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Abstract: This paper proposes a multi-objective queuing charging strategy for electric vehicles (EVs) 
based on metrics of public interest. It combines common charging modes, such as random charging 
mode, tariff-guided mode and stop-and-charge mode. It introduces the problem of queuing charging 
for EVs by considering the realistic imbalances of vehicle-pile ratios in these common modes. A travel 
model and a charging model were developed in this study. Experiments prove that the proposed 
strategy has the highest comprehensive evaluation index, achieves the aim of low charging cost and 
high travel rate and considers the queuing problem, which is unavoidable in reality. It improves the 
convenience of life and reduces the charging cost. The proposed strategy smoothens the EV charging 
load curve, largely reducing the burden of charging load fluctuations on the grid and achieving a win-
win situation for both supply and demand. 
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1. Introduction 

With the gradual deterioration of air quality and the environment and the energy crisis caused by 
fuel cars worldwide, renewable energy vehicles, i.e., electric vehicles (EVs), have been strongly 
promoted by governments of various countries. EVs have been developing rapidly due to the gradual 
improvement of the system and the construction of related infrastructure. However, this entails a new 
test for vehicle charging equipment and its power supply system [1]. Constructing charging facilities 
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will also put forward higher requirements, where the scale and use area of charging facilities must be 
larger and wider. 

As the energy demand for EVs continues to increase, the uncertainty of grid regulation becomes 
increasingly serious, bringing huge deployment pressure on the grid. The load demand of an average 
electric vehicle is usually equivalent to the electricity consumption of an average household when 
connected to the grid. In addition, EVs have several impacts on the distributed grid. Their influencing 
factors can generally be divided into the following: penetration rate, battery characteristics, driving 
mode and charging schedule [2–5]. The impact of EV access on the grid is shown in Figure 1. 

 

Figure 1. Impact of electric vehicle access to the grid. 

The two factors that generally determine the charging scheme of EVs are the charging strategy 
and the charging situation [6]. Since the daily energy consumption of an EV is smaller than the rated 
power of the battery itself, the need for daily charging is eliminated, and the EV only requires 
recharging when the battery state of charge (SOC) is less than the set threshold. Generally, the charging 
modes of EVs can be divided into the following [7]: 1. Tariff-guided charging mode (i.e., users charge 
their EVs during non-peak hours to avoid high charges); 2. Simple direct charging mode (i.e., users 
charge by “plug-and-charge,” where there is no need to plan, and they can charge at any time, which 
is more arbitrary); 3. Smart charging mode, in which EV users can sell excess battery energy to the 
grid during peak hours as an energy resource for auxiliary services, which not only contributes to the 
operational stability of the grid [8] but also offsets some of the charging costs. 

For general research, most EVs’ charging modes are based on tariff-guided charging and 
discharging research. These modes can effectively avoid charging Evs during the peak hours of 
electricity consumption, which can reduce the pressure on the power grid and reduce the charging costs 
of users. However, only using the electricity tariff-guided charging and discharging strategy causes a 
new peak at night, when the electricity price is lowest, which seriously affects the stable operation of 
the power grid. In addition, it does not take into account some emergency situations, such as users 
urgently needing a car and not having the time to wait. Thus, only considering the tariff factor is far 
from enough. To further increase user support for the orderly charging and discharging strategy, one 
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should consider not only the economy, stability and safety of the grid but also the actual demand, 
economic efficiency and cost performance for the user [9–12]. 

Large-scale electric vehicle charging behavior is one of the popular topics currently receiving 
public attention and has a significant impact on the daily lives of contemporary residents [13]. However, 
most of the current research findings on large-scale EV charging behavior do not take into account the 
realistic condition of the limitation of the number of charging piles. Therefore, this paper uses this as 
the subject with the following main contributions: 

Given the current charging pile coverage degree, a multi-objective EV queuing charging strategy 
is proposed, in which several EVs must be charged simultaneously in a limited number of charging 
piles. The strategy divides the battery capacity of EVs into large-capacity and small-capacity batteries 
according to the actual situation. Since batteries of different capacities have different demands for daily 
travel, the charging priority of EVs is set accordingly, and EVs are queued for charging according to 
the charging priority. 

The proposed strategy is divided into five modes: random charging queuing mode, tariff-guided 
queuing mode, stop-and-charge queuing mode, emergency charging mode and combined charging 
queuing mode. 

In order to achieve the performance of the strategy, an EV travel model and a charging model are 
established. An orderly queuing strategy is also used to alleviate the phenomenon, minimize the 
charging cost of users and reduce the valley-peak difference while taking into account the actual 
situation of an unbalanced vehicle-pile ratio, thereby avoiding imposing a large load on the grid. 

The rest of this paper is organized as follows. Section 2 presents the related work. Section 3 
establishes the travel model and charging model of EVs and proposes a multi-objective EV queuing 
charging strategy based on multiple objectives. Section 4 introduces the Monte Carlo (MC) simulation 
and queuing charging processes and establishes the objective function to select the intelligent 
optimization algorithm. Section 5 provides a comprehensive analysis of the multi-objective EV 
charging behavior using the intelligent optimization algorithm and compares the performances of the 
models in all aspects. Section 6 draws conclusions and discusses future work. 

2. Related works 

Xu et al. [14] proposed a multi-energy management strategy that calculates several EV priorities 
to form an EV charging and discharging priority table through scheduling, aiming to reduce power 
fluctuations in the grid and meet the daily usage requirements of EV users. Xiao et al. [15] proposed 
to minimize the charging cost of EV charging stations and the operating cost of microgrids by 
developing a real-time tariff strategy and an orderly charging and discharging strategy. He et al. [16] 
performed a simulation of users’ driving behavior and considered the behavior of random charging of 
EVs. A two-level charging control strategy was proposed for the charging problem of EVs, and its 
feasibility was verified by simulating each of the four scenarios. Sachan and Adnan [17] evaluated the 
impact of different EV charging methods on the distribution grid to achieve the optimal amount of EV 
charging without changing the grid or enhancing the grid infrastructure. While they also optimized the 
losses in the grid and reduced the charging costs, the article only considered the charging of EVs for 
home use. Yan et al. [18] proposed formulating the EV charging problem as a Markov game with an 
unknown transfer function and proposed a collaborative charging control strategy based on deep 
reinforcement learning (DRL) of multiple intelligences. Ping et al. [19] proposed a two-stage EV 



15711 

Mathematical Biosciences and Engineering  Volume 20, Issue 9, 15708–15736. 

charging coordination mechanism that frees the distribution system operator (DSO) from the additional 
burden of EV charging coordination. 

In terms of the relationship between the grid and EVs, it is crucial to discuss Vehicles-To-Grid 
(V2G)-a technology proposed in 1995. In V2G, EVs connected to the supply side act not only as a 
load but also as a distributed power source, allowing them to share the load pressure while consuming 
excess power from the grid. It is undoubtedly an indispensable technology that relieves the pressure 
on the grid. Iqbal et al. [20] proposed that to ensure that the electric vehicle charging state is maintained 
at the desired charging state, the power supply must be rectified in real time using V2G. A V2G control 
strategy for microgrid primary frequency control was developed to arrange supervision for each EV. 
This strategy allows for reasonable coordination between the three parties-EV operators, aggregators 
and charging stations. Optimization problems exist in various industries, such as engineering 
optimization, neural network optimization, and intelligent computing, all of which require efficient 
and accurate optimization algorithms [21]. Akram et al. [22] used particle swarm optimization to 
enable EV V2G to run until the time period when electricity prices were higher, minimizing the cost 
of electricity to the user. Chen et al. [23] studied a method to evaluate the impact of EV participation 
in charging and discharging on the voltage quality of the distribution network. First, the charging and 
discharging model was established by considering the charge state of EVs and other factors. Then, a 
probabilistic current calculation based on Latin hypercube sampling was used to obtain the probability 
distribution of the voltage magnitudes of charging and discharging loads in the distribution network. 
Finally, evaluation indexes were established to quantify the voltage quality of the distribution network. 
An ordered charging and discharging strategy based on V2G was proposed in [24]. In particular, a 
charging and discharging load model was proposed which considered and maximized the benefits of 
both the supply and demand sides. Several commonly used models were compared by considering the 
aspects of grid capacity, start time of charging and the presence of randomness in the duration. The 
valley-peak variance of the grid load was minimized, and the cost of electricity for customers was 
reduced. DRL is a combination of reinforcement learning (decision-making capability) and deep 
learning (perceptual function) that can solve the challenging problem of sequential decision-making. 
DRL can be used in various applications, such as power system operation control, autonomous Internet 
of Things (AIoT) [25] and electric vehicle charging scheduling. Lee et al. [26] proposed a model-free 
DRL based algorithm for optimal path and charging station selection (RCS) to address the uncertainty 
of traffic conditions and dynamic arrival charging requests. 

3. System model establishment 

The demand for electric vehicle charging remains high in proportion to the total electricity 
consumption of society as a whole, which is a new test for charging facilities and the grid system. Due 
to the limited charging conditions and national grid constraints, it is crucial to predict the driving and 
charging behaviors of EVs. In this section, the MC method is proposed to model the travel and charging 
of EVs. 

3.1. EV travel model 

While there is a certain regularity in each EV user’s daily travel habits and car use behavior, each 
user’s habits are still different [27]. In using the MC method for modeling, users’ travel habits must be 
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considered a key part of the modeling process and fully understood. These travel habits include the 
frequency of daily trips and the mileage, time distribution and departure time of each trip. The 
distribution functions of these travel habits can be derived based on the results of the survey in the 
relevant sectors [27–29]. 

MC is a mathematical method based on probability statistics and mathematical analysis. First, the 
probability of the entire event occurring is constructed or described. Second, a random sample is used 
to sample the current probability model. Finally, unbiased estimators are constructed. This method not 
only responds to the process that coincides with objective laws but also yields more realistic results 
used frequently in many settings. 

In this paper, we apply maximum likelihood estimation (MLE) to estimate the parameters, 
generally based on the known model. However, some of the parameters inside the model are still 
unknown, in which case the MLE can be used to find the parameter with the highest probability in 
the sample. 

The distance per trip for EV users follows the Birnbaum-Saunders (BS) distribution. The distribution 
function 𝐹 𝑥  and the probability density function 𝑓 𝑥  are presented in Eqs (1) and (2), respectively: 

 𝐹 𝑥 𝛷   (1) 

 𝑓 𝑥 ∙ 𝜑 ，𝑥 0  (2) 

where 𝜔 is the shape parameter, 𝜔 0, and 𝛽 is the scale parameter, 𝛽 0. 𝜑 𝑥 1 √2𝜋⁄ ∗ 𝑒  
and 𝛷 𝑥 𝜑 𝑦 𝑑𝑦 are the density and distribution functions of 𝑁 0,1 , respectively. The 

MLE provides the following values: 𝛽 10.57, 𝜔 0.97, variance of 15.09 and mean of 15.52. The 
probability density distribution curve of the actual EV user data with the BS-fitted curve distribution 
is shown in Figure 2. 

 

Figure 2. Distribution of distance per trip. 

The daily trip frequency 𝐹   following the 𝛤  distribution and the probability density function 
𝑓 𝑥|𝛼, 𝛾  are shown in Eqs (3) and (4), respectively. 𝛤 𝛼  is the gamma function, where 𝛼 is the shape 
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parameter, and 𝛾 is the scale parameter. The MLE provides the following values: 𝛼 = 3.71, 𝛾 = 0.64, 
variance of 1.24 and mean of 2.39. The comparison of the actual EV user data with the fitted curve of 
trip frequency is shown in Figure 3. 

 𝛤 𝛼 𝑡 𝑒 𝑑𝑡  (3) 

 𝑓 𝑥|𝛼, 𝛾 𝑥 𝑒   (4) 

 

Figure 3. Distribution of daily trip frequency. 

The duration of each trip 𝑇  follows the same 𝛤 distribution, according to Eqs (3) and (4). The 
parameters are obtained by MLE: 𝛼 = 1.87, 𝛾 = 18.35, with a variance of 25.12 and a mean of 34.4. 
A comparison of the fitted curve with a gamma distribution and the actual data curve is shown in 
Figure 4. 

 

Figure 4. Distribution of duration per trip. 
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The departure time of each trip differs according to the function fitted to two different time periods. 
If the trip departure time is in the morning, it follows the location-scale distribution function. The 
probability density function of 𝑇  is shown in Eq (5): 

 𝑓 𝑥|𝛿, 𝜀,𝜃
∙√ ∙

∙   (5) 

where 𝛤 ∙  denotes the gamma function, 𝜃 is the shape parameter, 𝜀 is the scale parameter, and 𝛿 
is the position parameter. The above three parameters can be estimated by MLE with the following 
values: 𝜃 = 2.16, 𝜀 = 1.08, 𝛿 = 8.36 and a variance of 3.98. 

If the travel departure time is afternoon 𝑇 , the probability density function will follow the 
normal distribution law, as shown in Eq (6). 

 𝑓 𝑥|𝛿, 𝜀
√

∙ 𝑒   (6) 

The parameters, 𝛿 = 18.2 and 𝜀 = 2.84, were obtained by maximum likelihood estimation. The 
fitted and actual data curves of the departure time probability density distribution for each electric 
vehicle trip are shown in Figure 5. 

 

Figure 5. Distribution of departure time per trip. 

SOC is a technical parameter used to represent the battery’s charge state. The battery energy 
distribution can be seen from its size, which can also be used to determine the battery’s performance. 
The definition of SOC can be expressed in Eq (7): 

 𝑆𝑂𝐶   (7) 

where 𝐶   represents the rated capacity size of the EV battery while 𝐶   represents the current 
capacity size of the EV battery. 
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3.2. Multi-objective EV charging model 

The charging strategy and the charging situation are the two factors that determine the charging 
scheme. Further, the charging strategy must first be addressed in building a charging model for EVs. 
EV users choose different charging strategies (i.e., setting a specific charging target or choosing an 
optimal charging period) [30]. For example, an EV user chooses the lowest tariff moment for charging 
according to the different tariffs throughout the day to reduce the cost. This strategy is called a tariff-
guided charging strategy. The three commonly used charging strategies are described in detail, as 
shown in Table 1. 

Table 1. Description of basic charging strategy. 

Strategy Strategy Description 
Random charging EVs are charged at random moments of idleness. 

Tariff-guided charging 
EVs are charged at the time of day when electricity prices are lowest, 
reducing the cost of charging for EV users. 

Stop-and-charge charging 
If the parking time exceeds the charging time, then the EV is charged 
as soon as it arrives to keep the power in ideal condition and increase 
the success of the trip. 

Several EVs simultaneously connected to the grid can cause a considerable disturbance–in serious 
cases, grid collapse. The results of the Beijing traffic survey [31] show that for private cars, the peak 
travel times are concentrated between 6:00 and 9:00 and between 16:00 and 19:00; for many EV users, 
the idle hours are mainly between 9:00 and 14:00 and between 20:00 and 23:00. EVs with random 
charging strategy and stop-and-charge charging strategy focus on charging in these two time periods, 
respectively. The charging load of EVs reaches two peaks, which are often peak periods of electricity 
consumption, as shown in Figure 6. In this case, the power grid will bear a double load of household 
electricity and EV charging simultaneously, causing serious power supply tension. 

On the other hand, a tariff-guided charging strategy essentially means that EVs are charged when 
electricity prices are lowest, often between 23:00 and 4:00. Although EVs, under the guidance of a 
tariff-guided charging strategy, can avoid charging during peak hours, they can still generate a charging 
peak in a relatively short period of time from 23:00 to 2:00. Therefore, only using the tariff-guided 
charging strategy can effectively reduce the charging cost. However, there will still be a concentrated 
charging period at night, suddenly increasing the peak power consumption and seriously affecting the 
stability of the grid operation. 

From a combined perspective, none of the three charging strategies provide satisfactory 
performance under single-factor considerations. For example, while the stop-and-charge strategy can 
ensure successful trips, increasing the success rate, it also generates higher bills and increases the 
burden of grid power supply; in addition, charging too frequently can harm battery life. If the charging 
strategy of tariff-guided is solely adopted, the charging cost of users can be reduced. However, in 
addition to causing load peaks in a short period of time, the required power cannot be guaranteed if 
urgent travel is required, which reduces the success rate of travel. 
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Figure 6. Hourly charging load under three different strategies and basic load of residents. 

Further, the three charging strategies mentioned above do not consider the need for queuing 
for charging. With the increasing number of EVs, the total vehicle-pile ratio of new EVs in China 
has dropped to 3.1:1, and the public vehicle-pile ratio is only 6.5:1, according to the data published 
by China Charging Alliance, as shown in Figure 7, which means that the number of charging piles 
will not be able to meet the demand of new EV owners during the peak period of EV charging. In 
addition, the utilization rate of public charging piles in different urban areas is polarized, resulting 
in insufficient charging piles in some areas while many idle charging piles exist in others. The 
effective utilization rate of charging piles is far lower than the number of charging piles [32–33]. 
Therefore, a new strategy must be proposed to solve the problem of the mismatch between the cars 
and the piles. 

 

Figure 7. Vehicle-to-pile ratio of new energy vehicles in China. 

Based on the problems presented above, the three charging strategies are added to optimize the 
EV queuing charging situation. A multi-objective EV queuing charging strategy that integrates travel 
success rate, charging cost-saving rate and grid load is also proposed, and a charging priority parameter 
is established to regulate the charging vehicles reasonably. The strategy combines several charging 
strategies commonly used in daily life, allowing users to independently choose charging targets 
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according to their needs and EVs to choose the best charging time period in a day. It can achieve the 
purpose of peak-shaving and valley-filling, reducing the pressure on the grid while minimizing the 
charging cost for users. The combined charging strategy model is shown in Eq (8) to Eq (18). Several 
hypotheses are proposed for the model in this paper, as follows: 
a) The batteries used in EVs are always kept at constant power from the beginning to the end of charging. 
b) During the charging process, the relevant parameters of the charging piles used for EVs are the 

same, and no special distinction is made. 
c) Throughout the study process, users charge according to their usual electricity habits. 
d) In order to ensure that the original travel plan can be executed smoothly and reduce the damage to 

the battery, it is assumed that the battery pack will be charged up to 90% each time. 
e) Dividing each day (i.e., 24 hours) equally into ℎ  period intervals, a sampling period is set to 

1440 ℎ⁄  minutes. 

 𝑃 𝑆 𝑆 𝑆 ∗ 𝑆 𝑆 𝑈 𝑥   (8) 

 𝑃 𝑆 𝑆 𝑆 𝐹 𝑠 ∗ 𝑆 𝑆   (9) 

 𝑆 𝑅 ∗ 𝜑   (10) 

 𝑆 1.5 ∆̅
̅  ∗ 𝜑   (11) 

 𝑆 1.5 ∗ 𝜑   (12) 

 𝑆 1 𝜑   (13) 

 𝑆 𝜑 ∗ ∞   (14) 

 𝑈 𝑥
0，𝑜𝑡ℎ𝑒𝑟

 ∞，0 𝑆𝑂𝐶 𝑆𝑂𝐶
  (15) 

where 𝑃  represents the priority of the EV in the current time period among ℎ time periods per 
day. The EV starts charging when 𝑃  > 0.5. The most suitable charging time period of the day 
with a comprehensive index can be calculated by 𝑃 . 𝑃  indicates the current queuing priority of 
EVs for charging, and the EVs that need to be charged in the current period are queued for charging 
according to the size of this priority. 𝜑  is the weighting factor, and 𝑅 is the random priority 
factor that follows a uniform distribution, 𝑅 ∈ 0,1 , such that the random charging behavior is 
simulated. 𝑇  is the time used to fully charge the EV, and 𝑇  is the EV’s parking time. 

 𝜑
0,       𝑁𝑜𝑟𝑚𝑎𝑙 𝑚𝑜𝑑𝑒

1, 𝐸𝑚𝑒𝑟𝑔𝑒𝑛𝑐𝑦 𝑚𝑜𝑑𝑒  (16) 

 ∑ 𝜑 1  (17) 
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 𝑠

⎩
⎪⎪
⎨

⎪⎪
⎧ ∞，                           0 𝑆𝑂𝐶 𝑆𝑂𝐶  𝑜𝑟

                              0 𝑆𝑂𝐶 𝑆𝑂𝐶
   0,                   𝑆𝑂𝐶 𝑆𝑂𝐶 3𝑆𝑂𝐶  𝑜𝑟 

                   𝑆𝑂𝐶 𝑆𝑂𝐶 3𝑆𝑂𝐶
0.2 ∗ 𝑆𝑂𝐶  ,            3𝑆𝑂𝐶 𝑆𝑂𝐶 1 𝑜𝑟

                             3𝑆𝑂𝐶 𝑆𝑂𝐶 1

  (18) 

𝑆𝑂𝐶  denotes the current SOC of EVs, 𝑆𝑂𝐶  denotes the minimum SOC of high-capacity 
and small-capacity batteries, 𝑆𝑂𝐶   denotes the minimum SOC of high-capacity batteries, and 
𝑆𝑂𝐶  denotes the minimum SOC of small-capacity batteries. 𝐹 𝑠  indicates that if the current 
SOC of the EV is less than the minimum SOC, the EV is charged immediately. To ensure the reliability 
of the travel plan, 𝑆𝑂𝐶  is set to 0.2, and 𝑆𝑂𝐶  is set to 0.25. When 𝑆𝑂𝐶  is greater than 
the set value, 𝐹 𝑠  is considered a negative function, which reduces the priority of charging. The 
above parameter 𝜑  represents a switch. When 𝜑  is 0, it means that the EV is in regular charging 
mode, and the emergency mode does not work. On the other hand, when 𝜑  is 1 and 𝑆  is 0, it enters 
the emergency charging mode and charges the EV immediately. Those who choose the emergency 
charging mode will be charged with an additional charge. 

�̅�∆   denotes the average charging cost of an EV over a period of time, and �̅�   denotes the 
average charging cost of an EV in a day. �̅�∆  is calculated using Eq (19) as follows: 

 𝐶∆̅
∑

  (19) 

where 𝑇 is the continuous charging time, and 𝐶  is the tariff at the moment 𝑖. In this section, 
�̅�∆  = 0.57 yuan/ kWh. The daily tariffs are shown in Table 2 [27]. 

Moreover, 9:00 to 11:00, 14:00 to 16:00 and 19:00 to 21:00 are the peak periods of electricity 
prices and peak periods of electricity consumption. After considering the comprehensive conditions, 
charging in the above time periods must be avoided to reduce the costs to users and the burden on the 
grid and maximize its benefits. 

Table 2. Daily tariffs. 

Time period Electricity price Time period Electricity price 
00:00–07:00 0.23 yuan/kWh 16:00–19:00 0.61 yuan/kWh 
07:00–09:00 0.61 yuan/kWh 19:00–21:00 0.92 yuan/kWh 
09:00–11:00 0.92 yuan/kWh 21:00–23:00 0.61 yuan/kWh 
11:00–14:00 0.61 yuan/kWh 23:00–24:00 0.23 yuan/kWh 
14:00–16:00 0.92 yuan/kWh   

The strategy proposed in this section can be divided into five modes based on parameter 
tuning: random charging queuing mode, tariff-guided queuing mode, stop-and-charge queuing 
mode, emergency charging mode and combined multi-objective queuing charging mode. Each 
mode has its own advantages and disadvantages. This strategy will focus on a new charging mode 
combining these four modes according to a certain ratio factor. The specific charging strategy is 
described in Table 3. 
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Table 3. Description of charging modes. 

Mode Model Description 

Random 

charging 

queuing 

When 𝜑  = 0, 𝜑  = 1, 𝑆𝑂𝐶 𝑆𝑂𝐶  , P = R   0.5, it indicates that charging is a 

random behavior that conforms to a uniform distribution. The vehicles are to be charged, and 

the charging priority of the vehicles is calculated and evaluated based on the current number 

of charging vehicles at the charging piles.  

Tariff-guided 

queuing 

When 𝜑 = 0, 𝜑 = 1, 𝑆𝑂𝐶 𝑆𝑂𝐶 , P = (1.5 𝐶∆̅ 𝐶̅⁄ )  0.5, it means that the 

current average cost is lower than the daily average cost–that is, the charging is started, and 

the user is encouraged to charge the EV with the lowest parking tariff. The charging priority 

is calculated, and the charging queue is entered for vehicles that need to be charged. If the 

charging piles are full, a waiting queue must be entered. 

Stop-and-charge 

queuing 

When 𝜑 0 , 𝜑 1 , 𝑆𝑂𝐶 𝑆𝑂𝐶  , 𝑃 1.5 𝑇 𝑇⁄ 0.5 , it 

indicates that if the parking time exceeds the charging time, the electric vehicle is charged 

immediately upon arrival (i.e., 𝑇 𝑇  ). As the parking time decreases, the 

priority also decreases to ensure that the arrival moment priority P is at maximum. 

Emergency 

charging 

When 𝜑 = 1, it means that the emergency mode must be entered, and the EV must be charged 

immediately. 

4. EV load estimation based on MC 

In analyzing the correlation between EV driving behavior and EV charging behavior, some factors 
affecting the total charging power need to be extracted from the grid system. These characteristics 
include the number of EVs, charging pile information, EV battery characteristics and user behavior. 
The first three characteristics mentioned above can be assumed as known quantities, while the last user 
behavior characteristic cannot be predicted and can only be set as a variable and solved by the model. 
It is generally impossible to solve the above problems directly; hence, simulation is needed. In order 
to obtain a more suitable charging scheme, MC simulation is used to treat the EV charging problem as 
a nonlinear programming problem and to simulate multiple strategies. Various probability distributions 
are used to describe the driving behavior of EVs in daily life, which can improve the reliability of MC 
simulation. The number of EVs, charging pile information, EV battery characteristics and users’ 
behavior are used as constraints to establish the objective function. 

The data for the probability distribution fitting model used is based on [31], in which the 
analysis is limited to Monday through Friday. The probability density functions involved in the 
probability model include the BS distribution function, the gamma distribution function, the 
following location-scale distribution function and the normal distribution function. The distance 
per trip for EV users, the frequency of EV trips per day, the duration of each EV trip and the 
departure time of each EV trip are shown in Eq (1) to Eq (6), as described in Section 2. In order to 
obtain the performance indexes of different charging schemes, the EV charging data and EV trip 
data are first counted and then simulated using MC on the values. In the simulation process, outer 
limits are made for when the battery starts charging to enable the EV users to complete the travel 
plan, as shown in Eq (20) to Eq (21): 

 ∆𝑇 ∗ 𝑉 ∗ 𝐶𝐴𝑃 ∗ 1 𝑆𝑂𝐶 ，   (20) 
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 𝑡 ∈ 𝑇 ,𝑇 ∆𝑇   (21) 

where ∆𝑇  is the maximum continuous charging time, and 𝐶  is the charging capacity of the EV. 
𝑊  is the constant power, which comes from the grid and has a value of 15 kW. 𝑉 indicates the 
voltage, and the value is 230 V. 𝐶𝐴𝑃 is the battery capacity. The value of a large-capacity battery is 
200 Ah, and the value of a small-capacity battery is 100 Ah. 𝑆𝑂𝐶 ，  denotes the initial state of 

the 𝑖th battery capacity, which is related to the distance traveled for each trip. 𝑡  indicates the time 
when the EV starts charging, provided that the travel plan can be completed. 𝑇  indicates starting the 
period when the EV is idle, and 𝑇  indicates ending the period when the EV is idle. 

An EV battery charge prediction model was developed to determine the daily battery charge and 
implemented using MC based on random sampling experiments. In ℎ intervals, the total charging 
capacity in each interval is recorded as Eq (22), as follows: 

 𝑅 ∗ ∑ ∑ 𝑟 𝑑   (22) 

where 𝑅  is the total charging capacity of the 𝑗th interval, 𝐷 is the total number of days calculated, 
𝑄 is the number of EVs in that time period, and 𝑟 𝑑  is the charging capacity of the 𝑗th EV in the 
𝑖th time period of the 𝑑th working day, as shown in Eq (23). 

 𝑟 𝑑 ∗ 𝑊 𝑑 ∗ 𝐸   (23) 

where ℎ  refers to the time the 𝑗th interval lasted, in minutes. 𝑊 𝑑  is the power of the charging 
post in the dth working day. 𝐸  is the charging efficiency of the ith EV, which depends on the material 
of the battery and the related technology, and is set to 0.9. 

In this paper, the day is divided into 96 time periods of 15 minutes each (ℎ = 15). Subdividing 
the day into 96 time periods can more accurately simulate the load on the grid, as the charging behavior 
of EVs affects the grid load. With this mechanism, the impact of the charging load of EVs on the grid 
can be better simulated [34]. It also helps to evaluate the charging behavior and driving behavior of 
EVs more realistically. In each 15-minute time period, the status of EVs, such as charging volume, 
remaining capacity and driving mileage, can be recorded more frequently, which helps to better collect 
and record data, more accurately model and represent the charging demand of EVs, and more 
accurately capture the changing trends and patterns of charging demand for charging strategy 
formulation. Additionally, it enables more accurate calculations of charging costs. Because electricity 
prices may vary during different time periods, the cost of charging EVs during different time periods 
can be calculated more accurately by subdividing the day into 96 time periods [35]. 

The convergence condition in the MC model is expressed as Eq (24). The entire MC simulation 
is repeated no less than 100 times. 

 𝜌
，

  (24) 

where 𝜌  denotes the coefficient of variance of the system at the 𝑗th moment. 𝑉𝐴𝑅 ，  denotes 

the variance at the 𝑗th moment, 𝐸  denotes the expected value at the 𝑗th moment, and 𝜎  denotes 
the standard deviation at the 𝑗th moment. The coefficient of variance 𝜌  is set to be less than 0.5%. 
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4.1. MC simulation process 

In order to complete the simulation for a day, the basic information has to be obtained first. The 
user’s travel schedule and the number of miles traveled on that day are initialized, and the probability 
density function of the travel is calculated according to Eq (1) to Eq (6), which are determined by the 
user’s travel pattern. The specific time period of charging for the user is determined according to the 
different charging strategies determined by the user, as well as the state of the EV trip and the battery 
characteristics. The state of the EV is divided into three: driving, charging and idle. After obtaining the 
EV status, we can calculate the specific charging time period and the specific travel time period of the 
EV under different strategies and obtain the full charging time of the EV sufficient to support the travel 
plan and the specific cost of the whole charging process. 

The charging time period is calculated, as well as the number of EVs that need to be charged in 
the time period according to the simulation. Then, the users queue up according to the calculated 
charging priority of EVs; if there is no need to queue for that period, they can charge according to the 
original charging plan. If more vehicles are scheduled to charge in that period and need to wait in the 
queue, users must move back to the originally calculated charging time period until the charging time 
is available. After the queue charging is finished, the adequacy of the power of the trip can be judged 
by combining the specific travel time and the full charging time. If the power of the trip is sufficient, 
the plan will be successful. Otherwise, it will fail, and the trip will be canceled. The specific simulation 
process is shown in Figure 8. 

 

Figure 8. MC Simulation Process. 
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4.2. Queue operation 

The pseudo-code of a complete queuing operation procedure: 

Queuing Operation 

1: Input: Probability density function Eq (1) to Eq (6) 

(1) v_able_charge refers to the time period during which the vehicle can be charged. 

(2) v_is_driving refers to the time period when the vehicle is in motion. 

(3) total_evs refers to the total number of vehicles. 

(4) total_periods refers to the total time period of the vehicle. 

2: for ev=1 to 𝑡𝑜𝑡𝑎𝑙_𝑒𝑣𝑠  

3: [start, end]=Calculation_time_period (ev,v_able_charge,v_is_driving); 

The start time point and the end time point of the vehicle state change are calculated based on the time 

period when the vehicle is charged and the time period when the vehicle is being driven. 

4:   v_is_charging=AdjustCharging(ev, start, end); 

  The specific charging time period for each vehicle is determined based on the vehicle’s travel and the 

four different strategies. 

5: end for   

6: for time=1 to 𝑡𝑜𝑡𝑎𝑙_𝑝𝑒𝑟𝑖𝑜𝑑𝑠 

7:    charge_evs=v_is_charging (time);  

   charge_evs represents the set of vehicles charged at the time period. 

8:  if charge_evs ∅ 

9:      for ev=1 to charge_evs 

10:         Is_charging=ismember (ev,Charging_vehicles); 

        Determine if the vehicle is already charging at the charging station. 

11:       if Is_charging==true 

12:           Continue; 

13:       else 

14:           P=Calculate_charging_priority (ev); 

          P represents the set of priorities for each charging vehicle. It is calculated using Eq (9). 

15:           [charge_star, charge_end]=cal_charge_time (ev); 

          Calculate the start time period and end time period of charging for each vehicle. 

16:         end if 

17:      end for 

18:         Charging_vehicles=Vehicle_charging (P,charge_star,charge_end); 

        Vehicles with higher priority are added to the charging pile according to the charging priority 

order of the vehicles. 

19: Waiting_vehicles=Vehicle_waiting (P, charge_star, charge_end); 

Add vehicles that cannot be charged during the current time period to the queue for the queue. 

20:    end if 

21: end for 



15723 

Mathematical Biosciences and Engineering  Volume 20, Issue 9, 15708–15736. 

4.3. Selection of evaluation indexes and objective function 

A comprehensive evaluation index system was designed based on several indicators that are 
currently of most interest to EV users (i.e., the success rate of the trip, the cost incurred when 
performing charging, the fluctuating peak load and the load variance), as shown in Eq (25) to Eq (28):  

 𝑌
𝑆 ∗ 𝛼 ‖𝐶𝑂𝑆𝑇 ‖ ∗ 𝛽 ‖𝐴𝑃𝑅‖ ∗ 𝛾

𝛼 𝛽 𝛾 1
   (25) 

 𝑆   (26) 

 𝐶𝑂𝑆𝑇   (27) 

 𝐴𝑃𝑅   (28) 

where 𝑆  is the probability of the user’s successful trip, 𝐶𝑂𝑆𝑇  is the cost-saving rate caused 
by the scheme, 𝐴𝑃𝑅  is the average peak ratio, and 𝛼,𝛽, 𝛾  are three positive weight coefficients 
whose values are less than or equal to 1. 𝑀  indicates the actual mileage traveled, and 𝑀  indicates 
the mileage planned for travel. 𝐶𝑜𝑠𝑡  indicates the actual cost of electricity, and 𝐶𝑜𝑠𝑡  indicates the 
maximum cost of electricity. 𝐿  denotes the average load, and 𝐿  denotes the peak load. The 
values of 𝛼,𝛽, 𝛾 can be flexibly adjusted according to the user’s needs, where the parameter with the 
highest value represents the indicator that gives priority to the highest value (e.g., the highest value of 
𝛼 indicates that priority is given to the probability of successful trip for the user). For the evaluation 
index 𝑌, the higher its value is, the better the performance of the system. 𝛼 0.2,𝛽 0.5, 𝛾 0.3 
are taken in this study. The metrics are normalized with ‖∙‖. The normalization process can better 
avoid premature algorithms and improve the sensitivity of the intelligent algorithm to the metrics. In 
this study, we set the integrated indicator 𝐿, as shown in Eq (29). 

 ‖𝐿‖   (29) 

𝐿  denotes the upper bound of 𝐿, and 𝐿  denotes the lower bound of 𝐿. For dividing 24 
hours into 96 time periods, the resulting load variance 𝑉𝐴𝑅  during the period is defined as 
Eq (30) to Eq (32): 

 𝑉𝐴𝑅 ∑ 𝐿 𝐿   (30) 

 𝐿 𝐿 ∑ 𝐿 𝑥   (31) 

 𝐿 ∑ 𝐿   (32) 

where 𝐿 is the average value of the system load during a day, 𝐿  is the sum of the base load and the 
charging load in time period 𝑗, and 𝑥  represents a variable of 0 or 1. When 𝑥 1, it means that 
the 𝑖th EV is charged in time slot 𝑗. On the contrary, when 𝑥 0, it means that the 𝑖th EV is not 
charged in time slot 𝑗 . The objective function of the multi-objective queuing charging strategy is 
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proposed and defined as Eq (33) to Eq (35): 

 𝑀 𝜃 𝑆  𝑆 𝑅𝜑 1.5 ∆̅
̅ 𝜑 1.5 𝜑 𝐹 𝑠   (33) 

 𝑠. 𝑡.
∑ 𝜑 1 
𝜃 ∈ 0,1
𝑆𝑂𝐶

  (34) 

 𝑀𝑎𝑥 𝐹 𝑆 ,𝐶𝑂𝑆𝑇 ,𝐴𝑃𝑅,𝑀   (35) 

In the above equation, 𝜑  are the coefficients in Eq (10) to Eq (12), 𝑆  and 𝑆  are shown 
in Eqs (13) and (14), and 𝜃 is the deviation of the model. 𝐹  is the objective function set, 
which considers the important parameters regarding the comprehensive evaluation index and 
optimizes the above parameters using the established nonlinear programming model. The values of the 
parameters (𝜑  are the parameters to be optimized. Some variables are still to be determined, and an 
intelligent optimization algorithm will be used to find the optimal solution in the model. 

4.4. Selection of intelligent algorithms 

In recent years, intelligent optimization algorithms have attracted much attention from researchers. 
Such artificial intelligence optimization algorithms can be used for various applications. The differential 
evolution (DE) algorithm has become one of the important algorithms in the field of optimization, given 
its power and simplicity [36]. Some classical algorithms, including simulated annealing (SA), genetic 
algorithm (GA), particle swarm optimization (PSO), whale optimization algorithm (WOA) [37], sparrow 
search algorithm (SSA) [38], and two-stage guided constraint differential evolution (TSGCDE), were 
selected to find the optimal value of the objective function. Due to the different algorithms, the final 
comprehensive evaluation index Y values differ due to the different parameters in the solved 
models. The number of iterations is set to 100, the dimension is set to 40D, and the population size 
is set to 100. C 1.25, C 0.5, and inertia weight ω 0.9 in the PSO. The selection ratio is 0.1, 
the crossover ratio is 0.7, and the variance ratio is 0.2 in the GA. Further, the annealing interval is 50 in the 
SA. The spiral shape parameter of the WOA algorithm is set to b = 1. The proportion of vigilantes P = 0.2 
and the threshold of vigilance ST = 0.8 are set in the SSA algorithm. The TSGCDE algorithm has the 
dimension set to 40, the number of particles set to 100 and the boundary set to [–100,100]. The number of 
vehicles is set to 1000, and the number of charging piles is set to 300. The driving behavior of EVs is 
simulated for 30 days and 100 times. The final comprehensive evaluation index comparison of different 
algorithms is shown in Figure 9, and the specific charging load of 1000 vehicles is shown in Figure 10. 

As shown above, the TSGCDE has the best overall maximum Y value of the solved 
comprehensive evaluation index compared with SA, GA, PSO, WOA and SSA. The Y value is also 
more stable, and the fluctuations are within a reasonable range. Overall, the load curve is the smoothest, 
the peak is the lowest, and the burden to the grid is the least. The comparison of the different algorithms’ 
indexes for 1000 EVs is shown in Table 4. 
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Figure 9. Comparison of comprehensive evaluation index Y of different algorithms. 

 

Figure 10. Comparison of load values of different algorithms. 

Table 4. Comparison of different algorithmic indicators for 1000 EVs. 

Parameter category GA PSO SA SSA WOA TSGCDE 

Total load/ kW 4507.3 5593.9 4567.1 4546.5 4478.9 4422.5 

Charging cost/ yuan 1564.0 2731.6 1599.0 1591.9 1542.3 1574.6 

Cost savings rate 0.627 0.475 0.624 0.623 0.629 0.635 

Average value/ kW 187.8 233.1 190.3 189.4 186.6 184.3 

Peak value/ kW 1350.0 1344.5 1350.0 1350.0 1350.0 1257.2 

Average peak ratio 0.139 0.173 0.141 0.140 0.138 0.147 

Probability of successful travel 0.761 0.885 0.768 0.7703 0.774 0.836 

Comprehensive evaluation index Y 0.553 0.471 0.527 0.546 0.557 0.570 

According to the table, among the combined multi-objective queuing charging strategies, the 
TSGCDE produced the lowest total charging load of 4422.5 kW, the highest cost savings of 63.5%, 
the lowest peak value of 1257.2 kW and the highest overall index. Notably, the TSGCDE is used in 
the subsequent experiments. 

5. Experimental analysis 

The base load data of electricity consumption is adopted from [39]. The final total electricity 
consumption load can be obtained by superimposing the residential base load with the EV charging 
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load. The specific residential base load is shown in Table 5. 
The TSGCDE is selected for MC simulation, setting the dimension as 40, the number of particles 

as 100, the boundary as [−100,100], the vehicles as 1000, the number of charging piles as 300 and the 
vehicle-pile ratio as 3.3:1. 100 30-day simulations are conducted for EVs. The experimental results are 
all taken as the average of 100 simulations, and the specific charging load is shown in Figure 11. The 
total charging load curve can be obtained by superimposing the base and charging loads. The total 
charging load curve is shown in Figure 12. 

Table 5. Base load of a day for residents of a neighborhood. 

Time Load/kW Time Load/kW Time Load/kW Time Load/kW 

01:00 1670.4 07:00 1894.2 13:00 2230.7 19:00 2543.1 

02:00 1740.4 08:00 2103.4 14:00 2263.8 20:00 2533.3 

03:00 1699.8 09:00 2345.2 15:00 2242.4 21:00 2382.8 

04:00 1605.1 10:00 2399.2 16:00 2243.4 22:00 2386.9 

05:00 1776.6 11:00 2449.6 17:00 2382.8 23:00 1990.5 

06:00 1830.4 12:00 2200.3 18:00 2402.3 24:00 1808.4 

 

Figure 11. Charging load for 1000 vehicles under different strategies. 

 

Figure 12. Base load with 1000 vehicles charging load superimposed under different strategies. 
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Figures 11 and 12 show that in the random charging queue mode, the peak charging period for 
EVs mainly occurs between 9:00 and 14:00, which highly coincides with the peak period of the 
residential base load, possibly causing pressure on the grid operation. Although the tariff-guided 
queuing charging model avoids the peak residential base load period, this model also has a major 
problem that causes a new charging peak period between 23:00 and 2:00, making the peak charging 
load as high as 3158.4 kW for a short period of time, which compromises the stability of the grid. 
Compared with the other three strategies, the charging load of EVs in the combined charging queuing 
strategy is relatively flat. Although a peak time period is also generated between 23:00 and 2:00, the 
charging load value is slightly lower compared with the tariff-guided queuing charging mode, which 
generally reduces the hazard to the grid. A comparison of specific indicators for different charging 
strategies for 1000 EVs is shown in Table 6. 

The comparison results show that the total load generated by the tariff-guided queuing strategy is 
the lowest at 4217.6 kW. Further, the combined multi-objective queuing strategy is the second lowest, 
and the highest total load is the random charging queuing strategy. The tariff-guided queuing strategy 
is the lowest charging cost, which is only 1160.5 yuan, followed by the combined multi-objective 
queuing strategy and the highest random charging queuing strategy. For the overall cost-saving rate, 
the best is the tariff-guided queuing strategy, with a saving rate of 72.1%, followed by the combined 
multi-objective queuing strategy, with a saving rate of 63.5%. The lowest saving rate is the random 
charging queuing strategy. However, the tariff-guided queuing strategy produces the highest peak, the 
random queuing strategy produces the lowest peak, and the combined multi-objective queuing strategy 
produces a peak only slightly higher than the random queuing strategy. The specific charging costs for 
1000 EVs under different strategies are shown in Figure 13, and the comprehensive evaluation index 
Y is shown in Figure 14. 

Table 6. Comparison of indicators of different charging strategies for 1000 EVs. 

Parameter category 
Multi-objective 

queuing  

Tariff-guided 

queuing 

Stop-and-charge 

queuing 

Random charging 

queuing 

Total load/ kW 4422.5 4217.6 6254.2 6359.0 

Charging cost/ yuan 1574.6 1160.5 4417.9 4539.4 

Cost savings rate 0.635 0.721 0.236 0.216 

Average value/ kW 184.3 175.7 260.6 265.0 

Peak value/ kW 1257.2 1350.0 1298.8 1253.4 

Average peak ratio 0.147 0.130 0.201 0.211 

Probability of successful travel 0.836 0.668 0.940 0.939 

Comprehensive evaluation index Y 0.570 0.537 0.405 0.397 

The comparison results in the above figure show that the comprehensive evaluation index Y of the 
combined multi-target queuing strategy is still better than the other three charging strategies despite 
increasing the vehicle-pile ratio. However, compared to the vehicle-pile ratio of 3.3:1, the overall 
evaluation index Y decreases for all four charging strategies because the number of charging piles that can 
be used decreases by increasing the vehicle-pile ratio, and the waiting time for vehicles waiting in the queue 
for charging at the peak hour of charging is longer, largely affecting the travel plan and the charging cost. 
Consequently, the success rate of travel and the saving rate of charging costs are decreased. 
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Figure 13. Specific charging costs for 1000 vehicles under different strategies. 

 

Figure 14. Comprehensive evaluation index of 1000 vehicles under different strategies. 

The number of vehicles is set to 1000, and the number of charging piles is set to 155. The vehicle-
pile ratio is 6.5:1. 100 30-day simulations are conducted for EVs, and the experimental results are all 
taken as the average of 100 simulations. The comprehensive evaluation index Y is shown in Figure 15. 

 

Figure 15. Increase the vehicle-pile ratio under 1,000 vehicles, comprehensive evaluation index. 
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The number of vehicles is set to 500, the number of charging posts is set to 167, and the vehicle-
pile ratio is set to 3:1. The specific charging load is shown in Figure 16, and the total charging load is 
shown in Figure 17. It can be seen that the peak charging period of the four modes is similar in 1000 
vehicles. The tariff-guided queuing charging mode still resulted in a new peak charging period from 23:00 
to 2:00, with a high peak charging load of 2559.9 kW for a short time, which compromises the grid’s 
stability. The comparison of specific indicators of different charging strategies for 500 EVs is shown 
in Table 7. Figure 18 shows the specific charging costs of 500 EVs under different strategies, and 
Figure 19 shows the evaluation index Y. 

From the perspective of comprehensive evaluation indexes, the random charging queuing strategy 
still has the worst effect, and its index slightly decreases. Meanwhile, the indicator of the combined 
multi-objective queuing strategy remains the highest and shows the most desirable effect. 

The number of vehicles is set to 500, the number of charging piles is set to 76, and the vehicle-
pile ratio is set to 6.5:1. The comprehensive evaluation index Y is shown in Figure 20. The 
comprehensive evaluation index Y of the combined multi-objective queuing strategy is also better than 
the other three charging strategies. 

 

Figure 16. Specific charging load of 500 vehicles under different strategies. 

 

Figure 17. Base load with 500 vehicles charging load superimposed under different strategies. 
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Figure 18. Specific charging costs for 500 vehicles under different strategies. 

 

Figure 19. Comprehensive evaluation index of 500 vehicles under different strategies. 

Table 7. Comparison of indicators of different charging strategies for 500 EVs. 

Parameter category 
Multi-objective 
queuing 

Tariff-guided 
queuing 

Stop-and-charge 
queuing 

Random charging 
queuing 

Total load/kW 2273.6 2130.1 3210.3 3164.6 

Charging cost/yuan 772.8 553.0 2281.8 2306.4 

Cost savings rate 0.635 0.721 0.236 0.216 

Average value/kW 94.7 88.8 133.8 131.9 

Peak value/kW 720.5 751.5 710.2 704.9 

Average peak ratio 0.131 0.118 0.188 0.187 

Probability of 
successful travel 

0.851 0.702 0.954 0.947 

Comprehensive 
evaluation index Y 

0.583 0.540 0.400 0.382 
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Figure 20. Increase the vehicle-pile ratio under 500 vehicles, comprehensive evaluation index. 

Due to the limitation of the number of charging posts, the peak charging of the tariff-guided 
queuing mode and that of the combined multi-target queuing mode have a large degree of decrease 
compared to the original tariff-guided non-queuing mode and combined multi-target non-queuing 
mode in [24]. The load comparison is shown in Figure 21. The above figure shows that the original 
tariff-guided mode load peak is 8.61 times higher than the tariff-guided queuing mode load peak, 
and the original combined multi-objective mode load peak is 8.53 times higher than the combined 
multi-objective queuing mode load peak. Therefore, it is concluded that the queuing strategy reduces 
the load peak to a large extent and reduces the pressure on the grid, which is of greater significance. 

 

Figure 21. Comparison of 1000 vehicles queuing mode and original non-queuing mode. 

In this study, the charging process of 100 EVs with combined multi-target queuing is 
demonstrated in detail. The charging piles are set to 15, and the peak charging time of combined multi-
target queuing is selected for demonstration (i.e., the 93rd, 94th and 95th peak charging periods), as 
shown in Figures 22–24. When the remaining time is 0, the EVs on the charging pile will be finished 
charging at the beginning of the next time period, and the vehicles with the highest priority among the 
vehicles in the queue will enter the charging pile for charging in order. New vehicles waiting to be 
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charged will be included in the charging queue. 

 

Figure 22. 93rd time period. 

 

Figure 23. 94th time period. 

 

Figure 24. 95th time period. 
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6. Conclusions and future directions 

This study explored EVs’ driving and charging behaviors and proposes a multi-objective queuing 
charging strategy. By modeling the strategy, we combine common charging modes and consider the 
problem of the unbalanced vehicle-pile ratio that exists in these modes to introduce the problem of 
queuing charging of EVs. In particular, the problem of non-uniform battery capacity is considered, and 
the strategy is equipped with an emergency charging mode. The comparison results of multiple 
strategies show that the combined multi-objective queuing charging strategy has the highest 
comprehensive evaluation index and reduces the charging cost. The combined multi-target queuing 
charging strategy flattens the EV charging load curve and reduces the charging load peak. Compared 
with other modes, the combined multi-objective queuing mode largely reduces the burden of charging 
on the grid, achieves the highest comprehensive index, and realizes a win-win situation for both the 
supply and demand sides. The charging load of the tariff-guided queuing mode and the charging load 
of the combined multi-target queuing mode are also compared with the charging load without queuing. 
Further, the experimental results show for the charging peak of the tariff-guided queuing mode and 
the peak of the combined multi-objective queuing mode a large degree of reduction. Therefore, the 
proposed queuing strategy can largely reduce the pressure on the power supply side and improve 
grid stability. 

Furthermore, this study focused on private EVs. It must be noted that there is a lack of research 
on electric buses and electric cabs. In subsequent research, more attention should be paid to the driving 
and charging laws of electric buses and electric cabs. Moreover, the base load data used in this paper 
is a residential community base load, which is not large. Thus, the charging load fluctuations caused 
by a small number of vehicles will have a greater impact on the overall load. Subsequent studies should 
choose a larger base load and expand the number of EVs. 
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