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Abstract: The vehicle routing problem (VRP) is a highly significant and extensively studied issue
in post-disaster rescue. In recent years, there has been widespread utilization of helicopters for post-
disaster rescue. However, efficiently dispatching helicopters to reach rescue sites in post-disaster rescue
is a challenge. To address this issue, this study models the issue of dispatching helicopters as a specific
variant of the VRP with time window (VRPTW). Considering that the VRPTW is an NP-hard problem,
the genetic algorithm (GA) as one of the prominent evolutionary algorithms with robust optimization
capabilities, is a good candidate to deal with this issue. In this study, an improved GA with a local
search strategy and global search strategy is proposed. To begin, a cooperative initialization strategy
is proposed to generate an initial population with high quality and diversity. Subsequently, a local
search strategy is presented to improve the exploitation ability. Additionally, a global search strategy
is embedded to enhance the global search performance. Finally, 56 instances extended from Solomon
instances are utilized for conducting simulation tests. The simulation results indicate that the average
relative percentage increase (RPI) of the distance travelled by helicopters as obtained by the proposed
algorithm is 0.178, 0.027, 0.075 and 0.041 times smaller than the average RPIs obtained by the tabu
search algorithm, ant colony optimization algorithm, hybrid GA and simulated annealing algorithm,
respectively. Simulation results reveal that the proposed algorithm is more efficient and effective for
solving the VRPTW to reduce the driving distance of the helicopters in post-disaster rescue.

Keywords: vehicle routing problem; time window; improved genetic algorithm; post-disaster rescue;
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1. Introduction

Natural disasters such as earthquakes, tsunamis and hurricanes have devastating consequences for
human lives and infrastructure [1]. These catastrophic events not only cause immense damage to
society, they also pose significant threats to human health and well-being. In recent years,
post-disaster rescue has received extensive attention as a critical research field [2, 3]. The timely and
effective response to such emergencies is paramount to saving lives and minimizing the impact on
affected communities. Disasters frequently lead to the destruction of roads, which presents substantial
challenges for ground transportation and rescue operations. As a result, the utilization of helicopters
can be an effective rescue method. Immediately after a large-scale disaster, helicopters are extensively
employed for emergency medical services, search and rescue operations and the transportation of
supplies and victims [4]. Helicopters possess the unique capability to access remote and inaccessible
areas regardless of the terrain [5]. Therefore, the development of efficient and intelligent optimization
algorithms for helicopter routing in post-disaster rescue is of paramount importance in improving
rescue efforts and minimizing the loss of life and property [6].

The vehicle routing problem (VRP) in post-disaster rescue presents a complex and challenging
problem [7]. When dispatching helicopters, considerations should not only encompass transportation
costs, they should also prioritize rescue efficiency and effectiveness. First, the capacity constraints of
helicopters limit the transport of injured individuals and supplies. In post-disaster rescue, the
maximization of transportation capacity for victims and essential relief materials in each flight is of
paramount importance. This strategic approach is aimed at enhancing rescue efficiency and effectively
increasing the rate of lives saved. Additionally, post-disaster rescue efforts are often characterized by
time sensitivity, which directly influences the outcomes of survival. Consequently, rescue sites have
imposed heightened requirements on helicopter response times. Finally, a critical objective in
helicopter rescue missions is to determine the shortest path. By identifying the most efficient route,
response times can be minimized, enabling rescuers and supplies to swiftly reach the affected areas
and provide prompt emergency relief.

The dispatch of helicopters in post-disaster rescue operations can be considered as an extension of
the VRP problem. The genetic algorithm (GA) is a well-established optimization algorithm that has
been successfully applied to various types of optimization problems [8–10]. The GA is known for its
competitiveness and adaptability, making it a widely used method in many fields. Notably, the GA has
demonstrated its effectiveness in solving VRPs [11–13].

Considering the characteristics of the GA and the aforementioned problems, this paper proposes
the improved GA (IGA) to tackle the VRP with a time window (VRPTW) in post-disaster rescue. In
the proposed algorithm, each chromosome encodes a two-dimensional vector to enhance the
exploration capability of the GA to address such problems. To address the challenge of obtaining
feasible solutions for large-scale constraint problems, a repair strategy has been devised to enhance
the performance of the proposed algorithm. Furthermore, to enhance the quality and diversity of the
population, an efficient cooperative initialization strategy has been developed. Additionally, to
improve the exploitation abilities, the proposed algorithm incorporates a local search strategy based
on an improved greedy insertion heuristic. Moreover, to reduce the likelihood of the population being
trapped in local optima and enhance global search capabilities, a global search strategy based on
encoding structure destruction and construction is presented.
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The main contributions of this study are as follows:
1) A cooperative initialization strategy is proposed to enhance the quality and diversity of the

population at the beginning of the proposed algorithm, which leads to better performance.
2) A local search strategy is embedded to improve the exploitation capabilities, which enables the

proposed algorithm to converge to better solutions.
3) A global search strategy is presented to alleviate the issue of getting trapped in local optima and

improve the global search capabilities.
The remaining sections of this paper are organized as follows. Section 2 reviews the literature

related to the VRP. Section 3 provides a brief introduction to the problem description and formulation.
Section 4 presents all of the components of the proposed algorithm. The experimental results and
analysis are shown in Section 5, followed by the conclusions of this study in Section 6.

2. Literature review

The VRP is a classical combinatorial optimization problem that was first proposed by Dantzig
and Ramser [14], attracting considerable attention from the research community. In recent years,
the VRP has found extensive application in various fields, such as home healthcare logistics [15, 16]
and municipal solid waste disposal [17]. The research on the VRP is progressing and expanding.
Zulvia et al. [18] proposed a green VRP for perishable products, which optimizes operational cost,
deterioration cost, carbon emissions and customer satisfaction. Expósito et al. [19] studied a hybrid
metaheuristic to solve the VRPTW from the quality of service perspective. Liu et al. [20] proposed an
optimized solution for the time-dependent VRPTW by utilizing an improved ant colony algorithm with
a congestion-avoiding approach. The approach aims to mitigate traffic congestion during peak hours
and temporal traffic congestion. Bianchessi nd Irnich [21] investigated a new and tailored branch-and-
cut algorithm in order to avoid traffic congestion and reduce the total costs.

With the increasing complexity of problems, researchers are placing growing emphasis on the
development and application of efficient optimization algorithms [22–24]. Continual development
and evolution of various optimization algorithms [25–27] are being pursued to solve models of
various problems [28, 29]. The optimization algorithms dedicated to solving the VRP have gained
significant attention in recent years, making it a prominent research area. Optimization algorithms
have achieved significant research accomplishments in various fields [30–32]. Duan et al. [33]
developed a robust multiobjective particle swarms optimization approach by incorporating an
advanced encoding and decoding scheme, a robustness measurement metric, and a local search
strategy to solve the VRPTW under uncertainty. Shen et al. [34] presented a hybrid swarm
intelligence algorithm that incorporates both inter-route and intra-route improvement heuristics to
solve the VRPTW and minimize the total distance. Brito et al. [35] utilized a variable neighbourhood
search algorithm to solve the close–open VRPTW. Keskin and Catay [36] developed an adaptive large
neighborhood search algorithm with several removal and insertion mechanisms to solve the VRPTW.
Ahmed and Yousefikhoshbakht [37] proposed an improved tabu search (TS) algorithm with the
intensification and diversification mechanisms to solve the heterogeneous fixed fleet open VRPTW.

Post-disaster rescue is a critical application field of the VRP, dedicated to ensuring prompt disaster
response and facilitating the timely delivery of emergency rescue services [38]. Numerous VRP models
and algorithms have been proposed by researchers to address post-disaster rescue scenarios. Vieira et
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al. [39] proposed hybridizing the ant colony optimization (ACO) metaheuristic with random variable
neighborhood descent to solve the VRP problem. The objective of their study was to minimize the
operational costs associated with emergency water transport in arid regions. Yi et al. [40] developed
an enhanced monarch butterfly optimization algorithm to tackle the emergency VRP in natural disaster
relief. Maghfiroh and Hanaoka [41] utilized a modified simulated annealing (SA) algorithm to solve
the dynamic truck and trailer routing problem in last mile distribution for disaster response.

Although there have been numerous studies on post-disaster rescue, there are few studies on the
problem of helicopter dispatching in situations where roads are blocked. To fill the aforementioned
gaps, this paper models the dispatching helicopter problem in post-disaster rescue, taking into account
various factors such as time window constraints, helicopter loading capacity, the transport of injured
individuals and supplies and travel distance. Moreover, we have designed an IGA for solving the
dispatching helicopters problem in post-disaster rescue.

3. Problem description and formulation

This section presents the description and formulation of the VRPTW for helicopter rescue
operations. First, a formal description of the VRPTW for helicopter rescue operations is provided,
along with key assumptions. Then, the proposed VRPTW is mathematically formulated.

3.1. Problem description

In this study, the dispatching helicopter problem in post-disaster rescue is modeled as an extension
of the VRPTW (hereafter called the H-VRPTW). The features of the H-VRPTW are as follows: 1)
The system consists of two types of helicopters: rescue helicopters and transport helicopters. 2) Each
rescue site has two types of demands, a service duration and a time window constraint. 3) The rescue
helicopter is responsible for rescuing all of the victims. 4) The transport helicopter is primarily
responsible for delivering supplies to all of the rescue sites, and if the transport helicopter is carrying
less than half of its maximum capacity, it can serve as a rescue helicopter and transport injured
individuals who are encountered along the way to the rescue center. 5) The rescue sites have perfect
communication functionality to ensure smooth information transmission.

The assumptions of the H-VRPTW are as follows:
1) There is only one rescue center and all helicopters must depart from and return to the rescue

center.
2) Each rescue site is visited once by each type of helicopter.
3) The demand for rescue sites along the route should not exceed the carrying capacity of the

helicopter.
4) Each helicopter must return within the specified maximum route time.
5) The time window of each rescue site cannot be violated.

3.2. Problem formulation

The H-VRPTW is represented by the directed graph G = (N, A), where N = {0} ∪ R. The set R
represents nodes of the rescue sites, and the 0 represents the rescue center. The set of arcs connecting
vertices of N is denoted by A = {(i, j) | i, j ∈ N, i , j}. Each rescue site i ∈ N is assigned a service
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duration ti and a time window [ai, bi], where ai and bi define the earliest and latest possible service
times for the rescue site. The arrival time of a helicopter at rescue site i is represented by gik, and the
distance traveled for the arc (i, j) ∈ A is represented by di j. T H = {1, . . . , n1} is the set of transport
helicopters, and RH = {n1 + 1, . . . , n1 + n2} is the set of rescue helicopters. H = T H ∪ RH represents
all of the helicopters. Each helicopter k ∈ H is required to depart from and return to the rescue center.

Taking into account the unique characteristics of the system, the demand for material and casualty
care at rescue site i is denoted by dmi and dni, respectively. The maximum capacities of helicopter k
for material and casualty care are represented by cmi and cni, respectively. The notations used in the
model are as follows:

Indices:
0: Index of the rescue center
i, j: The rescue site index
k: Helicopter index
Sets:
N: Set of rescue sites and rescue center in the system
R: Set of rescue sites
H: Set of helicopters in the system
T H: Set of transport helicopters
RH: Set of rescue helicopters
Parameters:
ai: The earliest service time for rescue site i
bi: The latest service time for rescue site i
di j: Distance between nodes i and j
dmi: The demand for material at rescue site i
dni: The demand for casualty care at rescue site i
cmi: The maximum capacity for material for helicopter k
cni: The maximum capacity for casualty care for helicopter k
ti: Service duration for rescue site i
Decision variable:
Zi jk: A binary value that is set to 1 if helicopter k travels directly from the rescue site i to rescue site

j; otherwise, Zi jk is set to 0, where i, j ∈ N and i , j.
Yik: A binary value that is set to 1 if helicopter k serves the rescue site i; otherwise, Yik is set to 0,

where i ∈ R.
gik: Arrival time of a helicopter k at rescue site i.
tsik: The time when helicopter k started service at rescue site i.
Objective:

min
∑
i∈R

∑
j∈R

∑
k∈H

di jZi jk (1)

Constraints: ∑
j∈N

Z0 jk = 1 ∀k ∈ H (2)∑
i∈N

Zi0k = 1 ∀k ∈ H (3)
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i∈N

Yik ≤ 1 ∀k ∈ T H (4)∑
i∈N

Yik ≤ 1 ∀k ∈ RH (5)∑
i∈N

dmiYik ≤ cmk ∀k ∈ T H (6)∑
i∈N

dniYik ≤ cnk ∀k ∈ H (7)

ai ≤ tsik ≤ bi ∀i ∈ R,∀k ∈ H (8)
tsik = max{ai, gik} ∀i ∈ R,∀k ∈ H (9)
Zi jk ∈ {0, 1} ∀i, j ∈ N,∀k ∈ H (10)
Yik ∈ {0, 1} ∀i ∈ R,∀k ∈ H (11)

The objective function in Eq (1) minimizes the total distance traveled by all helicopters. Constraints
given by Eqs (2) and (3) state that each route taken by the helicopter starts and ends at the rescue center.
Constraints given by Eqs (4) and (5) ensure that each type of helicopter can only be visited once for
each rescue site. Constraints given by Eqs (6) and (7) ensure the capacity constraints for material
transport and casualty care for the helicopter. Constraints given by Eqs (8) and (9) require that the time
of service for each rescue site falls within its time window. Constraints given by Eqs (10) and (11)
imposes a restriction on the decision variable.

4. Proposed algorithm

This section presents the proposed IGA for solving the H-VRPTW problem. The general
framework of the IGA is outlined, followed by a detailed description of various components,
including encoding and decoding methods, initialization, a crossover operation, a mutation operation,
a repair strategy, a local search strategy and a global search strategy. Lastly, the complexity of the
proposed IGA is analyzed, providing insights into the computational requirements and efficiency of
the proposed algorithm.

4.1. IGA framework

An improved version of the classical GA has been proposed to solve the dispatching problem in
post-disaster rescue. The framework of the IGA approach is shown in Algorithm 1. In the population
initialization stage, the IGA employs a cooperative initialization strategy (cf. Subsection 4.3) to
generate the population of size Ps. In the population evolutionary stage, the crossover operation (cf.
Subsection 4.4) and the mutation operation (cf. Subsection 4.5) are performed for the population.
Subsequently, the population performs a repair strategy (cf. Subsection 4.6) to ensure that each
individual is feasible. After that, the local search strategy (cf. Subsection 4.7) is utilized for the
population. Moreover, the better individual is selected to update the population. Then, the global
search strategy (cf. Subsection 4.8) is embedded to generate new individuals and replace individuals
with long-term evolutionary stagnation. Finally, the evolution stops and the best individual is
outputted when the stopping criterion is satisfied.
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Algorithm 1: The framework of the IGA
Input: the data of rescue sites and helicopters
Output: the best individual

1 Initialize a population of size Ps using initialization strategy (cf. Subsection 4.3);
2 do
3 for each individual x in Ps do
4 Perform the crossover operation (cf. Subsection 4.4) and the mutation operation (cf. Subsection 4.5);
5 Perform the repair strategy (cf. Subsection 4.6) to guarantee individual is a feasible individual;
6 Perform the local search strategy (cf. Subsection 4.7) to generate a new individual xnew;
7 if xnew is better than x then
8 Replace x with xnew;
9 end

10 end
11 for each individual x do
12 if the number of continuous iterations without improvement exceeds Lm for x then
13 Delete the individual x and insert a new one using global search strategy (cf. Subsection 4.8);
14 end
15 end
16 while stopping criterion is not met;
17 return the best individual;

4.2. Encoding and decoding

This study encodes each chromosome as a two-dimensional array, where the first dimension
corresponds to all helicopters and the second dimension represents the assigned rescue sites for each
helicopter. An example of the encoding is shown in Figure 1, where the sequence {0, 3, 6, 8, 10, 0}
indicates that a helicopter starts at the rescue center and then visits rescue sites 3, 6, 8 and 10 before
returning to the rescue center. The other two sequences, {0, 5, 1, 4 ,7, 0} and {0, 2, 9, 0}, represent
other routes. Notice that the selection of each rescue site in the constructed route must adhere to the
constraints outlined in the H-VRPTW model.

Figure 1. Example of the problems encoding scheme.
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In the decoding process, tasks are assigned to helicopters according to the first dimension of the
two-dimensional array, and then each rescue site is processed according to the second dimension of
the array. The travel distance of the helicopter to the rescue site is calculated in sequence according to
the two-dimensional array sequence of the chromosome, and the objective value of the solution can be
obtained.

4.3. Initialization

A critical aspect of the algorithm is a population that exhibits a high degree of both solution quality
and diversity. To solve the considered problem, three initialization rules are used to jointly generate
the initial population. The three initialization rules are as follows: 1) a random distribution method; 2)
a sorting assignment method using time windows; 3) a sorting assignment method based on rescue site
distance. Assuming the population size is Ps, the initialization is specified as follows:

1) The Ps−2 individuals are generated via a random distribution method. First, randomly sequence
all rescue sites. Then, for each rescue site, try to insert rescue sites into all of the current helicopters.

2) One individual is generated via the sorting assignment method by using a time window. First,
each rescue site is sorted in ascending order according to the starting time window. Then, sequentially
insert each rescue site into the current route at the position of minimum distance.

3) One individual is generated by using the sorting assignment method based on rescue site distance.
First, calculate the distance between each rescue site and the rescue center. Second, arrange the rescue
sites in ascending order of distance. Finally, sequentially insert each rescue site into the current route
at the position of minimum distance.

The main steps of the cooperative initialization strategy are described in Algorithm 2.
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Algorithm 2: Cooperative initialization strategy
Input: system parameters
Output: the initial population

1 for n = 1 to Ps − 2 do
2 Randomly sequence rescue sites.
3 for each rescue site i do
4 Try to insert rescue site i into all current helicopters.
5 if rescue site i cannot be inserted then
6 Add a new helicopter and service rescue site i.

7 Store the generated individual into the current population.

8 Sort all rescue sites in ascending order of start time.
9 for each rescue site i do

10 for each helicopter k in the current individual do
11 for each position p in the current helicopter k do
12 if rescue site i can be inserted into the current position p then
13 Record the current position p in the helicopter.

14 Select the best position p and insert rescue site i into the position p in the helicopter.
15 if rescue site i cannot be inserted then
16 Add a new helicopter and service rescue site i.

17 Store the generated individual into the current population.
18 Calculate the distance between each rescue site and the rescue center.
19 Sort all rescue sites in ascending order of distance.
20 for each rescue site i do
21 for each helicopter k in the current individual do
22 for each position p in the current helicopter k do
23 if rescue site j can be inserted into the current position p then
24 Store the current position p in the helicopter.

25 Select the best position p and insert rescue site i into the position p in the helicopter
26 if rescue site i cannot be inserted then
27 Add a new helicopter and service rescue site i

28 Store the generated individual into the current population.
29 return the initial population;
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4.4. Crossover operation

Crossover operation is a crucial step in the GA as it enables the transfer of excellent genes from
the parent generation to the offspring. A well-designed crossover operation based on chromosome
structure is presented as follows:

Step 1: The current chromosome serves as the parent A; randomly select another chromosome as
parent B.

Step 2: Randomly select one helicopter from parent B and insert it at the end position of a randomly
selected helicopter from parent A. Remove any duplicate rescue sites to generate offspring 1.

Step 3: Randomly select one helicopter from parent A and insert it at the end position of a randomly
selected helicopter from parent B. Remove any duplicate rescue sites to generate offspring 2.

Step 4: Compare the fitness of offspring 1 and offspring 2, and retain the superior offspring.
In the crossover operation, the fitness of two offspring is compared, and the one with higher fitness

is preserved. This selection process ensures that individuals with superior fitness are retained within
the population, allowing favorable individuals to be introduced into the next generation. This gradual
evolution of the population, driven by the preservation of higher-fitness individuals, helps the algorithm
converge towards the optimal individual as the iterations progress.

Figure 2 shows a schematic of the crossover operation; the rescue sites {6, 4, 7, 9} served by
helicopter H2 are selected from parent B and sequentially inserted behind the path of helicopter H3 in
parent A; then, a new solution offspring 1 is generated. Similarly, the rescue sites {5, 1, 4} served by
helicopter H2 from parent A are inserted sequentially after the path of helicopter H3 in parent B,
generating offspring 2. Finally, offspring 1 and offspring 2 are compared, and the superior offspring 1
is retained.

Figure 2. Example of the crossover operation.
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4.5. Mutation operation

The mutation operation in the GA serves to imitate the mutation phenomenon of some genes on
chromosomes in nature. The mutation operation can improve the situation of the GA falling into the
local optimum to some extent, while keeping the diversity of the population. In this study, the swap
mutation operator is adopted. First, randomly select two mutation operators from parent A, and then
the two selected mutation operators are swapped to generate a new individual. Figure 3 provides a
schematic of the mutation operator.

Figure 3. Example of the mutation operation.

4.6. Repair strategy

After crossover and mutation operations, certain rescue sites in the chromosome may violate the
time window constraints. Hence, a repair strategy has been devised to guarantee the feasibility of each
individual in the population. First, the rescue sites that violate the time window are removed. Then,
for each rescue site that violates the time window, it is inserted into the current route at the position of
minimum distance. Algorithm 3 shows the specific steps of the repair strategy.

Figure 4 illustrates the process of chromosome repair. In the figure, helicopter H3 undergoes
crossover and mutation operations, resulting in a modified path from {2, 6} to {2, 6, 4, 7}. However, it
is observed that the arrival time of helicopter H3 at rescue site {4} is T = 40, which falls outside of the
specified service time window of [20, 35]. Therefore, the rescue site {4} is excluded from the service
path of helicopter H3 and inserted at a position that satisfies the time window constraint and
minimizes the distance. As a result, the revised service path for H3 becomes {2, 6, 7}, while helicopter
H1 is assigned to service the rescue site {4}.
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Algorithm 3: Repair strategy
Input: an infeasible solution
Output: a feasible solution

1 for each helicopter k in the current solution do
2 for each rescue site i assigned to helicopter k do
3 if i violates its time window then
4 Record the rescue site i.
5 Delete rescue site i from helicopter k.
6 end
7 end
8 end
9 for each rescue site i that violates the time window do

10 for each helicopter k in the current solution do
11 for each position p in the current helicopter k do
12 if rescue site i can be inserted into the current position p then
13 Record the position p in the helicopter.
14 end
15 end
16 end
17 Select the best position p and insert rescue site i into the position p in the helicopter.
18 if rescue site i cannot be inserted then
19 Add a new helicopter and service rescue site i.
20 end
21 end
22 return a feasible solution;
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Figure 4. Example of the repair strategy.

4.7. Local search strategy

To enhance the exploitation ability of the IGA, a local search strategy based on an improved greedy
insertion heuristic is incorporated. First, all rescue sites are placed into a set Rs and the total number n
of rescue sites is calculated. Then, a rescue site is randomly selected from Rs and added to the set Rr,
which is then removed from Rs. Third, a rescue site i is randomly selected from Rr, and for each rescue
site j in Rs, the distance between i and j is calculated. The set Rs is then sorted based on the distances
calculated, and the rescue site with the shortest distance is added to Rr and removed from Rs. This
process is repeated n/10 times. Fourth, the set Rr is removed from the current solution. Finally, for
each rescue site in the set Rr, it is inserted into the current route at the position of minimum distance.
Algorithm 4 shows the specific steps of the local search strategy.

Figure 5 illustrates the local search approach. Initially, the rescue site {11} is selected from
helicopter H2 and added to the set Rr for recording. Subsequently, the nearest rescue site {16} from the
remaining unselected rescue sites is chosen and included in the set Rr. From the set Rr, one rescue site
(in this case, {16}) is randomly selected, and then the nearest unselected rescue site {7} to {16} is
identified and added to the set Rr. Finally, the removed rescue sites {11, 16, 17} in set Rr are reinserted
into current route at the position of minimum distance.
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Algorithm 4: Local search strategy
Input: a solution
Output: an improved solution

1 Put all rescue sites into the set Rs and calculate the number n of all rescue sites;
2 Randomly select a rescue site i from Rs and add the rescue site to the set Rr;
3 Remove the selected rescue site i from Rs;
4 for m = 1 to n/10 do
5 Randomly select a rescue site i of set Rr;
6 for each rescue site j in Rs do
7 Calculate all distance arcs a(i, j);
8 end
9 Sort the set Rs from smallest to biggest according to the arcs a(i, j);

10 Store the top rescue site of Rs into Rr and remove the rescue site from set Rs;
11 end
12 Remove the set Rr from current solution;
13 for each rescue site i in the set Rr do
14 for each helicopter k in the current solution do
15 for each position p in the current helicopter k do
16 if rescue site i can be inserted into the current position p then
17 Record the current position p in the helicopter;
18 end
19 end
20 end
21 Select the best position p and insert rescue site i into the position p in the helicopter;
22 if rescue site i cannot be inserted then
23 Add a new helicopter and service rescue site i;
24 end
25 end
26 return an improved solution;
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Figure 5. Example of the local search strategy.

4.8. Global search strategy

When an individual within the population fails to improve after multiple iterations, the individual
is regarded as being trapped in local optima. In order to enhance the global search performance, and
to avoid getting stuck in local optima, a global search strategy based on encoding structure destruction
and construction is presented. First, randomly select z helicopters from the current solution and record
the set of rescue sites served by the helicopters in set Rd. Then, delete the z helicopters from the
current solution. Finally, for each rescue site i in the set Rd, insert this rescue site into current route at
the position of minimum distance. The steps of the global search strategy are shown in Algorithm 5.

Figure 6. Example of the global search strategy.
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Figure 6 illustrates a global search example. In the figure, the rescue sites {3, 8, 9} for helicopter
H1 and {5, 1, 4, 7} for helicopter H2 are initially excluded from their respective routes. Subsequently,
these rescue sites are individually reintroduced at positions that minimize the distance of the current
route, generating new chromosomes.

Algorithm 5: Global search strategy
Input: a solution
Output: a new solution

1 Randomly select z helicopters from the current solution;
2 Store the set of rescue sites served by the z helicopters in set Rd;
3 Delete the z helicopters from the current solution;
4 for each rescue site i in the set Rd do
5 for each helicopter k in the current solution do
6 for each position p in the current helicopter k do
7 if rescue site i can be inserted into the current position p then
8 Record the current position p in the helicopter;
9 end

10 end
11 end
12 Select the best position p and insert rescue site i into the position p in the helicopter;
13 if rescue site i cannot be inserted then
14 Add a new helicopter and service rescue site i;
15 end
16 end
17 return a new solution;

4.9. Complexity of the proposed algorithm

The complexity of the proposed algorithm primarily depends on the complexity of each operational
step. In the initialization operation, each chromosome in the population is initialized, which has a
complexity of O(n2). In the crossover operation, rescue paths are selected for crossover and duplicate
rescue sites are removed. The complexity of the crossover operation is O(n). In the mutation operation,
two operators are randomly selected for swapping mutation, with a complexity of O(1). For the repair
strategy, each rescue site that violates the time windows constraint is inserted into the current route
at the position of minimum distance, resulting in a complexity of O(n2). Similarly, the local search
strategy involves inserting the removed rescue site into the current route at the position of minimum
distance, resulting in a complexity of O(n2). The global search strategy entails inserting the removed
rescues site into the current route at the position of minimum distance, with a complexity of O(n2).
Considering all of these factors, the overall complexity of the proposed algorithm is determined to be
O(n3).
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5. Experimental results

This section presents the experiments conducted to assess the effectiveness of the proposed
algorithms. Firstly, the simulation instances of the H-VRPTW are described. Next, the simulation
parameters used in the proposed algorithm were tested and selected. Then, the effectiveness of the
local search strategy and the global search strategy in the proposed algorithm was respectively
evaluated. Afterward, small instances were utilized to verify the performance of the proposed
algorithm. Subsequently, the Solomon benchmark test was conducted to verify the effectiveness of the
algorithm. Finally, the proposed algorithm was compared with other algorithms to assess its
performance.

5.1. Simulation instances

To better incorporate the system constraints, the simulation test design incorporates an extension of
the canonical Solomon instances [42]. The extended instances comprise 56 instances, each of which
contains 100 rescue sites. The geographical data used in these instances are similar to those used in the
canonical Solomon instances, and include three types of instances: cluster instances, random instances
and semi-cluster instances. The extended instances maintain consistency with the Solomon instances
in terms of the coordinates of rescue sites, time windows, service times and material demands. The
number of victims at each rescue site was randomly generated. All algorithms were evaluated by
using a standardized termination criterion, with a maximum elapsed CPU time of 100 seconds. This
consistent time duration ensures fairness and comparability in the evaluation process.

5.2. Parameter selection

The experimental parameters consisted of the population size Ps, the crossover probability Pc, the
mutation probability Pm and the maximum number of iterations without improvement Lm. Table 1
presents the different values used for the four parameters. An orthogonal array L16 was constructed
using Taguchi’s design of experiments method [43]. For each combination of experimental parameters,
the proposed algorithm was executed 30 times independently to obtain the average fitness value, which
was recorded as the response variable. The results of the experiments are presented in Table 2. Figure 7
presents the factor level trends of the four parameters. According to the results, the proposed algorithm
achieves the best performance when Ps is set to 100, Pc is set to 0.3, Pm is set to 0.3 and Lm is set to
10.

Table 1. The levels of the four parameters.

Parameter
Values

1 2 3 4
Ps 50 100 150 200
Pc 0.10 0.30 0.50 0.70
Pm 0.10 0.20 0.30 0.40
Lm 5 10 15 20
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Table 2. The response variables for the four parameters.

Ps Pc Pm Lm Average values
1 1 1 1 1528.04
1 2 2 2 1489.70
1 3 3 3 1479.63
1 4 4 4 1491.98
2 1 2 3 1497.30
2 2 1 4 1482.92
2 3 4 1 1492.38
2 4 3 2 1475.64
3 1 3 4 1526.38
3 2 4 3 1528.69
3 3 1 2 1522.07
3 4 2 1 1528.51
4 1 4 2 1548.95
4 2 3 1 1532.93
4 3 2 4 1558.38
4 4 1 3 1546.37

Figure 7. Factor level trends of the four parameters.

5.3. Efficiency of the local search strategy

To evaluate the effectiveness of the local search strategy, the IGA without an embedded local search
strategy (IGA NL) was designed to enable comparison with the IGA. The experimental results are
presented in Table 3, which includes the name of the instance, the optimal values of the results obtained
by the two algorithms, the experimental results for the two algorithms and the relative percentage
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increase (RPI). The RPI is given by Eq (12).

RPI = ( fc − fb)/ fb × 100 (12)

where fb represents the best solution found by all compared algorithms, and fc represents the best
solution obtained by a given compared algorithm.

The results in Table 3 show that the IGA achieved 51 optimal solutions out of the 56 instances,
while the IGA NL only obtained five optimal solutions. The IGA obtained an average RPI value of
0.24, which is significantly lower than the average RPI value obtained by the IGA NL. The results of
analysis of variance (ANOVA) for the two different methods are shown in Figure 8. It can be concluded
from Table 3 and Figure 8 that incorporating the local search strategy can significantly enhance the
search ability of the algorithm.

Table 3. The results of the IGA and IGA NL.

Instance Best
Algorithm RPI
IGA IGA NL IGA IGA NL

ac101 1465.43 1465.43 1608.26 0 9.75
ac102 1467.75 1467.75 1846.36 0 25.80
ac103 1464.08 1464.08 2001.75 0 36.72
ac104 1482.83 1482.83 1919.55 0 29.45
ac105 1594.27 1594.27 1991.62 0 24.92
ac106 1547.95 1547.95 1913.76 0 23.63
ac107 1753.11 1753.11 1953.77 0 11.45
ac108 1642.76 1642.76 1858.11 0 13.11
ac109 1654.43 1658.69 1654.43 0.26 0
ac201 1580.74 1580.74 1920.05 0 21.47
ac202 1563.36 1563.36 2368.65 0 51.51
ac203 1662.92 1662.92 2551.24 0 53.42
ac204 1593.98 1593.98 2487.79 0 56.07
ac205 1540.65 1540.65 1959.65 0 27.20
ac206 1620.99 1620.99 2215.69 0 36.69
ac207 1521.53 1521.53 2166.87 0 42.41
ac208 1544.53 1544.53 2340.18 0 51.51
ar101 1822.29 1854.46 1822.29 1.78 0
ar102 1636.85 1636.85 1805.09 0 10.29
ar103 1637.85 1637.85 1779.09 0 8.62
ar104 1532.78 1532.78 2011.33 0 31.22
ar105 1680.99 1736.36 1680.99 3.29 0
ar106 1686.24 1686.24 1738.66 0 3.11
ar107 1541.48 1541.48 1595.80 0 3.52
ar108 1419.75 1419.75 1701.84 0 19.89
ar109 1508.53 1508.53 1612.93 0 6.92

Continued on next page
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Instance Best
Algorithm RPI
IGA IGA NL IGA IGA NL

ar110 1542.03 1604.68 1542.03 4.06 0
ar111 1427.47 1427.47 1669.30 0 16.94
ar112 1330.68 1330.68 1594.45 0 19.82
ar201 1871.04 1871.04 2308.66 0 23.39
ar202 1731.76 1731.76 2143.01 0 23.75
ar203 1683.38 1683.38 2469.88 0 46.72
ar204 1453.17 1453.17 2482.92 0 70.86
ar205 1681.16 1681.16 2080.95 0 23.78
ar206 1559.62 1559.62 2261.40 0 45.00
ar207 1602.26 1602.26 2668.41 0 66.54
ar208 1460.86 1460.86 2585.65 0 76.99
ar209 1657.39 1657.39 2332.18 0 40.71
ar210 1706.34 1706.34 2411.02 0 41.30
ar211 1482.63 1482.63 2486.20 0 67.69
arc101 2167.70 2167.70 2377.66 0 9.69
arc102 1857.56 1857.56 2005.42 0 7.96
arc103 1942.29 1942.29 2119.01 0 9.10
arc104 1714.73 1714.73 1954.48 0 13.98
arc105 2026.26 2026.26 2211.13 0 9.12
arc106 1946.39 1946.39 2061.30 0 5.90
arc107 1817.38 1817.38 2035.77 0 12.02
arc108 1871.91 1871.91 2105.14 0 12.46
arc201 2191.61 2191.61 2650.46 0 20.94
arc202 2046.69 2046.69 2788.39 0 36.24
arc203 2028.24 2028.24 3060.31 0 50.89
arc204 1931.42 1931.42 3601.99 0 86.49
arc205 2078.97 2078.97 2821.23 0 35.70
arc206 1971.11 2048.38 1971.11 3.92 0
arc207 2027.87 2027.87 2769.83 0 36.59
arc208 1877.74 1877.74 2915.08 0 55.24
Mean 1693.85 1697.99 2160.54 0.24 27.94
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Figure 8. ANOVA results for the IGA and IGA NL.

5.4. Efficiency of the global search strategy

To verify the effectiveness of the proposed global search strategy, the proposed IGA was compared
with the IGA without the global search strategy (IGA NG). The experimental results are shown in
Table 4, where a total of 56 instances are considered. The IGA obtained the best solutions for 35
instances, while the IGA NG obtained the best solutions for 21 instances. The superiority of the
proposed global search strategy is further demonstrated by the RPI values in the last two columns.
Figure 9 presents the ANOVA comparison between the two methods, confirming that the proposed
global search strategy significantly improved the performance.

Table 4. The results of the IGA and IGA NG.

Instance Best
Algorithm RPI

IGA IGA NG IGA IGA NG
ac101 1465.43 1465.43 1503.24 0 2.58
ac102 1401.30 1467.75 1401.30 4.74 0
ac103 1464.08 1464.08 1503.36 0 2.68
ac104 1482.83 1482.83 1639.77 0 10.58
ac105 1594.27 1594.27 1625.84 0 1.98
ac106 1492.18 1547.95 1492.18 3.74 0

Continued on next page
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Instance Best
Algorithm RPI

IGA IGA NG IGA IGA NG
ac107 1753.11 1753.11 1767.12 0 0.80
ac108 1642.76 1642.76 1652.65 0 0.60
ac109 1656.73 1658.69 1656.73 0.12 0
ac201 1580.74 1580.74 1607.93 0 1.72
ac202 1563.36 1563.36 1626.73 0 4.05
ac203 1662.92 1662.92 1727.69 0 3.89
ac204 1593.98 1593.98 1602.94 0 0.56
ac205 1540.65 1540.65 1579.35 0 2.51
ac206 1620.99 1620.99 1634.47 0 0.83
ac207 1521.53 1521.53 1528.12 0 0.43
ac208 1544.53 1544.53 1584.81 0 2.61
ar101 1845.67 1854.46 1845.67 0.48 0
ar102 1617.62 1636.85 1617.62 1.19 0
ar103 1637.85 1637.85 1653.33 0 0.95
ar104 1497.79 1532.78 1497.79 2.34 0
ar105 1623.61 1736.36 1623.61 6.94 0
ar106 1591.89 1686.24 1591.89 5.93 0
ar107 1511.86 1541.48 1511.86 1.96 0
ar108 1419.75 1419.75 1464.94 0 3.18
ar109 1468.94 1508.53 1468.94 2.70 0
ar110 1463.71 1604.68 1463.71 9.63 0
ar111 1427.47 1427.47 1453.95 0 1.86
ar112 1330.68 1330.68 1490.29 0 11.99
ar201 1851.65 1871.04 1851.65 1.05 0
ar202 1731.76 1731.76 1737.18 0 0.31
ar203 1683.38 1683.38 1687.94 0 0.27
ar204 1453.17 1453.17 1539.67 0 5.95
ar205 1681.16 1681.16 1716.45 0 2.10
ar206 1559.62 1559.62 1703.55 0 9.23
ar207 1564.44 1602.26 1564.44 2.42 0
ar208 1379.81 1460.86 1379.81 5.87 0
ar209 1626.36 1657.39 1626.36 1.91 0
ar210 1706.34 1706.34 1732.59 0 1.54
ar211 1482.63 1482.63 1532.57 0 3.37
arc101 2106.99 2167.70 2106.99 2.88 0
arc102 1857.56 1857.56 2008.94 0 8.15
arc103 1851.89 1942.29 1851.89 4.88 0
arc104 1681.82 1714.73 1681.82 1.96 0
arc105 2026.26 2026.26 2064.04 0 1.86
arc106 1946.39 1946.39 1957.51 0 0.57

Continued on next page
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Instance Best
Algorithm RPI

IGA IGA NG IGA IGA NG
arc107 1817.38 1817.38 1949.73 0 7.28
arc108 1765.45 1871.91 1765.45 6.03 0
arc201 2157.37 2191.61 2157.37 1.59 0
arc202 2046.69 2046.69 2185.35 0 6.77
arc203 2028.24 2028.24 2062.76 0 1.70
arc204 1931.42 1931.42 2062.55 0 6.79
arc205 2078.97 2078.97 2284.27 0 9.88
arc206 1920.87 2048.38 1920.87 6.64 0
arc207 2027.87 2027.87 2174.11 0 7.21
arc208 1877.74 1877.74 1983.51 0 5.63
Mean 1676.10 1697.99 1716.20 1.34 2.36

Figure 9. ANOVA results for the IGA and IGA NG.

5.5. Comparison of small instances

To further assess the feasibility of the IGA, the IBM ILOG CPLEX Optimization Studio solver was
utilized to solve small instances; its performance was compared with the IGA. The small instances
were generated by selecting a subset of rescue sites from the experimental instances, with the number
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of rescue sites ranging from four to 20. The name of each instance indicates the number of rescue sites
it contains. For example, the instance labeled as “rs4” indicates that it consists of four rescue sites.

The experimental results, as shown in Table 5, demonstrate that CPLEX finds the optimal solution
for several small instances. The proposed IGA also achieves the same solution values as CPLEX for
instances with 4, 6, 8, 10, 14, 18, and 20 rescue sites. This confirms the feasibility of the proposed
IGA approach for solving the VRPTW. Analyzing the results from the perspective of the RPI, it can
be observed that the solutions obtained by the IGA exhibit a minor deviation from those obtained via
CPLEX. The average RPI was merely 0.28, which demonstrates the effectiveness of the IGA.

Table 5. Comparison of IGA and CPLEX solutions.

Instance Best
Algorithm RPI

IGA CPLEX IGA CPLEX
rs4 70.10 70.10 70.10 0 0
rs6 121.04 121.04 121.04 0 0
rs8 133.13 131.13 131.13 0 0
rs10 152.09 152.09 152.09 0 0
rs12 178.63 180.97 178.63 1.31 0
rs14 184.15 184.15 184.15 0 0
rs16 204.03 206.57 204.03 1.24 0
rs18 224.92 224.92 224.92 0 0
rs20 241.75 241.75 241.75 0 0
Mean 167.76 168.30 167.76 0.28 0

5.6. Solomon benchmark test

Previous studies often use classical benchmark datasets to test the performance of algorithms [44].
To validate the effectiveness and search capability of the proposed algorithm, it was compared with
other well-known algorithms, including the TS [45], ACO [46], hybrid GA (HGA) [47], and SA [48].
The comparison was conducted using the widely recognized Solomon benchmark dataset, which is
commonly used to evaluate vehicle routing algorithms. The obtained results were compared with the
current international optimal values. In order to optimize the performance of the comparison algorithm,
we meticulously fine-tuned its parameters; the outcomes for each parameter are presented in Table 6.

The Solomon benchmark dataset consists of various types of information, including vehicle
capacity, customer coordinates, customer demand, time windows and service time. The geographic
data in the Solomon instances can be categorized into three types: clustered instances labeled as “cl”
and “c2”, random instances labeled as “r1” and “r2” and semi-clustered instances labeled as “rc1” and
“rc2”.
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Table 6. Tuned parameters for the algorithms.

Algorithm Parameters

TS
Tabu length L = 9
Tabu list clearing of iteration times m = 50

ACO

Pheromone factor α = 1
Expectation factor β = 3
Urgency of the service node factor γ = 2
Control of the exploitation factor q0 = 0.5
Pheromone volatility coefficient ρ = 0.5

HGA
Population size Ps = 100
Crossover probability Pc = 0.95
Mutation probability Pm = 0.05

SA
Temperature T0 = 5
Final temperature T f = 0.05
Coefficient of control alpha = 0.9

The experimental results are presented in Table 7. Although a slight gap exists between the results
obtained by using the IGA and the current international optimal values, this gap is relatively small in
terms of the RPI, with an average RPI value of only 2.99. Moreover, the proposed algorithm exhibited
significantly better performance compared to other algorithms, with an average RPI of 0.289, 0.080,
0.137 and 0.109 times that of the TS, ACO, HGA and SA algorithm, respectively. The ANOVA results
presented in Figure 10 demonstrate that the proposed algorithm exhibits superior effectiveness and
stability. The experimental results clearly demonstrate the competitive performance of the proposed
IGA in terms of solving the VRPTW.

Table 7. Comparison of algorithms using the Solomon benchmark dataset.

Instance International best
Algorithm RPI

IGA TS ACO HGA SA IGA TS ACO HGA SA
c101 828.94 853.89 892.25 1180.76 1001.04 1017.96 3.01 7.64 42.44 20.76 22.80
c102 828.94 863.97 951.73 1221.41 1064.43 1141.58 4.23 14.81 47.35 28.41 37.72
c103 828.06 869.45 949.88 1194.42 1048.17 1277.15 5.00 14.71 44.24 26.58 54.24
c104 824.78 874.09 856.92 1071.06 53.92 1284.72 5.98 3.90 29.86 15.66 55.77
c105 828.94 831.87 900.83 1133.87 1019.24 1401.60 0.35 8.67 36.79 22.96 69.08
c106 828.94 833.31 875.33 1069.86 994.80 1172.32 0.53 5.60 29.06 20.01 41.42
c107 828.94 892.70 920.52 1032.48 1041.22 1231.11 7.69 11.05 24.55 25.61 48.52
c108 828.94 842.66 932.33 1168.82 1029.51 1275.85 1.66 12.47 41.00 24.20 53.91
c109 828.94 878.38 882.53 1209.93 1085.97 1256.70 5.96 6.46 45.96 31.01 51.60
c201 591.56 611.81 677.03 891.56 772.77 951.48 3.42 14.45 50.71 30.63 60.84
c202 591.56 603.42 662.57 880.63 783.11 911.38 2.00 12.00 48.87 32.38 54.06
c203 591.17 608.67 605.75 897.92 815.97 825.03 2.96 2.47 51.89 38.03 39.56

Continued on next page
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Instance International best
Algorithm RPI

IGA TS ACO HGA SA IGA TS ACO HGA SA
c204 590.60 605.25 601.91 811.13 792.75 950.34 2.48 1.91 37.34 34.23 60.91
c205 588.88 593.56 672.36 763.27 670.89 848.62 0.79 14.18 29.61 13.93 44.11
c206 588.49 600.91 616.92 744.59 746.93 882.59 2.11 4.83 26.53 26.92 49.98
c207 588.29 599.10 632.17 848.84 822.78 822.46 1.84 7.46 44.29 39.86 39.81
c208 588.32 597.87 676.15 849.39 811.79 900.56 1.62 14.93 44.38 37.98 53.07
r101 1650.80 1685.99 1776.00 2100.17 1803.82 1877.78 2.13 7.58 27.22 9.27 13.75
r102 1486.12 1506.06 1596.94 1921.18 1654.18 1689.17 1.34 7.46 29.27 11.31 13.66
r103 1292.68 1309.08 1374.75 1679.57 1460.61 1436.05 1.27 6.35 29.93 12.99 11.09
r104 1007.31 1037.79 1092.32 1230.71 1307.41 1285.36 3.03 8.44 22.18 29.79 27.60
r105 1377.11 1452.18 1382.16 1832.38 1518.69 1536.34 5.45 0.37 33.06 10.28 11.56
r106 1252.03 1303.89 1278.55 1527.96 1442.99 1423.96 4.14 2.12 22.04 15.25 13.73
r107 1104.66 1114.82 1199.45 1373.92 1282.56 1299.39 0.92 8.58 24.37 16.10 17.63
r108 960.88 979.99 1335.61 1227.23 1214.43 1118.18 1.99 39.00 27.72 26.39 16.37
r109 1194.73 1255.15 1354.57 1385.94 1416.81 1405.59 5.06 13.38 16.00 18.59 17.61
r110 1118.84 1179.18 1230.78 1357.30 1326.29 1215.41 5.39 10.01 21.31 18.54 8.63
r111 1096.75 1107.01 1106.92 1265.13 1254.83 1284.40 0.94 0.98 15.35 14.41 17.11
r112 982.14 1047.18 1110.62 1322.18 1183.21 1149.07 6.62 13.08 34.62 20.47 17.00
r201 1252.37 1269.09 1426.01 1960.14 1460.15 1427.60 1.34 13.86 56.51 16.59 13.99
r202 1191.70 1216.73 1296.98 1773.74 1311.93 1321.12 2.10 8.83 48.84 10.09 10.86
r203 939.50 979.58 1108.98 1321.34 1193.57 1228.11 4.27 18.04 40.64 27.04 30.72
r204 825.52 859.58 911.66 1055.90 935.25 1042.18 4.13 10.43 27.91 13.29 26.25
r205 994.43 1028.75 1117.82 1156.38 1299.73 1191.16 3.45 12.41 16.29 30.70 19.78
r206 906.14 992.74 1071.62 1240.84 1196.74 1169.12 4.04 18.26 36.94 32.07 29.02
r207 890.61 958.88 1002.22 1165.64 1101.88 1065.96 7.67 12.53 30.88 23.72 19.69
r208 726.82 758.14 867.29 1122.97 985.58 931.30 4.31 19.33 54.50 35.60 28.13
r209 909.16 915.36 1007.71 1433.75 1159.87 1100.13 0.68 10.84 57.70 27.58 21.01
r210 939.37 958.19 1045.30 1546.78 1166.22 1094.28 2.00 11.28 64.66 24.15 16.49
r211 885.71 919.37 915.24 1173.67 1062.75 963.66 3.80 3.33 32.51 19.99 8.80
rc101 1696.95 1756.31 1862.38 2173.13 1865.15 1913.87 3.50 9.75 28.06 9.91 12.78
rc102 1554.75 1571.54 1727.85 2155.68 1744.86 1734.85 1.08 11.13 38.65 12.23 11.58
rc103 1261.67 1289.22 1494.44 1820.56 1469.70 1590.02 2.18 18.45 44.30 16.49 26.03
rc104 1135.48 1175.74 1320.59 1587.93 1383.91 1440.84 3.55 16.30 39.85 21.88 26.89
rc105 1629.44 1633.97 1666.53 2174.46 1674.26 1733.74 0.28 2.28 33.45 2.75 6.40
rc106 1424.73 1526.33 1585.73 1916.42 1597.25 1563.19 7.13 11.30 34.51 12.11 9.72
rc107 1230.48 1254.66 1450.95 1746.27 1496.80 1447.29 1.97 17.92 41.92 21.64 17.62
rc108 1139.82 1206.98 1327.56 1585.90 1348.84 1319.33 5.89 16.47 39.14 18.34 15.75
rc201 1406.94 1424.86 1519.46 2246.91 1707.92 1520.85 1.27 8.00 59.70 21.39 8.10
rc202 1365.65 1392.23 1409.22 1976.80 1597.64 1535.55 1.95 3.19 44.75 16.99 12.44
rc203 1049.62 1068.27 1107.95 1310.47 1283.23 1241.32 1.78 5.56 24.85 22.26 18.26
rc204 798.46 812.55 817.68 1071.87 990.79 1178.41 1.76 2.41 34.24 24.09 47.59

Continued on next page
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Instance International best
Algorithm RPI

IGA TS ACO HGA SA IGA TS ACO HGA SA
rc205 1297.65 1321.77 1419.42 1537.97 1481.42 1547.04 1.89 9.38 18.52 14.16 19.22
rc206 1146.32 1169.20 1244.16 1687.14 1497.67 1280.87 2.00 8.54 47.18 30.65 11.74
rc207 1061.14 1091.66 1263.05 1536.65 1349.97 1310.68 2.88 19.03 44.81 27.22 23.52
rc208 828.14 834.05 865.97 1266.76 952.80 1007.73 0.71 4.57 52.96 15.05 21.69
Mean 1021.19 1051.34 1124.99 1391.78 1225.66 1263.79 2.99 10.33 37.00 21.80 27.45

Figure 10. ANOVA results for the algorithms on the Solomon benchmark dataset.

5.7. Comparison of IGA with other algorithms

To evaluate the effectiveness of the IGA, the proposed algorithm was compared with the TS
algorithm, ACO algorithm, HGA and SA. In the TS algorithm, the tabu list is an N × N matrix, where
N represents the number of customers. The tabu objects are vertex pairs ( j1, j2) involved in the
neighborhood operation, and their corresponding tabu lengths are stored in the tabu list. When a
candidate solution (S candi) corresponding to a vertex pair ( j1, j2) is selected as the current solution
(S now) during the neighborhood operation, the corresponding tabu length is assigned to the matrix
element ( j1, j2). The tabu length is then decremented after each iteration until it reaches 0.

The experimental results are presented in Table 8, demonstrating that the IGA achieved superior
solutions for 41 out of 56 instances, accounting for approximately 73.2% of the total instances.
Notably, the average RPI of the IGA was only 1.28. Moreover, the proposed algorithm exhibited
significantly better performance than the other algorithms, with an average RPI of 0.178, 0.027, 0.075
and 0.041 times those obtained via the TS, ACO, HGA, and SA algorithm, respectively. The
effectiveness and stability of the proposed algorithm are found to be considerably higher than those of
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the other algorithms, as confirmed by the ANOVA results depicted in Figure 11. Furthermore, to
illustrate the convergence ability of the algorithm when solving the H-VRPTW, Figure 12 displays the
convergence curves for four selected instances: ac102, ac208, ar204 and arc106. These convergence
curves clearly demonstrate the remarkable convergence ability of the IGA. In addition, Figure 13
shows the four charts of selected instances: ac106, ac201, ar108 and arc204, further affirming the
effectiveness of the proposed algorithm in solving the H-VRPTW.

As the above experimental results and analysis show, the proposed IGA is an effective algorithm
for solving the H-VRPTW. The reasons can be concluded as follows. First, a cooperative initialization
strategy is employed to generate the population that possesses both high quality and diversity,
enabling the IGA to explore a wide range of solutions effectively. Additionally, the incorporation of a
local search strategy significantly enhances the exploitation capability of the IGA, leading to
improved quality of the solution. Finally, the introduction of a global search strategy helps to prevent
the solution from falling into local optima and improves the global search capability of the IGA.
Based on the above analyses, the cooperative initialization strategy, the effective local search strategy
and the global search strategy are reasons for the outstanding performance of the IGA.

Table 8. The results of comparison with the TS, ACO, HGA and SA.

Instance Best
Algorithm RPI

IGA TS ACO HGA SA IGA TS ACO HGA SA
ac101 1455.70 1465.43 1455.70 2196.51 1821.62 1824.45 0.67 0 50.89 25.14 25.33
ac102 1467.75 1467.75 1633.37 2400.79 1811.20 1770.30 0 11.28 63.57 23.40 20.61
ac103 1464.08 1464.08 1916.85 2633.05 1830.23 2077.56 0 30.93 79.84 25.01 41.90
ac104 1482.83 1482.83 1515.53 2228.27 1841.89 2122.12 0 2.21 50.27 25.01 43.11
ac105 1584.88 1594.27 1584.88 1994.79 1880.82 1912.08 0.59 0 25.86 18.67 20.65
ac106 1547.95 1547.95 1599.01 2233.64 1811.51 1959.46 0 3.30 44.30 17.03 26.58
ac107 1578.51 1753.11 1578.51 2351.18 1991.71 2022.07 11.06 0 48.95 26.18 28.10
ac108 1549.68 1642.76 1549.68 1873.25 1800.83 1884.54 6.01 0 20.88 16.21 21.61
ac109 1490.78 1658.69 1490.70 1995.30 1786.18 2030.72 11.26 0 33.84 19.82 36.22
ac201 1580.74 1580.74 1635.63 2228.17 2034.78 2274.18 0 3.47 40.96 28.72 43.87
ac202 1563.36 1563.36 1637.29 2432.74 2007.43 2315.95 0 4.73 55.61 28.40 48.14
ac203 1510.38 1662.92 1510.38 2357.13 2058.05 2349.39 10.10 0 56.06 36.26 55.55
ac204 1593.98 1593.98 1653.74 2435.95 2004.36 2494.30 0 3.75 52.82 25.75 56.48
ac205 1477.92 1540.65 1477.92 2358.25 1939.53 2319.41 4.24 0 59.57 31.23 56.94
ac206 1620.99 1620.99 1626.60 2377.39 1940.02 2435.91 0 0.35 46.66 19.68 50.27
ac207 1484.86 1521.53 1484.86 2121.41 1828.67 2326.36 2.47 0 42.87 23.15 56.67
ac208 1544.53 1544.53 1636.52 2233.59 1867.09 2262.77 0 5.96 44.61 20.88 46.50
ar101 1809.25 1854.46 1809.25 2702.87 1938.82 1828.59 2.50 0 49.39 7.16 1.07
ar102 1636.85 1636.85 1656.97 2630.13 1763.33 1719.50 0 1.239 60.68 7.73 5.05
ar103 1637.85 1637.85 2068.84 2230.11 1709.41 1705.97 0 26.31 36.16 4.37 4.16
ar104 1447.26 1532.78 1447.26 1835.58 1582.75 1658.14 5.91 0 26.83 9.36 14.57
ar105 1684.61 1736.36 1684.61 2323.50 1715.81 1709.21 3.07 0 37.93 1.85 1.46
ar106 1659.15 1686.24 1724.45 2088.68 1659.15 1713.98 1.63 3.94 25.89 0 3.30

Continued on next page
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Instance Best
Algorithm RPI

IGA TS ACO HGA SA IGA TS ACO HGA SA
ar107 1541.48 1541.48 1723.28 1939.89 1551.27 1570.04 0 11.79 25.85 0.64 1.85
ar108 1419.75 1419.75 1561.72 1719.14 1487.39 1564.56 0 10.00 21.09 4.76 10.20
ar109 1508.53 1508.53 1668.01 1987.56 1581.34 1670.86 0 10.57 31.75 4.83 10.76
ar110 1604.68 1604.68 1682.98 1871.64 1669.10 1654.65 0 4.88 16.64 4.01 3.11
ar111 1427.47 1427.47 1725.69 1968.65 1511.69 1523.06 0 20.89 37.91 5.90 6.70
ar112 1330.68 1330.68 1609.20 1621.22 1515.37 1573.78 0 20.93 21.83 13.88 18.27
ar201 1871.04 1871.04 2187.61 3089.48 2315.91 2702.34 0 16.92 65.12 23.78 44.43
ar202 1731.76 1731.76 2032.40 2907.14 2051.94 2504.20 0 17.36 67.87 18.49 44.60
ar203 1683.38 1683.38 1685.10 3020.26 2090.83 2419.49 0 0.10 79.42 24.20 43.73
ar204 1453.17 1453.17 1641.42 2460.35 1966.83 2112.92 0 12.95 69.31 35.35 45.40
ar205 1681.16 1681.16 1766.16 2697.61 2227.62 2112.92 0 5.06 60.46 32.50 56.77
ar206 1559.62 1559.62 1692.58 2637.81 2070.37 2335.70 0 8.53 69.13 32.75 49.76
ar207 1602.26 1602.26 1763.93 2626.03 1998.26 2226.69 0 10.09 63.90 24.72 38.97
ar208 1460.86 1460.86 1519.17 2409.22 1852.45 2237.09 0 3.99 64.92 26.81 53.14
ar209 1657.39 1657.39 1833.05 2695.11 2017.70 2312.15 0 10.60 62.61 21.74 39.51
ar210 1706.34 1706.34 1765.23 2695.93 2099.48 2261.15 0 3.45 57.99 23.04 32.51
ar211 1482.63 1482.63 1692.78 2395.10 1912.46 2228.67 0 14.17 61.54 28.99 50.32
arc101 1992.26 2167.70 1992.26 2952.81 2165.05 2102.98 8.81 0 48.21 8.67 5.56
arc102 1857.56 1857.56 2153.43 2632.86 2043.57 2052.98 0 15.94 41.74 10.01 10.52
arc103 1942.29 1942.29 2013.90 2407.75 1963.19 2193.77 0 3.69 23.96 1.08 12.94
arc104 1714.73 1714.73 1835.47 2169.45 1818.20 1873.67 0 7.04 26.51 6.03 9.27
arc105 2026.26 2026.26 2092.61 2576.05 2119.26 2138.42 0 3.27 27.13 4.59 5.54
arc106 1946.39 1946.39 2278.06 2465.41 1988.13 2101.47 0 17.04 26.67 2.14 7.97
arc107 1817.38 1817.38 1892.43 2298.93 1901.54 2034.05 0 4.13 26.50 4.63 11.92
arc108 1871.91 1871.91 2093.49 2248.72 1941.13 1964.23 0 11.84 20.13 3.70 4.92
arc201 2191.61 2191.61 2446.45 3924.36 2650.47 3234.19 0 11.63 79.06 20.94 47.57
arc202 2046.69 2046.69 2347.31 3685.62 2505.02 3162.45 0 14.69 80.08 22.39 54.52
arc203 2013.35 2028.24 2013.35 3327.14 2325.68 2977.31 0.74 0 65.25 15.51 47.88
arc204 1931.42 1931.42 1942.74 2705.06 2237.96 2951.20 0 0.59 40.06 15.87 52.80
arc205 2078.97 2078.97 2417.22 3720.10 2562.86 3227.89 0 16.27 78.94 23.28 55.26
arc206 2048.38 2048.38 2301.28 3256.33 2437.83 3254.05 0 12.35 58.97 19.01 58.86
arc207 2027.87 2027.87 2133.07 3155.49 2335.31 2995.21 0 5.19 55.61 15.16 47.70
arc208 1834.64 1877.74 1834.64 2700.97 2077.34 2603.18 2.35 0 47.22 13.23 41.89
Mean 1677.46 1697.99 1798.51 2486.28 1957.46 2179.50 1.28 7.20 47.82 17.02 30.95
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Figure 11. ANOVA results for the IGA, TS, ACO, HGA and SA algorithm.

(a) Curve for instance ac102 (b) Curve for instance ac208

(c) Curve for instance ar204 (d) Curve for instance arc106

Figure 12. Comparisons of convergence curves for the IGA, TS, ACO, HGA and SA
algorithm.
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(a) Chart for instance ac106 (b) Chart for instance ac201

(c) Chart for instance ar108 (d) Chart for instance arc204

Figure 13. Charts of the helicopter routing schemes of the four instances.

5.8. Theoretical implications and managerial insights

The effective optimization of the H-VRPTW considering the minimum flight distance of the
helicopter improves the efficiency of post-disaster rescue and is of great significance for human safety.
Therefore, this paper establishes a mathematical model of the H-VRPTW, considering load
constraints, material demand, transportation of the wounded, time window constraints and travel
distance. To solve the H-VRPTW, an effective IGA has been proposed; the IGA shows better
convergence and optimization performance when solving the H-VRPTW. This study provides a new
perspective from which disaster management officials can formulate more refined dispatching
schemes, which has practical significance.

One managerial insight is that the research results of this paper have significant reference value
for solving the helicopter dispatching problem in post-disaster rescue. Another managerial insight
is that the helicopter dispatching scheme can effectively arrange rescue tasks for decision-makers and
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improve rescue efficiency. Finally, the proposed IGA is effective and applicable for solving dispatching
schemes for helicopters in post-disaster rescue.

6. Conclusions

In this study, the dispatching helicopters problem in post-disaster rescue is addressed. To solve this
problem, a reasonable mathematical model of the H-VRPTW that considers the minimum flight
distance of the helicopters is proposed, and an effective IGA has been designed to solve the
H-VRPTW. In the IGA, a cooperative initialization strategy is included to generate the initial
population. Subsequently, a local search strategy is presented to improve the exploitation ability.
Furthermore, a global search strategy is embedded to enhance the global search performance. In the
simulation experiments, the extended Solomon instances were used to verify the effectiveness of the
proposed algorithm. The proposed algorithm was compared with four existing algorithms to assess its
competitiveness. The experimental results show that the IGA yielded an average RPI value that was
0.178, 0.027, 0.075 and 0.041 times those of the TS algorithm, ACO algorithm, HGA and SA
algorithm, respectively. The experimental results confirm that the proposed algorithm has higher
competitive performance.

One limitation of this study is that the optimization objective was limited to consider the minimum
flight distance of the helicopters, without considering other objectives, such as economic cost and
energy consumption. To improve the research, a multi-objective dispatching model can be explored
to optimize multiple objectives simultaneously in the post-disaster rescue. Another limitation is the
lack of consideration for external environmental factors and emergencies, such as situations in which
helicopters are unable to reach certain areas. To enhance the research, future studies can employ
a dynamic programming approach to simulate the dispatching problem for the post-disaster rescue.
Finally, the performance of the proposed algorithm needs further improvement. In future research, the
proposed algorithm can be enhanced by combining it with other algorithms, such as the SA algorithm.
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