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Abstract: Ischemic heart disease or stroke caused by the rupture or dislodgement of a carotid plaque
poses a huge risk to human health. To obtain accurate information on the carotid plaque characteristics
of patients and to assist clinicians in the determination and identification of atherosclerotic areas, which
is one significant foundation work. Existing work in this field has not deliberately extracted texture
information of carotid from the ultrasound images. However, texture information is a very important
part of carotid ultrasound images. To make full use of the texture information in carotid ultrasound
images, a novel network based on U-Net called Contrast U-Net is designed in this paper. First, the
proposed network mainly relies on a contrast block to extract accurate texture information. Moreover,
to make the network better learn the texture information of each channel, the squeeze-and-excitation
block is introduced to assist in the jump connection from encoding to decoding. Experimental results
from intravascular ultrasound image datasets show that the proposed network can achieve superior
performance compared with other popular models in carotid plaque detection.

Keywords: carotid plaque; texture information; Semantic Segmentation; contrast block; Contrast
U-Net

1. Introduction

Atherosclerosis is the main pathogenic process in most cardiovascular diseases [1]. The carotid
artery, the main artery leading to the head, gradually ages as the body ages and the constant impact
of blood flow causes damage to the carotid lining. The damaged carotid artery lining will continue
to produce lipid deposits and when these deposits reach a certain level atherosclerotic plaques will
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form. The development of atherosclerotic plaque is accompanied by fibrosis and calcium deposition,
resulting in stiffening of the vessel, narrowing of the lumen and a reduction in elasticity [2, 3]. The risk
of stroke increases with the severity of carotid stenosis and the thickening of the carotid artery due to
plaque deposition [4, 5].

The importance of early detection of carotid artery plaque lies in the potential prevention of
life-threatening events such as stroke. When the plaque deposits in the carotid arteries become
substantial, they can narrow the arterial lumen and restrict blood flow to the brain. In some cases,
pieces of the plaque can rupture and travel to smaller vessels, causing blockages and leading to an
ischemic stroke. Detecting and monitoring the progression of carotid artery plaque at its early stages
can provide an opportunity for medical professionals to implement preventive measures and reduce
the risk of stroke and related complications. Traditionally, carotid artery plaque detection has relied
on manual inspection of ultrasound images by experienced radiologists or sonographers. This
approach, although effective, is time-consuming and subjective, depending on the expertise of the
clinician. To address these limitations, significant advancements have been made in the field of
medical imaging, particularly with the integration of deep learning techniques. Deep learning
methods have revolutionized the detection and segmentation of carotid artery plaque, enabling
automated and accurate identification of plaque regions from ultrasound images. Among the various
deep learning architectures, U-Net has emerged as a prominent method for medical image
segmentation. The U-Net architecture [6], initially proposed by Ronneberger et al., has demonstrated
remarkable success in biomedical image segmentation tasks. It utilizes a U-shaped network structure
consisting of an encoder pathway for feature extraction and a decoder pathway for generating
segmentation masks. This design allows the network to capture both local details and global context
information, leading to precise and accurate segmentation results. Since its introduction, U-Net has
been extensively adopted and adapted for various medical image segmentation tasks, including
carotid artery plaque detection. Researchers have explored different variations and improvements to
enhance the performance of U-Net in this specific domain. Çiçek et al. extended the U-Net
architecture to the three-dimension (3D) domain with their work on the 3D U-Net [7]. This variant
enabled dense volumetric segmentation with sparse annotations, making it suitable for volumetric
medical image analysis. This advancement facilitated more comprehensive and accurate analysis of
carotid artery plaques by considering the three-dimensional nature of the data.

To address the challenges of volumetric segmentation, Milletari et al. proposed the V-Net
architecture [8]. Built upon the U-Net design, V-Net specifically targeted volumetric medical image
segmentation tasks. Its innovative 3D, fully convolutional approach showcased promising results in
several applications, including carotid artery plaque segmentation.

Recognizing the need for improved segmentation accuracy, Zhou et al. introduced the UNet++
architecture[9]. This nested U-Net design further enhanced the segmentation performance by
incorporating multi-scale context information, enabling more precise identification and localization of
carotid artery plaques.

In addition to architectural enhancements, researchers have explored techniques such as
self-adaptation and attention mechanisms to optimize U-Net for carotid artery plaque detection.
Isensee et al. [10] developed the nnU-Net framework, which facilitated automatic configuration and
customization of U-Net for specific datasets. This adaptability made it possible to achieve superior
segmentation results for carotid artery plaques.
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Moreover, attention mechanisms have been integrated into U-Net architectures. Oktay et al.
introduced the Attention U-Net [11], which selectively focuses on important regions during
segmentation tasks. This approach has demonstrated its efficacy in accurately identifying and
segmenting carotid artery plaques.

The DCAN network proposed by Chen et al. [12] leveraged contour information to improve gland
segmentation. While not directly applied to carotid artery plaque detection, this contour-aware network
exemplifies the exploration of specialized variations of U-Net for specific segmentation tasks.

These studies represent a subset of the extensive research conducted on U-Net and its variants for
medical image segmentation tasks, particularly in the context of carotid artery plaque detection. In the
following sections, we will delve into these works in more detail, discussing their methodologies,
results, and contributions to the field of carotid artery plaque detection using deep learning
techniques. By examining the evolution and advancements of U-Net-based methods, we aim to
provide a comprehensive overview of the progress made and the potential for further improvements in
automated carotid artery plaque detection.

The main contributions of this work are summarized as follows:

1) We propose a novel network called Contrast U-Net, which is implemented to detect plaque in
carotid ultrasound images;

2) We design an efficient contrast block module, which can extract sufficient texture information
and with the help of this module the number of parameters and computational complexity caused by
ultrasound image information extraction in the network are greatly reduced.

The rest contents are organized as follows. In Section 2 we present the details of the Contrast U-Net.
The experimental results are presented in Section 3 and the conclusions are presented in Section 4.

Figure 1. Framework of Contrast U-Net model.
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2. Related works

In recent years, deep learning techniques have been used in various fields with the computer image
processing capability continuing to improve. The medical field is also trying to apply deep learning
methods in medical imaging processing. In 2015, Evan et al. [13] proposed the FCN network, which
can accept input of any size and generate output of corresponding size. Due to its powerful image
segmentation ability, it is widely used in medical image segmentation. In 2019, Gu et al. [14]
proposed a context encoder network (CE-Net) to capture more high-level information and preserve
spatial information for 2D medical image segmentation. CE-Net mainly contains three major
components: a feature encoder module, a context extractor and a feature decoder module. In 2015,
Ronneberger et al. [6] proposed the U-Net network, which is a convolutional neural network that can
be used for medical image segmentation. The network consists of a symmetric encoder and decoder
structure, where the encoder downsamples the input image to a feature map while the decoder
upsamples the feature map to the same resolution as the input image. The network performs well in
several medical image segmentation tasks. In addition, later generations continued to optimize on the
basis of U-Net and many more efficient methods were born.

For example, Alom et al. [15] proposed a medical image segmentation method combining ResUNet
and RNN. The method implements feature accumulation in recursive residual convolutional layers,
improving feature representation in image segmentation tasks. In the same year, Yu et al. [11] proposed
a method called Attention U-Net, which combines U-Net and attention mechanism. In this method,
an attention mechanism is used to strengthen the network’s attention on important features to improve
segmentation accuracy. The method was tested on datasets such as ISBI and the results showed that
it outperforms the traditional U-Net method. In 2020, Wang et al. [16] proposed a Non-local U-
Net to overcome the drawback of local convolution for medical image segmentation. The Non-local
U-Net employs the self-attention mechanism and the global aggregation block to extract full image
information during the parts of both up-sampling and down-sampling, which can improve the final
segmentation accuracy. The Non-local block is a general-purpose block that can be easily embedded
in different convolutional neural networks to improve their performance.

In 2017, Dong et al. [17] segmented carotid plaques from MRI images based on a fully
convolutional network (FCN). The method uses FCN as the base network architecture, making
GoogLeNet, VGG-16, and ResNet-101, respectively, the networks for the feature extraction stage.
The highest average segmentation accuracy of 56% can be achieved. In 2020, Meshram et al. [18]
performed plaque segmentation on longitudinal carotid ultrasound images based on U-Net and
Dilated U-Net. The experimental results show that the segmentation accuracies are 48 and 55% under
the automatic segmentation method. In 2020, Xie et al. [19] performed vascular and plaque
segmentation of carotid ultrasound images based on U-Net, which proposed dual-decoder
convolutional U-Net was used as the segmentation network with one decoder for segmenting blood
vessels and the other for segmenting plaques, leading an accuracy of 91% for blood vessel
segmentation and 69% for plaque segmentation.One notable contribution in this area is the work by
Zhao et al. [20] in 2021. They introduced a comprehensive method for the automatic extraction and
evaluation of coronary artery stenosis based on invasive coronary angiogram images. The authors
addressed the limitations of manual segmentation and assessment methods, which are
time-consuming and prone to errors. In their study, a deep learning model which integrates a feature
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pyramid with a U-Net++ model was developed to automatically segment coronary arteries in ICAs. A
compound loss function which contains Dice loss, dilated Dice loss and L2 regularization was utilized
to train the proposed segmentation model. Following the segmentation, an algorithm that extracts
vascular centerlines, calculates the diameters and measures the stenotic levels was developed to detect
arterial stenosis. Experimental results demonstrated the effectiveness of their method in accurately
extracting coronary arteries and reliably evaluating stenosis severity. This work provides valuable
insights and tools for the early diagnosis and treatment of coronary artery disease, offering potential
benefits in clinical practice

In addition, there are some other methods. GAN networks are also commonly used for image
segmentation. Segmentation of COVID-19 infections in medical imaging plays a crucial role in the
diagnosis and treatment of the disease. Several studies have focused on developing effective
segmentation methods for COVID-19 infections. Notably, He et al. [21] proposed an evolvable
adversarial network with a gradient penalty for COVID-19 infection segmentation. However, none of
the above methods deliberately extract texture information from the carotid ultrasound image. Aiming
to make full use of the sufficient texture information of carotid ultrasound images, we propose a novel
network called as Contrast U-Net, which unifies a contrast block module and encoder-decoder deep
learning framework for accurate texture information extraction. First, we introduce a contrast block
module to calculate the texture features of intravascular ultrasound images. Second, the Contrast
U-Net model is proposed by incorporating the contrast block module into the encoder-decoder deep
learning framework with the squeeze-and-excitation block [22] to the skip connection for adaptively
recalibrating the intensity of feature responses between channels. The experimental results show that
the proposed Contrast U-Net model is surprisingly effective in carotid plaque detection. The
performance is effectively improved relative to the reference, while the number of parameters and
computational effort are substantially reduced.

3. Methodology

In this section, we introduce a more efficient variant of U-Net network, called Contrast U-Net,
which is an improved version that enhances training efficiency while maintaining prediction accuracy.
Our model greatly reduces hardware consumption during training and provides a solid foundation
for updating the model during online training. Then, we provide a detailed explanation of contrast
block module and squeeze-and-excitation block module, these two blocks incorporated into the U-Net
architecture. In the end, we describe the loss function used in the Contrast U-Net model.

3.1. Contrast U-Net

The proposed architecture called Contrast U-Net, which is illustrated in Figure 1 and is composed
of four key modules: encoder, decoder, contrast block, and squeeze-and-excitation. The encoder and
decoder modules are similar to the classic U-Net [23], utilizing convolution and downsampling to
extract multi-scale features. To improve computational efficiency and reduce hardware requirements
during training, our algorithm reduces the number of convolutional kernels in each layer by half.
Since each layer’s feature map in our model is only half the size of the U-Net, the computational
workload associated with the corresponding convolutions and pooling operations is also reduced by
half. Additionally, we have introduced fixed operators, further decreasing the computational burden of
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the backpropagation process.
During downsampling, there are two different convolution blocks in Contrast U-Net model. The

first block is similar to U-Net, employing two consecutive convolutions with a kernel of 3 × 3 and
an output channel number twice as large as the input channel number. The second block also has the
same first convolution, but its second layer consists of a contrast block module, a convolution with a
kernel of 3 × 3 and the same output channel number as the input channel number. The contrast block
and convolution results are then concatenated to extract texture information and expand the channel
number. Furthermore, to adaptively recalibrate the feature response strength between channels, we
replace the skip connection between the encoder and decoder with a squeeze-and-excitation block.

3.2. Contrast block

In this work, we introduce a novel operator called a Contrast Value Operator: CVO into the contrast
block module for image processing task. The general definition of CVO is described below. CVO is an
effective operator that is sensitive to extract textures of images, as described in our previous work [24].

Figure 2. The convolution kernel of CVO. (a) Convolution kernel of CVO in x-direction; (b)
Convolution kernel of CVO in y-direction.

CVO operator is designed with two component convolutions: the difference component consisting
of –1 and 1, and the contrast component consisting of 2 and 1. As shown in Figure 2, CVO operator
in different directions is obtained by convolving the differential and contrast components in various
directions.

Textures in images often exhibit directional features. By using two different directional operators
for convolution, the sensitivity to various directional textures is increased, enabling better capture and
emphasis of texture details in the image. Moreover, the different directional operators complement each
other during the convolution process. For example, one operator may perform better for certain texture
features, while the other operator may be more effective for other texture characteristics. By utilizing
two different directional operators, the information from both operators is combined, enhancing the
ability to extract various types of textures. In summary, employing two different directional operators
for convolution enhances sensitivity to different directional textures, leading to improved capture and
emphasis of texture details in the image. Additionally, the mutual supplementation of information
between the different directional operators enhances the extraction capability for various texture types.
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This is why the CVO operator is particularly sensitive for texture extraction. We validated this point
in Figure 3, where we successfully extracted surface textures for various materials. Initially, we read
the three-channel image and applied the CVO convolution operation to each channel individually. The
resulting textures are shown in Figure 3(b). To enhance visibility in the paper, we performed image
enhancement by increasing the overall brightness to observe texture details. It is important to note
that image enhancement was not applied in the model itself. Figure 3(c) displays the enhanced image,
demonstrating the perfect extraction of texture details from the input image.

Figure 3. The results by CVO processing. (a) The original images; (b) The results processed
by CVO; (c) The result of image enhancement processing.

The proposed contrast block module is obtained by convolving the different directions of CVO
operator and computing the gradient as shown in Figure 4. The input image is convolved with CVO
operator from various directions before the approximate gradient is calculated.

3.3. Squeeze-and-excitation block

As introduced in Section 3.2, we utilized the CVO operator to extract texture features of images.
However, since the CVO operator is fixed, it does not change with each round of training, which may
result in limited sensitivity to certain features such as plaque features. To enhance the saliency of the
plaque area, we introduced the squeeze-and-excitation block module in our model, which is designed
to be more sensitive to plaque features through multiple rounds of training.

The squeeze-and-excitation block module adaptively recalibrates the strength of feature responses
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Figure 4. Framework of contrast block module.

between channels to simulate the interdependence between channels. Specifically, the module is
designed as a matrix M consisting of H ×W items of size C, where each item represents the weight of
the corresponding feature item. The module is divided into two steps: squeeze and excite. In the
squeeze step, a globally compressed feature vector is obtained by performing global average pooling.
In the excite step, the weight of each channel is obtained through two fully connected layers and the
weighted input is used as the output. The module schematic is shown in Figure 5.

The introduction of the squeeze-and-excitation block module is aimed at enhancing the sensitivity
of the algorithm to plaque features and improving its overall performance. The module enables the
algorithm to adaptively adjust the strength of the feature responses between channels, which is
particularly useful in scenarios where the features of interest are complex or subtle. Overall, the
incorporation of the squeeze-and-excitation block module represents a significant improvement to our
algorithm, and we believe that it has the potential to facilitate the accurate and efficient detection of
plaque features in medical imaging applications.

Figure 5. Framework of squeeze-and-excitation block module.
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3.4. Loss function

In carotid ultrasound images, there is a very large percentage of background pixels and only a small
percentage of plaque. This leads to class imbalance in the images. To facilitate the optimization of the
proposed network, focal loss (FL) [25] is used as a loss function to measure the relationship between
the predicted mapping and the ground truth. It can be formulated as follows.

FL = (1 − pt)γ log (pt) , (3.1)

where pt reflects the proximity to the ground truth, and γ is a modifiable factor.
Furthermore, we also introduce Lovasz loss (LL) [26] into our loss function, which is based on the

convex Lovasz expansion of submodular losses to optimize the mean IoU loss of the neural network.
The mean IoU is more in line with the intuition of image comparison. So, Lovasz loss is chosen to
assist focal loss to adjust the results. It can be formulated as follows.

LL = ∆̄J1(m) , (3.2)

where ∆̄J1 is Jaccard loss and m is the optimization algorithm.
Finally, the total loss function is designed as:

loss = FL + α · LL , (3.3)

where α is set as 0.4 in our model.

4. Experiments

4.1. Settings

• Dataset:
The data for this study was provided by the People’s Hospital of Sichuan Province, China,
consisting of a total of 117 carotid artery ultrasound images. These images are from real patients
and are used for clinical research and applications, so the data set is small and not publicly
available. Obtaining the initial carotid artery ultrasound images was not difficult, but the
corresponding ground truth images of the plaques had to be manually segmented by doctors,
which was a labor-intensive task. The carotid artery ultrasound images and GT images are
shown in Figure 6. Therefore, the dataset used in this study is smaller compared to the datasets
used in segmentation competitions or publicly available datasets.
In our experiments, we used 97 example images as training images. The first row displays some
carotid artery ultrasound images, while the second row shows the corresponding ground truth
images segmented by experts. Due to the excessive irrelevant information surrounding the carotid
artery ultrasound images, they were cropped to remove irrelevant details as Figure 7 shows.
For general ultrasound images, there will be a lot of noise, which will have a bad effect on the
segmentation effect. To address these limitations, several advanced techniques have been
proposed. One notable approach is the Peckle Reducing Bilateral Filter method introduced
by [27]. They develop a new bilateral filter for speckle reduction in ultrasound images for
follicle segmentation and measurement. Different from the previous bilateral filters, the
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proposed bilateral filter uses normalized difference in the computation of the Gaussian intensity
difference. We also present the results of follicle segmentation after speckle reduction.
Experimental results on both synthetic images and real ultrasound images demonstrate the
effectiveness of the proposed filter. There is another notable approach is the robust detail
preserving anisotropic diffusion (RD-PAD) method introduced by [28]. This method aims to
reduce speckle noise while preserving important details in ultrasound images. RD-PAD utilizes
anisotropic diffusion, which adapts the diffusion process based on local image features to
selectively reduce noise in homogeneous regions while preserving edges and fine structures. By
incorporating robust statistics, the proposed method effectively suppresses speckle noise without
blurring important image features. The dataset utilized in this study was provided by the Sichuan
Provincial People’s Hospital and it underwent assessment by medical professionals who
determined that the level of noise was not severe. Subsequent experimental results revealed that
the proposed model in this paper exhibits a certain degree of noise resilience. Consequently, in
the preprocessing stage, only image cropping was performed to eliminate irrelevant textual
information.

Figure 6. The carotid artery ultrasound images and GT.

Figure 7. Processed Image.
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• Evaluation indicator:
We adopt accuracy (Acc), mean accuracy (MAcc), mean intersection over union (MIoU) and
frequency weighted intersection over union (FWIoU) for the quantitative evaluation. The
accuracy (Acc) is a basic evaluation indicator for evaluating the performance of the segmentation
algorithm. The ratio of the correct classification of pixels in the division result is to the total
number of pixels. The calculation method of accuracy is:

Accuracy =
T P + T N

T P + T N + FP + FN
, (4.1)

where, T P indicates true positive, that is, the number of pixels that the algorithm will correctly
classify; T N indicates true negative, that is, the number of pixels that are correctly classified by
the algorithm; FP indicates false positive, that is, the algorithm is classified into the number of
pixels with negative errors; FN indicates false negative, that is, algorithm classifies the number of
pixels with a positive error into negative. The range of accuracy is [0, 1] and the larger the value,
the closer the segmentation result is to the ground truth.
The mean accuracy (MAcc) calculates the segmentation algorithm based on the classification
results of pixel levels The accuracy of the average classification can better reflect the overall
performance of the segmentation algorithm. The calculation method of the average accuracy is:

MAcc =
1
Nc

Nc∑
i=1

T Pi

T Pi + FPi
, (4.2)

where, NC represents the number of categories of classification, and T Pi indicates the number
of pixels that should be classified as category i and the correct classification. FPi indicates the
number of pixels misclassified as category i. The range of MACC’s value is [0, 1] and the larger
the value, the division results closer to the real results.
Mean intersection over union (MIoU) is calculated based on pixel -level classification results,
the average classification accuracy of the segmentation algorithm and considers the position
relationship between pixels. The calculation method of the average interchange ratio is:

MIoU =
1
Nc

Nc∑
i=1

T Pi

T Pi + FPi + FNi
, (4.3)

where, NC represents the number of categories of classification, and T Pi indicates the number of
pixels classified as category i and the correct classification. FPi indicates the number of pixels
misclassified as category i. FNi indicates the number of pixels should be classified as category i
but error classified as other category. The range of MIoU’s value is [0, 1] and the larger the value,
the division results closer to the real results.
Frequency weighted intersection over union (FWIoU) considers the occurrence frequency of each
class in the entire dataset. Therefore, for datasets with class imbalance, FWIoU can better reflect
the performance of the model. FWIoU is defined as the weighted average of the intersection over
union (IoU) for each class, where the weight is the occurrence frequency of that class in the entire
dataset. Specifically, assuming that there are K classes in the dataset, the occurrence frequency
of the k − th class is fk and the intersection and union of the model on that class are Ik and Uk,
respectively, then FWIoU can be represented as:
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FWIoU =
1∑K

k=1 fk

K∑
k=1

fk ·
Ik

Uk + ϵ
, (4.4)

where, ϵ is a small constant used to avoid division by zero. The value range of FWIoU is [0, 1],
and the larger the value, the better the performance of the model.
• Implementation:

1) In our experiments we used 97 examples as training images and enhanced the data by horizontal
rotation, vertical rotation, etc. and the remaining 20 examples were used as prediction images.
2) The framework for all experiments was done using PyTorch 1.11.0 on an Nvidia RTX 3070Ti
GPU.

Table 1. Ablation analysis of contrast block.

Contrast Block ✓

Acc 98.23 98.53
MAcc 79.75 80.33
MIoU 71.95 74.52

FWIoU 96.91 97.32

4.2. Ablation study

To showcase the effectiveness of the contrast block and the loss function, we conducted
experiments to demonstrate their individual impacts, and the results are presented in Tables 1 and 2.
These tables demonstrate that the addition of contrast block and the proposed loss function has
significantly improved various metrics.

Notably, when compared to using a single FL or LL, the addition of CVO led to a considerable
decrease in MAcc and MIoU. Additionally, the one-to-one ratio of various metrics was lower than that
of our approach. The experimental results demonstrate the effectiveness of our proposed contrast block
and loss function in improving the accuracy of carotid ultrasound image analysis.

Table 2. Ablation analysis for different weight of the two losses.

Loss FL LL FL+LL FL+0.4LL
Acc 98.42 97.51 98.51 98.53

MAcc 68.86 49.99 78.48 80.33
MIoU 67.74 48.76 73.64 74.52

FWIoU 96.90 95.11 97.27 97.32

4.3. Comparison with state-of-the-arts

We compared our proposed model with several state-of-the-art methods, including U-Net,
UNet++ [9], and ResUNet++ [29]. Although these models do not intentionally extract texture
information, texture is a crucial aspect of carotid ultrasound images. Hence, our model deliberately
extracts texture information and Table 3 demonstrates the benefits of our approach.
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Table 3. Comparable results between our model and others.

Model U-Net U-Net++ ResUNet++ Ours
Acc 98.31 98.49 98.19 98.53

MAcc 79.33 77.55 71.59 80.33
MIoU 72.34 73.01 67.22 74.52

FWIoU 97.01 97.22 96.68 97.32

In particular, our network employs a contrast block, which uses a fixed convolutional kernel to
extract texture information. By doing so, our model does not require computing the convolutional
kernel of the contrast block during extensive learning, thereby reducing the number of parameters and
computational resources required.

Table 4 presents the number of parameters and computational efforts of each model. Our model has
significantly lower parameters and computational requirements than the other models, making it easier
for physicians to locate plaques during the detection process. The results of Tables 3 and 4 suggest
that the complexity of the model does not necessarily translate to higher accuracy in detecting plaque
locations in carotid ultrasound images.

Table 4. Competition of parameters and computational effort.

Model U-Net U-Net++ ResUNet++ Ours
Params(M) 7.8 26.7 54.4 1.8
MACs(G) 4.3 9.2 14.5 0.9

To further illustrate the effectiveness of Contrast U-Net, we show some qualitative comparison
results with state-of-the-art methods as shown in Figure 7. In Figure 8, our model can detect plaques
that are difficult for physicians to identify as well as plaques in carotid ultrasound images with poor
imaging quality.

Overall, our proposed model is a promising approach for plaque detection in carotid ultrasound
images with fine texture extraction and low computational complexity.

5. Discussion

After adding the CVO operator, the results met our expectations. The algorithm became more
sensitive to the details of the image texture, allowing us to rapidly identify areas of interest such as
blood vessels and plaques. By incorporating the squeeze-and-excitation block, we were able to
selectively enhance the weight of the desired plaque area while suppressing the weight of other blood
vessels that could interfere with our analysis. This allowed us to more accurately identify the plaques
area of interest.

In addition, we recorded the changes in the loss function of our proposed model and other models
on the training set as shown in Figure 9, the Figure 9(a) shows the change of loss in processing time,
the Figure 9(b) shows the change of loss at each epoch and analyzed them. Compared to the classic
U-Net model, our model, incorporating a fixed contrast operator, converges faster in the direction we
anticipated, even with half the number of parameters. We analyzed that learning the plaque region
requires capturing a lot of texture and edge information. The traditional U-Net model gradually learns
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Figure 8. Typical visual results of carotid plaque detection.

these contents through multiple rounds of backpropagation. However, by introducing the fixed contrast
operator, we essentially provide guidance for the learning direction. The faster convergence of U-
Net++ and ResU-Net++ networks is attributed to the utilization of more parameters compared to the
traditional U-Net model, while still retaining many shallow features. Many edge and texture features
tend to weaken as the network deepens. However, in comparison to these two algorithms, our approach
achieves excellent results with minimal parameter usage. This indicates the feasibility of incorporating
the fixed operator for specific segmentation applications. Additionally, U-Net++ provides us with
insights and in future research we will consider how to preserve more shallow features and integrate the
fixed operator into shallow networks.Through Figure 9(b), we can get that, in terms of computational
resource requirements, this algorithm is significantly lower compared to the other algorithms, leading
to a substantial reduction in training time. As the training dataset size increases, the computational
advantage of this model becomes more evident. Furthermore, it provides a foundation for online model
updates.

Going forward, we can consider increasing the number of model parameters to further improve its
effectiveness or continue to pursue a lightweight design concept to achieve online updating of the
predictive model. Theoretically, with the increase in the training dataset through online updates, the
recognition accuracy can be improved. Therefore, the requirement for model lightweight design
becomes particularly important. This is precisely the significance of our research. In the designed
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scenario, doctors can make minor adjustments to obtain accurate ground truth regions after observing
the areas predicted by the model, thereby continuously expanding the training dataset. During the
doctors’ rest time, the model can automatically update its training dataset and retrain the predictive
model to improve prediction accuracy. This approach of online updating the predictive model is not
only applicable to carotid plaque detection but also serves as a promising strategy for private datasets
with high manual labeling costs. The utilization of lightweight models, coupled with online updating
of the predictive model, proves to be a viable solution.

Figure 9. Training set loss change curve.

6. Conclusions

This paper introduced a novel network called Contrast U-Net, which is based on U-Net network
and designed to help clinicians quickly locate carotid plaques. Contrast U-Net is effective in utilizing
the texture information of carotid ultrasound images, moreover the addition of the contrast block
module helped Contrast U-Net model significantly reduced the number of parameters and the amount
of computation required for model training in comparison with other popular models. Experimental
results demonstrated that Contrast U-Net model outperformed other models in terms of quality.
Overall, the proposed approach offered a promising solution to improve the accuracy and efficiency of
plaque detection in carotid ultrasound images.
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