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Abstract: Due to climate change and human activities, ecological and environmental issues have 
become increasingly prominent and it is crucial to deeply study the coordinated development between 
human activities and the ecological environment. Combining panel data from 31 provinces in China 
spanning from 2011 to 2020, we employed a fixed-effects model, a threshold regression model, and a 
spatial Durbin model to empirically examine the intricate impacts of population agglomeration on 
ecological resilience. Our findings indicate that population agglomeration can have an impact on 
ecological resilience and this impact depends on the combined effects of agglomeration and crowding 
effects. Also, the impact of population agglomeration on ecological resilience exhibits typical dual-
threshold traits due to differences in population size. Furthermore, population agglomeration not only 
directly impacts the ecological resilience of the local area, but also indirectly affects the ecological 
resilience of surrounding areas. In conclusion, we have found that population agglomeration does not 
absolutely impede the development of ecological resilience. On the contrary, to a certain extent, 
reasonable population agglomeration can even facilitate the progress of ecological resilience. 
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1. Introduction  

In recent years, the issues of environment and sustainable development have garnered fervent 
attention from scholars [1,2]. Urban ecological resilience, as one of the important attributes of the 
urban ecological system, is an important guarantee for cities to cope with external environmental 
pressures and ensure the sustainable development of the urban ecological system. However, as one of 
the core driving forces of urbanization, population agglomeration may have complex and far-reaching 
effects on urban ecological resilience, thereby affecting sustainable urban development. Therefore, 
delving into the impact of population agglomeration on urban ecological resilience contributes to a 
better understanding of the intricate effects of population agglomeration on the ecological environment 
and provides a theoretical foundation for achieving sustainable development goals.  

In 1973, ecologist Holling [3] introduced the concept of resilience to the field of ecology, which refers 
to the ability of a system to absorb disturbances and maintain itself in the face of external shocks. Brand 
considers ecological resilience as the ability of an ecosystem to resist disturbances and still maintain a specific 
state [4]. Folke considers ecological Folke argues that ecological resilience is the ability to absorb 
disturbances and adapt, learn and self-organize to achieve a harmonious development of human and 
environmental systems [5]. Regarding the measurement of ecological resilience, scholars have currently been 
measuring it by constructing an evaluation index system. Duo et al. construct an ecological resilience index 
system from three dimensions: resistance, adaptability and vitality [6]. Shi et al. construct an ecological 
resilience index system from two dimensions: sensitivity and adaptability of urban ecosystems [7]. Zhao et 
al. used the DPSIR framework to construct an indicator system for ecological resilience [8]. 

Population agglomeration is the phenomenon whereby a population gathers in an area or a 
specific location. Over the years, the relationship between population agglomeration and the 
environment has garnered fervent attention from scholars. It has been shown that population 
agglomeration has significant effects on carbon emissions [9–11], PM2.5 emissions [12–14] and haze 
pollution [15,16]. As an important factor driving the urbanization process, population agglomeration 
has already significantly impacted regional economic development and the ecological environment in 
many ways [17]. Some scholars argue that population agglomeration has a negative impact on the 
environment [18–20]. With the increase in population and intensification of urbanization, resource 
consumption and environmental pollution also increase. Additionally, population agglomeration leads 
to significant waste and wastewater emissions, putting pressure on water resources and soil quality. 
On the other hand, some scholars believe that population agglomeration has positive effects on the 
environment [21–23]. They argue that population agglomeration can promote efficient resource 
utilization and foster innovative development, thus reducing pollutant emissions. 

In summary, the existing literature mainly focuses on the impact of population agglomeration on the 
environment from the perspective of pollutant emissions, lacking a study of this impact from the perspective 
of ecological resilience. Therefore, building upon the groundwork of previous research, we first established 
an index system for ecological resilience using panel data from 31 provinces in China spanning 2011 to 2020. 
Second, we employed a fixed effects model to study the fundamental relationship between population 
agglomeration and ecological resilience. Subsequently, we examined whether the effect of population 
agglomeration on ecological resilience exhibits non-linear traits due to differences in population size. Lastly, 
we explored the spatial spillover effects of population agglomeration on ecological resilience. Aiming to 
provide a fresh perspective on the intricate impact of population agglomeration on the environment and 
offering valuable decision-making insights for achieving regional sustainable development. 
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2. Theory and research hypotheses 

Given the intricate impact of population agglomeration on the environment, we have reason to 
believe that its influence on ecological resilience is equally intricate. This necessitates a comprehensive 
analysis from various perspectives. On one hand, population agglomeration brings about increased 
transportation, industrial activities and human endeavors, resulting in various environmental pollution 
issues such as air pollution, traffic congestion and water scarcity [18,19]. These environmental 
problems can reduce the ecological resilience of cities. At the same time, population agglomeration 
increases the demand for urban resources including water, food and energy. This leads to pressures on 
resource supply, affecting the ecological balance and sustainability of cities. Additionally, population 
agglomeration often necessitates the expansion of urban infrastructure and increased land use for 
construction, which can potentially disrupt urban ecosystems and diminish urban ecological resilience.  

On the other hand, the agglomeration of population brings about economies of scale that are beneficial 
in reducing overall pollution emissions [24,25]. With the increase in population, cities can more efficiently 
utilize resources and energy, reducing pollution emissions per unit of output through centralized supply 
and distribution networks. This kind of economies of scale contributes to improving environmental quality 
and enhancing urban ecological resilience. At the same time, higher population density can also promote 
the development of new production and consumption models such as public transportation and the sharing 
economy, thereby achieving maximized resource utilization and conservation. Additionally, the increase in 
population density can facilitate the upgrading of industrial structures [26]. With the upgrading and 
transformation of industries, traditional high-polluting and energy-intensive sectors gradually decrease, 
making way for more environmentally friendly and sustainable industries. This transformation of industrial 
structure reduces pollution intensity and improves the ecological environment [27,28], enhancing urban 
ecological resilience. Therefore, the impact of population agglomeration on ecological resilience has both 
negative and positive effects. Based on this, we propose Hypothesis 1. 

Hypothesis 1: Population agglomeration can have an impact on ecological resilience and this 
impact depends on the combined effects of agglomeration and crowding effects. 

Some scholars have found a non-linear relationship between urban population agglomeration and 
pollution emissions [29,30]. In small-scale cities, population growth often leads to environmental 
issues like air pollution and water scarcity, typically resulting in negative ecological impacts. That is 
to say, the ecological environment experiences mounting pressure with the growth of the population. 
In such scenarios, the congregation of people can potentially impede the advancement of urban 
ecological resilience. However, in large-scale cities, as urban planning and environmental 
consciousness strengthen, it will prompt people to strive for the improvement of the urban environment, 
reducing pollution emissions and thus alleviating the negative impact of population growth on the 
ecosystem. In this situation, population agglomeration may promote the development of urban 
ecological resilience. Based on this, we propose Hypothesis 2. 

Hypothesis 2: The impact of population agglomeration on ecological resilience exhibits non-
linear traits due to differences in population size. 

When populations concentrate within a given region, the benefits and externalities they generate 
tend to spread to the surrounding areas, consequently influencing the development and economic 
outcomes of those neighboring regions. These spillover effects can encompass a wide range of aspects 
including economic, social and environmental factors. Some research indicates that population 
agglomeration has spatial spillover effects on the economic resilience and haze pollution in the 
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surrounding areas [31,32]. This suggests that population agglomeration can influence the economy and 
ecological environment of the neighboring regions to a certain extent. Therefore, we have reason to 
believe that population agglomeration also has spatial spillover effects on the ecological resilience of 
the surrounding areas. Based on this, we propose Hypothesis 3. 

Hypothesis 3: Due to spatial spillover effects, population agglomeration not only directly affects the 
ecological resilience of the local area but also indirectly influences the ecological resilience of the 
surrounding areas. 

3. Variables, models and data 

3.1. Variables description 

3.1.1. Explained variable 

The explained variable of this paper is ecological resilience (Er). Based on the existing literature 
references [33,34], we have developed an ecological resilience index system, as shown in Table 1. 

Table 1. Ecological resilience index system. 

Primary indicator Secondary indicators Unit Nature of indicator

Ecological 
resilience 

Per capita park green space area. m2/person + 
Green coverage rate in built-up areas. % + 
Local government expenditure on environmental 
protection. 

100 million yuan + 

Comprehensive utilization of general industrial solid 
waste. 

10,000 tons + 

Urban sewage treatment rate. % + 
Rate of harmless treatment of household waste. % + 
SO2 emissions per square kilometer. tons/km2 – 
Per capita daily domestic water consumption. liters – 
Proportion of built-up area to area. % – 

Note: The symbol “+” indicates a positive indicator and “–” indicates a negative indicator. 

We have calculated the level of ecological resilience using the entropy method with the specific 
calculations outlined in Eqs (1)–(4).  

The data were first normalized according to the nature of the indicators. 
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Then, we calculate the indicator entropy value: 
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3.1.2. Explanatory variable 

The explanatory variable of this paper is population agglomeration (Pop). Following existing 
literature [35,36], we represent this using population density. 

3.1.3. Threshold variable 

The threshold variable of this paper is population size (Res). We denote the population size by the 
year-end resident population of the region. 

3.1.4. Control variables 

Based on the existing literature [32], our selection of control variables includes market size (Mark) 
measured by total retail sales of social consumer goods, technological investment (Tec) measured by 
the proportion of expenditure on science and technology in public fiscal expenditure, education 
investment (Edu) measured by the proportion of educational expenditure in public fiscal expenditure, 
industrial structure (Ind) represented by the proportion of the tertiary industry in GDP, infrastructure 
level (Road) indicated by the per capita urban road area. 

3.2. Models construction 

Mathematical and statistical models are widely used for a number of phenomena in society [37–42]. 
To test the three hypotheses proposed in Section 2, we constructed the following three models. We first 
constructed a fixed-effects model to investigate the basic relationship between population 
agglomeration and ecological resilience. Second, we constructed a threshold regression model to verify 
whether the effect of population agglomeration on ecological resilience exhibits non-linear traits due 
to differences in population size. Finally, we constructed a spatial Durbin model to explore the spatial 
spillover effects of population agglomeration on ecological resilience in the surrounding areas. 

3.2.1. Benchmark model  

We have constructed the following benchmark model to empirically study the impact of 
population agglomeration on ecological resilience:  
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, 0 1 , , , ,i t i t i t i t i tEr Pop Z            (5)

where Eri,t denotes the ecological resilience of province i in year t. Popi,t denotes the population 
agglomeration of province i in year t. Zi,t denotes a set of control variables. α0 is a constant term, α1 
and β are the regression coefficients of the variables. μi stands for the individual effect, δt stands for 
the time effect and εi,t is an error term. 

3.2.2. Threshold regression model 

Given the complex impact of population agglomeration on ecological resilience and in order to 
verify whether the effect of population agglomeration on ecological resilience exhibits non-linear traits 
due to differences in population size, we have constructed the following threshold regression model, 
drawing upon the research by Hansen [43]:  

   , 0 1 , , 2 , , , , ,i t i t i t i t i t i t i t i tEr Pop I Res Pop I Res Z                    (6)

where Resi,t denotes the population size of province i in year t, λ is the threshold value and I(·) is the 
indicator function I = 1 when the condition is satisfied. Otherwise I = 0. The equation is a single-
threshold regression model and the type of threshold regression model is selected according to the 
results of the threshold effect test. 

3.2.3. Spatial Durbin model  

To analyze whether population agglomeration has an impact on the ecological resilience of 
surrounding areas, we have constructed the following spatial Durbin model: 

, 0 , 1 , 1 , , 2 , , ,i t i t i t i t i t i t i t i tEr WEr Pop WPop Z WZ                  (7)

where ρ is the spatial autoregressive coefficient, η1, and η2 are the spatial lag term coefficients and W 
is the spatial weight matrix. Referring to the existing literature [44,45], we employ the adjacency 
matrix (W1) and the inverse distance matrix (W2). The expressions for both are as follows: 
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where dij is the geographical distance calculated from the latitude and longitude of regions i and j. 

3.3. Data sources and description 

All data are sourced from the National Bureau of Statistics of China, China Statistical Yearbook 
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and China Environmental Statistical Yearbook. Some of the missing data values were filled in using 
interpolation. The descriptive statistics of each variable are shown in Table 2. 

Table 2. Descriptive statistics of variables.  

Variables Obs Mean Std. Dev. Min Max 
Er 310 0.349 0.107 0.143 0.714 
Pop 310 0.285 0.115 0.052 0.582 
Res 310 4.462 2.892 0.309 12.624
Mark 310 0.982 0.841 0.024 4.295 
Tec 310 0.020 0.015 0.003 0.068 
Edu 310 0.162 0.027 0.099 0.222 
Ind 310 0.473 0.097 0.297 0.839 
Road 310 15.901 4.768 4.040 26.780

As can be seen from Table 2, the minimum value of ecological resilience is 0.143 and the 
maximum value is 0.714, indicating that the level of ecological resilience varies widely among regions. 
Further empirical analysis is necessary.  

4. Empirical results 

4.1. Benchmark regression 

We used Stata 17 software for the empirical analysis. The Pearson correlation coefficients and 
VIF values of the independent variables are shown in Table 3.  

Table 3. Pearson correlation coefficients and VIF values of the independent variables.  

Variables Pop Mark Tec Edu Ind Road VIF
Pop 1.0000   1.15
Mark -0.0395 1.0000  2.19
Tec -0.0886 0.6221 1.0000  2.66
Edu 0.1397 0.4161 0.1598 1.0000   1.54 
Ind -0.1251 0.1885 0.5554 -0.3000 1.0000  1.89
Road -0.2496 0.1919 -0.1546 0.1851 -0.2431 1.0000 1.34

From Table 3, it can be seen that the Pearson correlation coefficients between variables are less 
than 0.7 and the VIF values of each variable are less than five, indicating that there is no serious 
problem of multicollinearity among the variables. Based on Eq (5), we obtained the benchmark 
regression results, as shown in Table 4.  

According to Table 4, it is found that the impact of population agglomeration on ecological 
resilience is significantly negative at the 1% level. This indicates that overall, population agglomeration 
has a significant inhibitory effect on ecological resilience. In terms of control variables, the impact of 
market size on ecological resilience is significantly positive at a level of 1%. This is because the larger 
the market size, the greater the economies of scale it brings. These economies of scale have positive 
effects on ecological resilience in two aspects. First, the growth of economies of scale means an enhanced 
ability of urban ecosystems to withstand external shocks. When the market size expands, the 
infrastructure and resource utilization efficiency in cities often improve. For example, in large cities more 
resources can be concentrated and shared such as shared transportation, energy and water resources, 
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which reduces waste and improves resource efficiency. Second, economies of scale enable businesses to 
access more resources and technological support, thereby enhancing production efficiency. This 
increased benefit helps improve resource utilization efficiency, reduce resource waste and environmental 
pollution and ultimately enhance urban ecological resilience. Technological investment is positively 
correlated with ecological resilience. First, technological investment contributes to the development of 
more advanced environmental protection technologies such as emission reduction, clean energy and 
circular economy technologies, among others. These technologies can diminish adverse impacts on 
ecosystems and enhance their resilience. Second, technological investment can improve environmental 
monitoring and early warning systems, enhancing the ability to monitor and anticipate environmental 
pollution and ecological damage. Increased investment in education might potentially draw populations 
from neighboring areas to cluster within the local area. This could exacerbate urbanization and crowding 
effect in the area, thereby impeding the enhancement of ecological resilience. 

Table 4. Benchmark regression results.  

Variables (1) (2) (3) (4) (5) (6) 

Pop -0.206*** -0.219*** -0.224*** -0.227*** -0.223*** -0.219*** 

 (-3.599) (-4.822) (-5.152) (-5.113) (-5.295) (-5.518) 

Mark  0.045*** 0.035*** 0.035*** 0.034*** 0.034*** 

  (3.253) (2.974) (3.098) (3.015) (3.022) 

Tec   0.954 1.063* 1.044* 1.026* 

   (1.531) (1.878) (1.902) (1.826) 

Edu    -0.351* -0.393* -0.412* 

    (-1.788) (-1.959) (-1.976) 

Ind     -0.080 -0.082 

     (-1.066) (-1.087) 

Road      0.001 

      (0.494) 

Constant 0.356*** 0.332*** 0.323*** 0.379*** 0.418*** 0.413*** 

 (20.338) (19.851) (18.602) (9.906) (7.282) (7.600) 

Individual effect YES YES YES YES YES YES 
Time effect YES YES YES YES YES YES 

N 310 310 310 310 310 310 

R2 0.672 0.734 0.741 0.747 0.749 0.749 

Note: robust t-statistics in parentheses, * indicates p < 0.1, ** indicates p < 0.05, *** indicates p < 0.01, and the same in 

the following table. 

4.2. Robustness tests 

4.2.1. The explanatory variable is lagged by one period 

Acknowledging the potential time lag in population agglomeration changes, we lagged the 
explanatory variable by one period (L.Pop). The regression results are presented in column (1) of 
Table 5. The regression coefficient of population agglomeration on ecological resilience is still 
significantly negative, consistent with the conclusions drawn in Section 4.1.  
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4.2.2. Winsorizing the sample 

Considering that there may be individual outliers in the sample, we winsorized the sample at 
the 1% and 99% levels before regression, as presented in column (2) of Table 5. The results are still 
significantly negative at the 1% level, indicating that the model is robust.  

4.2.3. Instrumental variable method 

In light of potential endogeneity issues in the model, we use the product of the one-period lagged 
population agglomeration and the national population density as an instrumental variable and proceed 
with estimation using the 2SLS method. The results in column (3) of Table 5 indicate that even after 
accounting for the endogeneity of the model, the impact of population agglomeration on ecological 
resilience remains significantly negative at the 1% level. Simultaneously, the LM statistic and the Wald 
F statistic significantly reject the null hypotheses of insufficient instrumental variable identification 
and weak instrumental variable respectively, indicating that the selection of the instrumental variable 
is reasonable.   

Table 5. Robustness test results.  

Variables 
The explanatory variable is 
lagged by one period

Winsorizing 
the sample

Instrumental variable 
method 

(1) (2) (3) 
L.Pop -0.131***  
 (-2.902)  
Pop -0.210*** -0.203*** 
 (-4.940) (-2.692) 
Control variables YES YES YES 
Constant 0.401*** 0.408*** 0.409*** 
 (6.920) (7.869) (5.132) 
Kleibergen-Paap rk LM 
statistic 

  
9.451 
[0.002] 

Kleibergen-Paap rk Wald F 
statistic 

  
59.487 
{16.38} 

Individual effect YES YES YES 
Time effect YES YES YES 
N 279 310 279 
R2 0.691 0.737 0.965 

Note: Value in [ ] is the p-value and value in { } is the critical value at the 10% level of the Stock-Yogo weak identification test. 

4.3. Heterogeneity test 

4.3.1. Regional heterogeneity 

Given the variances in economic development, industrial structure and environmental protection 
among different regions, this could result in regional heterogeneity in the impact of population 
agglomeration on ecological resilience. Therefore, in accordance with Chinese regional planning 
standards, we have divided the 31 provinces into three areas: East, Central and West for regression 
analysis. The results can be found in Table 6.  
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Table 6. Results of the regional heterogeneity test.  

Variables Eastern region Central region Western region 
Pop -0.116 -0.134* -0.310*** 
 (-1.087) (-1.909) (-10.553) 
Control variables YES YES YES 
Constant 0.134 0.602*** 0.397*** 
 (0.654) (8.725) (7.445) 
Individual effect YES YES YES 
Time effect YES YES YES 
N 120 90 100 
R2 0.965 0.971 0.949 

According to the regression results in Table 6, population agglomeration does not have a 
significant inhibitory effect on ecological resilience in the eastern region. This is because the eastern 
region has a higher level of economic development and possesses a well-established infrastructure and 
resource allocation capability, which can to some extent mitigate the impact of population 
agglomeration on the ecological environment. Furthermore, the relatively advanced economic 
structure in the eastern region also implies that people are more likely to adopt environmental 
protection measures and technological innovations to reduce damage to the ecological environment. 
In contrast, the western region lags behind economically, with insufficient infrastructure and resource 
allocation. This could result in significant ecological impacts from population agglomeration. 
Additionally, the western region may face issues such as water scarcity and environmental pollution, 
all of which can exert substantial inhibitory effects on the ecological resilience. Therefore, the 
inhibitory effect of population agglomeration on the ecological resilience of the western region is 
most pronounced.  

4.3.2. Temporal heterogeneity 

Since the State Council of China formulated several environmental conservation policies in 2016, 
the environmental protection system has gradually improved, which may cause temporal heterogeneity 
in the impact of population agglomeration on ecological resilience. Therefore, we have divided the 
samples into two time periods for regression analysis. The results can be found in Table 7.  

Table 7. Results of the temporal heterogeneity test.  

Variables Year ≤2016 Year >2016 
Pop -0.250*** 0.015
 (-7.255) (0.208)
Control variables YES YES
Constant 0.423*** 0.607*** 
 (4.905) (6.441)
Individual effect YES YES
Time effect YES YES
N 186 124
R2 0.979 0.983

From Table 7, it can be observed that the inhibitory effect of population agglomeration on ecological 
resilience is not significant after 2016 and the regression coefficient has also decreased significantly. This 
indicates that with the gradual standardization and improvement of environmental protection system, the 
inhibitory effect of population agglomeration on ecological resilience is gradually diminishing. 
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4.3.3. Regional-temporal heterogeneity 

To gain a more nuanced understanding of the changes in the influence of population 
agglomeration on ecological resilience around the year 2016 across different regions, we have 
conducted temporal heterogeneity analyses for each area separately. See Table 8 for regression results.  

Table 8. Results of the regional-temporal heterogeneity test.  

Variables 
Eastern region Central region Western region 
Year ≤2016 Year >2016 Year ≤2016 Year >2016 Year ≤2016 Year >2016

Pop -0.290 0.484** -0.168* 0.166 -0.330*** -0.134
 (-1.471) (2.734) (-1.820) (0.984) (-10.799) (-1.609)
Control variables YES YES YES YES YES YES
Constant 0.774*** 0.165 0.451*** 0.602** 0.355*** 0.418***
 (3.623) (0.506) (4.849) (2.219) (6.678) (3.189)
Individual effect YES YES YES YES YES YES
Time effect YES YES YES YES YES YES
N 72 48 54 36 60 40 
R2 0.980 0.989 0.982 0.978 0.973 0.972

Table 8 reveals that, when statistical significance is disregarded, population agglomeration 
manifests an initial suppressive, then promotive effect on the ecological resilience in the eastern and 
central regions. While population agglomeration has consistently shown a suppressive effect on the 
ecological resilience in the western regions, there has been a significant reduction in both the regression 
coefficient and significance. This suggests that the suppressive impact of population agglomeration on 
the ecological resilience in the western regions is also weakening. The above results indicate that the 
gradual standardization and improvement of the environmental protection system can rationalize the 
population agglomeration. Rational population agglomeration will make the benefits from 
agglomeration economy far outweigh the costs from the crowding effect, thus contributing to the 
development of ecological resilience. In conclusion, when the economic benefits brought about by 
population agglomeration are less than the costs incurred by crowding effect, population 
agglomeration will have a significant inhibitory impact on ecological resilience. However, when 
the economic benefits from population agglomeration outweigh the costs of crowding effect, 
population agglomeration will exhibit a significant promoting effect on ecological resilience. 
Hypothesis 1, proposed in Section 2, is tested. 

5. Threshold effect analysis 

5.1. Test of threshold effect 

Given that population size may influence the correlation between population agglomeration and 
ecological resilience, we have constructed a threshold regression model to investigate the impact of 
population agglomeration on ecological resilience under various population size scenarios. The results 
of the threshold effect test are shown in Table 9, Figures 1–3. The results indicate that when population 
size is considered as a threshold variable, the influence of population agglomeration on ecological 
resilience presents a dual-threshold effect, with threshold values at 7.323 and 9.941, respectively. 
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Table 9. Results of the threshold effect test.  

Number of 
thresholds 

F-value P-value 
Threshold 
value

95% confidence 
interval

Number of 
Bootstrap

Single 57.57*** 0.000 7.323 [7.288, 7.360] 500
Dual 37.25*** 0.002 9.941 [9.901, 9.973] 500
Triple 8.60 0.762 500

Note: Because the triple threshold did not pass the significance test, the threshold values and confidence intervals are not shown. 

 

Figure 1. LR plot of the first threshold value. 

 

Figure 2. LR plot of the second threshold value. 
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Figure 3. LR plot of the third threshold value. 

5.2. Regression analysis of threshold effects 

Based on the results from Table 9, we expanded Eq (6) into a dual-threshold regression model 
and the regression results can be found in Table 10.  

Table 10. Threshold effect regression results.  

Variables Res ≤ 7.323 7.323 < Res ≤ 9.941 Res > 9.941 
Pop -0.254*** 0.030 0.444*** 
 (-7.097) (0.813) (5.836) 
Control variables YES YES YES 
Constant 0.420*** 0.420*** 0.420*** 
 (8.651) (8.651) (8.651) 
Individual effect YES YES YES 
Time effect YES YES YES 
N 310 310 310 
R2 0.813 0.813 0.813 

As can be seen from Table 10, the differences in population size can lead to significant variations 
in the impact of population agglomeration on ecological resilience. When the population size lies 
below the low threshold value of 7.323, population agglomeration shows a significant inhibitory effect 
on ecological resilience. When the population size lies between the threshold value of 7.323 and 9.941, 
the impact of population agglomeration on ecological resilience is not significant. When the population 
size crosses the high threshold value of 9.941, population agglomeration has a significant promoting 
effect on ecological resilience. This is because when the population size reaches a high level, the 
benefits brought by economic agglomeration far outweigh the costs incurred by the crowding effect. 
Thus, the inhibitory effect of population agglomeration on ecological resilience is changed to a 
facilitating effect on ecological resilience. The above findings suggest that in areas with different levels 
of population size, the effect of population agglomeration on the ecological resilience can vary. For some 
regions with particularly large population sizes, population agglomeration can even be advantageous for 
the development of ecological resilience. Hypothesis 2, proposed in Section 2, is tested.  
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6. Spatial effect analysis 

6.1. Spatial autocorrelation test 

The fundamental premise of using spatial econometric models is that there exists spatial 
autocorrelation in ecological resilience. Drawing on the existing literature [46–48], we conducted a 
spatial autocorrelation test on the ecological resilience of the 31 provinces in China using the global 
Moran’s index. The results are presented in Table 11. The relevant equations can be found in (8)–(11). 
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1 1
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

  (11)

where Wij is the spatial weight matrix. 

Table 11. Spatial autocorrelation test.  

Year 
Er

W1 W2 
Moran’s I z-value Moran’s I z-value 

2011 0.205** 2.027 0.041** 2.220 
2012 0.249*** 2.385 0.049*** 2.426 
2013 0.254*** 2.430 0.048*** 2.404 
2014 0.254*** 2.435 0.057*** 2.690 
2015 0.227** 2.224 0.055*** 2.640 
2016 0.170** 1.757 0.039** 2.192 
2017 0.215** 2.135 0.052*** 2.584 
2018 0.157* 1.628 0.034** 2.035 
2019 0.141* 1.480 0.040** 2.202 
2020 0.177** 1.798 0.043** 2.291 

From Table 11, it can be observed that under both the adjacency matrix and inverse distance 
matrix, the Moran’s index of ecological resilience for the 31 provinces in China was consistently 
significant and positive from 2011 to 2020. This indicates a positive spatial autocorrelation among the 
ecological resilience of each province, suggesting that provinces with high ecological resilience tend 
to cluster together, while provinces with low ecological resilience also tend to cluster together. 

6.2. Identification and testing of spatial econometric models 

Spatial econometric models are typically classified into SAR, SEM and SDM. To assess which 
model is more suitable for this study, we first conducted an LM test. Only the Robust LM_lag under 
the adjacency matrix did not pass the significance test. Next, we employed LR and Wald tests, both of 
which passed the 1% significance level under the two matrix types. This indicates that SDM will not 
degrade into SAR or SEM. The test results are presented in Table 12.  
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Table 12. Identification and testing of spatial econometric models.  

Test 
W1 W2 

Chi2 P-value Chi2 P-value
LM_error 50.855*** 0.000 31.493*** 0.000 
Robust LM_error 16.509*** 0.000 2.842* 0.092 
LM_lag 35.101*** 0.000 34.756*** 0.000 
Robust LM_lag 0.755 0.385 6.104** 0.013 
LR test for SAR 27.12*** 0.000 38.14*** 0.000 
LR test for SEM 37.45*** 0.000 51.80*** 0.000 
Wald test for SAR 27.36*** 0.000 39.58*** 0.000 
Wald test for SEM 39.98*** 0.000 54.09*** 0.000 

6.3. Spatial Durbin model regression analysis 

According to the test results in Table 12, we employed the spatial Durbin model (SDM). The 
SDM regression results, obtained from Eqs (7)–(9), are presented in Table 13. 

Table 13. Spatial Durbin model regression results.  

Variables 
W1 W2 

Direct effect Indirect effect Total effect Direct effect Indirect effect Total effect

Pop -0.179*** 0.176** -0.004 -0.180*** 0.435*** 0.255 

 (-4.112) (2.297) (-0.034) (-3.692) (2.701) (1.528) 
Control variables YES YES YES YES YES YES
Individual effect YES YES YES YES YES YES
Time effect YES YES YES YES YES YES
N 310 310 310 310 310 310
R2 0.431 0.431 0.431 0.398 0.398 0.398
Log-L 791.513 791.513 791.513 798.595 798.595 798.595

Table 13 shows that, under both spatial weight matrices, the direct effect of population 
agglomeration on ecological resilience is significantly negative at the 1% level, while the indirect 
effects are significantly positive at the 5% and 1% levels, respectively. This indicates that, population 
agglomeration has a significant inhibiting effect on the ecological resilience level in the local area, 
while it has a significant promoting effect on the ecological resilience level in the surrounding areas. 
This is because the siphoning effect generated by population agglomeration will attract the population 
from the surrounding areas to flow into the local area, which reduces the population agglomeration 
level in the surrounding areas and promotes the improvement of the ecological resilience level in the 
surrounding areas. The reason why the total effect is not significant may be due to the offsetting effects 
of the positive and negative effects. Therefore, population agglomeration not only has a direct impact 
on the ecological resilience of the local area but also exerts an indirect influence on the ecological 
resilience of surrounding areas. Hypothesis 3, proposed in Section 2, is tested.  

7. Conclusions and suggestions  

7.1. Conclusions 

We have empirically investigated the impact of population agglomeration on ecological resilience 
and the threshold effect of population size in it by combining panel data from 31 Chinese provinces 



15913 

Mathematical Biosciences and Engineering  Volume 20, Issue 9, 15898–15917. 

from 2011 to 2020. We have derived the following four conclusions: First, overall, population 
agglomeration significantly inhibits the improvement of ecological resilience. This conclusion still holds 
after robustness testing of the model. Second, with increased investment in environmental protection in 
China since 2016, the gradual standardization and improvement of the environmental protection system 
have led to a progressive weakening of the inhibitory effect that population agglomeration has on ecological 
resilience. Especially in the economically developed eastern regions, the inhibitory effect of population 
agglomeration on ecological resilience gradually transforms into a promoting effect. Third, the impact of 
population agglomeration on ecological resilience exhibits typical dual-threshold traits due to differences 
in population size. As the population size crosses the first and second threshold values, the inhibitory effect 
of population agglomeration on ecological resilience gradually transforms into a promoting effect. Fourth, 
while population agglomeration has a significant inhibitory effect on the ecological resilience level of the 
local area, it has a significant promoting effect on the ecological resilience level of the surrounding areas. 
Therefore, we can observe that the impact of population agglomeration on ecological resilience is complex. 
Population agglomeration does not absolutely impede the development of ecological resilience. On the 
contrary, to a certain extent, reasonable population agglomeration can even facilitate the progress of 
ecological resilience. Compared to existing research, we have empirically studied the impact of population 
agglomeration on the environment from the perspective of ecological resilience. Our aim is to provide fresh 
insights and understanding while offering policy foundations for achieving sustainable development goals. 

7.2. Suggestions 

With the above findings, we propose the following suggestions: 
1) Efforts should be made to fully leverage the scale benefits and positive externalities of population 

agglomeration and guide population agglomeration to promote the development of ecological resilience. 
Considering the variations in resource endowments, location conditions and industrial structures across 
different regions, the government should strategically plan and guide population agglomeration in 
accordance with local circumstances. This approach will bolster ecological resilience and achieve more 
efficient economic development. In addition, the government can increase support for talent introduction, 
provide more preferential policies and welfare benefits to attract more outstanding talents to the local area. 
This can not only promote local economic development, but also raise the level of knowledge and 
technology in the city, further promote the modernization process of the city and provide strong support 
for the development of the local economy and ecological environment. 

2) Increase investment in technology and actively develop green energy technologies. The 
government should increase investment in technology, encourage enterprises and universities to 
actively develop and apply green energy technologies. At the same time, the government can also issue 
relevant policies to encourage enterprises to increase investment in green technology, promote the 
development of green industries and promote the transformation and upgrading of urban industries. 
These measures can improve the ecological adaptability and disaster response capacity of the city as 
well as the environmental quality and ecological resilience. 

3) Accelerate the construction of an ecological civilization community and achieve regional 
ecological and economic coordinated development. The government should strengthen cooperation 
and communication with surrounding areas, jointly promote ecological environmental protection and 
sustainable development. The government should also strengthen the formulation and implementation 
of ecological environmental protection policies, ensure that the public can actively participate in 
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ecological environmental protection and promote the green development of the city. These measures 
can strengthen the coordinated development of regional ecological economy, improve the ecological 
resilience and sustainable development capabilities of the city and achieve the long-term development 
and prosperity of the city. 
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