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Abstract: With a laminate model foundation, we have used the complex variable function method to 

calculate the boundary displacement and stress of a frozen soil wall in a horizontal connecting 

passage. Using an actual engineering case, the effects of the number of divided layers of a 

functionally graded material-type frozen soil wall, the position of the freezing pipe and the section 

shape of the connecting passage on the displacements and tangential stresses of the frozen soil wall 

are discussed. The results indicate that the frozen soil wall as a temporary support structure exhibits a 

good supporting effect. With the increase of layers, the material strength of the frozen soil wall 

weakens, and the displacements and tangential stresses of the inner boundary increase. When the 

midline of the freezing pipe moves toward the inner boundary, the tensile area in the frozen soil wall 

begins to shift, and the displacements and tangential stresses of the inner boundary decrease 

differently. Thedistributions of internal boundary displacements and tangential stresses are 

significantly affected by the section shape of the frozen soil wall, and the internal boundary 

displacements and tangential stresses of the frozen soil wall of the small section are more uniform 

than those of the frozen soil wall of the large section. 

Keywords: tunnel; connecting passage; frozen soil wall; complex variable function method; 

functionally graded material; laminated model 
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1. Introduction 

With the rapid development of urban mass transit technology and the increasing demand for 

transportation, the artificial ground freezing method is widely used in the construction of 

connecting passagesbecause of its characteristics including the exclusion of water, pressure bearing 

capability lack of pollution and flexibility [1–3]. Currently, the design of a horizontal connecting 

passage frozen soil wall is still in the semi-empirical and semi-theoretical stage, and it is mainly 

analyzed by means of a numerical method, model testing and in-situ monitoring [4–7]. In contrast 

to a shaft, the shape of the cross section of the communication channel isnot a standard circular 

ring and is instead an irregular shape similar to a straight-wall arch; thus, the mechanical behavior 

analysis of the frozen soil wall is more complicated. Sokolnikoff [8] first used the complex 

variable function method to deal with the plane strain problem associated with a complex hole in 

an infinite domain, and many scholars subsequently began using an analytical continuation 

solution, the Cauchy integration solution, a power series solution, and other solutions to examine 

the aforementioned problem with different hole shapes [9–11]. The complex variable function 

method was introduced to solve the problem of surrounding rock-mass stress distribution in an 

elastic zone owing to the excavation of various buried tunnels without support, and it was studied 

in detail, ranging from simple circular tunnels to rectangular tunnels and straight-wall arch tunnels 

among others [12–16]. Lu [17–20] began mapping the irregular tunnel into a circular section 

conformally for analysis.  

Specifically, the frozen soil wall is not an ideal homogeneous structure; it is composed of 

artificial frozen soil, and its material strength is gradually graded along with the temperature from 

the ceter to the outside of the frozen soil wall. This type of composite material with material 

strength gradient is generally referred to as a functionally graded material (FGM). Hence, existing 

studies [21–24] assumed that the modulus of elasticity of the shaft material varies radially in 

different nonlinear forms, such as the exponential function and power function, and they derived 

closed form solutions for an FGM thick cylinder. The studies indicated that the FGM thick 

cylinder can undergo plastic deformation in a manner entirely different from its homogeneous 

counterpart. This observation led to immense interest in the area of civil engineering. Several 

researchers [25–29] proposed substituting the soil mechanic’s calculation method for FGM thick 

cylinders with the non-homogeneous solution of the frozen soil wall by assuming that the 

relationship between the strength of the frozen soil wall and the temperature field are trapezoidal 

and parabolic.  

Given the irregular section shape and material heterogeneity of the frozen soil wall, mechanical 

behavior analysis of the frozen soil wall of a horizontal connecting passage can be very complicated. 

Previous soil mechanic’s calculation methods considered limited factors, and rarely associated the 

temperature field with the deformation of the frozen soil wall. Given the gradient effect of the 

strength of frozen soil, the current study combines a laminate model with the complex function 

method to analyze the behavior of the frozen soil wall a of horizontal connecting passage and 

establishes a new method to derive an analytical solution of boundary stress and boundary 

displacement. 
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2. Mechanical model 

2.1.  Assumptions  

In order to calculate the stress and displacement of a frozen soil wall of a horizontal connecting 

passage, the following assumptions are made: 

1) In any cross section of the frozen soil wall, it is considered as a straight-wall arch that is 

similar to the outer contour of the connecting passage, and the cross section near the center of the 

connecting passage is considered as the standard section. 

2) We ignore the gradient of the frozen interface caused by the oblique installation of the 

freezing pipes, and the cross section of the frozen soil wall of the connecting passage is considered as 

continuous and consistent in the direction perpendicular to the axis of the shield tunnel. 

3) The frozen soil wall is completely frozen and ignores the effect of the frost heaving force 

imposed on the frozen soil wall [30]. 

4) The main influence area of the single-row multi-pipe layout is a limited part in the middle of 

the adjacent freezing pipes. The temperature distribution outside of the influence area can be 

described as a logarithmic function of the radial distance. 

2.2.  Conformal transformation of straight-wall arch section 

A simple ring-shaped region in the ζ plane (Figure 1) can be conformally transformed into a 

complicated frozen soil wall across the section in the Z plane (Figure 2) and its mapping function 

     satisfies the Laurent series as follows: 

 𝑧 =     = 𝑅  + ∑ 𝐶𝑘
𝑛
𝑘=0  −𝑘                                                               (1) 

where R denotes a positive real number representing the size of the ring; Ck denotes the shape 

correction coefficient; z denotes the complex potential coordinate of the Z plane; ζ denotes the 

complex potential of the ζ plane.  

 

Figure 1. Original shape of the frozen soil wall (Z plane). 
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Figure 2. Mapping shape of the frozen soil wall (ζ plane). 

Using the complex method to solve the mapping function     , a new optimization function is 

constructed as follows: 

 𝑓 = ∑  𝑟𝐴𝑗
− 𝑓𝐴𝑗

 2
𝑚1
𝑗=1 + ∑  𝑟𝐵𝑗

− 𝑓𝐵𝑗
 2

𝑚2
𝑗=1                                               (2) 

where f denotes the optimization function; rAj and rBj are known as the polar coordinate values of the 

Z plane; fAj and fBj denote the polar coordinate values of the Z plane obtained from the mapping 

function. 

When the function 𝑓is minimized, the corresponding 𝐶𝑘
  denotes the solution that satisfies the 

following constraints: 

 ∑ 𝑘|𝐶𝑘| < 1𝑛
𝑘=1                                                                             (3) 

where k denotes a positive integer. 

2.3.  Stress and displacement field of frozen soil wall 

According to the complex variable function theory [21–23,31] the equations of the stress 

components and displacement components at any point (in polar coordinates in the Z plane) in the 

frozen soil wall are expressed as follows: 

{
 
 

 
 
𝜎𝜃 + 𝜎𝑟 = 4𝑅𝑒[𝛷   ]

𝜎𝜃 − 𝜎𝑟 + 2𝑖𝜏𝜃𝑟 =
2𝜁2

𝑟2𝜔′ 𝜁 
× [    𝛷′   +  ′   𝛹   ]

2𝐺 𝑢𝑟 + 𝑖𝑢𝜃 =
𝜁𝜔′ 𝜁 

𝑟|𝜔′ 𝜁 |
× [𝜅𝜑   −

𝜔 𝜁 

𝜔′ 𝜁 
× 𝜑′   − 𝜓   ]

                                      (4) 

where 𝜎𝜃, 𝜎𝑟, and 𝜏𝜃𝑟 denote the tangential, radial and shear stresses, respectively; 𝑢𝜃 and 𝑢𝑟 denote 

the tangential and radial displacements, respectively; K denotes the plane strain, K = 3–4μ; G denotes 

the shear modulus; μ denotes Poisson's ratio; 𝜑   , 𝜓   , 𝛷   , and 𝛹    are the analytic functions, 

as given by the following equations: 
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{
  
 

  
 

υ ζ = υ
j
 z = υ

j
[ω ζ ]

ψ ζ = ψ
j
 z = ψ

j
[ω ζ ]

Φ ζ = υ
j
′ z =

υ′ ζ 

ω′ ζ 

Ψ ζ = ψ
j
′ z =

ψ′ ζ 

ω′ ζ 

                                                                         (5) 

where j denotes the serial number of the ring layer, and j=n+1 denotes the serial number of the 

surrounding rock. 

We exclude the weight of the soil in the frozen soil wall, and the initial stress field is expressed 

as follows: 

 

{
  
 

  
 σr

0 = −
1+λ

2
p −

λ−1

2
p × {[Re 

ζω′ ζ 

r|ω′ ζ |
 ]

2

− [Im 
ζω′ ζ 

r|ω′ ζ |
 ]

2

}

σθ
0 = −

1+λ

2
p +

λ−1

2
p × {[Re 

ζω′ ζ 

r|ω′ ζ |
 ]

2

− [Im 
ζω′ ζ 

r|ω′ ζ |
 ]

2

}

τrθ
0 =

λ−1

2
p × {2Re 

ζω′ ζ 

r|ω′ ζ |
 Im 

ζω′ ζ 

r|ω′ ζ |
 }

                                     (6) 

where 𝜎𝑟
0, 𝜎𝜃

0 and 𝜏𝑟𝜃
0  denote the initial radial, tangential, and shear stresses, respectively; p denotes 

the vertical earth pressure; λ denotes the lateral pressure coefficient; Re{} denotes the real part of {}; 

Im denotes the imaginary part of {}. 

We combine Eqs (5) and (6) to obtain the analytical solution expressions stress and 

displacement field of the frozen soil wall and surrounding rock-mass as follows: 

{
 
 
 
 
 

 
 
 
 
 𝜎𝑟 = 2𝑅𝑒[

𝜑𝑗
′  𝜁 

𝜔′ 𝜁 
] − 𝑅𝑒 {

𝜁2

𝑟2𝜔′ 𝜁 
[    [

𝜑𝑗
′  𝜁 

𝜔′ 𝜁 
]′ +  ′   [

𝜓𝑗
′  𝜁 

𝜔′ 𝜁 
]]} −

1

2

𝜆+1

2
𝑝 −

𝜆−1

2
𝑝 {[𝑅𝑒 

𝜁𝜔′ 𝜁 

𝑟|𝜔′ 𝜁 |
 ]

2

− [𝐼𝑚 
𝜁𝜔′ 𝜁 

𝑟|𝜔′ 𝜁 |
 ]

2

}

𝜎𝜃 = 2𝑅𝑒[
𝜑𝑗

′  𝜁 

𝜔′ 𝜁 
] + 𝑅𝑒 {

𝜁2

𝑟2𝜔′ 𝜁 
[    [

𝜑𝑗
′  𝜁 

𝜔′ 𝜁 
]′ +  ′   [

𝜓𝑗
′  𝜁 

𝜔′ 𝜁 
]]} −

1

2

𝜆+1

2
𝑝 +

𝜆−1

2
𝑝 {[𝑅𝑒 

𝜁𝜔′ 𝜁 

𝑟|𝜔′ 𝜁 |
 ]

2

− [𝐼𝑚 
𝜁𝜔′ 𝜁 

𝑟|𝜔′ 𝜁 |
 ]

2

}

𝜏𝑟𝜃 = 𝐼𝑚 {
𝜁2

𝑟2𝜔′ 𝜁 
[    [

𝜑𝑗
′  𝜁 

𝜔′ 𝜁 
]′ +  ′   [

𝜓𝑗
′  𝜁 

𝜔′ 𝜁 
]]} −

𝜆−1

2
𝑝 {2𝑅𝑒 

𝜁𝜔′ 𝜁 

𝑟|𝜔′ 𝜁 |
 𝐼𝑚 

𝜁𝜔′ 𝜁 

𝑟|𝜔′ 𝜁 |
 }

𝑢𝑟 = 𝑅𝑒 {
1

2𝐺𝑗

𝜁𝜔′ 𝜁 

𝑟|𝜔′ 𝜁 |
[𝜅𝑗𝜑𝑗   −

𝜔 𝜁 

𝜔′ 𝜁 
× 𝜑𝑗

′    − 𝜓𝑗   ]}

𝑢𝜃 = 𝐼𝑚 {
1

2𝐺𝑗

𝜁𝜔′ 𝜁 

𝑟|𝜔′ 𝜁 |
[𝜅𝑗𝜑𝑗   −

𝜔 𝜁 

𝜔′ 𝜁 
× 𝜑𝑗

′    − 𝜓𝑗   ]}                            j = 1,2⋯ 

(7) 

where Gj denotes the shear modulus of the ring at layer j; kj denotes the plane strain of the ring at 

layer j. 

2.4.  Boundary conditions 

We use the continuity of displacements and stresses at the ring boundary, and the equation the 

boundary stress condition of the inner boundary of the ring is as follows: 

 υ
j
 t1 +

ω t1 

ω′ t1 
υ
j
′ t1 + ψ

j
 t1 = f t1                                                      (8) 
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The boundary conditions of stresses and displacements at the outer ring boundary are as follows: 

υ
j
 t2 +

ω t2 

ω′ t2 
υ
j
′ t2 + ψ

j
 t2 = υ

j+1
 t2 +

ω t2 

ω′ t2 
υ
j+1
′  t2 + ψ

j+1
 t2                            (9) 

κ1

Gj
υ
1
 t2 −

1

Gj
[

ω t2 

ω′ t2 
υ
j
′ t2 + ψ

j
 t2 ] =

κ2

Gj+1
υ
2
 t2 −

1

Gj+1
[

ω t2 

ω′ t2 
υ
j+1
′  t2 + ψ

j+1
 t2 ]            (10) 

The boundary condition of displacement at infinity is as follows: 

 
𝜅2

𝐺𝑛+1
𝜑𝑛+1 𝑡3 −

1

𝐺𝑛+1
[
𝜔 𝑡3 

𝜔′ 𝑡3 
𝜑𝑛+1

′  𝑡3 + 𝜓𝑛+1 𝑡3 ] = 0                                  (11) 

In Eq (12), based on the Fourier series [12,18], the boundary stresses 𝑓 𝑡1  and 
𝜔 𝑡 

𝜔′ 𝑡 
 are 

expanded as follows: 

 
𝜔 𝑡 

𝜔′ 𝑡 
= ∑ 𝐿𝑠 

𝑠𝑛
𝑠=−𝑛                                                                            (12) 

 𝑓 𝑡1 = ∑ 𝐴𝑠𝑒
𝑖𝑠𝜃∞

𝑠=0 + ∑ 𝐵𝑠𝑒
−𝑖𝑠𝜃∞

𝑠=0                                                         (13) 

where t (𝑡 =  𝑒𝑖𝜃) denotes a point (ρ, θ) in the ζ plane; t1 and t2 denote the point on the inner 

boundary of the j-layer ring and the point on the outer boundary of the j-layer ring, respectively; t3 

denotes a point at infinity; 𝑓 𝑡1  denotes the surface force function; Ls, As and Bs denote polynomial 

coefficients; i denotes an imaginary unit; s denotes the number of analytical function coefficients. 

3. Basic equations for solving analytical functions for an FGM 

Indicated that the temperature distribution inside the frozen soil wall approximates the gradient 

variation, and that the material parameters, such as the strength of the artificial frozen soil, also 

exhibit a certain functional relationship with temperature. Therefore, the frozen soil wall is a 

heterogeneous material from the very beginning. Based on the FGM theory, it is considered that the 

strength of the frozen soil wall changes on a gradient with the internal temperature distribution, and 

the strength of the artificial frozen soil wall is expressed as follows: 

 𝐺 = 𝐹[𝑇 𝑟 ] = 𝐺 𝑟                                                                            (14) 

where T(r) denotes the steady-state temperature field;  r denotes the distance between a point on the 

Z plane and the freezing pipe. 

The mechanical model of an FGM includes the laminated model, among others [32–34]. When 

thegraded function model cannot be determined directly, the laminate model is the most convenient 

and feasible method. In the study, the laminated model is applied, and the calculation method is close 

to the finite difference method: the frozen soil wall is divided into n layers along the radial direction, 

and different strength parameters (shear module) are assigned to the n-layer frozen soil wall as 

determined by the steady temperature field. We then calculate the stress-related analytic functions for 

each layer step by step to derive its stresses and displacements. 

Analytic functions of the j layer frozen soil wall are as follows: 
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 1 1

0 0

( )

( )

n n
s s

j s s

s s
n n

s s

j s s

s s

a b

c d

   

   



 



 


 


  


 

 
                                                                     (15) 

Analytic functions of the j+1 layer frozen soil wall are as follows: 

 

' '

+1

1 1

' '

+1

0 0

( )

( )

n n
s s

j s s

s s
n n

s s

j s s

s s

a b

c d

   

   



 



 


 


  


 

 
                                                                   (16) 

Analytic functions of the surrounding rock-mass（n+1 layer）are as follows: 

 
+1

1

+1

0

( )

( )

n
s

n s

s
n

s

n s

s

g

h

  

  













 





                                                                             (17) 

where as, bs, cs, ds, a
’
s, b

’
s, c

’
s, d

’
s, gs and hs denote the to be solved. 

We substitute Eqs (15)–(17) into the boundary conditions to yield the stress outer boundary 

conditions in the jth layer (j = 1,2,3, ..., n-1): 

 

{
 
 

 
 bn + ∑ sLs−n−1as

n
s=1 rj

2 s−1 
− ∑ sL−s−n−1bsrj

−2 s+1 n
s=1 + cnrj

−2n

= bn
′ + ∑ sLs−n−1as

′ rj+1
2 s−1 n

s=1 − ∑ sL−s−n−1bs
′n

s=1 rj+1
−2 s+1 

+ cn
′ rj+1

−2n

am + ∑ sLs+m−1as
m
s=1 rj

2 s−1 
− ∑ sL−s−m−1bs

m
s=1 rj

−2 s+1 
+ dmrj

−2m

= am
′ + ∑ sLs+m−1as

′m
s=1 rj+1

2 s−1 
− ∑ sL−s−m−1bs

′m
s=1 rj+1

−2 s+1 
+ dm

′ rj+1
−2m，      𝑛 = 0,1,2, . . .  ,  𝑚 = 1,2, . . .   

 

  (18) 

Outer boundary conditions for displacement in the jth layer are as follows: 

 

{
 
 
 
 
 

 
 
 
 
 

κ1

Gj
bn −

1

Gj
[∑ sLs−n−1as

n
s=1 rj

2 s−1 
− ∑ sL−s−n−1bsrj

−2 s+1 n
s=1 ]

−
1

Gj
cnrj

−2n =
κ1

Gj+1
bn

′ −
1

Gj+1
×

[∑ sLs−n−1as
′n

s=1 rj+1
2 s−1 

− ∑ sL−s−n−1bs
′ rj+1

−2 s+1 n
s=1 ] −

1

Gj+1
cn

′ rj+1
−2n

κ1

Gj
am −

1

Gi
[∑ sLs+m−1as

m
s=1 rj

2 s−1 
− ∑ sL−s−m−1bsrj

−2 s+1 m
s=1 ]

−
1

Gj
dmrj

−2m =
κ1

Gj+j
am

′ −
1

Gj+1
×

[∑ sLs+m−1as
′m

s=1 rj+1
2 s−1 

− ∑ sL−s−m−1bs
′ rj+1

−2 s+1 m
s=1 ] −

1

Gj+1
dm

′ rj+1
−2m

               (19) 

Inner boundary stress conditions for the nth layer are as follows: 

{
bn + ∑ sLs−n−1asrn−1

2 s−1 n
s=1 − ∑ sL−s−n−1bsrn−1

−2 s+1 n
s=1 + cnrn−1

−2n = Bnrn−1
n

am + ∑ sLs+m−1akrn−1
2 s−1 m

s=1 − ∑ kL−s−m−1bsrn−1
−2 s+1 m

s=1 + dmrn−1
−2m = Amrn−1

−m
           (20) 
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Outer boundary conditions for stress in the nth layer are as follows: 

 

{
 
 

 
 
𝑏𝑛 + ∑ 𝑠𝐿𝑠−𝑛−1𝑎𝑠

𝑛
𝑠=1 − ∑ 𝑠𝐿−𝑠−𝑛−1𝑏𝑠

𝑛
𝑠=1 +

𝑐𝑛 = 𝑔𝑛 − ∑ 𝑠𝐿−𝑠−𝑛−1𝑔𝑠,
𝑛
𝑠=1

𝑎𝑚 + ∑ 𝑠𝐿𝑠+𝑚−1𝑎𝑠
𝑚
𝑠=1 − ∑ 𝑠𝐿−𝑠−𝑚−1𝑏𝑠

𝑚
𝑠=1 +

𝑑𝑚 = ℎ
𝑚

− ∑ 𝑠𝐿−𝑠−𝑚−1𝑔𝑠.
𝑚
𝑠=1

                                                   (21) 

Outer boundary conditions for displacement in the nth layer are as follows: 

 

{
  
 

  
 

𝜅1

𝐺𝑛
𝑏𝑛 −

1

𝐺𝑛
[∑ 𝑠𝐿𝑠−𝑛−1𝑎𝑠

𝑛
𝑠=1 − ∑ 𝑠𝐿−𝑠−𝑛−1𝑏𝑠

𝑛
𝑠=1 ]

−
1

𝐺𝑛
𝑐𝑛 =

𝜅1

𝐺𝑛+1
𝑔𝑛 +

1

𝐺𝑛+1
∑ 𝑠𝐿−𝑠−𝑛−1𝑔𝑠

𝑛
𝑠=1

𝜅1

𝐺𝑛
𝑎𝑚 −

1

𝐺𝑛
[∑ 𝑠𝐿𝑠+𝑚−1𝑎𝑠

𝑚
𝑠=1 − ∑ 𝑠𝐿−𝑠−𝑚−1𝑏𝑠

𝑚
𝑠=1 ]

−
1

𝐺𝑛
𝑑𝑚 = −

1

𝐺𝑛+1
ℎ
𝑚

+
1

𝐺𝑛+1
∑ 𝑠𝐿−𝑠−𝑚−1𝑔𝑠

𝑚
𝑠=1

                                                 (22) 

Boundary conditions for displacement at infinity are as follows: 

 {

𝜅2

𝐺𝑛+1
𝑔𝑛 +

1

𝐺𝑛+1
∑ 𝑠𝐿−𝑠−𝑛−1𝑔𝑠

𝑛
𝑠=1 = 0

1

𝐺𝑛+1
ℎ
𝑚

−
1

𝐺𝑛+1
∑ 𝑠𝐿−𝑠−𝑚−1𝑔𝑠

𝑚
𝑠=1 = 0

                                                          (23) 

We combine Eqs (18)–(23) to obtain the analytic functions of the nth layer to the first layer 

from the outside to the inside in order. 

4. Analysis of engineering case 

Processes of solving the stress and displacement of each point in the frozen soil wall of the 

connecting passage have been divided into three steps The first step involves solving the conformal 

mapping function. The second step involves using the boundary conditions to derive the analytic 

function for each layer of the frozen soil wall. In the third step, the analytic function for each layer is 

substituted into the stress and displacement fields of the frozen soil wall and surrounding rock mass 

to obtain stress–displacement solutions. 

4.1.  Project overview 

There are two sections in the tunnel of Xiguan cross, i.e., the Dongfanghong square cross of 

Lanzhou Metro line 1. The first type corresponds to a “narrow long” straight-wall arch section with a 

pumping station (hereafter referred to as “large section”, as below), whose aspect ratio (h/b) is 1.37; 

The second type corresponds to a standard section (“small section”) which has an aspect ratio (h/b) 

of 1.05. The shape and size of each type of section are shown in Figure 3. 
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(a) (b) 

Figure 3. Dimensions of the frozen soil wall (unit: mm): (a) large section (b) small section. 

Regarding the design, the external surface temperature of the freezing pipe corresponds to –

28°C, the outer boundary temperature of the frozen soil wall corresponds to 0°C, the thickness of the 

frozen soil wall corresponds to 2 m, the radius of the freezing pipe corresponds to 0.127 m, the 

ultimate tensile strength of the frozen soil at 0°C corresponds to 0.99 MPa and the ultimate 

compressive strength corresponds to 3.47 MPa. The stratigraphic parameters are listed in Tables 1 

and 2 as obtained from the geological survey and on-site measured results. 

Table 1. Formation parameters. 

Type of  

soil layer 

Thickness 

（m） 

Density 

(g/cm
3
) 

Elastic 

modulus 

E (MPa) 

Internal 

friction 

angle  

(°) 

Cohesion 

c (kPa) 

Poisson's 

ratio 

μ 

Miscellaneous fill 3.7 1.90 5.0 15 8 0.39 

Plain fill 1.0 1.98 5.5 18 10 0.38 

Pebble 4.1 2.30 55.0 40 0 0.16 

Sandstone 42.0 2.05 38.0 32 24 0.23 

Table 2. Frozen soil wall parameters. 

Thickness

（m） 
μn+1 K1 K2 Gn+1/MPa λ p/MPa 

0.2 0.3 2.2 1.8 15.4 0.65 0.287 

In the above table K denotes the plane strain, K=3-4μ; μ denotes Poisson's ratio; G denotes the 

strength of the artificial frozen soil wall; λ denotes the lateral pressure coefficient; p denotes the 

vertical earth pressure.  
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4.2.  Process of solving for the conformal mapping function 

When the composite method was used to map the circular section to the straight-wall arch 

section, 20 initial points were uniformly selected on the inner and outer boundaries of the frozen soil 

wall. A Matlab calculation program was compiled to solve the conformal mapping function. 

The large-section frozen soil wall conformal mapping function is as follows: 

z = ω ζ = 4.1625 ζ + 0.1965 + 0.1062ζ
−1 − 0.0095ζ

−2 − 0.0046ζ
−3 + 0.0003ζ

−4 − 0.0008ζ
−5 +

0.0002ζ
−6   (24) 

The small-section frozen soil wall conformal mapping function is as follows: 

z = ω ζ = 3.5643 ζ + 0.1493 + 0.0053ζ
−1 − 0.0010ζ

−2 − 0.0042ζ
−3 + 0.0027ζ

−4 − 0.0004ζ
−5 +

0.0004ζ
−6   (25) 

4.3.  Process of solving for analytical functions based on the FGM model 

Given the effect of the steady temperature field on the strength of the frozen soil wall of each 

layer, when FGM theory is used to calculate the stress on the frozen soil wall of the connecting 

passage, the frozen soil wall should be considered as a heterogeneous material composed of multiple 

layers of frozen soil walls with different strengths. Specifically, the frozen soil wall was divided into 

n equal layers along the radial direction, and the centerline temperature of each layer of the frozen 

soil wall was considered as its temperature (the thickness of the frozen soil wall corresponds to 0 

when n approaches infinity).  

 

Figure 4. Layers of FGM frozen soil wall. 

The temperature field in the region of the frozen soil wall obeys the distribution law of a single-

pipe steady temperature field and is expressed as a logarithmic function as follows [30]: 
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 𝑇 𝑟 = 𝑇𝑝

𝑙𝑛
𝑅

𝑅𝑗

𝑙𝑛
𝑅

𝑟0

= 13.5687 𝑙𝑛 𝑅𝑗                                                                          (26) 

where TP denotes the external surface temperature of the freezing pipe, ℃; R denotes the frozen front 

radius, m; r0 denotes the radius of the freezing pipe, m; Rj denotes the distance between the 

centerline of the jth layer of the frozen soil wall and the centerline of the freezing pipe on the Z plane, 

m. 

We assume that the strength of artificial frozen soil is a quadratic function of temperature. 

Based on studies [35–37] and a geological survey, the quadratic function is fitted as follows:  

 𝐺 = −0.0496𝑇2 − 2.996𝑇 + 25                                                                          (27) 

where T denotes the temperature of the frozen soil wall, ℃. 

We consider n = 10 as an example the analytic functions for the inner layer in the large-section 

frozen soil wall are as follows: 

1 2 1 2

1
1 2 1 2

1

( ) 0.0963 0.1573 0.1157 0.0626 

( ) -0.0663 0.0253 0.3172 +0.0864

     

     

 

 

    


  
                                              (28) 

The analytic functions for the inner layer in the small-section frozen soil wall are as follows: 

 

1 2 1 2

1
1 2 1 2

1

( )  0.0373 0.1149  0.0996 0.0217

( ) 0.0313 0.0034 +0.2396 +0.0461

     

    

 

 

    


  
                                           (29) 

4.4.  Analysis of stress–displacement solutions 

By substituting the obtained analytic functions for the inner layer into Eq (8), stress–

displacement solutions for each point at the inner boundary of the frozen soil wall after excavation of 

the connecting passage are obtained. Based on the symmetry of the structure, the boundary of a half 

section was considered for investigations. According to the coordinate system shown in Figure 1, the 

vertical axis denotes the starting axis and the counterclockwise direction denotes the positive 

direction.  

4.5.  Effect of the number of layers on the stress and displacement of the frozen soil wall  

We consider a large-section frozen soil wall as an example the boundary stress and 

displacement distribution of the frozen soil wall when the freezing pipe is at a distance of l = 1 m 

from the inner boundary of the centerline and the number of layers cvaries as n = 1, 4, 5, 7, 8, 9, and 

10 are shown in Figure 5. 
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(a) (b) 

 
(c) 

 

Figure 5. Inner boundary stress and displacement of the FGM frozen soil wall with 

different layers: (a) Radial displacement of the inner boundary: (b) Tangential 

displacement of the inner boundary: (c) Tangential stress of the inner boundary. 

From the calculation results for the FGM frozen soil wall boundary displacements in and 

tangential stresses for different numbers of layers, the following observations are concluded:  

The frozen soil wall works well as a temporary support structure. The displacements and 

tangential stresses on the inner boundary of the frozen soil wall are evenly distributed. The maximum 

tangential stress was mainly distributed near the corner of the inner boundary of the straight wall (θ = 

151°), and this corresponds to 2.37 MPa. The maximum tangential stress was within the maximum 

compressive strength range of frozen soil at 0℃. However, given the coincidence of the inner 

boundary with the contour of the excavation and the effect of the excavation, the maximum 

tangential displacement reached 4.5 cm (located near the arch foot). The result was relatively large, 

thereby indicating that relying only on the frozen soil wall as a long-term load-bearing structure 

causes large deformation in the cave. 

The frozen soil wall of the large-section connecting passage was narrow and long, the inner 

boundary was deformed toward the inside of the cavern, and the radial displacement was distributed 

in an “M” shape. The radial displacement of the dome (θ = 0°) reached 2.4 cm, which denotes the 

maximum point of radial displacement of the inner boundary. The radial displacement at the straight 

wall (45° ≤ θ ≤ 151°) was small and uniformly distributed (no abrupt change). We used the middle 
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line (θ = 90°) as the boundary, and reverse deformation occurred on the upper and lower sides. The 

tunnel floor (151° ≤ θ ≤ 180°) exhibited a slight heave although the maximum radial displacement 

did not appear at its midpoint (θ = 180°), and it was located on the side closer to the corner of the 

straight wall. 

The tangential displacement of the inner boundary was distributed in an “N” shape, and the 

tangential displacement of the frozen soil wall on the straight wall significantly exceeded that of the 

tunnel floor and the arch (0° ≤ θ ≤ 45°). An abrupt change occurred in the tangential displacement 

near the arch foot (θ = 48°), and the radial displacement small, thereby indicating that the frozen soil 

on the side of the straight wall exhibited a tendency to sink vertically. 

The frozen soil wall was used as a temporary support structure, and its tangential stress 

(excluding abrupt change points) was negative, thus, it was mainly compressed in the formation. The 

tangential stress was evenly distributed across the vault, straight wall and floor and were all within 1 

MPa. The frozen soil wall at the corner of the inner boundary of the straight wall was partially 

stretched, thus the tangential stress positive. Unlike the radial displacement, the tangential stress and 

displacement were significantly affected by the irregularity of the frozen soil wall section form. 

Abrupt changes occurred in the corner of the straight wall and arch foot. The tangential stress 

reaches 2.15 MPa, and the tangential displacement reached 4.5 cm. 

Yang et al. and Wang [38,39] considered the frozen soil wall of the inclined shaft as a 

homogeneous model of a frozen soil wall with uniform strength to solve its stress and displacement. 

The method can be considered as a special solution when the number of layers is n = 1. We 

compared the calculation results for the homogeneous frozen soil wall model (n = 1) and the FGM 

model (n = 10), and the results indicate that the displacement and stress calculated by the two are 

consistent in distribution. Therefore, the distributions of stresses and displacements on the inner 

boundary of the frozen soil wall were  not significantly related to the calculation model (number of 

layers). The results calculated by using the seven types of layer numbers were similar in terms of the 

distribution. 

The values of the stress and displacement exhibited a significant correlation with the number of 

layers Given that the strength of the frozen soil wall is affected by the temperature field, the frozen 

soil wall should be considered as an FGM. The strength of the frozen soil near the freezing pipe 

increased, and the boundary strength decreased. When the number of frozen soil wall layers 

increased, the thickness of the frozen soil wall of each layer continued to decrease, and the 

temperature on the centerline of the frozen soil walls of each layer became increasingly closer to the 

actual temperature of the frozen soil wall of each layer. Its strength, tangential stress, and 

displacement should also be closer to the actual values. 

The FGM frozen soil wall (n = 10) exhibited a lower overall material strength than the 

homogeneous frozen soil wall (n = 1). Under the condition of the same ground field, the inner 

boundary displacements and tangential stresses of the FGM frozen soil wall exceeded those of the 

homogeneous frozen soil wall, and its distribution of stresses was more concentrated (especially at 

the corner of the straight wall). This indicates that the design strength of the connecting passage 

support exceeds that of the homogeneous frozen soil wall when the laminate model of the FGM is 

used to guide the design of the frozen soil wall. The calculation process for the laminate model is 

simpler and more in line with the actual engineering case. In order to satisfy the requirements of safe 

excavation, it is generally necessary to design a lower freezing temperature or a larger frozen soil 

wall thickness. 



15557 

Mathematical Biosciences and Engineering  Volume 20, Issue 9, 15544–15567. 
 

It is should be noted that as n increases, the calculation steps also continue to increase. From the 

aforementioned analysis, when the number of layers corresponds to 10, the calculation results for the 

displacement and stress on the inner boundary of the frozen soil wall essentially remained stable. 

When the frozen soil wall is considered as a homogeneous material, the accuracy of its calculation 

results mainly depends on the actual strength of the frozen soil wall measured at the site, and this 

varies significantly based on the location of the measurement point.  

4.6.  Effect of freezing pipe layout position on stress and displacement of frozen soil wall 

We consider a large-section frozen soil wall as an example: when the number of layers was n = 

10, the inner boundary stress and displacement distributions of the frozen soil wall at distances of l = 

0.6, 0.8, 1, 1.2, 1.4, and 1.6 m from the centerline of the freezing pipe shown in Figure 6. The 

increase in l from 0.6 m to 1.6 m was divided into five equal processes, and the maximum increases 

in the displacement and tangential stress in the boundary of the frozen soil wall in each process are 

shown in Figure 7.  

 

(a)                                                                       (b) 

 

(c) 

Figure 6. Inner boundary stress and displacement results for the FGM frozen soil wall at 

different freezing pipe positions. (a) Radial displacement of the inner boundary: (b) 

Tangential displacement of the inner boundary: (c) Tangential stress of the inner 

boundary. 
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As shown in Figure 6, although the location of the freezing pipe does not significantly affect the 

distributions of displacement and tangential stress, it is closely related to the state of the freezing 

wall force: with increases in the distance between the centerline of the freezing pipe and the inner 

boundary, the frozen soil wall tensile area moved from 20° ≤ θ ≤ 56° to the side wall area of 42° ≤ θ 

≤ 75°. Simultaneously, the tunnel floor of the frozen soil wall varied from a compressed state to a 

tensioned state. 

We hace combined Figures 6 and 7, and it is observed that the position of the freezing pipe 

significantly affects the values of the inner boundary displacements and tangential stresses. When the 

freezing pipe moves, the temperature field in the frozen soil wall region varies, and its stresses and 

displacements increased differently. Radial displacement was mainly affected by l, and this followed 

by tangential displacement and tangential stress. It was should be noted that when l = 0.6 m, the 

inner boundary displacement of the frozen soil wall is close to 0 and the tangential stress distribution 

is more uniform than in other situations, although the tunnel floor is stretched. When l = 1.6 m, the 

maximum displacement of the inner boundary exceeds 25 cm and the tangential stress reaches 3.6 

MPa (beyond the ultimate compressive strength of frozen soil at 0℃), and this is extremely 

dangerous. When the inner boundary of the freezing pipe ranged from 0.8 to 1.2 m from the inner 

boundary, the displacement and tangential stress of the inner boundary were low and theincreases 

correspond to the lowest (the slope of the curve in Figure 7). Therefore, in an actual engineering case, 

under the certain freezing temperature, the arrangement of the freezing pipe can be appropriately 

adjusted to improve the stability factor of the inner boundary for the freezing wall during excavation. 

 

Figure 7. Maximum increase in inner boundary displacement and stress of FGM frozen 

soil walls in each process. 

4.7.  Stress and displacement of frozen soil walls with large and small sections 

The distributions of stresses and displacements at the inner and outer boundaries of large and 

small sections are shown below:  
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(a)                                                           (b) 

 
(c) 

Figure 8. Inner boundary stress and displacement of the FGM frozen soil wall of an 

actual engineering case: (a) Radial displacement of the inner boundary: (b) Tangential 

displacement of the inner boundary: (c) Tangential stress of the inner boundary. 

As shown in Figure 8, a change in the section changes the distributions of stress and 

displacement of the frozen soil wall. The two sections were not similar (the large section can be 

considered as the result of the “stretching” of the small section straight wall); thus, there is a certain 

difference between the central angle corresponding to the arch foot and corner of straight wall, 

thereby resulting in a certain linearly proportional relationship between the tangential displacement 

of the two sections with the increase of the central angle. Generally, the arch (0° ≤ θ ≤ 71°) and floor 

(138° ≤ θ ≤ 180°) of the small-section frozen soil wall are mainly deformed toward the outside of the 

cave, and the deformation at the straight wall is low. 

The stress of the small-section frozen soil wall exceeded that of the large-section frozen soil 

wall. The radial displacement of the large-section frozen soil wall in the vault and floor was 

approximately 1 cm higher than that of the small section with the same design parameters. The 

tensile strength of frozen soil was significantly lower than the compressive strength; thus, the 

situation should be avoided. In comparison to the two sections, the tangential stress on the frozen soil 
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wall in the small-section form is negative. The straight wall was not stretched, and the abrupt degree 

of tangential stress was relatively low, i.e., the stress distribution was more uniform. When designing 

a large-section frozen soil wall, the freezing pipe temperature at the corner of the straight wall can be 

appropriately reduced to increase the excavation safety factor. 

5. Analysis of the numerical method 

5.1.  Numerical simulation 

Numerical stimulation with FLAC
3D

 was used to compare the stress and displacement on the 

homogeneous frozen soil wall (n = 1) and FGM frozen soil wall (n = 10) after the excavation of the 

connecting passage. An elastic–plastic model with the Mohr–Coulomb failure criterion was 

employed for the soil in the 3D model. The frozen soil wall was simplified as an elastic material, and 

the surrounding rock-mass was simplified as a Mohr–Coulomb material. The mechanical parameters 

of the soils and frozen soil wall used in the FLAC
3D

 simulation are listed in Tables 1 and 2 and were 

derived from geological investigation and in-situ measurement. The layout of the numerical model is 

shown in Figure 9, and the stress–displacement results was shown in Figure 10. The homogeneous 

frozen soil wall (n = 1) and FGM frozen soil wall (n = 10) were unloaded and simulated. The Mohr–

Coulomb constitutive structure was adopted for the formation (see Tables 1 and 2 for parameters, 

Figure 9 for the schematic model, and Figure 10 for the calculation results). Regarding the FGM 

frozen soil wall simulation, based on the design, the frozen soil wall of the connecting passagewas 

divided into 10 equal layers along the thickness direction, and the strength parameters each frozen 

soil wall layer were modified by the results calculated by using Eqs (27) and (28). 

 

Figure 9. Numerical simulation model: shield tunnel and connecting passage.  
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(a) (b) 

  

(c) (d) 

  
(e) (f) 

  
(g) (h) 

  
(i) (j) 

Figure 10. Numerical simulation solutions for the frozen soil wall from different 

material models: (a) Vertical displacement of the FGM frozen soil wall: (b) Vertical 

displacement of the homogeneous frozen soil wall: (c) Lateral displacement of the FGM 

frozen soil wall: (d) Lateral displacement of the homogeneous frozen soil wall: (e) 

Maximum shear stress of the FGM frozen soil wall: (f) Maximum shear stress of the 

homogeneous frozen soil wall: (g) Maximum principal stress of the FGM frozen soil 

wall: (h) Maximum principal stress of the homogeneous frozen soil wall: (i) Minimum 

principal stress of the FGM frozen soil wall: (j) Minimum principal stress of the 

homogeneous frozen soil wall. 
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5.2.  Comparison of analytical and numerical results 

Yang et al. [40] conducted numerical simulations of frost heave with coupled water freezing, 

temperature and stress fields in tunnel excavation. The formation passing through was considered 

as silty sand, of which the properties were similar to the site investigation discussed in this paper 

(Table 1). Besides, because the position of freezing pipes in Yang’s engineering case was setup in 

the same was as in this paper, both the published numerical and theoretical results were adopted to 

enbale comparison with those calculated in this paper (Figure 11).  

 

Figure 11. Contours of frost heave: vertical displacements (form Yang et al. [40]). 

The vertical displacement, one of the most important considerations, should be compared 

carefully. Thus the displacements around the connecting passage were obtained from the results 

shown in Figure 11. Following that, Figure 12 shows the calculated displacements as the angle θ 

varies. 

 

Figure 12. Comparison of numerical data and published results. 
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It can be seen that the trend of vertical displacements is similar as θ changes, which to some 

extent verifies the correctness of the proposed functions. The numerical results in this paper are 

evidently larger than those of the other three: as far as the authors are aware, the bottom material 

mentioned in the passage may be inaccurate. However, this will not influence the vertical 

displacement at the top of arch. As shown in Figure 12, the vertical displacement is quite close when 

it comes tothe FGM model. We could say the proposed function considering the material can predict 

the deformation of frozen soil and also be a bit conservative.  

As shown in Figure 10, the analytical solution of the boundary stress and displacement of the 

frozen soil wall obtained based on the mechanical model of the FGM frozen soil wall was similar to 

the numerical solution. With respect to the distribution, the stress distributions of the FGM frozen 

soil wall and homogeneous frozen soil wall were identical to the displacement distribution, and the 

stress concentration is evident at the arch foot and the corner of the straight wall. Additionally, as 

compared with the outer boundary, the inner boundary of the frozen soil wall is more significantly 

affected by excavation, and the stress and displacement exhibited a decreasing trend along the radius 

of the frozen soil wall. This indicates that the stress and displacement on the inner boundary of the 

frozen soil wall are suitable for the mechanical analysis of the frozen soil wall. With respect to the 

values of stress and displacement for the numerical method, given the same ground stress field, the 

stress and displacement on the inner boundary increased significantly more than those on the 

homogeneous frozen soil wall after considering the FGM characteristics of the frozen soil wall. This 

indicates that the results of the analytical solutions are reliable. 

6. Conclusions 

In the study, the effects of the number of layers, the position of the freezing pipe, and the shape 

of the section on the stability of the frozen soil wall have been analyzed via the complex variable 

function method. Specific conclusions include the following: 

1) Given the relationship between the strength of the frozen soil wall and the steady temperature 

field, a mechanical model of the frozen soil wall of the connecting passage based on an FGM was 

proposed, and the boundary stress and displacement of the frozen soil wall of the heterogeneous 

connecting passage (straight-arch wall) were solved by employing a laminate model of an FGM and 

the complex variable function method. 

2) We compared the mechanical behavior of the two sections of a frozen soil wall in a 

supporting project and observed that the frozen soil wall of the connecting passage in the actual 

engineering case (as a temporary support structure) effectively maintained the stability of the cave 

after excavation. The decrease in the aspect ratio of the frozen soil wall reduced the inner boundary 

displacement and tangential stress and also resulted in the redistribution of the stress and 

displacement. Aa compared to the large-section frozen soil wall, the small-section frozen soil wall to 

be more uniform in the distributions of displacement and tangential stress. 

3) As a heterogeneous material, the frozen soil wall of the metro line connecting passage 

exhibited FGM characteristics, and the number of layers significantly affected the values of the 

boundary displacement and tangential stress of the frozen soil wall. When the number of 

layersincreased, the displacement and stress of the inner boundary increased correspondingly and 

were closer to an actual values. 
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4) The values of the inner boundary displacement , tangential stress and the stress 

characteristics and the effect of the frozen soil wall are also very significant at the position of the 

freezing pipe. When the center line of the freezing pipe moved to the outer boundary, the tension 

zone of the frozen soil wall began to shift and the displacement and tangential stress of the inner 

boundary continuously increased. In practice, the center line position of the freezing pipe can be 

adjusted within the range of 0.8 m to 1.2 m to improve the stability of the inner boundary of the 

freezing wall after excavation. 

It should be noted that although the mechanical model of the frozen soil wall proposed in the 

paper establishes the link between the mechanical behavior analysis of the frozen soil wall and 

steady temperature field, the conditions considered are relatively simple and exhibit certain 

limitations. In an actual engineering case, the temperature field in the frozen soil region is complex 

and variable, and this is closely related to the variation of freezing pipe arrangement, freezing time 

span, freezing temperature, and the thermal parameters of formation among others. Simultaneously, 

the stress of the metro line connecting passage is a typical 3D problem, and the excavation method 

and timing of the interval tunnel and the connecting passage significantly affect stress. 
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