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Abstract: In the field of chemical and medical sciences, topological indices are used to study the
chemical, biological, clinical, and therapeutic aspects of pharmaceuticals. The COVID-19 pandemic
is largely recognized as the most life-threatening crisis confronting medical advances. Scientists have
tested various antiviral drugs and discovered that they help people recover from viral infections like
COVID-19. Antiviral medications, such as Arbidol, Chloroquine, Hydroxy-Chloroquine, Lopinavir,
Remdesivir, Ritonavir, Thalidomide and Theaflavin, are often used to treat COVID-19. In this pa-
per, we define Diameter Eccentricity Based vertex degree and employ it to introduce a new poly-
nomial called Dε− Polynomial. Using the newly introduced polynomial, we derive new topological
indices, namely, diameter eccentricity based and hyper diameter eccentricity based indices. In order to
check the efficacy of our indices, we derive the Dε− polynomials for the eight COVID-19 drugs men-
tioned above. Using these polynomials, we compute our proposed topological descriptors for the eight
COVID-19 drugs. We perform quantitative structure-property relationship (QSPR) analysis by identi-
fying the best fit curvilinear/multilinear regression models based on our topological descriptors for 8
physico- chemical properties of the COVID-19 drugs. We also perform quantitative structure-activity
relationship (QSAR) analysis by identifying the best fit multilinear regression model for predicting the
IC50 values for the eight COVID-19 drugs. Our findings and models may be useful in the development
of new COVID-19 medication.
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1. Introduction

A topological index is a mathematical measure that can be computed from chemical structures and
can be depicted as simple graphs. They play an important role in the study of QSPR and QSAR.
In theoretical chemistry, molecular structure descriptors (also called topological indices) are used for
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modeling physico-chemical, pharmacological, toxicological, biological and other properties of chem-
ical compounds. Chemoinformatics is an active area of research where quantitative pattern behavior
and structure-property relations detect biological processes and other properties [1].

The chemical graph theory is a branch of graph theory that is concerned with analyses of all con-
sequences of connectivity in a chemical graph. A structural formula of a chemical compound can be
represented by a molecular graph which is used to characterize a molecule by depicting the atoms as
the vertices of the graph and the molecular bonds as the edges. In chemistry, molecular topological
indices, also known as topological indices, are utilized. Wiener [2] was the first to demonstrate that
the Wiener index is strongly connected to the boiling points of alkanes. Feng et al. [3] provided a
necessary criterion for a graph to be ’l-connected’ in 2017 using the well-known Wiener index and
Harary index. Su et al. [4] discussed the sufficient condition used with the forgotten topological index.

To predict physico-chemical properties and bioactivity of chemical compounds in QSPR/QSAR
investigation, topological indices are employed. Zagreb indices [5, 6] are among the most effective for
identifying physical attributes and chemical processes of chemical compounds. Gutman and Trinajstic
[7] considered the first Zagreb index M1(G) and the second Zagreb index M2(G) for the first time in
1972. Ghobadi and Ghorbaninejad [8] developed accurate formulae for the Zagreb and Hyper-Zagreb
indices of some molecular graphs in 2018. They defined the Forgotten topological index or super F-
index, a novel distance-based Zagreb index. Estrada et al. [9] developed the Atom-Bond Connectivity
(ABC) index, while Vukicevic and Furtula [10] introduced the geometric-arithmetic index. Gutman
[11] proposed a novel graph-based topological index, the Sombor index. The index was initially used
in chemistry, but it quickly piqued the curiosity of mathematicians [12]. Randic index is one of the
oldest, most often used and most successful topological indices in QSPR and QSAR. Bollabas and
Erdos [13] later proposed the generalized Randic index. The Harmonic index is a version of the Randic
index, which was initially presented by Fajtlowicz [14].

The physico-chemical properties and biological activities of a compound are crucial in the devel-
opment of pharmaceutical drugs. Many researchers are working on the QSPR analysis of various
chemical compounds [15,16], since it is an economically efficient approach to test a compound instead
of testing the compounds in a wet lab. Gupta, Singh and Madan [17] proposed a unique graph invari-
ant for predicting biological and physical features using the eccentric distance sum index (EDS). This
topological index has a wide range of possible applications in the structure activity/property interac-
tions of molecules, and it has a high discriminating power for both biological activities and physical
characteristics. Hua, Xu and Shu [18] obtained a strong lower bound on the EDS index of n-vertex
cacti. Yu, Feng and Ili’c [19] investigated the lower and upper bounds of the EDS index in terms of
other graph invariants such as the Wiener index, the degree distance index, the eccentric connectivity
index and so on.

Chemical qualities, physical properties, pharmacological properties and biological properties of
medications are all important in medical research for drug creation. Topological indices can be used
to identify these features [20]. Recently, researchers have started researching topological indices and
COVID-19 medications. In addition, the following studies are notable in the investigation of med-
ications repurposed against SARS-CoV-2 [21]. Kirmani et al. [22] established QSPR models with
linear regression between physico-chemical properties of potential antiviral drugs and some topologi-
cal indices for various antiviral drugs used in the treatment of COVID-19 patients. Shirkol et al. [23]
investigated the predictive power of degree-distance and distance-based topological indices through
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QSPR analysis. Similarly, Lučić et al. [24] performed QSPR analysis using novel distance-related
indices.

Deutsch and Klavžar [25] defined the M-Polynomial in 2015. Using the edge partition technique,
M− Polynomial is employed to perform degree based computations. It is crucial in calculating the
exact expressions of several degree-based topological indices. The Neighborhood M− polynomial
(NM− Polynomial) was introduced by Mondal et al. [26]. It performs the same functions as the M−
polynomial for neighborhood degree sum-based indices. It is used to make computations related to
neighborhood degree sum-based indices easier. These polynomials are determined by the sum of
neighboring vertex degrees. The RNM− polynomial is used to evaluate several forms of reduced
neighborhood indices [27].

In this paper, we have considered some antiviral drugs that are used for the treatment of COVID−19
patients, namely, Arbidol, Chloroquine, Hydroxy-Chloroquine, Lopinavir, Remdesivir, Ritonavir,
Thalidomide and Theaflavin. We have introduced a new type of vertex degree called Diameter Ec-
centricity Based vertex degree and employed it to introduce a new polynomial called Dε-polynomial.
We use the newly introduced polynomial to derive our proposed topological indices. We further check
the applicability of our indices by deriving the Dε-polynomials for the eight afore-mentioned COVID-
19 drugs. We perform Quantitative Structure-Property Relationship (QSPR) analysis by arriving at
the best fit curvilinear and multilinear regression models based on our topological descriptors for 8
physico-chemical properties of the COVID-19 drugs. We also perform Quantitative Structure-Activity
Relationship (QSAR) analysis and identify the best fit multilinear regression model to predict the IC50

values of the eight COVID-19 drugs.
Let G be a simple, finite and connected graph with vertex set as V(G) and edge set as E(G). Let

dp denote the degree of a vertex p in G and εp the eccentricity of the vertex p. Let ∆(G) denote the
maximum degree and δ(G) denote minimum degree among the vertices of G, respectively.

Definition 1.1. [28] The eccentricity index for a graph G is defined as

ε(G) =
∑
pq∈E

[
εp + εq

]
(1.1)

where εp denotes the eccentricity of the vertex p.

Definition 1.2. [29] The Ediz eccentric connectivity index EEc(G) of G is defined as

EEc(G) =
∑

v∈V(G)

S (v)
ε(v)

(1.2)

where S (v) is the sum of degrees of all vertices adjacent to vertex v and ε(v) is the eccentricity of the
vertex v.

The Revan vertex degree of p in G is defined as rp = ∆(G) + δ(G) − dp. Based on the Revan vertex
degree, Revan indices were introduced by Kulli [30, 31]. He has studied oxide networks, honeycomb
networks, drugs and antibiotic structures with the help of Revan and Banhatti indices [32]. Inspired by
this definition, we have introduced and defined a new type of vertex degree called Diameter Eccentricity
Based vertex degree of p in G as

dεp = D(G) + 1 − εp
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where D(G) denotes the diameter of the graph G.
Figure 1 shows the eccentricity and diameter eccentricity based vertex degrees (dε−values) of the

Tadpole Graph T (3, 2).

Figure 1. Eccentricity and dε−values.

Eccentricity of a vertex is a measure of the centrality of a vertex. Diameter, on the other hand,
is a global entity with respect to the graph, that can be considered as a measure of the spread of the
graph. Our diameter eccentricity based vertex degree captures both these measures and determines the
importance of a vertex with respect to the whole graph..

Based on this new vertex degree definition, we define diameter eccentricity based and hyper di-
ameter eccentricity based indices for any connected graph G by introducing a new polynomial called
Dε−polynomial as

Dε(G) =
∑
i≤ j

(number of edges pq such that dεp = i, dεq = j)αiβ j =
∑
i≤ j

rρ(i, j)α
iβ j = f (α, β) (1.3)

where rρ(i, j) denotes the number of edges in the edge partition and α, β are variables. Our Dε− Polyno-
mial is a function of α and β. It is dependent on the diameter eccentricity based vertex degrees of the
end vertices of the edges of the graph. The M− polynomial, NM− polynomial and RNM− polynomial
can be used to derive degree based, neighborhood degree based and reverse neighborhood degree based
indices. Our polynomial is novel and the first of its kind related to eccentricity based indices.

In Table 1, we introduce our new indices as functions of dεp and dεq

Table 1. Description of proposed indices.

Indices f
(
dεp, dεq

)
First DRε Index (DR1ε) dεp + dεq

Second DRε Index (DR2ε) dεp ∗ dεq

First Hyper DRε Index (HDR1ε) (dεp + dεq)2

Second Hyper DRε Index (HDR2ε) (dεp ∗ dεq)2

Our diameter eccentricity based indices, that is DR1ε and DR2ε and the Hyper Diameter Eccentric-
ity Based indices, that is HDR1ε and HDR2ε indices can be derived using our Dε-polynomial.

Table 2 shows the formulae for deriving our indices using the Dε-polynomial
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Table 2. Derivation of proposed indices from Dε-polynomial.

Indices Derivation from Dε(G)
DR1ε

(
∂α + ∂β

)(
Dε(G)

)∣∣∣∣
α=1,β=1

DR2ε
(
∂α ∗ ∂β

)(
Dε(G)

)∣∣∣∣
α=1,β=1

HDR1ε
(
∂α + ∂β

)2(
Dε(G)

)∣∣∣∣
α=1,β=1

HDR2ε
(
∂α ∗ ∂β

)2(
Dε(G)

)∣∣∣∣
α=1,β=1

In Table 2,

∂α f (α, β) = α
∂( f (α, β))
∂α

, ∂β f (α, β) = β
∂( f (α, β))
∂β

The chemical structures (molecular graphs) of the drugs which we have considered in this paper are
given in Figures 2 to 5.

Figure 2. Molecular graphs of Arbidol and Chloroquine.

Figure 3. Molecular graphs of Hydroxy-chloroquine and Lopinavir.
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Figure 4. Molecular Graphs of Remdesivir and Ritonavir.

Figure 5. Molecular graphs of Thalidomide and Theaflavin.

2. Methodology

We use the method of edge partitions and the newly introduced Dε-polynomial to compute our
proposed indices. Edge partitioning is the process of grouping (partitioning) edges based on the appro-
priate vertex degrees of the end vertices of the edges of a graph. By “appropriate”, we refer to the type
of vertex degrees used to compute the topological indices. For example, in order to partition the edges
for computing our proposed indices, we make use of the diameter eccentricity based vertex degrees of
the end vertices of the edges.

In Tables 3 to 10, we present the distance eccentricity based edge partitions for the eight COVID-19
drugs. Here, rρ(p,q) is the number of edges in the edge partition (dεp, dεq) in a graph G.
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Table 3. dε−edge partitions of Arbidol A.

(dεp, dεq) : (1, 2) (2, 3) (3, 3) (3, 4) (4, 5) (5, 5) (5, 6) (6, 7)
rρ(p,q) : 4 6 1 6 5 1 5 3

From Table 3 we observe that the edges of Arbidol can be partitioned into 8 partitions based on the
distance eccentricity based vertex degrees of the end vertices of the edges of the molecular graph of
Arbidol.

Table 4. dε−edge partitions of Chloroquine C.

(dεp, dεq) : (1, 2) (2, 3) (3, 4) (4, 5) (5, 6) (6, 7) (7, 7)
rρ(p,q) : 3 4 5 4 3 3 1

From Table 4 we observe that the edges of Chloroquine can be partitioned into 7 partitions based on
the distance eccentricity based vertex degrees of the end vertices of the edges of the molecular graph
of Chloroquine.

Table 5. dε−edge partitions of Hydroxy-Chloroquine HC.

(dεp, dεq) : (1, 2) (2, 3) (3, 4) (4, 5) (5, 6) (6, 7) (7, 8)
rρ(p,q) : 2 4 6 4 3 2 3

From Table 5 we observe that the edges of Hydroxy-Chloroquine can be partitioned into 7 partitions
based on the distance eccentricity based vertex degrees of the end vertices of the edges of the molecular
graph of Hydroxy-Chloroquine.

Table 6. dε−edge partitions of Lopinavir L.

(dεp, dεq) : (1, 2) (2, 3) (3, 4) (4, 5) (5, 6) (6, 7) (7, 8) (8, 9) (9, 10)
rρ(p,q) : 5 6 8 7 7 6 4 3 3

From Table 6 we observe that the edges of Lopinavir can be partitioned into 9 partitions based on
the distance eccentricity based vertex degrees of the end vertices of the edges of the molecular graph
of Lopinavir.

Table 7. dε−edge partitions of Remdesivir R.

(dεp, dεq) : (1, 2) (2, 3) (3, 3) (3, 4) (4, 5) (5, 6) (6, 6) (6, 7) (7, 8) (8, 9) (9, 10)
rρ(p,q) : 5 4 1 4 5 7 1 7 4 4 2

From Table 7 we observe that the edges of Remdesivir can be partitioned into 11 partitions based on
the distance eccentricity based vertex degrees of the end vertices of the edges of the molecular graph
of Remdesivir.
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Table 8. dε−edge partitions of Ritonavir Ri.

(dεp, dεq) : (1, 1) (1, 2) (2, 3) (3, 3) (3, 4) (4, 5) (5, 6) (6, 7) (7, 8) (8, 9) (9, 10) (10, 11) (11, 12)

rρ(p,q) : 1 4 3 1 5 5 5 6 6 7 4 4 2

From Table 8 we observe that the edges of Ritonavir can be partitioned into 13 partitions based on
the distance eccentricity based vertex degrees of the end vertices of the edges of the molecular graph
of Ritonavir.

Table 9. dε−edge partitions of Thalidomide T .

(dεp, dεq) : (1, 1) (1, 2) (2, 3) (3, 3) (3, 4) (4, 5) (5, 5)
rρ(p,q) : 1 3 4 1 7 4 1

From Table 9 we observe that the edges of Thalidomide can be partitioned into 7 partitions based on
the distance eccentricity based vertex degrees of the end vertices of the edges of the molecular graph
of Thalidomide.

Table 10. dε−edge partitions of Theaflavin Th.

(dεp, dεq) : (1, 2) (2, 3) (3, 4) (4, 5) (5, 6) (6, 6) (6, 7) (7, 7) (7, 8) (8, 8)
rρ(p,q) : 8 4 6 7 8 1 7 1 3 1

From Table 10 we observe that the edges of Theaflavin can be partitioned into 10 partitions based
on the distance eccentricity based vertex degrees of the end vertices of the edges of the molecular graph
of Theaflavin.

3. Main results

In this section, we compute Dε-polynomial of the molecular graphs of the mentioned COVID-19
drugs and obtain our proposed topological indices values.

3.1. Dε-polynomial and Dε Indices for Arbidol

Theorem 3.1. Let A be the molecular graph of Arbidol. Then, we have,

Dε(A) = 4α1β2 + 6α2β3 + α3β3 + 6α3β4 + 5α4β5 + α5β5 + 5α5β6 + 3α6β7.

Proof. Let A be the molecular graph of Arbidol represented in Figure 2. It has 29 vertices and 31
edges. Consider

Dε(A) =
∑
i≤ j

(rρ(i, j))αiβ j

= rρ(1,2)α
1β2 + rρ(2,3)α

2β3 + rρ(3,3)α
3β3 + rρ(3,4)α

3β4 + rρ(4,5)α
4β5 + rρ(5,5)α

5β5

+ rρ(5,6)α
5β6 + rρ(6,7)α

6β7.
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Using the edge partitions given in Table 3, it is clear that rρ(1,2) = 4, rρ(2,3) = 6, rρ(3,3) = 1,
rρ(3,4) = 6, rρ(4,5) = 5, rρ(5,5) = 1, rρ(5,6) = 5 and rρ(6,7) = 3.

Applying these values in Dε(A), we get the Dε-polynomial for Arbidol as follows:

Dε(A) = 4α1β2 + 6α2β3 + α3β3 + 6α3β4 + 5α4β5 + α5β5 + 5α5β6 + 3α6β7.

□

Proposition 3.2. Let A be the molecular graph of Arbidol. Then, we have,

1) DR1ε(A) = 239.
2) DR2ε(A) = 546.
3) HDR1ε(A) = 2133.
4) HDR2ε(A) = 13594.

Proof. Using the derivation formula given in Table 2 and the Dε-polynomial for Arbidol from Theorem
3.1, we have

DR1ε(A) =
(
∂α + ∂β

)(
Dε(A)

)∣∣∣∣
α=β=1

=
(
∂αDε(A) + ∂βDε(A)

)∣∣∣
α=β=1

=
(
∂α
(

f
(
α, β
))
+ ∂β
(

f
(
α, β
)))
|α=β=1

=
((
α
∂
(
4α1β2 + 6α2β3 + α3β3 + 6α3β4 + 5α4β5 + α5β5 + 5α5β6 + 3α6β7

)
∂α

)
+
(
β
∂
(
4α1β2 + 6α2β3 + α3β3 + 6α3β4 + 5α4β5 + α5β5 + 5α5β6 + 3α6β7

)
∂β

))∣∣∣∣
α=β=1

=
(
12α1β2 + 30α2β3 + 6α3β3 + 42α3β4 + 10α4β5 + α5β5 + 55α5β6 + 39α6β7

)∣∣∣∣
α=β=1

= 239.

Similarly, the other three indices can be obtained as follows:

DR2ε(A) =
(
∂α ∗ ∂β

)(
Dε(A)

)∣∣∣∣
α=β=1

=
(
∂α ∗ ∂β

)(
f
(
α, β
))∣∣∣∣
α=β=1

=
(
8α1β2 + 36α2β3 + 9α3β3 + 72α3β4 + 120α4β5 + 25α5β5 + 150α5β6 + 126α6β7

)∣∣∣∣
α=β=1

= 546.

HDR1ε(A) =
(
∂α + ∂β

)2(
Dε(A)

)∣∣∣∣
α=β=1

=
(
∂α + ∂β

)2(
f
(
α, β
))∣∣∣∣
α=β=1

=
(
36α1β2 + 150α2β3 + 36α3β3 + 294α3β4 + 405α4β5 + 100α5β5 + 605α5β6 + 507α6β7

)∣∣∣∣
α=β=1

= 2133.

HDR2ε(A) =
(
∂α ∗ ∂β

)2(
Dε(A)

)∣∣∣∣
α=β=1

=
(
∂α ∗ ∂β

)2(
f
(
α, β
))∣∣∣∣
α=β=1

=
(
16α1β2+216α2β3+81α3β3+864α3β4+2000α4β5+625α5β5+4500α5β6+5292α6β7

)∣∣∣∣
α=β=1

= 13594.

□
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3.2. Dε-polynomial and Dε Indices for Chloroquine

Theorem 3.3. Let C be the molecular graph of Chloroquine. Then, we have,

Dε(C) = 3α1β2 + 4α2β3 + 5α3β4 + 4α4β5 + 3α5β6 + 3α6β7 + α7β7.

Proof. Let C be the molecular graph of Chloroquine represented in Figure 2. It has 21 vertices and 23
edges. Consider

Dε(C) =
∑
i≤ j

(rρ(i, j))αiβ j

= rρ(1,2)α
1β2 + rρ(2,3)α

2β3 + rρ(3,4)α
3β4 + rρ(4,5)α

4β5 + rρ(5,6)α
5β6

+ rρ(6,7)α
6β7 + rρ(7,7)α

7β7.

Using the edge partitions given in Table 4, it is clear that rρ(1,2) = 3, rρ(2,3) = 4, rρ(3,4) = 5,
rρ(4,5) = 4, rρ(5,6) = 3, rρ(6,7) = 3 and rρ(7,7) = 1.

Applying the values in Dε(C), we get the Dε-polynomial for Chloroquine as follows:

Dε(C) = 3α1β2 + 4α2β3 + 5α3β4 + 4α4β5 + 3α5β6 + 3α6β7 + α7β7.

□

Proposition 3.4. Let C be the molecular graph of Chloroquine. Then, we have,

1) DR1ε(C) = 186.
2) DR2ε(C) = 435.
3) HDR1ε(C) = 1762.
4) HDR2ε(C) = 12869.

Proof is similar to that of proposition 3.2.

3.3. Dε-polynomial and Dε Indices for Hydroxy-Chloroquine

Theorem 3.5. Let HC be the molecular graph of Hydroxy-Chloroquine. Then, we have,

Dε(HC) = 2α1β2 + 4α2β3 + 6α3β4 + 4α4β5 + 3α5β6 + 2α6β7 + 3α7β8.

Proof. Let HC be the molecular graph of Hydroxy-Chloroquine represented in Figure 3. It has 22
vertices and 24 edges. Consider

Dε(HC) =
∑
i≤ j

(rρ(i, j))αiβ j

= rρ(1,2)α
1β2 + rρ(2,3)α

2β3 + rρ(3,4)α
3β4 + rρ(4,5)α

4β5 + rρ(5,6)α
5β6

+ rρ(6,7)α
6β7 + rρ(7,8)α

7β8.

Using the edge partitions given in Table 5, it is clear that rρ(1,2) = 2, rρ(2,3) = 4, rρ(3,4) = 6,
rρ(4,5) = 4, rρ(5,6) = 3, rρ(6,7) = 2 and rρ(7,8) = 3.
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Applying the values in Dε(HC), we get the Dε-polynomial for Hydroxy-Chloroquine as follows:

Dε(HC) = 2α1β2 + 4α2β3 + 6α3β4 + 4α4β5 + 3α5β6 + 2α6β7 + 3α7β8.

□

Proposition 3.6. Let HC be the molecular graph of Hydroxy-Chloroquine. Then, we have,

1) DR1ε(HC) = 208.
2) DR2ε(HC) = 522.
3) HDR1ε(HC) = 2092.
4) HDR2ε(HC) = 18252.

Proof is similar to that of proposition 3.2.

3.4. Dε-polynomial and Dε Indices for Lopinavir

Theorem 3.7. Let L be the molecular graph of Lopinavir. Then, we have,

Dε(L) = 5α1β2 + 6α2β3 + 8α3β4 + 7α4β5 + 7α5β6 + 6α6β7 + 4α7β8.

Proof. Let L be the molecular graph of Lopinavir represented in Figure 3. It has 46 vertices and 49
edges. Consider

Dε(L) =
∑
i≤ j

(rρ(i, j))αiβ j

= rρ(1,2)α
1β2 + rρ(2,3)α

2β3 + rρ(3,4)α
3β4 + rρ(4,5)α

4β5 + rρ(5,6)α
5β6

+ rρ(6,7)α
6β7 + rρ(7,8)α

7β8.

Using the edge partitions given in Table 6, it is clear that rρ(1,2) = 5, rρ(2,3) = 6, rρ(3,4) = 8,
rρ(4,5) = 7, rρ(5,6) = 7, rρ(6,7) = 6 and rρ(7,8) = 4.

Applying the values in Dε(L), we get the Dε-polynomial for Lopinavir as follows:

Dε(L) = 5α1β2 + 6α2β3 + 8α3β4 + 7α4β5 + 7α5β6 + 6α6β7 + 4α7β8.

□

Proposition 3.8. Let L be the molecular graph of Lopinavir. Then, we have,

1) DR1ε(L) = 487.
2) DR2ε(L) = 1454.
3) HDR1ε(L) = 5865.
4) HDR2ε(L) = 73468.

Proof is similar to that of proposition 3.2.
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3.5. Dε-polynomial and Dε Indices for Remdesivir

Theorem 3.9. Let R be the molecular graph of Remdesivir. Then, we have,

Dε(R) = 5α1β2 + 4α2β3 + 1α3β3 + 4α3β4 + 5α4β5 + 7α5β6 + 1α6β6 + 7α6β7 + 4α7β8 + 4α8β9 + 2α9β10.

Proof. Let R be the molecular graph of Remdesivir represented in Figure 4. It has 41 vertices and 44
edges. Consider

Dε(R) =
∑
i≤ j

(rρ(i, j))αiβ j

= rρ(1,2)α
1β2 + rρ(2,3)α

2β3 + rρ(3,3)α
3β3 + rρ(3,4)α

3β4 + rρ(4,5)α
4β5 + rρ(5,6)α

5β6

+ rρ(6,6)α
6β6 + rρ(6,7)α

6β7 + rρ(7,8)α
7β8 + rρ(8,9)α

8β9 + rρ(9,19)α
9β10.

Using the edge partitions given in Table 7, it is clear that rρ(1,2) = 5, rρ(2,3) = 4, rρ(3,3) = 1,
rρ(3,4) = 4, rρ(4,5) = 5, rρ(5,6) = 7, rρ(6,6) = 1, rρ(6,7) = 7, rρ(7,8) = 4, rρ(8,9) = 4 and rρ(9,10) = 2.

Applying the values in Dε(R), we get the Dε-polynomial for Remdesivir as follows:

Dε(R) = 5α1β2 + 4α2β3 + 1α3β3 + 4α3β4 + 5α4β5 + 7α5β6 + 1α6β6 + 7α6β7 + 4α7β8 + 4α8β9 + 2α9β10.

□

Proposition 3.10. Let R be the molecular graph of Remdesivir. Then, we have,

1) DR1ε(R) = 460.
2) DR2ε(R) = 1423.
3) HDR1ε(R) = 5734.
4) HDR2ε(R) = 72245.

Proof is similar to that of proposition 3.2.

3.6. Dε-polynomial and Dε Indices for Ritonavir

Theorem 3.11. Let Ri be the molecular graph of Ritonavir. Then, we have,

Dε(Ri) = 1α1β1 + 4α1β2 + 3α2β3 + 1α3β3 + 5α3β4 + 5α4β5 + 5α5β6 + 6α6β7 + 6α7β8

+ 7α8β9 + 4α9β10 + 4α10β11 + 2α11β12.

Proof. Let Ri be the molecular graph of Ritonavir represented in Figure 4. It has 50 vertices and 53
edges. Consider

Dε(Ri) =
∑
i≤ j

(rρ(i, j))αiβ j

= rρ(1,1)α
1β1 + rρ(1,2)α

1β2 + rρ(2,3)α
2β3 + rρ(3,3)α

3β3 + rρ(3,4)α
3β4 + rρ(4,5)α

4β5 + rρ(5,6)α
5β6

+ rρ(6,7)α
6β7 + rρ(7,8)α

7β8 + rρ(8,9)α
8β9 + rρ(9,10)α

9β10 + rρ(10,11)α
10β11 + rρ(11,12)α

11β12.
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Using the edge partitions given in Table 8, it is clear that rρ(1,1) = 1, rρ(1,2) = 4, rρ(2,3) = 3,
rρ(3,3) = 1, rρ(3,4) = 5, rρ(4,5) = 5, rρ(5,6) = 5, rρ(6,7) = 6, rρ(7,8) = 6, rρ(8,9) = 7, rρ(9,10) = 4 , rρ(10,11) = 4,
rρ11,12) = 2.

Applying the values in Dε(Ri), we get the Dε-polynomial for Ritonavir as follows:

Dε(Ri) = 1α1β1 + 4α1β2 + 3α2β3 + 1α3β3 + 5α3β4 + 5α4β5 + 5α5β6 + 6α6β7 + 6α7β8

+7α8β9 + 4α9β10 + 4α10β11 + 2α11β12.

□

Proposition 3.12. Let Ri be the molecular graph of Ritonavir. Then, we have,

1) DR1ε(Ri) = 629.
2) DR2ε(Ri) = 2502.
3) HDR1ε(Ri) = 10059.
4) HDR2ε(Ri) = 188762.

Proof is similar to that of proposition 3.2.

3.7. Dε-polynomial and Dε Indices for Thalidomide

Theorem 3.13. Let T be the molecular graph of Thalidomide. Then, we have,

Dε(T ) = 1α1β1 + 3α1β2 + 4α2β3 + 1α3β3 + 7α3β4 + 4α4β5 + 1α5β5.

Proof. Let T be the molecular graph of Thalidomide represented in Figure 5. It has 19 vertices and 21
edges. Consider

Dε(T ) =
∑
i≤ j

(rρ(i, j))αiβ j

= rρ(1,1)α
1β1 + rρ(1,2)α

1β2 + rρ(2,3)α
2β3 + rρ(3,3)α

3β3 + rρ(3,4)α
3β4 + rρ(4,5)α

4β5 + rρ(5,5)α
5β5.

Using the edge partitions given in Table 9, it is clear that rρ(1,1) = 1, rρ(1,2) = 3, rρ(2,3) = 4,
rρ(3,3) = 1, rρ(3,4) = 7, rρ(4,5) = 4 and rρ(5,5) = 1.

Applying the values in Dε(T ), we get the Dε-polynomial for Thalidomide as follows:

Dε(T ) = 1α1β1 + 3α1β2 + 4α2β3 + 1α3β3 + 7α3β4 + 4α4β5 + 1α5β5.

□

Proposition 3.14. Let T be the molecular graph of Thalidomide. Then, we have,

1) DR1ε(T ) = 132.
2) DR2ε(T ) = 229.
3) HDR1ε(T ) = 934.
4) HDR2ε(T ) = 3471.

Proof is similar to that of proposition 3.2.
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3.8. Dε-polynomial and Dε indices for Theaflavin

Theorem 3.15. Let Th be the molecular graph of Theaflavin. Then, we have,

Dε(Th) = 8α1β2 + 4α2β3 + 6α3β4 + 7α4β5 + 8α5β6 + 1α6β6 + 7α6β7 + 1α7β7 + 3α7β8 + 1α8β8.

Proof. Let Th be the molecular graph of Theaflavin represented in Figure 5. It has 41 vertices and 46
edges. Consider

Dε(Th) =
∑
i≤ j

(rρ(i, j))αiβ j

= rρ(1,2)α
1β2 + rρ(2,3)α

2β3 + rρ(3,4)α
3β4 + rρ(4,5)α

4β5 + rρ(5,6)α
5β6 + rρ(6,6)α

6β6

+ rρ(6,7)α
6β7 + rρ(7,7)α

7β7 + rρ(7,8)α
7β8 + rρ(8,8)α

8β8.

Using the edge partitions given in Table 10, it is clear that rρ(1,2) = 8, rρ(2,3) = 4, rρ(3,4) = 6,
rρ(4,5) = 7, rρ(5,6) = 8, rρ(6,6) = 1, rρ(6,7) = 7, rρ(7,7) = 1, rρ(7,8) = 3 and rρ(8,8) = 1.

Applying the values in Dε(Th), we get the Dε-polynomial for Theaflavin as follows:

Dε(Th) = 8α1β2 + 4α2β3 + 6α3β4 + 7α4β5 + 8α5β6 + 1α6β6 + 7α6β7 + 1α7β7 + 3α7β8 + 1α8β8.

□

Proposition 3.16. Let Th be the molecular graph of Theaflavin. Then, we have,

1) DR1ε(Th) = 415.
2) DR2ε(Th) = 1103.
3) HDR1ε(Th) = 3944.
4) HDR2ε(Th) = 40589.

Proof is similar to that of proposition 3.2.

4. Curvilinear regression analysis of COVID-19 drugs

In this section, we analyze the topological indices given in Table 1 for the following physico-
chemical properties of the 8 COVID-19 antiviral drugs: Boiling point (BP), Enthalpy (E), Flash point
(FP), Molar refraction (MR), Polar Surface Area (PS A), Polarizability (P), Surface Tension (T ),
Molar Volume (MV).

Experimental values of physico-chemical properties of the antiviral drugs presented in Table 11
were obtained from Kirmani et al. [22]. In Table 12 we have presented the values of the proposed
indices calculated in Section 3.

Mathematical Biosciences and Engineering Volume 20, Issue 9, 17272–17295.



17286

Table 11. Physico-chemical properties of COVID-19 drugs.

Drugs BP E FP MR PSA P T MV

Arbidol 591.8 91.5 311.7 121.9 80 48.3 45.3 347.3
Chloroquine 460.6 72.1 232.3 97.4 28 38.6 44 287.9
Hydroxy-Chloroquine 516.7 83 266.3 99 48 39.2 49.8 285.4
Lopinavir 924.2 140.8 512.7 179.2 120 71 49.5 540.5
Remdesivir - - - 149.5 213 59.3 62.3 409
Ritonavir 947 144.4 526.6 198.9 202 78.9 53.7 581.7
Thalidomide 487.8 79.4 248.8 65.2 87 25.9 71.6 161
Theaflavin 1003.9 153.5 336.5 137.3 218 54.4 138.6 301

Table 12. Topological descriptor values of COVID-19 drugs.

Drugs DR1ε DR2ε HDR1ε HDR2ε

Arbidol 239 546 2133 13594
Chloroquine 186 435 1762 12869
Hydroxy-Chloroquine 208 522 2092 18252
Lopinavir 487 1454 5865 73468
Remdesivir 460 1423 5734 72245
Ritonavir 629 2502 10059 188762
Thalidomide 132 229 934 3471
Theaflavin 415 1103 3944 40589

We performed curvilinear regression analysis for our proposed indices aganist the physico-chemical
properties.
The general form of the curvilinear regression model is

P =
[ n∑

i=1

α̃i(T I)i

]
+ γ̃ (4.1)

where P is the physico-chemical property (dependent variable), γ̃ is the regression model constant, and
α̃i are the coefficients corresponding to topological descriptors (TI), i = 1, 2, . . . , n.

We performed a comparative analysis of the linear, quadratic, cubic and fourth order curvilinear
regression models. The models for which R2 ≥ 0.8 (as per International Academy of Mathematical
Chemistry Guidelines) were considered for further analysis. We observed the following:

• From Table 13, it can be seen that the R2 values for the following properties: boiling point (BP),
enthalpy (E), flash point (FP), molar refraction (MR), polarizability (P) and molar volume (MV),
are higher for the cubic models and they can be used to predict these properties. However, polar
surface area (PS A) and surface tension (T ) could not be predicted using the cubic models.
• All the eight physico-chemical properties could be predicted using fourth order regression models.
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Table 13. Predictive fits from linear, quadratic and cubic regression models.

Property Linear R2 RMS E Quadratic R2 RMS E Cubic R2 RMS E

BP DR1ε 0.8273 110.1231 DR1ε 0.9112 88.2792 DR1ε 0.9494 76.9536
E DR1ε 0.8170 16.5276 DR1ε 0.8965 13.8998 DR1ε 0.9413 12.0807
FP DR1ε 0.8851 45.5738 HDR2ε 0.9200 42.5140 HDR2ε 0.9625 33.5907
MR DR1ε 0.9356 12.2073 DR1ε 0.9377 13.1566 DR1ε 0.9551 12.4885
P DR1ε 0.9363 4.8138 DR1ε 0.9382 5.1930 DR1ε 0.9554 4.9334
MV HDR1ε 0.8187 64.5810 HDR1ε 0.8423 65.9762 HDR1ε 0.8431 73.5649

4.1. Best fit fourth order regression models

In this subsection, we present the fourth order regression models for the eight physico-chemical
properties. Based on the R2 and RMS E values we obtained the following best fit fourth order regression
models for the physico-chemical properties.

BP = 2e − 07(DR1ε)4 − 0.0003(DR1ε)3 + 0.1557(DR1ε)2 − 30.235(DR1ε) + 2399.2 (4.2)

E = 3e − 08(DR1ε)4 − 4E − 05(DR1ε)3 + 0.0211(DR1ε)2 − 4.1382(DR1ε) + 342.92 (4.3)

FP = −6e − 13(HDR1ε)4 + 9E − 09(HDR1ε)3 − 4E − 05(HDR1ε)2 + 0.0913(HDR1ε)
+186.46

(4.4)

MR = −3e − 08(DR1ε)4 + 4E − 05(DR1ε)3 − 0.0212(DR1ε)2 + 4.7925(DR1ε) − 284.37 (4.5)

PS A = 1e − 07(DR1ε)4 − 0.0002(DR1ε)3 + 0.1117(DR1ε)2 − 22.298(DR1ε) + 1544.4 (4.6)

P = −1e − 08(DR1ε)4 + 2E − 05(DR1ε)3 − 0.0084(DR1ε)2 + 1.8909(DR1ε) − 112.02 (4.7)

T = 2e − 17(HDR2ε)4 − 7E − 12(HDR2ε)3 + 5E − 07(HDR2ε)2 − 0.0099(HDR2ε) + 100.2 (4.8)

MV = −2e − 07(DR1ε)4 + 0.0003(DR1ε)3 − 0.1535(DR1ε)2 + 32.073(DR1ε) − 2037.6 (4.9)
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Table 14. Best predictive fits from fourth order regression models.

Property Equation No. Best Predictors R2 RMS E

BP (4.2) DR1ε 0.9995 9.7565
E (4.3) DR1ε 0.9978 2.8616
FP (4.4) HDR1ε 0.9704 36.6018
MR (4.5) DR1ε 0.9776 10.1867
PS A (4.6) DR1ε 0.9583 23.9260
P (4.7) DR1ε 0.9777 4.0273
T (4.8) HDR2ε 0.9996 1.0035
MV (4.9) DR1ε 0.9634 41.0211

From Table 14, it is clear that the mentioned indices can be used to predict all the physico-chemical
properties of the COVID-19 drugs. From our analysis of the proposed indices, we observe that

• DR1ε index can be used to predict the Boiling Point (BP), Enthalpy of Vaporization (E), Molar
Refraction (MR), Polar Surface Area (PS A), Polarizability (P) and Molar Volume (MV) with the
corresponding R2 values as 0.9995, 0.9978, 0.9776, 0.9583, 0.9777 and 0.9634, respectively.
• HDR1ε index can be used to predict the Flash Point (FP) with the corresponding R2 value as

0.9704.
• HDR2ε index can be used to predict the Surface Tension (T ) with the corresponding R2 value as

0.9996.

Figure 6 to Figure 8 show the plots of the fourth order regression equations for Boiling Point (BP),
Enthalpy of Vaporization (E), Molar Refraction (MR), Polar Surface Area (PS A), Polarizability (P)
and Molar Volume (MV) with respect to DR1ε index. Figure 9 shows the plots for Flash Point (FP)
and Surface Tension (T ) with respect to HDR1ε and HDR2ε indices, respectively.

Figure 6. Fourth Order Regression Curves for BP and E against DR1ε.
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Figure 7. Fourth Order Regression Curves for MR and PS A against DR1ε.

Figure 8. Fourth order regression curves for P and MV against DR1ε.

Figure 9. Fourth order regression curves for FP and T against HDR1ε and HDR2ε, respec-
tively.

4.2. Ediz eccentric connectivity index

In this section, we compare the predictive capability of our proposed indices against the ediz ec-
centric connectivity index. Table 15 shows the comparison of fourth order regression models of ediz
eccentric connectivity index (EEcI) aganist the fourth order regression models based on our proposed
indices.

Mathematical Biosciences and Engineering Volume 20, Issue 9, 17272–17295.



17290

Table 15. Comparison of predictive fits from EEcI and proposed indices.

Property Ediz R2 RMS E Proposed Indices R2 RMS E

BP EEcI 0.5516 280.5630 DR1ε 0.9995 9.7565
E EEcI 0.5696 40.0779 DR1ε 0.9978 2.8616
FP EEcI 0.3588 170.2130 HDR1ε 0.9704 36.6018
MR EEcI 0.2212 60.0279 DR1ε 0.9776 10.1867
PS A EEcI 0.8423 46.5065 DR1ε 0.9583 23.9260
P EEcI 0.2227 23.7770 DR1ε 0.9777 4.0273
T EEcI 0.9607 9.5006 HDR2ε 0.9996 1.0035
MV EEcI 0.1849 193.6289 DR1ε 0.9634 41.0211

From Table 15, based on R2 and RMS E values it can be observed that the fourth order regression
models based on our proposed indices provide the best fits for the eight physico-chemical properties.

5. Multilinear regression analysis of COVID-19 drugs

In this section we present the Multilinear regression analysis performed for the eight physico-
chemical properties aganist our proposed indices. The general form of Multilinear regression is

P = α̃1(T I)1 + +α̃2(T I)2 + ... + +α̃n(T I)n + γ̃ (5.1)

where P is the physico-chemical property (dependent variable), γ̃ is the regression model constant and
α̃i are the regression coefficients for the topological descriptors.

5.1. Best fit multilinear regression models

In this subsection we present the Multilinear regression models and the analysis for the eight
physico-chemical properties.

BP = 0.0165(DR1ε) − 0.5221(DR2ε) − 0.0187(HDR1ε) + 5.3124(HDR2ε) + 213.299 (5.2)

E = 0, 0029(DR1ε) − 0.0869(DR2ε) − 0.0036(HDR1ε) + 0.8214(HDR2ε) + 41.6226 (5.3)

FP = −0.0005(DR1ε) + 0.1072(DR2ε) − 0.0122(HDR1ε) − 0.5611(HDR2ε) + 196.499 (5.4)

MR = −0.0050(DR1ε) + 0, 0144(DR2ε) + 0.0087(HDR1ε) − 0.21(HDR2ε) + 11.05149 (5.5)

PS A = 0.0095(DR1ε) − 0.2453(DR2ε) − 0.0133(HDR1ε) + 1.9034(HDR2ε) + 16.6273 (5.6)
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P = −0.0020(DR1ε) + 0.0412(DR2ε) + 0.0034(HDR1ε) − 0.0828(HDR2ε) + 4.4940 (5.7)

T = 0.0080(DR1ε) − 0.2286(DR2ε) − 0.0089(HDR1ε) + 1.6116(HDR2ε) + 49.2483 (5.8)

MV = −0.0213(DR1ε) + 0.5142(DR2ε0.0213) + 0.0312(HDR1ε)2 − 2.2024(HDR2ε)
+39.4661

(5.9)

Table 16. Best predictive fits from multilinear regression model.

Property Equation No. R2 RMS E

BP (5.2) 0.9975 20.8648
E (5.3) 0.9950 4.3123
FP (5.4) 0.9495 47.7738
MR (5.5) 0.9705 11.6830
PS A (5.6) 0.7812 54.7782
P (5.7) 0.9708 4.6056
T (5.8) 0.8872 16.1008
MV (5.9) 0.9137 63.0190

From Table 16, it can be observed that except for Polar Surface Area with R2 < 0.8, all other
properties are well predicted using the multilinear regression models.

5.2. QSAR analysis

The most generally used and useful indicator of a drug’s effectiveness is its half-maximal inhibitory
concentration IC50. It is a quantitative metric that shows how much of a certain inhibitory substance
(such as a medicine) is required in vitro to inhibit a specific biological process or biological component
by 50 percent [33].

We fitted the Multilinear regression model given in Eq (5.10) to predict the IC50 values for the
COVID-19 drugs.

IC50 = 0.0001(DR1ε) − 0.0081(DR2ε) + 0.0005(HDR1ε) + 0.0966(HDR2ε) − 4.2010 (5.10)

The predicted IC50 values for the seven COVID-19 drugs, for which the experimental values are avail-
able, are presented in Table 17. It can be seen that the proposed multilinear regression model can be
used to predict IC50 values.
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Table 17. Experimental and calculated IC50 values of COVID-19 drugs.

Drug Name IC50 µM Predicted IC50 using (5.10) Absolute Residual

Arbidol 3.54 3.342368 0.197632
Chloroquine 1.38 1.088041 0.291959
Hydroxy-Chloroquine 0.72 0.993671 0.27367
Lopinavir 5.25 3.880872 1.369128
Remdesivir 0.987 2.187685 1.20069
Ritonavir 8.63 8.627918 0.002082
Theaflavin 8.44 8.826445 0.38645

6. Conclusions

In this article, we proposed and computed the Diameter Eccentricity Based and Hyper Diameter
Eccentricity Based topological descriptors for eight COVID-19 drugs, namely, Arbidol, Chloroquine,
Hydroxy-Chloroquine, Lopinavir, Remdesivir, Ritonavir, Thalidomide and Theaflavin through Dε-
Polynomial. The indices were computed using our newly introduced Dε- polynomial.

From the QSPR analysis using the curvilinear regression models, we conclude that the best fit
fourth order regression models based on our proposed index DR1ε predict Boiling Point, Enthalpy
of Vaporization, Molar Refraction, Polar Surface Area, Polarizability and Molar Volume. The fourth
order regression models based on DHR1ε and DHR2ε can be used to predict Flash Point and Surface
Tension, respectively.

We computed the Ediz Eccentric Connectivity index for COVID-19 drugs. Based on R2 and RMS E
values, it can be observed that the fourth order regression models based on our proposed indices provide
good predictions for the eight physico-chemical properties of the 8 COVID-19 drugs compared to the
fourth order regression models based on the Ediz Eccentric Connectivity index.

Our proposed multilinear regression models provide good predictions for the physico-chemical
properties expect the Polar Surface Area.

Multilinear regression model is best suited for predicting the 50% inhibitory concentration (IC50)
values with R2 value 0.947.

The proposed indices can be used in designing new drugs to combat COVID-19 and other diseases.
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