents the greedy rate and the value of k0-1 is a randomly generated number within 
the range of 0 to 1. When ε ≥ k, the agent chooses the action that maximizes the Q value, also known 
as the greedy strategy. When ε < k, exploration is performed and a random action is chosen. 

4.6. The design of neighborhoods 

The objective of this paper is to minimize the optimization problem. Therefore, the design of the 
VNS aims to expedite the discovery of the global minimum by exploring various neighborhoods. The 
three neighborhoods are designed as follows: 

1) Randomly choose a variable and reduce its value through a certain amount. 
2) Randomly choose a variable and multiply it through a generated number within the range of 

0 to 1. 
3) Randomly select two variables and swap their positions. 

4.7. The algorithm processes 

The combination of reinforcement learning algorithm, the VNS algorithm and the WOA requires 
considering reward, state, action and action selection strategy. The WOA is treated as the environment 
and the state S is calculated based on Eq (28) and at each iteration, St is updated to St+1. The learning 
component comprises the agent and the reward r. The entire procedure can be divided into four 
sequential steps. To begin with, the agent obtains the environment state St for the t-th iteration, then 
chooses action based on the Eq (30) and adjusts ω value. The WOA will iterate using the updated ω. 
After completing one iteration, the environment state will transition from St to St+1. Lastly, the reward 
r is calculated based on the Eq (29) and the Q-table value is updated by Eq (19) or Eq (20). After t 
iterations, the agent will select optimal ω based on prior exploration experience for the current state. 
The algorithm flowchart of the RLVWOA is shown in Figure 2. 



16315 

Mathematical Biosciences and Engineering  Volume 20, Issue 9, 16304–16329. 

 

Figure 2. The flowchart of RLVWOA. 
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4.8. Comparative validation 

To verify the feasibility of the RLVWOA, twenty standard benchmark functions were selected for 
testing [26], as shown in Table 2 and compared with the reptile search algorithm (RSA) [27], snake 
optimization (SO) [28], WOA, IWOA, MSWOA and MWOA. To ensure the fairness of the experiment, 
using the same computer, the population number of all algorithms N = 30, dimension D = 30, number 
of iterations tmax = 300 and other parameter settings for each algorithm are shown in Table 3. 

Table 2. The table of testing functions. 

Function 

types 

Test functions Dimension Range Optimal 

value 

Unimodal 

test 

functions 

2
1

1

( )
n

iF x x=å  
— 

[ ]100,100-  
0 

2
11

( )
n n

i i
ii

F x x x
==

= +å   
— 

[ ]10,10-  
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2

3
1 1

( )
n n

i
i i

F x x
= =

æ ö÷ç ÷= ç ÷ç ÷çè øå å  
— 

[ ]100,100-  
0 

{ }4 ( ) max , 1i
i

F x x i n= - < <  
— 

[ ]100,100-  
0 

( ) ( )
2 22

5 1
1

( ) 100 1
n

i i i
i

F x x x x+
=

é ù= - + -ê úë ûå  
— 

[ ]30,30-  
0 

[ ]( )2

6
1

( ) 0.5
n

i
i

F x x
=

= +å  
— 

[ ]100,100-  
0 

[ )4
7 1

1

( ) 0,1
n

i

F x ix random
=

= +å  
— 

[ ]1.28,1.28-  
0 

Multimoda

l test 

functions 

( )2
8

1

( ) 10cos 2 10
n

i i
i

F x x xp
=

é ù= - +ê úë ûå  
— 

[ ]5.12,5.12-
0 

2
9

1 1

1 1
( ) 20exp 0.2 exp cos(2 ) 20

n n

i i
i i

F x x x e
n n

p
= =

æ ö æ ö÷ç ÷ç÷ç ÷=- - - + +ç÷ç ÷÷ ç ÷çç ÷ è øçè ø
å å  

— 
[ ]32,32-  

0 

( )2
10

11

1
( ) cos / 1

4000

n n

i i
ii

F x x x i
==

= - +å   
— 

[ ]600,600-  
0 

( ) ( ) ( ) ( )

( )

1
2 22

11 1
1

1

( ) 10sin 1 1 10sin 1 1

,10,100,4

n

i i n
i

n

i
i

F x y y y y
n

u x

p
p p

-

=

=

ì üï ïï ïé ù= + - + + + +í ýê úë ûï ïï ïî þ

+

å

å

( )
( )

( )

1
1 , , , , 0

4

m

i i

i
i i i

m
ii

k x a x a
x

y u x a k m a x a

x ak x a

ìï - >ïï+ ïï= + = - £ £íïïï <-- -ïïî

 

— 
[ ]50,50-  
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( ) ( ) ( ){ } ( )22 2
12 1

1

( ) 0.1 sin 3 1 1 sin 2 ,5,100,4
n

i n i
i

F x x x x u xp p
=

é ù= + - + +ê úë û å
— 

[ ]50,50-  
0 

Continued on next page
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Function 

types 

Test functions Dimension Range Optimal 

value 

Fixed-

dimension 

test 

functions 

( )
1125 2 6

13
1 1

1
( )

500 i ij
j i

F x j x a

--

= =

æ öæ ö ÷ç ÷ ÷çç ÷= + + + ÷çç ÷ ÷ç ÷çç ÷è ø ÷çè ø
å å  

2 
[ ]65,65-  

0.998 

( )
2

211
1 2

14 2
1 3 4

i

i
i i i

x b b x
F a

b b x x=

é ù+ê ú= -ê ú+ +ê úë û
å  

4 
[ ]5,5-  

0.0003 

2 4 6 2 4
15 1 1 1 1 2 2 2

1
( ) 4 2.1 4 4

3
F x x x x x x x x= - + + - +  

2 
[ ]5,5-  

-1.0316 

( ) ( )

( ) ( )

2 2 2
16 1 2 1 2 1 2 2

2 2 2
1 2 1 1 2 1 2 2

( ) 1 1 19 14 3 14 6 3

30 2 3 18 32 12 48 36 27

F x x x x x x x x x

x x x x x x x x

é ù= + + + - + - + + ´ê úë û
é ù+ - ´ - + + - +ê úë û

2 
[ ]2,2-  

3 

( )
4 3 2

17
1 1

( ) expi i j ijij
i j

F x c a x p
= =

æ ö÷ç ÷ç= - - ÷ç ÷÷çè ø
å å  

3 
[ ]0,1  

-3.86 

( )
4 6 2

18
1 1

( ) expi i j ijij
i j

F x c a x p
= =

æ ö÷ç ÷ç= - - ÷ç ÷÷çè ø
å å  

6 
[ ]0,1  

-3.32 

( )( )
15

19
1

( )
T

i i i
i

F x X a X a c
-

=

é ù=- - - +ê úë ûå  
4 

[ ]0,10  
-10.1532

( )( )
110

20
1

( )
T

i i i
i

F x X a X a c
-

=

é ù=- - - +ê úë ûå  
4 

[ ]0,10  
-10.5363

Table 3. The parameter settings for each algorithm. 

Algorithms Parameters 

RSA e1 = 0.1, e2 = 0.005  

SO c1 = 0.5, c2 = 0.05, c3 = 2, Q = 0.25, Temp = 0.6 

WOA — 

IWOA — 

MSWOA y = 4, z = 0.152 

MWOA CF1 = 2.5, CF2 = 1.5 

RLVWOA ε = 0.6, α = 0.06, γ = 0.85 

Each testing function is run 30 times using each algorithm separately. The comparative results are 
shown in Table 4 and the time it takes for each algorithm is shown in Table 5. The highlighted section 
denotes the algorithms that achieved the highest performance for each testing function. 
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Table 4. The comparative results of testing functions. 

Test 

functions 

Statistical 

value 

RSA SO WOA IWOA MSWOA MWOA RLVWO

A 

F1 Optimal 

value 

0.0000E

+00 

1.0594E-

57 

1.6733E-

50 

2.8101E-

230 

4.5054E-

96 

4.5421E-

269 

0.0000E

+00 

Worst value 0.0000E

+00 

6.7824E-

53 

3.5706E-

42 

5.9480E-

195 

2.4253E-

88 

8.4466E-

263 

0.0000E

+00 

Mean value 0.0000E

+00 

4.4717E-

54 

1.7604E-

43 

2.1211E-

196 

2.5366E-

89 

7.4316E-

264 

0.0000E

+00 

Ranking 1 6 7 4 5  3 1 

F2 Optimal 

value 

0.0000E

+00 

6.7589E-

24 

6.1016E-

35 

4.1921E-

118 

1.4205E-

50 

7.8666E-

139 

0.0000E

+00 

Worst value 0.0000E

+00 

1.1900E-

20 

4.9976E-

29 

1.2704E-

99 

6.4475E-

48 

2.2239E-

135 

0.0000E

+00 

Mean value 0.0000E

+00 

1.5326E-

21 

3.8624E-

30 

5.9705E-

101 

9.1358E-

49 

2.7283E-

136 

0.0000E

+00 

Ranking 1 7 6  4 5 3 1 

F3 Optimal 

value 

0.0000E

+00 

1.5654E-

40 

3.0269E+

04 

0.0000E+0

0 

8.2776E-

86 

1.9469E-

232 

0.0000E

+00 

Worst value 0.0000E

+00 

1.4045E-

29 

1.3224E+

05 

1.6452E-

183 

1.7716E-

81 

1.3811E-

223 

0.0000E

+00 

Mean value 0.0000E

+00 

4.9159E-

31 

6.6117E+

04 

5.4841E-

185 

1.3149E-

82 

5.2984E-

225 

0.0000E

+00 

Ranking 1 6 7 4 5 3 1 

F4 Optimal 

value 

0.0000E

+00 

3.7028E-

25 

1.0335E+

01 

1.6630E-

112 

6.5323E-

44 

2.9568E-

121 

0.0000E

+00 

Worst value 0.0000E

+00 

2.4937E-

22 

8.7564E+

01 

5.4242E-

88 

1.7391E-

42 

3.1038E-

119 

0.0000E

+00 

Mean value 0.0000E

+00 

6.6951E-

23 

5.7219E+

01 

1.8081E-

89 

5.5798E-

43 

1.0369E-

119 

0.0000E

+00 

Ranking 1 6 7 4 5 3 1 

F5 Optimal 

value 

9.9963E-

30 

7.2091E-

02 

2.7728E+

01 

2.6948E+0

1 

6.5759E-

03 

2.8496E+0

1 

2.0736E

+01 

Worst value 9.0000E

+00 

2.8977E+

01 

2.8784E+

01 

2.7906E+0

1 

2.8705E+0

1 

2.8809E+0

1 

2.3765E

+01 

Mean value 9.1487E-

01 

2.3869E+

01 

2.8424E+

01 

2.7481E+0

1 

1.1391E+0

0 

2.8723E+0

1 

2.2540E

+01 

Ranking 1 4 6 5 2 7 3 

F6 Optimal 

value 

7.6409E-

01 

4.6424E-

03 

2.2133E-

01 

7.5193E-

02 

8.9967E-

05 

6.1511E-

01 

1.1161E-

04 

Worst value 2.5000E

+00 

7.3794E+

00 

1.4996E+

00 

2.8020E-

01 

5.8065E-

03 

3.3575E+0

0 

3.1061E-

04 

Continued on next page
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Test 

functions 

Statistical 

value 

RSA SO WOA IWOA MSWOA MWOA RLVWO

A 

 Mean value 2.1743E

+00 

4.4086E+

00 

7.9930E-

01 

1.4466E-

01 

1.7009E-

03 

1.3112E+0

0 

1.8950E

-04 

 Ranking 6 7 4 3 2 5 1 

F7 Optimal 

value 

1.0110E-

05 

6.2095E-

05 

1.4119E-

04 

7.0811E-

06 

1.7239E-

07 

3.7601E-

06 

2.2875E-

06 

Worst value 6.2927E-

04 

1.1254E-

03 

1.5898E-

02 

6.5371E-

04 

1.0118E-

03 

4.5397E-

04 

7.1596E-

04 

Mean value 1.5921E-

04 

4.5255E-

04 

6.0256E-

03 

1.8576E-

04 

2.4335E-

04 

1.0148E-

04 

1.0593E-

04 

Ranking 3 6 7 4 5 1 2 

F8 Optimal 

value 

0.0000E

+00 

7.2065E-

08 

0.0000E+

00 

0.0000E+0

0 

0.0000E+0

0 

0.0000E+0

0 

0.0000E

+00 

Worst value 0.0000E

+00 

5.3511E+

01 

5.6843E-

14 

0.0000E+0

0 

0.0000E+0

0 

0.0000E+0

0 

0.0000E

+00 

Mean value 0.0000E

+00 

1.1389E+

01 

3.7896E-

15 

0.0000E+

00 

0.0000E+0

0 

0.0000E+0

0 

0.0000E

+00 

Ranking 1 7 6 1 1 1 1 

F9 Optimal 

value 

4.4409E-

16 

3.9968E-

15 

4.4409E-

16 

4.4409E-

16 

4.4409E-

16 

4.4409E-

16 

4.4409E-

16 

Worst value 4.4409E-

16 

3.9968E-

15 

1.4655E-

14 

4.4409E-

16 

4.4409E-

16 

4.4409E-

16 

4.4409E-

16 

Mean value 4.4409E-

16 

3.9968E-

15 

5.5363E-

15 

4.4409E-

16 

4.4409E-

16 

4.4409E-

16 

4.4409E

-16 

Ranking 1 6 7 1 1 1 1 

F10 Optimal 

value 

0.0000E

+00 

0.0000E+

00 

0.0000E+

00 

0.0000E+0

0 

0.0000E+0

0 

0.0000E+0

0 

0.0000E

+00 

Worst value 0.0000E

+00 

0.0000E+

00 

1.1102E-

16 

0.0000E+0

0 

0.0000E+0

0 

0.0000E+0

0 

0.0000E

+00 

Mean value 0.0000E

+00 

0.0000E+

00 

3.7007E-

18 

0.0000E+

00 

0.0000E+0

0 

0.0000E+0

0 

0.0000E

+00 

Ranking 1 1 7 1 1 1 1 

F11 Optimal 

value 

2.2137E-

01 

3.6574E-

05 

1.2078E-

02 

2.8349E-

03 

1.7022E-

05 

2.0941E-

02 

3.1591E-

06 

Worst value 2.6507E

+00 

1.6389E+

00 

1.0512E-

01 

1.4901E-

02 

8.5385E-

04 

2.4330E-

01 

9.2504E-

06 

Mean value 8.9943E-

01 

2.6277E-

01 

3.4739E-

02 

8.4345E-

03 

2.5276E-

04 

9.2786E-

02 

5.9142E

-06 

Ranking 7 6 4 3 2 5 1 

F12 Optimal 

value 

2.2126E-

32 

1.8618E-

04 

1.4283E-

01 

5.6834E-

02 

4.2010E-

05 

3.6647E-

01 

4.5057E-

05 

Continued on next page
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Test 

functions 

Statistical 

value 

RSA SO WOA IWOA MSWOA MWOA RLVWO

A 

 Worst value 4.8668E-

31 

2.9991E+

00 

1.6724E+

00 

4.2908E-

01 

5.9192E-

02 

1.2855E+0

0 

1.3373E-

04 

 Mean value 1.4798E-

31 

1.1562E+

00 

7.3644E-

01 

2.0608E-

01 

1.1832E-

02 

7.1408E-

01 

8.3747E-

05 

 Ranking 1 7 6 4 3 5 2 

F13 Optimal 

value 

1.9928E

+00 

9.9800E-

01 

9.9800E-

01 

9.9800E-

01 

9.9800E-

01 

9.9801E-

01 

9.9800E-

01 

Worst value 1.2671E

+01 

5.9288E+

00 

1.0763E+

01 

1.0763E+0

1 

5.9288E+0

0 

1.2671E+0

1 

9.9800E-

01 

Mean value 4.5384E

+00 

1.2678E+

00 

4.1024E+

00 

2.4429E+0

0 

2.0692E+0

0 

8.3489E+0

0 

9.9800E

-01 

Ranking 6 2 5 4 3 7 1 

F14 Optimal 

value 

4.8810E-

04 

3.0861E-

04 

3.2189E-

04 

3.1045E-

04 

3.1720E-

04 

3.6499E-

04 

3.0749E-

04 

Worst value 7.8796E-

03 

1.6236E-

03 

1.7046E-

02 

7.2231E-

04 

2.2520E-

03 

1.7160E-

03 

3.0767E-

04 

Mean value 2.8231E-

03 

6.6713E-

04 

1.2266E-

03 

4.2590E-

04 

8.5203E-

04 

7.0167E-

04 

3.0755E

-04 

Ranking 7 3 6 2 5 4 1 

F15 Optimal 

value 

-

1.0316E

+00 

-

1.0316E+

00 

-

1.0316E+

00 

-

1.0316E+0

0 

-

1.0316E+0

0 

-

1.0316E+0

0 

-

1.0316E

+00 

Worst value -

1.0284E

+00 

-

1.0316E+

00 

-

1.0316E+

00 

-

1.0305E+0

0 

-

1.0159E+0

0 

-8.6893E-

01 

-

1.0316E

+00 

Mean value -

1.0308E

+00 

-

1.0316E+

00 

-

1.0316E+

00 

-

1.0314E+0

0 

-

1.0309E+0

0 

-9.8871E-

01 

-

1.0316E

+00 

Ranking 6 1 1 4 5 7 1 

F16 Optimal 

value 

3.0000E

+00 

3.0000E+

00 

3.0000E+

00 

3.0000E+0

0 

3.0000E+0

0 

3.0033E+0

0 

3.0000E

+00 

Worst value 3.0038E

+01 

3.0000E+

00 

3.0023E+

00 

3.0171E+0

0 

3.0304E+0

1 

3.5457E+0

1 

3.0000E

+00 

Mean value 3.9019E

+00 

3.0000E+

00 

3.0002E+

00 

3.0026E+0

0 

4.0003E+0

0 

1.0559E+0

1 

3.0000E

+00 

Ranking 5 1 3 4 6 7 1 

F17 Optimal 

value 

-

3.8469E

+00 

-

3.8628E+

00 

-

3.8628E+

00 

-

3.8628E+0

0 

-

3.8627E+0

0 

-

3.8589E+0

0 

-

3.8628E

+00 

Continued on next page
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Test 

functions 

Statistical 

value 

RSA SO WOA IWOA MSWOA MWOA RLVWO

A 

 Worst value -

3.5478E

+00 

-

3.8628E+

00 

-

3.7247E+

00 

-

3.8137E+0

0 

-

3.8557E+0

0 

-

3.6536E+0

0 

-

3.8628E

+00 

 Mean value -

3.7333E

+00 

-

3.8628E+

00 

-

3.8442E+

00 

-

3.8547E+0

0 

-

3.8601E+0

0 

-

3.7973E+0

0 

-

3.8628E

+00 

 Ranking 7 1 5 4 3 6 1 

F18 Optimal 

value 

-

3.0478E

+00 

-

3.3220E+

00 

-

3.3211E+

00 

-

3.3209E+0

0 

-

3.1360E+0

0 

-

3.1751E+0

0 

-

3.3220E

+00 

Worst value -

1.8405E

+00 

-

3.2031E+

00 

-

2.6337E+

00 

-

3.0740E+0

0 

-

2.9754E+0

0 

-

2.2517E+0

0 

-

3.3218E

+00 

Mean value -

2.6054E

+00 

-

3.3101E+

00 

-

3.1984E+

00 

-

3.2688E+0

0 

-

3.0962E+0

0 

-

2.8468E+0

0 

-

3.3219E

+00 

Ranking 7 2 4 3 5 6 1 

F19 Optimal 

value 

-

5.0552E

+00 

-

1.01532E

+01 

-

1.01524E

+01 

-

1.01413E+

01 

-

1.01138E+

01 

-

9.2944E+0

0 

-

1.01532

E+01 

Worst value -

5.0552E

+00 

-

5.31481E

+00 

-

5.04992E

+00 

-

5.03683E+

00 

-

2.61764E+

00 

-

3.9793E+0

0 

-

1.01526

E+01 

Mean value -

5.0552E

+00 

-

9.77132E

+00 

-

8.03439E

+00 

-

6.67967E+

00 

-

7.17146E+

00 

-

5.1171E+0

0 

-

1.01531

E+01 

Ranking 7 2 3 5 4 6 1 

F20 Optimal 

value 

-

5.5591E

+00 

-

1.05364E

+01 

-

1.05345E

+01 

-

1.04907E+

01 

-

1.05289E+

01 

-

7.1999E+0

0 

-

1.05363

E+01 

Worst value -

3.7343E

+00 

-

6.54959E

+00 

-

1.67406E

+00 

-

5.11187E+

00 

-

1.78908E+

00 

-

3.3409E+0

0 

-

1.05360

E+01 

Mean value -

5.0964E

+00 

-

1.02217E

+01 

-

5.79879E

+00 

-

6.34792E+

00 

-

6.78931E+

00 

-

4.6944E+0

0 

-

1.05363

E+01 

Ranking 6 2 5 4 3 7 1 

Average 

Ranking 

— 3.8 4.1 5.3 3.45 3.55 4.4 1.2 
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Table 5. Running time of each algorithm. 

Test functions Time (s) 

RSA SO WOA IWOA MSWOA MWOA RLVWOA 

F1 9.818  1.752   2.041 3.072  4.564  3.546  14.695  

F2 9.979  1.794  2.019  3.082  4.819  3.658  14.800  

F3 10.546  3.332  3.490  7.229  7.320  5.454  20.511  

F4 9.971  1.764  1.980  4.029  5.785  3.511  13.810  

F5 10.075  1.924  2.319  3.392  5.076  4.121  15.345  

F6 10.033  1.828  2.006  4.006  4.953  3.115  13.733  

F7 9.987   2.478 2.834  5.110  5.794  3.865  16.430  

F8 9.278  1.935  1.994  3.122  4.686  3.003  14.002  

F9 9.729  1.866  2.208  3.412  4.812  2.975  15.349  

F10 9.752  2.039  2.311  3.431  4.945  3.125  15.627  

F11 10.455   3.903 4.068  9.475  8.052  5.587  29.518  

F12 10.441  3.993  4.385  9.268  8.362  5.425  31.904  

F13 9.827  1.906  4.268  12.157  10.361  7.023  36.858  

F14 8.317  1.803  1.913  2.936  4.805  3.239  13.105  

F15 7.399  1.749  1.822  2.901  4.773  3.137  13.653  

F16 6.383  1.906  1.748  2.680  4.868  3.093  13.247  

F17 7.347  1.703  1.905  3.211  4.890  3.268  15.777  

F18 8.991  2.081  2.052  3.558  4.909  3.259  16.998  

F19 9.334  2.042  2.100  3.489  5.234  3.404  16.633  

F20 9.502  2.280  2.231  4.294  5.536  3.678  17.137  

Total 187.164  37.697  45.673  90.462  104.786  77.486  332.294  

According to the results from Table 4 and Table 5, although RLVWOA exhibits longer running 
time and fails to converge to the theoretical optimal values on some test functions such as F5, F6 and 
F9, it demonstrates relatively better convergence accuracy and attains the best mean ranking. For the 
sake of brevity, this paper only presents the convergence figures of F1, F4, F9, F12, F17 and F20, 
which include two unimodal test functions, two multimodal test functions and two fixed-dimension 
test functions. To make these figures more intuitive, we use the same initial population and set tmax = 50. 

As shown in the Figure 3, although RLVWOA requires more running time, it demonstrates better 
convergence performance, enabling faster convergence compared to other algorithms. Therefore, it 
fully demonstrates that the RLVWOA, which combines the reinforcement learning algorithm and the 
VNS algorithm, can solve the unstable optimization performance of the WOA well. 
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(a) The result of F1  (b) The result of F4 

  

(c) The result of F9 (d) The result of F12 

  

(e) The result of F17 (f) The result of F20 

Figure 3. Convergence capability comparison figures. 

5. Simulation 

5.1. Model establishment 

The problem of time-optimal trajectory planning for manipulators can be likened to solving a 
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constrained optimization problem to find the minimum value. It heavily relies on the algorithm’s 
search capability to navigate through the vast solution space and identify the optimal trajectory that 
minimizes the completion time while satisfying the constraints imposed by the manipulator’s dynamics 
and task requirements. The efficiency of the optimization algorithm plays a pivotal role in achieving 
time-optimal solutions, ensuring the manipulator’s swift and precise execution of tasks in various 
industrial applications. To facilitate better understanding and avoid the need to learn about different 
manipulator structures, this paper chooses to use the common PUMA560 manipulator as the model for 
trajectory planning. Its modified D-H parameters and kinematic constraints are shown in Tables 6 
and 7, respectively. 

Table 6. The modified D-H parameters of PUMA560. 

Joint θi (°) αi-1 (°) αi-1 (mm) di (mm) Variable Range (°) 

1 90 0 0 0 -160~160 

2 0 -90 0 149.09 -225~45 

3 -90 0 431.8 0 -45~225 

4 0 -90 20.32 433.07 -110~170 

5 0 90 0 0 -100~100 

6 0 -90 0 0 -266~266 

Table 7. The kinematic constraints parameters of PUMA560. 

Joint 1 2 3 4 5 6 

Angular velocity V(°/s) 100 95 100 150 130 110 

Angular acceleration A(°/s2) 45 40 75 70 90 80 

Angular jerk J(°/s3) 60 60 55 70 75 70 

The goal of this paper is to find the time-optimal trajectory for the manipulator. Therefore, the 
fitness function of the algorithm is defined as depicted in Eq (31): 

( )
10

1
1

i i
i

f t t -
=

= -å                               (31) 

In the Eq (31), f denotes the overall execution duration of the manipulator and ti represents the 
time to reach the i-th path point.  

Based on the data in Tables 6 and 7, The selected path points that satisfy the kinematic constraints 
are shown in Table 8. Based on these path points, by substituting it into Eq (1) and Eq (31), the time-
optimal trajectory planning for the manipulator is conducted. 
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Table 8. The table of path points. 

Path points Position of each joint (°) 

1 2 3 4 5 6 

1 10 –10 –30 –25 20 0 

2 22 –30 –10 –45 0 15 

3 45 –45 10 –60 –20 30 

4 65 –60 30 –50 –40 40 

5 40 –70 40 –40 –55 55 

6 25 –45 60 –20 –40 70 

7 15 –25 60 0 –25 90 

8 0 0 75 5 –30 100 

9 –10 10 85 15 –45 105 

10 –20 25 90 20 –60 120 

5.2. Trajectory planning 

The time-optimal trajectory planning for the manipulator using the RLVWOA is conducted. In 
order to further validate the performance of the algorithm, the RSA, SO, WOA, IWOA, MSWOA and 
MWOA algorithms are also utilized for the trajectory planning of the manipulator. Each algorithm 
utilizes the same number of iterations T = 300 and population size N = 30, while other specific 
parameters are taken from the data presented in Table 3. The specific results are shown in Table 9, 
where the results obtained by the RLVWOA are highlighted in bold. The convergence comparison 
figure is shown in Figure 4. 

Table 9. The table of path points. 

Path points Time (s) 

RSA SO WOA IWOA MSWOA MWOA RLVWOA 

1 0.000  0.000 0.000 0.000 0.000 0.000  0.000 

2 1.844  1.762 2.097 1.771 1.868 1.982  1.694 

3 2.840  2.563 4.599 2.656 2.685 3.249  2.423 

4 4.266  3.650 5.451 4.419 3.733 4.765  3.722 

5 5.437  4.947 8.860 5.310 5.346 6.687  4.885 

6 6.923  6.142 10.253 8.119 6.682 8.175  6.195 

7 8.013  7.405 12.134 9.429 7.995 9.526  7.195 

8 9.145  8.497 13.608 10.941 9.055 11.065  8.350 

9 9.994  9.108 14.375 12.691 10.133 11.899  9.008 

10 11.899  10.956 17.763 14.513 12.167 13.798  10.767 
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Figure 4. The convergence comparison figure. 

(a) Angular displacement curve (b) Angular velocity curve 

(e) Angular velocity curve (d) Angular jerk curve 

Figure 5. Trajectory curve graphs. 
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Based on the data in Table 9 and Figure 4, it can be observed that the RLVWOA achieves superior 
results in terms of obtaining the shortest running trajectory for the manipulator. The RLVWOA, 
compared to the standard WOA, achieves a reduction of 39.39% and compared to other improved 
WOAs achieve a minimum reduction of 11.51%. Additionally, the RLVWOA demonstrates faster 
convergence speed, further validating its superior search capability as proposed in this paper. The 
trajectory planning plot is depicted in the Figure 5. 

According to Figure 5, all curves are uniform, continuous and devoid of any abrupt changes. 
Furthermore, they adhere to the kinematic constraints outlined in Table 7. Therefore, it can be 
concluded that the RLVWOA is capable of obtaining a superior time-optimal trajectory. 

6. Conclusions 

This paper proposes an improved RLVWOA that combines reinforcement learning to enhance 
global search capability and introduces VNS algorithm to improve local search capability. A 
comparison with other algorithms demonstrates the superior performance of RLVWOA. Subsequently, 
the RLVWOA is employed in conjunction with the quintic NURBS for trajectory planning of the 
manipulator. The result is a smooth, uniform and continuous trajectory, which outperforms the results 
obtained by other optimization algorithms in terms of reduced the manipulator operation time. 

The main contribution of this paper is the proposal of an improved RLVWOA that exhibits 
superior search capability compared to other algorithms. However, there are still some issues that need 
to be addressed in future work. This paper only combines reinforcement learning algorithms. It would 
be worthwhile to explore the use of deep learning algorithms such as deep q-learning network (DQN) 
algorithm, deep deterministic policy gradient (DDPG) algorithm and twin delayed deep deterministic 
policy gradient (TD-3) algorithm as potential alternatives. Additionally, while the introduction of the 
VNS algorithm has improved the search capability, it has also increased the algorithm’s runtime 
significantly. Future work could involve redesigning more suitable neighborhoods or adding 
termination thresholds to control the runtime of the algorithm. 
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