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Abstract: The purpose of infrared and visible image fusion is to integrate the complementary informa-
tion from heterogeneous images in order to enhance their detailed scene information. However, existing
deep learning fusion methods suffer from an imbalance between fusion performance and computational
resource consumption. Additionally, fusion layers or fusion rules fail to effectively combine heteromodal
feature information. To address these challenges, this paper presents a novel algorithm called infrared
and visible image fusion network base on fast edge convolution (FECFusion). During the training phase,
the proposed algorithm enhances the extraction of texture features in the source image through the
utilization of structural re-parameterization edge convolution (RECB) with embedded edge operators.
Subsequently, the attention fusion module (AFM) is employed to sufficiently fuze both unique and
public information from the heteromodal features. In the inference stage, we further optimize the
training network using the structural reparameterization technique, resulting in a VGG-like network
architecture. This optimization improves the fusion speed while maintaining the fusion performance. To
evaluate the performance of the proposed FECFusion algorithm, qualitative and quantitative experiments
are conducted. Seven advanced fusion algorithms are compared using MSRS, TNO, and M3FD datasets.
The results demonstrate that the fusion algorithm presented in this paper achieves superior performance
in multiple evaluation metrics, while consuming fewer computational resources. Consequently, the
proposed algorithm yields better visual results and provides richer scene detail information.
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1. Introduction

As an image enhancement technology, image fusion is utilized to combine images captured by
different types of sensors or under distinct shooting settings, aiming to obtain images with more
comprehensive scene representation information [1]. Among various applications of image fusion,
infrared and visible image fusion serves as a typical example. Infrared images are captured using
infrared sensors, relying on thermal radiation. They are characterized by prominent targets, minimal
environmental influence, high imaging noise and blurred details [2]. On the other hand, visible images
exhibit rich texture details, high resolution and sensitivity to lighting conditions [3]. Image fusion
enables the integration of unique and shared information from both modalities to generate fused images
with enhanced texture and salient targets. These fused images play a crucial role in subsequent high-level
vision tasks such as semantic segmentation [4] and nighttime vehicle target detection [5].

The research on infrared and visible image fusion has led to the development of various traditional
methods that have been proposed [6–10]. These methods are often highly interpretable but rely on
hand-designed fusion rules, which can limit their performance when dealing with more complex scene
fusion tasks. However, with the advancements in deep learning, an increasing number of deep learning
methods are being applied to image fusion tasks [11–15]. Deep networks exhibit strong capabilities in
characterizing image features, surpassing the limitations of traditional feature extraction methods. They
adopt a data-driven approach, enabling end-to-end generation of fused images.

In order to enhance the performance metrics of fusion, many existing deep learning-based fusion
methods incorporate complex network modules that require more storage and computational resources
to achieve improved performance metrics. For instance, Long et al. [16] proposed a network that
aggregates residual dense blocks, combining dense connected blocks with residual connected blocks.
Pu et al. [17] introduced a complex contextual information perceptual module for image reconstruction.
Xu et al. [18] employed dissociative representation learning in an auto-encoder-based approach. These
methods have demonstrated performance improvements in fusion results; however, they also introduce
greater computational complexity due to the inclusion of complex modules in the network.

Furthermore, existing fusion algorithms often employ fusion layers that incorporate intricate fusion
modules or fusion rules, with the primary aim of improving evaluation metrics. However, these
algorithms often overlook the characteristics of different modalities. Notably, auto-encoder-based
methods [18–21] utilize hand-designed fusion strategies for combining depth features. The use of
such hand-designed fusion strategies may not assign proper weights to the depth features, leading to
limitations in the performance of the fusion methods.

Currently, there is a lack of research on lightweight fusion models, which aim to reduce model parameters
and convolutional depth channels. One example is PMGI [22], which performs information extraction through
gradient and intensity scale preservation. It achieves this by reusing and fusing features extracted with fewer
convolutional layers. Another lightweight model, FLFuse [23], generates fused images using a weight sharing
encoder and feature swapping training strategy to ensure efficiency. However, FLFuse fails to fully extract
and fuse image features due to its shallow network channel dimension and simplistic implicit fusion strategy,
resulting in subpar visual effects and performance metrics.

We focus on exploring lightweight fusion methods based on structural re-parameterization. Existing
structural re-parameterization methods have demonstrated high performance in training and fast inference
speeds, making them effective for advanced vision tasks [24–27]. They are likely to be crucial in addressing
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the imbalance between fusion performance and computational resource consumption. However, directly
applying these structural re-parameterization blocks designed for high-level vision tasks provides limited
improvement for infrared and visible image fusion. Specific structural re-parameterization blocks tailored for
fusion tasks are required to efficiently extract richer information from different modal features.

To address the limitations of existing image fusion methods, this paper proposes a novel approach
that combines edge operators with structural re-parameterization. This approach enables the rapid
generation of fused images with enhanced edge texture information and prominent targets, effectively
addressing the imbalance between fusion performance and computational resource consumption. The
major contributions of this paper are outlined as follows:

• A fast edge convolution fusion network (FECFusion) for infrared and visible images is proposed,
which combines edge operations with structural re-parameterization for the first time to rapidly
generate fused images with rich edge texture information and salient target, solving the problem of
imbalance between fusion performance and computational resource consumption.
• A structural re-parameterization edge convolution block (RECB) is proposed, which can deeply

mine the edge information in the source images and improve the performance of the fusion model
without introducing additional inference burden.
• An attention fusion module (AFM) is designed to sufficiently fuze the unique and common

information of different modal features to effectively integrate the feature information of the source
images with less computational effort.

2. Related works

2.1. Infrared and visible image fusion

In the current literature, there are numerous works that primarily focus on preserving texture details
in images [28–30]. In contrast, our work aims to address the challenge of balancing lightweight
design and performance in image fusion networks. One approach is IFCNN [31], where both the
encoder and decoder components employ only two convolutional layers for feature extraction and image
reconstruction. Additionally, the fusion rules are adjusted based on the source image type, resulting in
a unified network capable of handling various fusion tasks. Another method, SDNet [32], tackles the
fusion task by incorporating the generated fused image reconstruction into a squeezed network structure
of the source image. This forces the fused image to contain more information from the source images.
SeAFusion [33] utilizes dense blocks with gradient residuals for feature extraction and employs the
semantic segmentation task loss to guide the training of the fusion network. Recently, FLFuse [23]
achieves feature extraction implicitly through a weight sharing encoder and feature swapping training
strategy, enabling the generation of fused images in a lightweight and fast manner.

However, existing methods for infrared and visible image fusion only reduce the network model’s
parameters through conventional lightweight network design approaches, which can lead to a degradation
in fusion performance.

2.2. Structural re-parameterization

Many existing methods for infrared and visible image fusion rely on attention mechanisms or multi-scale
feature extraction to enhance network performance, but these approaches often come at the cost of increased
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computational complexity. Finding networks that effectively extract image features while maintaining high
computational efficiency is challenging. In ACNet [34], Ding et al. proposed a method to convert multi-branch
structures into a single-branch structure, thereby improving the performance of convolutional networks. In
another work by Ding et al. [35], a concise VGG-like backbone network called RepVGG was introduced.
RepVGG utilizes structural re-parameterization as its core technique, enabling efficient feature extraction
while reducing network computation. RepVGG has demonstrated excellent performance in target detection
tasks. Building upon this work, Ding et al. [36] proposed six network structures that can be structurally
re-parameterized. The authors also explained the underlying reasons why the structural re-parameterization
method is effective. Given the success of structural re-parameterization in various vision tasks, this approach
holds promise for addressing the challenge of balancing fusion performance and computational resource
consumption in infrared and visible image fusion tasks.

Unfortunately, the direct use of those structural re-parameterization blocks designed for advanced vision
tasks provides little improvement for infrared and visible image fusion tasks. They still require the structural
re-parameterization block specifically designed for the image fusion task to quickly extract the full wealth of
information from the different modal features.

Therefore, we propose a new image fusion method, FECFusion, which substantially reduces computational
resource consumption while maintaining high fusion performance through a well-designed structural re-
parameterization technique.

3. Methods

3.1. Network architecture

In this paper, FECFusion utilizes end-to-end convolutional neural networks to perform feature
extraction, feature fusion and image reconstruction, enabling efficient and straightforward fusion tasks.
The network architecture, as depicted in Figure 1, consists of three main components: an encoder,
a fusion layer and a decoder. In the encoder, a two-branch structure is employed, comprising one
convolutional layer and two structural re-parameterization edge convolution blocks. This setup allows
for the extraction of depth features from both the infrared and visible images. The fusion layer combines
these extracted features, leveraging the complementary information present in the two modalities.
Subsequently, the decoder, consisting of three structural re-parameterization edge convolution blocks,
reconstructs the hybrid features obtained from the fusion layer to generate the final fused image.
Overall, FECFusion offers a simple and efficient solution for infrared and visible image fusion, utilizing
end-to-end convolutional neural networks for image fusion of the two modalities.

To ensure that the fused images better retain the edge feature information of the source images,
FECFusion has designed a structural re-parameterization edge convolution block(RECB) for improving
the performance in infrared and visible image fusion tasks. In addition, we use an attention fusion
module (AFM) to better fuse the feature information of different modal images extracted from different
branches.
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Figure 1. The overall structure of FECFusion consists of an encoder, a fusion layer (AFM),
and a decoder. The infrared Iir and visible images Ivi are simultaneously passed to a two-branch
encoder to extract depth features, and a fusion layer to fuse common and unique features,
finally reconstructed by a decoder to obtain the fused image I f . The whole process is guided
by both content loss Lcontent and traditional loss Ltradition to generate the fused image.

3.1.1. Structural re-parameterization edge convolution block (RECB)

Although it has some effects to use standard convolution to extract infrared and visible image feature
information for fusion networks, it is inferior to complex models in terms of fusion performance.
However, replacing standard convolution with complex blocks would make the network consume more
computational resources. Therefore, the structural reparameterization technique is introduced in this
paper to enrich the characterization capability of the network without increasing the computational
resource consumption of the network in the inference stage.

Structural 

Re-parameterization

R
E

C
B

Training Phase

LRelu
YXR

E
C

B

Inference Phase

LRelu
YXR

E
C

B

Inference Phase

+

XX +
LRelu

YY

Conv (1×1) Conv (3×3)

Sobel operator Laplace operator

Addation

Structural 

Re-parameterization

R
E

C
B

Training Phase

LRelu
YXR

E
C

B

Inference Phase

+

X +
LRelu

Y

Conv (1×1) Conv (3×3)

Sobel operator Laplace operator

Addation

Figure 2. The specific devise of the structural re-parameterization edge convolution
block(RECB). The RECB extracts fine-grained detail information of feature maps.
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To ensure that the fused images are better able to retain the edge feature information of the source
images, we design a structural re-parameterization edge convolution block(RECB) for improving the
performance in infrared and visible image fusion task. The specific structure of RECB is shown in
Figure 2.

In particular, the RECB consists of four elaborated operators as follows.
1) The branch of standard 3 × 3 convolution
To guarantee the basic performance of the module, we use a standard 3 × 3 convolution. This

convolution is represented as:
Fn = Kn ∗ X + Bn, (3.1)

where Fn represents the output feature of 3 × 3 standard convolution. Kn represents the convolution
kernel weight of 3 × 3 standard convolution. X represents the input feature. Bn represents the offset of 3
× 3 standard convolution.

2) The branch of feature expansion convolution
The representational power of the fusion task is improved by expanding the channels of the features,

which helps to improve the extraction of more feature information. Specifically, the branch uses 1 × 1
convolution to expand the channel dimension of the features and 3 × 3 convolution to extract the feature
information, which is expressed as:

Fe = Kn ∗ (Ke ∗ X + Be) + Bn, (3.2)

where Fe represents the output feature of the feature expansion convolution branch. Ke represents the
convolution kernel of 1 × 1 convolution. Be represents the offset of 1 × 1 convolution.

3) The branch of Sobel filter
Edge information is tremendously helpful for the performance improvement of the fusion task. Since

it is usually difficult for the network model to learn the weights of the edge detection filters through
training, a pre-defined Sobel edge filter is embedded in this branch for extracting the first-order spatial
derivatives and learning the scaling factors of the filters. Specifically, the input features are firstly scaled
by 1 × 1 convolution, then the edge information is extracted by horizontal and vertical Sobel filters,
which are processed as follows:

Dx =


+1 0 −1
+2 0 −2
+1 0 −1

 and Dy =


+1 +2 +1
0 0 0
−1 −2 −1

 , (3.3)

FDx = (S Dx · Dx) ⊗ (Kx ∗ X + Bx) + BDx ,

FDy = (S Dy · Dy) ⊗ (Ky ∗ X + By) + BDy ,
(3.4)

Fsobel = FDx + FDy . (3.5)

where Kx, Bx and Ky, By are the weights, bias of the 1 × 1 convolution in the horizontal and vertical directions.
S Dx, BDx and S Dy, BDy are the scaling parameters and bias with the shape of C × 1 × 1 × 1. ⊗ and ∗ represent
DWConv and normal convolution. (S Dx · Dx), (S Dy · Dy) are in the shape of C × 1 × 3 × 3.

4) The branch of Laplacian filter
In addition to the Sobel operator for extracting the first-order spatial derivatives, this branch employs

a more stable Laplacian edge filter that is more robust to noise to extract the second-order spatial
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derivatives of the image edge information. Similarly, this branch also uses 1 × 1 convolution for scaling
and then uses the Laplacian operator to extract the edge information, processed as:

Dlap =


0 +1 0
+1 −4 +1
0 +1 0

 , (3.6)

Flap = (S lap · Dlap) ⊗ (Klap ∗ K + Blap) + Blap. (3.7)

where Klap, Blap are the weights, bias of the 1 × 1 convolution. S lap, Blap are scaling factors and bias of
DWConv, respectively.

In addition, the BN layer is not used in the RECB, unlike the structural re-parameterization block
designed for advanced vision tasks, because the BN layer would hinder the performance of the fusion
network. Finally, the output features of these four branches are summed and mapped to the nonlinear
activation layer:

F = Fn + Fe + Fsobel + Flap. (3.8)

where F is the output characteristic of RECB. The nonlinear activation layer used in this experiment is
LeakyRelu.

The above RECB is the structure of the training phase. After the training is completed, the parameters
of the four branch structures are equivalent to a 3 × 3 convolution parameter through the structure
re-parameterization technique, so that the same effect can be obtained only through the 3 × 3 convolution
processing after the structure re-parameterization in the inference phase.

3.1.2. Attention fusion module (AFM)

Since these two features come from source images of different modalities, they have object focus
of different scenes, with complementary information and public information of each other. Thus, the
fusion module should have to focus on the fusion of complementary information and public information
of different modalities.

In Figure 3, it is evident that detecting pedestrians in visible images at night can be challenging due
to inadequate lighting conditions. However, in infrared thermal images, pedestrians are clearly high-
lighted. Therefore, the key challenge lies in fusing these two features by leveraging the complementary
information that exists in only one of the modalities. In the case of a well-illuminated thermal target,
such as the vehicle in Figure 3, both cameras are capable of sensing it. During the fusion process, it is
important to enhance both features simultaneously. If a method is used that focuses solely on processing
the complementary information, there is a risk of weakening one of the features. In order to effectively
fuse the infrared and visible features, it is crucial to devise a fusion approach that preserves and enhances
the salient information from both modalities. This will ensure that both the infrared highlights and the
visible details are effectively integrated, leading to improved detection results.
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(a) Visible image (b) Infrared image
Figure 3. Illustrations of registered infrared and visible images, where infrared and visible
images have unique (the red box) and common (the green box) information.

In order to better solve the problem of fusion of different modal information, the element-by-element
addition method for extracting complementary information of heteromodal images and the element-by-
element multiplication method for extracting common information of heteromodal images are employed
here. The element-by-element addition and element-by-element multiplication methods are expressed
as:

Xadd = Xvi + Xir,

Xmul = Xvi ∗ Xir.
(3.9)

where Xvi and Xirrepresent the depth features of infrared and visible images extracted by the encoder,
respectively. Element-by-element addition Xadd represents the addition of elements to visible image
features and thermal target features to accumulate complementary information of different modes,
while element-by-element multiplication Xmul represents the multiplication of elements to visible image
features and thermal target features to enhance common information of different modes.
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Figure 4. The simple illustration for the element-by-element addition of the complementary
information and the element-by-element multiplication of the common information that are
extracted from the infrared and visible images.

As in the simple example in Figure 4, 0 represents that the target is not sensed by the sensor and 1
represents that the target is sensed by the sensor. Suppose there are two cases of sensed and un-sensed
target for infrared and visible sensors, respectively, which are illustrated by 0 and 1. Therefore, four
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cases are generated, and the goal is to retain all the information as long as possible. Element-by-element
addition preserves the target information to the maximum extent possible, the left in Figure 4, with the
target being sensed by at least one of the sensors. Element-by-element multiplication allows filtering
out the common information, the right image in Figure 4, with the target needing to be sensed by two
sensors at the same time. Once the two types of information are obtained separately, they are preserved
by feature concatenation, combining the unique information from both modalities. This approach allows
for the retention of crucial information while effectively combining the features extracted from each
sensor.

Therefore, the attention fusion module (AFM) based on element-by-element addition and element-
by-element multiplication is designed to better fuse the information of these two depth features. The
specific structure of the AFM is shown in Figure 5.
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Figure 5. The specific devise of the attention fusion module (AFM), which is used to fuse
unique and common information from different modal images.

The upper branch in AFM is used to enhance the common information of different modal features,
while the bottom branch enhances the feature information of different modal features through the
attention module and aggregates the complementary information of different modal features by feature
summation, and then cascades the common and complementary information to allow both feature
information to be retained as much as possible.AFM is processed as follows:

Y = Cat(Xvi ∗ Xir, A(Xvi) + A(Xir)). (3.10)

where Cat represents concatenation; A represents the attention module, and CBAM is used in this
article.
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3.2. Loss function

The loss function is the key to guide the training of deep neural networks to achieve the desired
results. The loss of structural similarity is often used to maintain a clear intensity distribution of the
fused image. However, in the fusion task, the fused image needs to be similar to the two source images
at the same time, and there is more complementary information between the two source images, which
will weaken the complementary information region and lead to a decrease in fusion performance.

In order to better promote the recovery of texture details, this paper uses content loss Lcontent and
traditional loss Ltradition to jointly constrain the training of the network. The total loss L f usion formula is
as follows:

L f usion = λLtradition + Lcontent. (3.11)

where λ is the weight coefficient to balance these two losses.

3.2.1. Traditional loss

The design of traditional loss function can enhance the similarity between the fused image and the
two types of source images, guide the network to generate the fusion result with complete information
faster, and avoid the single and incomplete information in the fusion result. The traditional loss Ltradition

calculation formula is :

Ltradition =
1

HW

∥∥∥I f − 0.5 ∗ (Iir + Ivi)
∥∥∥

1
. (3.12)

where I f represents the fused image. Iir and Ivi represent the infrared and visible images. ∥·∥ refers to
the l1-norm.

3.2.2. Content loss

In order to promote the model to fuse more meaningful information, retain the saliency in the infrared
image and the edge texture information of the source image, the content loss Lcontent with bilateral
filtering is designed in this paper. The content loss consists of two parts: the intensity loss Lin and the
edge gradient loss with bilateral filtering Lgrad . The formula is as follows:

Lcontent = µ1Lin + µ2Lgrad. (3.13)

where µ1, µ2 are the weighting coefficients for balancing these two losses.
Among them, the intensity loss Lin constrains the overall apparent intensity of the fused image. In

order to better retain the salient target, the pixel intensity of the fused image should be biased towards
the maximum intensity of the infrared and visible images. The formula of strength loss is as follows:

Lin =
1

HW

∥∥∥I f − Max(Iir, Ivi)
∥∥∥

1
. (3.14)

where Max(·) stands of the element-wise maximum calculation.
In addition, in order to make the network model better preserve the edge texture details of the fused

image, the existing methods use the maximum edge gradient of the source image to constrain the training
of the network, but this loss is easily affected by noise in the infrared image. To this end, this paper
uses a bilateral filter that preserves the edge gradient to denoise the infrared image, thereby reducing the
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noise of the fused image. The following is the calculation formula of edge gradient loss of bilateral
filtering:

Lgrad =
1

HW

∥∥∥∣∣∣∇I f

∣∣∣ − Max(|∇Bila(Iir)| , |∇Ivi|)
∥∥∥

1
. (3.15)

where ∇ is the gradient operator for measuring image texture information, and the Sobel operator is used to
calculate the gradient in this paper. | · | indicates the absolute operation. Bila represents a bilateral filter.

4. Experimental analysis

4.1. Experimental details

In this paper, FECFusion is trained with the MSRS dataset [37]. Since the existing infrared and
visible image fusion dataset is small, the MSRS training set part of the infrared and visible images
common dataset is expanded from 1083 to 26,112 pairs of images, and the size of the training set image
pairs after data enhancement is 64 pixel × 64 pixel, which can basically meet the training requirements.
In order to evaluate the effectiveness of FECFusion, it is tested on the test set of the MSRS dataset
and picks 361 pairs of images as the test subject. In addition, to more comprehensively evaluate the
generalization performance of FECFusion, it selected 42 and 300 pairs of images on the TNO [38] and
M3FD [39] datasets, respectively, for generalization comparison experiments.

Since none of the current public datasets for infrared and visible image fusion have reference images, the
quality of the fusion result images cannot be directly evaluated by ground truth, therefore, we evaluate the
visualization image effects of different algorithms by human subjective visual perception as a qualitative
assessment, and by objective generic image quality evaluation index results as a quantitative assessment.

In this paper, standard deviation (SD) [40], mutual information (MI) [41], visual information fidelity
(VIF) [42], sum of correlation differences (SCD) [43], entropy (EN) [44] and Qab f [45] are used. SD
evaluates the contrast and distribution of the fused images from a statistical point of view. MI measures
the amount of information from the source image to the fused image. VIF reflects the fidelity of the
fused information from a human visual point of view. SCD measures the difference between the source
image and the fused image. EN measures the amount of information contained in the image. Qab f

evaluates the amount of fused edge information from the source image. All the above metrics are
positive metrics, and higher values mean better fusion results.

FECFusion is compared with seven fusion algorithms, including DenseFuse [46], FusionGAN [47],
IFCNN [31], SDNet [32], U2Fusion [48], FLFuse [23] and PIAFusion [37]. All the compared algorithms
are experimented in public code, where the relevant settings of the experiments are kept constant. In
the superparameter settings of the proposed network, the network optimizer uses Adam, epoch = 10,
batch size = 64, learning rate is 1 × 10−4, loss function parameters are λ = 10, µ1 = 12, µ2 = 45. The
parameters of bilateral filtering are σd = 0.05, σr = 8.0, and window size is 11 × 11. The training
process of FECFusion is summarized in Algorithm 1.

Besides the comparative and generalization experiments, the effectiveness of RECB and AFM
is verified by ablation experiments in this paper. In addition, FECFusion is verified to be helpful
for the advanced vision task through segmentation experiments. Finally, we have compared the
operational efficiency of FECFusion with other methods and compare the computational resource
consumption with and without structural re-parameterization. Our experiments are all conducted on
a GeForce RTX 2080Ti 11GB and an Intel Core i5-12600KF, with PyTorch of a deep learning framework.
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Algorithm 1: Training procedure
Input: Infrared images Iir and visible images Ivi

Output: Fused images I f

1 for M epochs do
2 for p steps do
3 Select n infrared images {I1

ir, I
2
ir, ..., I

n
ir};

4 Select n visible images {I1
vi, I

2
vi, ..., I

n
vi};

5 synthesize n fused images {I1
f , I

2
f , ..., I

n
f } with our FECFusion;

6 Calculate the total loss L f usion according to Eq (3.11);
7 Update the parameters of the FECFusion by Adam Optimizer;
8 end
9 Save the network model weights for the Mth round;

10 end
11 for q steps do
12 Reads the current network module and parameters;
13 if The module has ”switch to deploy” method then
14 Compute the parameter of the convolution kernel and bias after re-parameterization;
15 Assign parameters to the newly created convolution block;
16 Delete the original network structure;
17 end
18 end
19 Save the model and weights of the network after structural re-parameterisation.

4.2. Comparative experiment

4.2.1. Qualitative results

It is an important challenge for the image fusion algorithm to generalize the performance of different
scenes. In the MSRS dataset, we have chosen two daytime and two nighttime images to evaluate the
subjective visualization performance, and the comparison results are shown in Figures 6 and 7. We mark
the texture detail information with green boxes and the highlighted target information with red boxes.

In the daytime scene depicted in Figure 6, we can observe the performance of different fusion
methods. DenseFuse, SDNet and U2Fusion fail to effectively highlight the infrared target and do not
fully utilize the background information present in the visible image. FusionGAN manages to highlight
the salient target to some extent, but it can be seen from the green box that it blurs the background.
In contrast, IFCNN and FLFuse weaken the texture details of the background, as evident from the
green box. Only PIAFusion and the method proposed in this paper successfully integrate the relevant
information, effectively preserving both the infrared target and the background texture details. Therefore,
it is evident that the method proposed in this paper exhibits superior performance in the daytime scene,
achieving a balanced fusion result that highlights the target while retaining the background information.

In the night scene depicted in Figure 7, the visible image contains limited texture information, while
the infrared image contains both background texture details and a salient target. Many existing fusion
methods tend to overemphasize the information from one modality, making it challenging to achieve
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satisfactory results across different scenes.

(a) VIS (b) IR (c) DenseFuse (d) FusionGAN (e) IFCNN

(f) SDNet (g) U2Fusion (h) FLFuse (i) PIAFusion (j) Ours

Figure 6. Qualitative comparison of FECFusion with 7 advanced algorithms on the daytime scene
(00537D and 00633D) from the MSRS dataset. For a clear view of comparative detail, we have
selected a textured region (the green box) and a salient region (the red box) in each image.

(a) VIS (b) IR (c) DenseFuse (d) FusionGAN (e) IFCNN

(f) SDNet (g) U2Fusion (h) FLFuse (i) PIAFusion (j) Ours

Figure 7. Qualitative comparison of FECFusion with 7 advanced algorithms on the nighttime
scene (01023N and 01042N) from the MSRS dataset. For a clear view of comparative detail, we
have selected a textured region (the green box) and a salient region (the red box) in each image.
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Among the fusion methods examined, DenseFuse, SDNet and U2Fusion exhibit a bias towards
infrared images, and weaken infrared targets. FusionGAN introduces artifacts into the fused images.
Only IFCNN, PIAFusion, and the method proposed in this paper are capable of generating fused images
with higher contrast in black night scenes. FLFuse, which is also a lightweight method, performs
poorly in this scenario. It fails to fully leverage the characteristics of both modal images, leading to
a degradation in both the background and the infrared target. Therefore, the method proposed in this
paper demonstrates good performance in night scenes as well. It effectively captures the characteristics
of both modal images and achieves better contrast, thereby preserving the infrared target while retaining
background details.

4.2.2. Quantitative results

In this section, we perform quantitative evaluation on the MARS dataset and select six metrics for
evaluation. The comparison of the metrics of different methods is shown in Table 1, where red represents
the best result and blue represents the second one.

Table 1. Quantitative comparisons of the six metrics, i.e., SD, MI, VIF, SCD, EN and Qab f ,
on image pairs from the MSRS dataset. Bold indicates the best result and underline represents
the second best result.

Algorithm
Evaluation method

SD MI VIF SCD EN Qabf

DenseFuse 7.0692 2.5409 0.6752 1.3296 5.8397 0.3552

FusionGAN 5.4694 1.9155 0.4253 0.8015 5.2260 0.1208

IFCNN 7.5947 2.7399 0.8283 1.6658 6.3109 0.5540

SDNet 5.3258 1.7398 0.3758 0.8364 4.8891 0.2944

U2Fusion 5.6231 1.8953 0.3967 1.0034 4.7525 0.2908

FLFuse 6.4790 2.0697 0.4860 1.1189 5.5157 0.3198

PIAFusion 7.9268 4.1774 0.9072 1.7395 6.4304 0.6324
Ours 8.1413 3.6805 0.9282 1.8153 6.5104 0.5619

From Table 1, it is clear that our method shows significant advantages in four metrics, SD, VIF, SCD
and EN, while its performance in MI and Qabf is second only to PIAFusion. The value of SD is the
best indicating that the fusion result of this paper method Shencheng achieves high contrast between
infrared target and background; the highest value of VIF indicates that the fused image generated by this
paper method is more in line with The highest value of VIF indicates that the fused images generated
by this method are more consistent with the human visual system; the highest values of SCD and EN
indicate that this method can generate fused images with more edge details and contain more realistic
results than other methods. In conclusion, the quantitative experimental results show that this method
can generate fused images with more information while reducing the computational effort.
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4.3. Generalization experiment

In the fusion task, it is required that the fusion model has a stronger generalization capability, which is
applicable in different scenes. Therefore, we selected 20 and 300 pairs of images in the TNO and M3FD
datasets, respectively, to evaluate the generalization ability of FECFusion. A qualitative comparison of
the different algorithms on the TNO and M3FD datasets is presented in Figures 8 and 9.

From the figures, it is evident that DenseFuse, SDNet, U2Fusion and FLFuse tend to blend the back-
ground and the target together, making it difficult to distinguish the salient infrared target. FusionGAN,
on the other hand, exhibits high overlap with the infrared image and lacks the inclusion of background
information. In comparison, IFCNN and PIAFusion show performance similar to the proposed method
in this paper. However, it is important to note that these methods may not match the inference speed
of the proposed method, which offers faster processing capabilities. Therefore, based on objective
evaluation and considering the faster inference speed, the proposed method in this paper demonstrates
competitive performance and provides a promising solution for infrared and visible image fusion tasks.

The results of quantitative metrics for the generalization experiments are shown in Table 2. The
metrics performance of our method is the best or the second best on both datasets, which indicates that
our method can both preserve the texture details of the source image and improve the contrast of the
target. In conclusion, the qualitative and quantitative results show that FECFusion performs excellently
in generalization. In addition, the method in this paper effectively maintains the intensity distribution
of the target region and preserves the texture details of the background region, benefiting from the
proposed RECB and AFM.

Table 2. Quantitative comparisons of the six metrics, i.e., SD, MI, VIF, SCD, EN and Qab f ,
from the TNO and M3FD datasets. Bold indicates the best result and underline represents the
second best result.

Dataset Algorithm
Evaluation method

SD MI VIF SCD EN Qabf

TNO

DenseFuse 8.5765 2.1987 0.6704 1.5916 6.3422 0.3427

FusionGAN 8.6703 2.3353 0.6541 1.3788 6.5578 0.2339

IFCNN 9.0058 2.4154 0.7996 1.6850 6.7413 0.5066

SDNet 9.0679 2.2606 0.7592 1.5587 6.6947 0.4290

U2Fusion 8.8553 1.8730 0.6787 1.5862 6.4230 0.4245

FLFuse 9.2628 2.1925 0.8084 1.7308 6.3658 0.4177

PIAFusion 9.1093 3.2464 0.8835 1.6540 6.8937 0.5556
Ours 9.2721 3.7136 0.9496 1.7312 6.9856 0.5311

M3FD

DenseFuse 8.6130 2.8911 0.6694 1.5051 6.4264 0.3709

FusionGAN 8.8571 2.9921 0.5176 1.1292 6.4750 0.2530

IFCNN 9.2815 2.9560 0.7738 1.5353 6.6966 0.6053

SDNet 8.8855 3.1798 0.6329 1.3914 6.6102 0.5005

U2Fusion 9.0141 2.7531 0.7061 1.5488 6.6285 0.5303

FLFuse 8.7580 3.2425 0.6986 1.4975 6.5744 0.2640

PIAFusion 10.1639 4.6942 0.9300 1.3363 6.8036 0.6348

Ours 9.9899 4.3123 0.9350 1.5502 6.7685 0.6440
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(a) VIS (b) IR (c) DenseFuse (d) FusionGAN (e) IFCNN

(f) SDNet (g) U2Fusion (h) FLFuse (i) PIAFusion (j) Ours

Figure 8. The visualisation results of FECFusion with 7 advanced algorithms on the TNO
dataset. For a clear view of comparative detail, we selected a textured region (the green box)
and a salient region (the red box) in each image.

(a) VIS (b) IR (c) DenseFuse (d) FusionGAN (e) IFCNN

(f) SDNet (g) U2Fusion (h) FLFuse (i) PIAFusion (j) Ours

Figure 9. The visualisation results of FECFusion with 7 advanced algorithms on the M3FD
dataset. For a clear view of comparative detail, we selected a textured region (the green box)
and a salient region (the red box) in each image.
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4.4. Ablation experiment

In order to verify the effectiveness of adding RECB and AFM to our FECFusion, ablation experiments
are designed in this section to further analyze the role of these two proposed modules in the network
model. First, RECB is a structure that equates multiple branch structures into a single branch structure
by structural re-parameterization; therefore, in the ablation experiments, the RECB part is directly
replaced with the structure after structural re-parameterization for training, i.e., the structure of a single
ordinary convolution. For the ablation experiments of AFM, the network is trained with a direct feature
cascade instead of AFM. This experiment is performed on the MSRS dataset, and the experimental
results are shown in the Figure 10, where the background texture is marked with a green solid box and
the infrared salient targets are marked with a red solid box.

From the experimental results, it can be seen that without RECB, the fused images are blurred at the
edges to some extent, which proves that the module contributes to maintaining the edge information of
the fusion results. Without AFM, the saliency of the fusion results decreases. If both RECB and AFM
are not available, the fusion results have a decreased target significance and blurred edge texture. The
evaluation metrics for this ablation experiment are shown in Table 3. We observe that the absence of
both RECB and AFM leads to a decrease in the evaluation metric values to different degrees, proving
the effectiveness of each part of our FECFusion.

(a) VIS (b) IR (c) Ours (d) W/O RECB (e) W/O AFM (f) W/O both
RECB and AFM

Figure 10. Visualized results of ablation on the MSRS dataset. From left to right: visible
images, infrared images, fused results of FECFusion, FECFusion without RECB, FECFusion
without AFM and FECFusion without both RECB and AFM.

Table 3. The results of ablation study for RECB and AFM on the MSRS dataset. The bolded
values indicate the best results.

RECB AFM
Evaluation method

SD MI VIF SCD EN Qabf

! ! 8.1413 3.6805 0.9282 1.8153 6.5104 0.5619

! % 7.4551 3.0648 0.7234 1.6117 6.0100 0.4488

% ! 7.7954 3.0922 0.8355 1.8060 6.2925 0.5098

% % 6.6285 2.6117 0.5500 1.2793 5.6158 0.4362
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4.5. Efficiency comparison experiment

To verify the execution efficiency of the proposed algorithm, the average processing time of forward
propagation of each fusion method is tested on the MSRS dataset in this paper, and the comparison
results are shown in Table 4 where red represents the best and blue represents the second best. It can be
seen that our method is more efficient than most methods, while FLFuse is faster than our method, the
method in this paper works better, so these differences in running efficiency are acceptable.

Table 4. Mean of the running times of all methods on the MSRS dataset (underline: second,
bold indicates the best result and italic represents the second best result).

Algorithm DenseFuse FusionGAN IFCNN SDNet U2Fusion FLFuse PIAFusion Ours

Running time 0.374 0.082 0.019 0.014 0.155 0.001 0.081 0.002

In addition, with reference to the image size used in the MSRS data set, the data of 640 × 480 × 1 is
used as the input of the network forward propagation, and the parameters and weights of the network
model are calculated by the TorchSummary library. The forward propagation time, running storage
space, parameter quantity, weight size and the cumulative deviation of the fusion results pixel by pixel
before and after the structural re-parameterization are compared experimentally. The comparison results
are shown in Table 5.

Table 5. Model properties of FECFusion with and without the structural re-parameterisation.
Structural re-parameterisation Forward time Forward pass size Params Params size Cumulative pixel deviation of results
W/O 0.0299 s 5451.57 MB 146,389 0.56 MB /

W 0.0020 s 2601.57 MB 145,477 0.55 MB 1 × 10-4

By comparing the results, it can be seen that there is almost no difference in the fusion results
of the network before and after the structural re-parameterization, indicating that the structural re-
parameterization can effectively reduce the running time, running storage space, parameter quantity and
weight size in the case of very low deviation.

4.6. Segmentation experiment

Semantic segmentation algorithms are an important general-purpose computer vision method whose
performance reflects well on the semantic information of the fused resultant image. To verify that the
fused images can be helpful for subsequent vision tasks, DeepLabV3+ [49], a semantic segmentation
model pre-trained on the Cityscapes dataset [50], is also used in this section to evaluate the performance
of the fused images, and the semantic segmentation results are shown in the Figure 11.

From the experimental results, the semantic segmentation results of the fused result images are all a
little better than the infrared and visible images, especially at night when the lighting conditions are
poorer, the visible sensors have difficulty capturing enough information, and the semantic segmentation
models often have difficulty detecting hot targets such as travelers, so to some extent, it can be shown
that the image fusion has an enhanced effect on subsequent vision tasks.
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(a) VIS (b)IR (c) Ours (d)VIS Segmentation (e) IR Segmentation (f) Ours Segmentation

Figure 11. Segmentation results for infrared, visible, and fused images from the MSRS
dataset. The segmentation model is Deeplabv3+, pre-trained on the Cityscapes dataset.

5. Conclusions

In this paper, we propose FECFusion, an infrared and visible image fusion network based on fast
edge convolution. The network consists of several key components. First, the main part of the network
employs the RECB to extract features, including detailed texture features and salient image features.
These extracted features are then fused using the AFM, and the fused image is reconstructed. After the
completion of training, the network undergoes a structural re-parameterization operation to optimize the
inference speed and storage space required while preserving the original training effectiveness. Through
subjective and objective experimental results, we demonstrate that FECFusion achieves superior fusion
results compared to other algorithms. It offers better real-time performance and requires less inference
memory footprint, making it more suitable for practical engineering applications that involve the design
of custom hardware accelerated circuits. In future research, we will explore specific applications of
FECFusion on mobile devices and further optimize its performance. This includes enhancing the
network’s ability to learn multi-scale image features and achieve better fusion results with lower
computational resource consumption.
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