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Abstract: In this paper, we investigate a stochastic nutrient-plankton model with impulsive control of
the nutrient concentration and zooplankton population. Analytically, we find that the population size
is nonnegative for a sufficiently long time. We derive some sufficient conditions for the existence of
stable periodic oscillations, which indicate that the plankton populations will behave periodically. The
numerical results show that the plankton system experiences a transition from extinction to the coexis-
tence of species due to the emergence of impulsive control. Additionally, we observe that the nutrient
pulse has a stronger relationship with phytoplankton growth than the zooplankton pulse. Although the
frequency of impulsive control and appropriate environmental fluctuations can promote the coexistence
of plankton populations, an excessive intensity of noise can result in the collapse of the entire ecosys-
tem. Our findings may provide some insights into the relationships among nutrients, phytoplankton
and zooplankton in a stochastic environment.
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1. Introduction

Over the past several decades, researchers have shown an increased interest in plankton dynamics
due to the numerous negative effects caused by algal blooms [1–3], which can threaten entire aquatic
systems and result in economic losses, altering long-term species coexistence and influencing ecolog-
ical stability. On the other hand, under conditions of nutrient shortage, the plankton community may
suffer from nutrient deficiency and the aquatic system may evolve into species extinction. As important
components of aquatic food webs, nutrients and the zooplankton population are widely recognized as
the most important factors for phytoplankton growth [4]. Previous studies have established that a high
nutrient load can be a major trigger for the increased frequency, intensity and duration of the plankton
blooms [5, 6]. Moreover, the experiment by Vanni [7] has demonstrated that even small changes in
the zooplankton size can enormously affect the phytoplankton community. Although numerous exper-
imental and theoretical studies have been devoted to the study of phytoplankton growth response to the
changes in nutrients and the zooplankton population [8, 9], the relationships between phytoplankton
growth, nutrient concentration and the grazer zooplankton are still not well understood due to the fact
that many events are pulsed and short-lived, such as nutrient delivery [10].

The aquatic ecosystems are inevitably subjected to instantaneous perturbations, leading to abrupt
changes in nutrient concentration and zooplankton biomass. For example, heavy rainfall triggers in-
creased nutrient input through river discharge, resulting in algal blooms in coastal areas [11]. These
phenomena are commonly described as pulsed instantaneous behavior, also known as impulsive con-
trol, and they are characterized by the introduction or removal of some members from a population at a
certain moment of time. Such pulsed instantaneous behavior cannot be considered continuously [12].
Therefore, mathematical models of ecological population dynamics have been developed in the study
of plankton dynamics as they not only capture the ubiquitous stoichiometric constraints for the growth
and interactions of species [13], but they also provide quantitative insights into population growth dy-
namics [14]. Actually, the theory of dynamical systems is generally recognized as two basic types: con-
tinuous and discontinuous [15]. In the natural world, many systems are characterized by the fact that
they are subjected to pulse perturbations, causing discontinuous behaviors. Thus, impulsive differential
equations have drawn increasing attention due to the advantage that the theory of impulsive differential
equations can accurately capture the instantaneous state of a system. Based on the previous study of
impulsive differential equations [16–18], in recent years, impulsive differential equations have been
widely used to describe such instantaneous perturbations in the study of plankton dynamics [19–21].
Moreover, modelling approaches may have important implications for how plankton population growth
responds to pulse perturbations of the nutrients and zooplankton population.

Impulsive control refers to the application of sudden and short-duration interventions or pertur-
bations to a system. Impulsive control studies can help researchers to gain insight into how pulse
perturbations influence the plankton dynamics. Additionally, studying impulsive control in plankton
dynamics allows researchers to explore potential control strategies to achieve desired outcomes in
terms of regulating plankton populations or managing ecological processes. In recent years, plankton
dynamics induced by nutrient and zooplankton pulses have been reported in many aquatic food chain
models [9,22,23]. The experimental study conducted by Spatharis et al. [24] emphasized that a sudden
pulse of high nutrient concentration may promote the dominance of a single species and yield a nega-
tive effect on the aquatic ecological diversity. However, Cottingham et al. [25] demonstrated that the
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phytoplankton show low sensitivity to nutrient pulses in systems with a high density of large zooplank-
ton [26]. Furthermore, Zhao et al. [27] reported that both phytoplankton and zooplankton can coexist
if the amount of the released zooplankton is within certain ranges. Their results illustrated that both a
nutrient pulse and zooplankton pulse may alter the dynamical behavior of an ecosystem, and that some
proper impulsive control strategies can maintain the balance of the ecosystem [12, 22, 28]. Despite
all of our knowledge on the relationships between phytoplankton, nutrient and zooplankton, there is
limited research on whether phytoplankton growth is more sensitive to a nutrient pulse or zooplankton
pulse.

To the best of our knowledge, lots of studies on plankton dynamics are conducted in a stable envi-
ronment [29–31]. However, numerous studies support that almost all natural aquatic ecosystems are
often subject to environmental fluctuations, such as variation in temperature, light and water depth.
Environmental fluctuations have the potential to disturb the steady state through direct or indirect ef-
fects on density or parameter values [32]. Specifically, Mao et al. [33] developed a simple stochastic
population growth model, and reported that the stochastic noise has the capability to suppress the ex-
plosion of population. The findings of Deng et al. [34] demonstrated that noise can suppress/enhance
the exponential growth of populations. These results revealed that environmental fluctuations can sig-
nificantly affect the dynamical behavior of biological populations. Furthermore, algal blooms may
exhibit stochastic scales and timing due to the fact that the growth responses of plankton are inevitably
affected by random fluctuations [35, 36]. In recent years, several attempts have been made to investi-
gate how environmental noise affects ecosystems [37, 38]. For instance, Yu et al. [39] demonstrated
that the Markov chain is beneficial for the survival of plankton. Biologically, it is more realistic to
consider environmental noise in the species dynamical model.

The interaction between nutrient pulses and phytoplankton growth under stochastic disturbance has
been investigated in [40]. However, far too little attention has been paid to the synergistic effects of
a nutrient pulse and zooplankton pulse on the plankton dynamics under environmental fluctuation.
Understanding how a phytoplankton population responds to nutrient pulses and zooplankton pulses
under stochastic fluctuations may provide insights into the complex interactions among phytoplankton,
nutrients and zooplankton. In addition, nutrient pulse control and phytoplankton pulse control are
common measures to control phytoplankton blooms. Thus, investigating the interacting dynamics
of nutrient pulses, zooplankton pulses and phytoplankton population may allow us to develop better
strategies to mitigate eutrophication and its associated bloom events. In order to provide a better
understanding of how phytoplankton respond to a nutrient pulse and zooplankton pulse in a random
environment, in the present paper, an aquatic food chain model comprised of nutrient, phytoplankton
and zooplankton species is investigated under the conditions of a random environment. In the model,
nutrient pulses and zooplankton pulses are adopted to respectively describe the instantaneous changes
in nutrient concentration and zooplankton biomass. Here, we aim to explore whether phytoplankton
growth is more affected by pulsed nutrients or zooplankton under environmental fluctuations.

The rest of this article is organized in the following way. A mathematical model for the nutrient-
plankton model of the aquatic habitat with impulsive control and stochastic disturbance is introduced
in next section. In Section 3, the stochastic-impulsive coupled model is analyzed analytically. Some
numerical results are presented in Section 4 to deeply explore the effects of impulsive control and
stochasticity on the interplay of nutrients and planktons in the aquatic habitat. Section 5 covers a
discussion of this study and biologically implications of the obtained results. At the end, we close the
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paper with the conclusion in Section 6.

2. The mathematical model

Numerous mathematical and ecological studies have been conducted to explore the growth dynam-
ics of plankton populations in the aquatic ecosystems [41–44]. By considering the nutrients, phyto-
plankton and zooplankton as dynamical variables, we develop here a mathematical model to compre-
hend the responses of plankton populations to the pulsed nutrients and zooplankton in a fluctuating
environment. In a real aquatic system, the predation of phytoplankton by zooplankton is very complex,
e.g., copepods [45]. Thus, we adopt the Holling type II functional response to model the hunting behav-
ior of zooplankton for phytoplankton. Moreover, some species of phytoplankton can produce toxins,
which contribute to the death of the zooplankton population. Both the theoretical and experimental
studies have proven that the toxin-producing phytoplankton can greatly influence the occurrence as
well as termination of the plankton blooms [46]. Indeed, the liberation of toxins by phytoplankton
can reduce the growth of zooplankton species and substantially contribute to their mortality. Actually,
toxin-producing phytoplankton are not easily accessible by the zooplankton. Hence, the Holling type II
functional form is a more common and intuitively obvious choice to describe the grazing phenomenon
of phytoplankton by zooplankton [46]. Moreover, we consider the intraspecific competition among the
phytoplankton communities and the zooplankton communities due to the limitation of the resources in
the aquatic biome. At any time t > 0, let N(t), P(t) and Z(t) respectively represent the concentration
of nutrients, phytoplankton population and zooplankton population in a considered aquatic system.
Based on the following ecological assumptions, we will formulate our mathematical model for the
nutrient-plankton system.

(1) The nutrient concentration in the aquatic system is determined by its washout and uptake by phy-
toplankton population at the rates b and n, respectively.

(2) The growth of phytoplankton depends on the nutrient availability and the predation by zooplankton.

(3) We represent the biomass conversion rate and the death rate of the phytoplankton population by β
and m, respectively. The zooplankton predates the phytoplankton at a rate followed by the Holling

type II functional form [47], which is given by
cPZ

h + P
, where c denotes the phytoplankton capture

rate for zooplankton and h is the half-saturation constant for such an uptake.

(4) We denote the biomass conversion rate and the natural mortality of zooplankton by d and k, re-
spectively. The effect of toxin-producing phytoplankton on the zooplankton population is modeled

by the term
ρPZ
h + P

, where ρ is the rate by which the phytoplankton population releases the toxic
chemicals.

(5) Evidently, intraspecific competition exists in a real natural aquatic ecosystem due to the limitation
of resources [48]. Here, we also model the intraspecific competition among the phytoplankton
communities and the zooplankton communities and denote the strengths of competition by r and
v, respectively.

(6) The natural ecosystems are affected by environmental fluctuations [49], so we use white noise to
represent their impact on the nutrient-plankton model.
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By considering the aforementioned assumptions, we come up with the following mathematical
model that involves stochastic fluctuation:

dN(t) = [−b(t)N(t) − n(t)P(t)N(t)] dt + σ1(t)N(t)dB1(t),
dP(t) =

[
β(t)P(t)N(t) − c(t)P(t)Z(t)

h(t)+P(t) − m(t)P(t) − r(t)P(t)2
]

dt + σ2(t)P(t)dB2(t),

dZ(t) =
[

d(t)P(t)Z(t)
h(t)+P(t) − k(t)Z(t) − ρ(t)P(t)Z(t)

h(t)+P(t) − v(t)Z(t)2
]

dt + σ3(t)Z(t)dB3(t).

(2.1)

In model (2.1), Bi(t) (i = 1, 2, 3) denotes the independent standard Brownian motions andσ2
i denotes

the intensities of the white noises. We assume that all of the parameters involved in model (2.1) are
positive, bounded and continuous θ-periodic functions in [0,+∞). In Table 1, we provide the biological
meanings of variables and parameters describing model (2.1) in a constant environment.

The aquatic ecosystems are inevitably affected by instantaneous perturbations, which leads to abrupt
changes in the nutrient concentration and zooplankton biomass, so we adopt nutrient and zooplankton
pulses in model (2.1) and obtain the following implusive-stochastic differential equations:

dN(t) = [−b(t)N(t) − n(t)P(t)N(t)] dt + σ1(t)N(t)dB1(t),
dP(t) =

[
β(t)P(t)N(t) − c(t)P(t)Z(t)

h(t)+P(t) − m(t)P(t) − r(t)P(t)2
]

dt + σ2(t)P(t)dB2(t),

dZ(t) =
[

d(t)P(t)Z(t)
h(t)+P(t) − k(t)Z(t) − ρ(t)P(t)Z(t)

h(t)+P(t) − v(t)Z(t)2
]

dt + σ3(t)Z(t)dB3(t),

 t , tk, k ∈ N,

N(t+k ) = (1 + α1k)N(tk),
P(t+k ) = P(tk),
Z(t+k ) = (1 + α2k)Z(tk),

 t = tk, k ∈ N.

(2.2)
Note that model (2.2) shares common biological meanings with model (2.1). Further, there exists a

sequence of real numbers with 0 < t1 < t2 < · · · < tk < · · · , lim
t→∞

tk = +∞. For biological reasons, we
impose the following restriction on αik (i = 1, 2):

1 + αik > 0, i = 1, 2, k = 1, 2, · · · .

For αik > 0 (i = 1, 2), the impulsive effects represent the process of species introductions whereas
αik < 0 (i = 1, 2) denotes harvesting. Here, we only consider αik > 0 (i = 1, 2). Following the
approach of [19, 50, 51], we assume that there exists a positive integer p such that tk+p = tk + T and
αi(k+p) = αik, i = 1, 2, k ∈ Z+. We also consider that [0,T ) ∩ {tk, k ∈ Z+} = {t1, t2, · · · , tp}.

3. The main results

We assume that (Ω,F , {Ft}t≥0,P) is a complete probability space with a filtration Ft(t≥0) satisfying
the usual normal conditions i.e., it is right continuous and F0 contains all of the P-null sets.

3.1. Preliminaries

Assume that a product equals unity if the number of factors is zero. For a bounded and continuous
function f : [0,+∞)→ R+, we define

f u = sup
t≥0

f (t), f l = inf
t≥0

f (t).
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Moreover, if the function f is integrable on [0,+∞)→ R+, then

⟨ f ⟩ =
1
t

∫ t

0
f (s)ds, ⟨ f ⟩T =

1
T

∫ T

0
f (s)ds.

Now, we present the following definitions and lemmas in order to facilitate our further discussions.
Consider the n-dimensional stochastic differential equation

dx(t) = f (x(t), t)dt + g(x(t), t)dB(t), t ≥ t0 (3.1)

with the initial value x(t0) = x0 ∈ Rn, where B(t) is an n-dimensional standard Brownian motion. The
differential operator L associated with Eq (3.1) is defined as

L =
∂

∂t
+

n∑
k=1

fk(x, t)
∂

∂xk
+

1
2

n∑
k, j=1

[
gT (x, t)g(x, t)

]
k j

∂2

∂xk∂x j
. (3.2)

To analyze model (2.2), we adopt the following definitions.

Definition 3.1. [52]. Consider the following stochastic differential equation with impulse:dX(t) = F(t, X(t))dt +G(t, X(t))dB(t), t , tk, t > 0,
X(t+k ) − X(tk) = βkX(tk), t = tk, k = 0, 1, 2, . . . ,

(3.3)

where X(0) ∈ Rn. A stochastic process X(t) = (X1(t), X2(t), · · · , Xn(t))T , t ∈ [0,∞) is said to be a
solution of model (3.3) if the following conditions hold:

(i) X(t) is Ft adapted and continuous on the intervals (0, t1) and (tk, tk+1) ∈ R+, k ∈ N; F(t, X(t)) ∈
L1(R+; Rn) and G(t, X(t)) ∈ L2(R+; Rn), where Lk(R+; Rn) is the set of all Rn valued measurable

Ft-adapted processes f (t) satisfying
∫ T

0
| f (t) |k dt < ∞ a.s. for every T .

(ii) For any tk, k ∈ N, X(t+k ) = lim
t→t+k

X(t) exists and X(t−k ) = lim
t→t−k

X(t) with a probability of one.

(iii) For almost every t ∈ (0, t1), X(t) satisfies the following integral equation:

X(t) = X(0) +
∫ t

0
F(s, X(s))ds +

∫ t

0
G(s, X(s))dB(s).

Further, for all t = [tk, tk+1] , k ∈ N, X(t) satisfies the following integral equation:

X(t) = X(t+k ) +
∫ t

tk
F(s, X(s))ds +

∫ t

tk
G(s, X(s))dB(s).

Lemma 3.1. [53]. For any u > 0, the following inequality holds:

u ≤ 2(u + 1 − log u) − (4 − 2 log 2).

Definition 3.2. [54,55]. A stochastic process ξ(t) = ξ(t, ω), (−∞ < t < +∞) is said to be periodic with
period T if for every finite sequence of numbers t1, t2, · · · , tn, the joint distribution of random variables
ξ(t1 + h), ξ(t2 + h), · · · , ξ(tn + h) is independent of h, where h = kT, k = ±1,±2, · · · .
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Remark 1. [56] A Markov process ξ(t) is T -periodic if and only if its transition probability function
is T-periodic and the function P0(t, A) = P{ξ(t) ∈ A} satisfies the following equation:

P0(s, A) =
∫

Rl
P0(s, dx)P(s, x, s + T, A) ≡ p0(s + T, A)

for every A ∈ B.

For the following Itô differential equation:

dx(t) = b(t, x(t))dt + σ(t, x(t))dB(t), (3.4)

let all of the coefficients be T-periodic in t and satisfy the linear growth condition and the Lipschitz
condition in every cylinder Ul × R+ for l > 0, where Ul = {x : ∥x∥ ≤ l}. If there exists a function v =
v(t, x) which is twice continuously differentiable with respect to x and once continuously differentiable
with respect to t in Rn × R+, and if T is periodic in t and satisfies the following conditions:

inf
∥x∥>R

v(t, x)→ +∞ as l→ +∞, (3.5)

Lv(t, x) ≤ −1 outside some compact set, (3.6)

then there exists a solution of model (3.4) which is a T-periodic Markovian process [56].

3.2. Existence and uniqueness of the global positive solution

From the biological perspective, the population size should be nonnegative. Following the approach
of [40], we will show that model (2.2) has a unique global positive solution. First, we consider the
model without impulses as

dy1(t) = y1(t)

−b(t) +
1
T

p∑
j=1

log(1 + α1 j) − n(t)y2(t)

 dt + σ1(t)y1(t)dB1(t),

dy2(t) = y2(t)
(
β(t)A1(t)y1(t) − m(t) −

c(t)A2(t)y3(t)
h(t) + y2(t)

− r(t)y2(t)
)

dt + σ2(t)y2(t)dB2(t), (3.7)

dy3(t) = y3(t)

 d(t)y2(t)
h(t) + y2(t)

+
1
T

p∑
j=1

log(1 + α2 j) − k(t) − v(t)A2(t)y3(t) −
ρ(t)y2(t)

h(t) + y2(t)

 dt + σ3(t)y3(t)dB3(t)

with

A1(t) =

 p∏
j=1

(1 + α1 j)


−( t

T ) ∏
0≤tk<t

(1 + α1k),

A2(t) =

 p∏
j=1

(1 + α2 j)


−( t

T ) ∏
0≤tk<t

(1 + α2k).

According to [54], A1(t) and A2(t) are periodic functions with periodic T . Thus, we obtain the
following lemma.
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Lemma 3.2. Let N(t) = A1(t)y1(t), P(t) = y2(t) and Z(t) = A2(t)y3(t).

(1) If (N(t), P(t),Z(t)) is the solution of model (2.2), then (y1(t), y2(t), y3(t)) is the solution of model
(3.7).

(2) If (y1(t), y2(t), y3(t)) is the solution of model (3.7), then (N(t), P(t),Z(t)) is the solution of model
(2.2).

The proof easily follows from [52], hence, it is omitted. Now, we state the following theorem.

Theorem 3.1. For any initial value (N(0), P(0),Z(0)) ∈ R3
+, model (2.2) exhibits a unique positive

solution (N(t), P(t),Z(t)), which will remain in R3
+ with a probability of one.

Proof. Obviously, for any fixed t ≥ 0, there exists a nonnegative integer n ∈ {0, 1, 2, · · · } such that
nT ≤ t ≤ (n + 1)T . In view of the equalities tk+p = tk + T and αk+p = αk, one can get

tk+np = tt+(n−1)p + T = · · · = tk + nT, αk+np = αk+(n−1)p = · · · = αk.

Owing to [0,∞) ∩ {tk, k ∈ N} = {t1, t2, · · · , tp}, there exists a positive integer r ∈ {1, 2, · · · , p} such
that

tr+np, tr+1+np, · · · , tp+np ∈ [t, (n + 1)T ),
t1+(n+1)p, t2+(n+1)p, · · · , tr−1+(n+1)p ∈ [(n + 1)T, t + T ).

Now, we will prove that model (3.7) has a unique globally positive solution (y1(t), y2(t), y3(t)). Ob-
viously, the coefficients of model (3.7) satisfy the local Lipschitz condition. Thus, there exists a unique
local solution on [0, τe), where τe is the explosion time. This solution will be global if τe = ∞ almost
surely. We choose γ0 > 1 sufficiently large so that y1(0), y2(0) and y3(0) all lie in the interval

[
1
γ0
, γ0

]
.

For any positive integer γ (γ ≥ γ0), we define the stopping time as follows:

τγ = inf
{

t ∈ [0, τe] : y1(t) <
(
1
γ
, γ

)
or y2(t) <

(
1
γ
, γ

)
or y3(t) <

(
1
γ
, γ

)}
.

We set inf ∅ = ∞. Clearly, τγ increases as γ → ∞. Let τ∞ = lim
γ→+∞

τγ. Obviously, if τ∞ = ∞, then

τ∞ ≤ τe almost surely, τe = ∞ and (y1(t), y2(2), y3(t)) ∈ R3
+ almost surely.

Now, we define a C3-function V : R3
+ → R+ as

V(y1(t), y2(t), y3(t)) = β(t)A1(t)(y1(t) + 1 − log y1(t)) + n(t)(y2(t) + 1 − log y2(t)) + y3(t) + 1 − log y3(t).

For any T > 0, we apply Itô’s formula on t ∈ [0, τγ ∧ T ] to get the following:

dV(y1(t), y2(t), y3(t)) = LVdt + β(t)A1(t)
(
1 −

1
y1(t)

)
σ1(t)y1(t)dB1(t)

+ n(t)
(
1 −

1
y2(t)

)
σ2(t)y2(t)dB2(t) +

(
1 −

1
y3(t)

)
σ3(t)y3(t)dB3(t),
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where

LV = β(t)A1(t)

(y1(t) − 1)

−b(t) +
1
T

p∑
j=1

log(1 + α1 j) − n(t)y2(t)

 + 1
2
σ2

1(t)


+n(t)

[
(y2(t) − 1)

(
β(t)A1(t)y1(t) −

A2(t)c(t)y3(t)
h(t) + y2(t)

− m(t) − r(t)y2(t)
)
+

1
2
σ2

2(t)
]

+(y3(t) − 1)

 d(t)y2(t)
h(t) + y2(t)

+
1
T

p∑
j=1

log(1 + α2 j) − k(t) −
ρ(t)y2(t)

h(t) + y2(t)
− v(t)A2(t)y3(t)


+

1
2
σ2

3(t)

= β(t)A1(t)

−b(t)y1(t) + b(t) + y1(t)
1
T

p∑
j=1

log(1 + α1 j) − n(t)y1(t)y2(t)

−
1
T

p∑
j=1

log(1 + α1 j) + n(t)y2(t)

 + n(t)
(
−

c(t)A2(t)y2(t)y3(t)
h(t) + y2(t)

− β(t)A1(t)y1(t)

+A1(t)β(t)y1(t)y2(t) +
c(t)A2(t)y3(t)
h(t) + y2(t)

− m(t)y2(t) + m(t) − r(t)y2
2(t) + r(t)y2(t)

)
+y3(t)

1
T

p∑
j=1

log(1 + α2 j) −
1
T

p∑
j=1

log(1 + α2 j) +
d(t)y2(t)y3(t)
h(t) + y2(t)

−
d(t)y2(t)

h(t) + y2(t)

−k(t)y3(t) + k(t) −
ρ(t)y2(t)y3(t)
h(t) + y2(t)

+
ρ(t)y2(t)

h(t) + y2(t)
− v(t)A2(t)y2

3(t)

+v(t)A2(t)y3(t) +
1
2
β(t)A1(t)σ2

1(t) +
1
2

n(t)σ2
2(t) +

1
2
σ2

3(t)

≤ βuAu
1bu + numu + ku + ρu +

1
2

(
βuAu

1(σu
1)2 + nu(σu

2)2 + (σu
3)2

)
+β(t)A1(t)y1(t)

1
T

p∑
j=1

log(1 + α1 j) +
(
βuAu

1 + ru) n(t)y2(t)

+

 1
T

p∑
j=1

log(1 + α2 j) +
nucuAu

2

hl + du + vuAu
2

 y3(t)

≤ F1 + 2β(t)A1(t)
1
T

p∑
j=1

log(1 + α1 j)(y1(t) + 1 − log y1(t))

+2n(t)
(
βuAu

1 + ru) (y2(t) + 1 − log y2(t))

+2

 1
T

p∑
j=1

log(1 + α2 j) +
nucuAu

2

hl + du + vuAu
2

 (y3(t) + 1 − log y3(t))

≤ F1 + F2V(y1(t), y2(t), y3(t)),

where
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F1 = β
uAu

1bu + numu + ku + ρu +
1
2

(
βuAu

1(σu
1)2 + nu(σu

2)2 + (σu
3)2

)
,

F2 = 2

 1
T

p∑
j=1

log(1 + α1 j)

 ∨ 2
(
βuAu

1 + ru) ∨ 2

 1
T

p∑
j=1

log(1 + α2 j) +
nucuAu

2

hl + du + vuAu
2

 .
Thus, we have

dV(y1(t), y2(t), y3(t)) ≤ F1dt + F2V(y1(t), y2(t), y3(t)) + βuAu
1σ1(t)(y1(t) − 1)dB1(t)

+nuσ2(t)(y2(t) − 1)dB2(t) + σ3(t)(y3(t) − 1)dB3(t).

On integrating both sides of the above inequality from 0 to τγ ∧ T and taking the expectation, we get

EV
(
y1(τγ ∧ T ), y2(τγ ∧ T ), y3(τγ ∧ T )

)
≤ V(y1(0), y2(0), y3(0)) + F1T + F2E

∫ τγ∧T

0
V (y1(t), y2(t), y3(t)) dt.

By using Gronwall’s inequality, we get

EV
(
y1(τγ ∧ T ), y2(τγ ∧ T ), y3(τγ ∧ T )

)
≤ (V (y1(0), y2(0), y3(0)) + F1T ) eF2T .

For γ ≥ γ0, let Ωγ(ω) = {ω ∈ Ω : τγ = τγ(ω) ≤ T }; then, either y1(τγ, ω), y2(τγ, ω) or y3(τγ, ω) is
equal to γ or 1

γ
and

V
(
y1

(
τγ, ω

)
, y2

(
τγ, ω

)
, y3

(
τγ, ω

))
≥ (γ + 1 − log γ) ∨

(
1
γ
+ 1 + log γ

)
≜ H(γ);

(V (y1(0), y2(0), y3(0)) + F1T ) eF2T ≥ EIΩγ(ω)V
(
y1

(
τγ, ω

)
, y2

(
τγ, ω

)
, y3

(
τγ, ω

))
≥ P{τγ ≤ T }H(γ),

where IΩγ is the indicator function ofΩγ. Let γ → ∞; then, lim
γ→∞

P{τγ≤T } = 0 implying that P{τγ≤T } = 0.

T > 0 is arbitrary, so P{τ∞ < ∞} = 0. This implies that P{τ∞ = ∞} = 1, as required. Thus, one can
conclude that model (3.7) has a unique positive solution (y1(t), y2(t), y3(t)) for all t ≥ 0 almost surely.

Let N(t) = A1(t)y1(t), P(t) = y2(t) and Z(t) = A2(t)y3(t). From Lemma 3.2, it follows that
(N(t), P(t),Z(t)) is the solution of model (2.2). Apparently, N(t), P(t) and Z(t) are continuous on the
intervals (0, t1) and (tk, tk+1), k ∈ N. For t , tk, we have

dN(t) = A
′

1(t)y1(t)dt + A1(t)dy1(t)
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= A1(t)y1(t) (−b(t) − n(t)y2(t)) dt + σ1(t)A1(t)y1(t)dB1(t)
= N(t) (−b(t) − e(t)P(t)) + σ1(t)N(t)dB1(t),

dZ(t) = A
′

2(t)y3(t)dt + A2(t)dy3(t)

= A2(t)y3(t)
(

d(t)y2(t)
h(t) + y2(t)

− k(t) −
ρ(t)y2(t)

h(t) + y2(t)
− v(t)A2(t)y3(t)

)
dt

+σ3(t)A2(t)y3(t)dB3(t)

= Z(t)
(

d(t)P(t)
h(t) + P(t)

− k(t) −
ρ(t)P(t)

h(t) + P(t)
− v(t)Z3(t)

)
+ σ3(t)Z(t)dB3(t).

For t = tk, k ∈ N, we have

N(t+k ) = lim
t→t+k

A1(t)y1(t) =

 p∏
j=1

(1 + α1 j)


−
( tk

T

) ∏
0≤t j≤tk

(1 + α1 j)y1(t+k )

= (1 + α1k)A1(t+k )y1(t+k ) = (1 + α1k)N(tk),

N(t−k ) = lim
t→t−k

A1(t)y1(t) =

 p∏
j=1

(1 + α1 j)


−
( tk

T

) ∏
0≤t j<tk

(1 + α1 j)y1(t−k ) = N(tk).

Similarly, we get
Z(t+k ) = (1 + α2k)Z(tk), Z(t−k ) = Z(tk).

Thus, one can claim that for any initial value (N(0), P(0),Z(0)) ∈ R2
+, model (2.2) has a solution

(N(t), P(t),Z(t)) for t ≥ 0.
Now, we must approve that the solution of model (2.2) is unique. For t ∈ [0, t1], model (2.2)

becomes 
dN(t) = [−b(t)N(t) − nP(t)N(t)] dt + σ1(t)N(t)dB1(t),
dP(t) =

[
β(t)P(t)N(t) − c(t)P(t)Z(t)

h(t)+P(t) − m(t)P(t) − r(t)P(t)2
]

dt + σ2(t)P(t)dB2(t),

dZ(t) =
[

d(t)P(t)Z(t)
h(t)+P(t) − k(t)Z(t) − ρ(t)P(t)Z(t)

h(t)+P(t) − v(t)Z(t)2
]

dt + σ3(t)Z(t)dB3(t)

(3.8)

with the initial value (N(0), P(0),Z(0)) = (N0, P0,Z0). The above model is equivalent to the following
one: 

dN(t) =
[
−b(t) − nev(t) −

σ2
1(t)
2

]
dt + σ1(t)dB1(t),

dP(t) =
[
β(t)eu(t) −

c(t)ew(t)

h(t) + ev(t) − m(t) − r(t)ev(t) −
σ2

2(t)
2

]
dt + σ2(t)dB2(t),

dZ(t) =
[

d(t)ev(t)

h(t) + ev(t) − k(t) −
ρ(t)ev(t)

h(t) + ev(t) − v(t)ew(t) −
σ2

3(t)
2

]
dt + σ3(t)dB3(t)

(3.9)

with the initial value (u(0), v(0),w(0)) = (log N0, log P0, log Z0). Obviously, the coefficients of model
(3.9) satisfy the local Lipschitz condition. Thus, by the theory of stochastic differential equation,
model (3.9) has a unique solution (u(0), v(0),w(0)). In view of the Itô formula, (N(t), P(t),Z(t)) =
(eu(t), ev(t), ew(t)) is the unique solution of model (3.8).
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Now, for t ∈ (t1, t2], model (2.2) can be rewritten as follows:


dN(t) = [−b(t)N(t) − nP(t)N(t)] dt + σ1(t)N(t)dB1(t),
dP(t) =

[
β(t)P(t)N(t) − c(t)P(t)Z(t)

h(t)+P(t) − m(t)P(t) − r(t)P(t)2
]

dt + σ2(t)P(t)dB2(t),

dZ(t) =
[

d(t)P(t)Z(t)
h(t)+P(t) − k(t)Z(t) − ρ(t)P(t)Z(t)

h(t)+P(t) − v(t)Z(t)2
]

dt + σ3(t)Z(t)dB3(t),(
N(t+1 ), P(t+1 ),Z(t+1 )

)
=

(
(1 + α11)N(t+1 ), P(t+1 ), (1 + α21)Z(t+1 )

)
.

(3.10)

Using the same argument as above, one can show that model (3.10) admits a unique solution for
t ∈ (t1, t2]. By the analogy, we can say that model (2.2) has a unique solution with the initial value
(N(0), P(0),Z(0)) for each interval (tk, tk+1]. □

One can conclude from the above theorem that for model (2.2), the population size will remain
nonnegative for sufficiently large values of t.

3.3. Existence of positive T-periodic solution

Here, we derive conditions for the existence and uniqueness of a positive periodic solution of model
(2.2).

Lemma 3.3. [39]. For any initial value (y1(0), y2(0), y3(0)) ∈ R3
+, the solution (y1(t), y2(t), y3(t)) of

model (3.7) has the following properties:

lim sup
t→∞

y1(t) < ∞ a.s., lim sup
t→∞

y2(t) < ∞ a.s., lim sup
t→∞

y3(t) < ∞ a.s.

Further, there exist three positive constants H1, H2 and H3 such that

y1(t) ≤ H1, y2(t) ≤ H2 and y3(t) ≤ H3 for all t ≥ 0 a.s.

Define

ϕ1 ≜
1
T

p∑
j=1

log
(
1 + α1 j

)
−

〈
b(t) + σ2

1(t)
〉

T
− nuH2,

ϕ2 ≜
〈
m(t) + σ2

2(t)
〉

T
−

cuAu
2H3

hl ,

ϕ3 ≜
1
T

p∑
j=1

log
(
1 + α2 j

)
−

〈
k(t) + σ2

3(t)
〉

T
− ρu.

Now, we present the following theorem.

Theorem 3.2. If ϕ1, ϕ2, ϕ3 > 0, then model (2.2) has a positive T-periodic solution.

Proof. In view of Theorem 3.1, it suffices to show that a periodic solution exists for the equivalent
model (3.7) without impulses. Thus, we only need to verify conditions (3.5) and (3.6).

We define a C3-function V : [0,+∞) × R3
+ → R+ as
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V(t, y1, y2, y3) =
(
ew1(t)

y1
+ log y1

)
+

(
ew2(t)

y2
+ log y2

)
+

(
ew3(t)

y3
+ log y3

)
= V1(t, y1) + V2(t, y2) + V3(t, y3),

where

w
′

1(t) =
〈
b(t) + σ2

1(t)
〉

T
− b(t) − σ2

1(t),

w
′

2(t) = −
〈
m(t) + σ2

2(t)
〉

T
− m(t) − σ2

2(t),

w
′

3(t) =
〈
k(t) + σ2

3(t)
〉

T
− k(t) − σ2

3(t).

(3.11)

Following [40], w1(t),w2(t) and w3(t) are T -periodic functions. According to condition (3.5), we need
to verify that

inf
(t,y1,y2,y3)∈[0,+∞)×(R3

+\Uϵ )
V(t, y)→ ∞, ϵ → ∞,

where Uϵ =
(
1
ϵ
, ϵ

)
×

(
1
ϵ
, ϵ

)
×

(
1
ϵ
, ϵ

)
. This trivially holds as

1
z
+ log z→ +∞ a.s. z→ 0+,

1
z
+ log z→ +∞ a.s. z→ +∞.

Now, we prove condition (3.6). Using Itô’s formula, we have

LV1 = −
ew1(t)

y1(t)

−w
′

1(t) − b(t) +
1
T

p∑
j=1

log
(
1 + α1 j

)
− n(t)y2(t) − σ2

1(t)


+

1
T

p∑
j=1

log
(
1 + α1 j

)
− b(t) − n(t)y2(t) −

σ2
1(t)
2

≤ −
ew1(t)

y1(t)

−w
′

1(t) − b(t) − σ2
1(t) +

1
T

p∑
j=1

log
(
1 + α1 j

)
− nuH2


+

1
T

p∑
j=1

log
(
1 + α1 j

)
− nly2(t) − bl −

(σl
1)2

2
;

LV2 = −
ew2(t)

y2(t)

(
−w

′

2(t) − m(t) − σ2
2(t) + β(t)A1(t)y1(t) − r(t)y2(t)

−
c(t)A2(t)y3(t)
h(t) + y2(t)

)
+ β(t)A1(t)y1(t) −

c(t)A2(t)y3(t)
h(t) + y2(t)

− m(t)

− r(t)y2(t) −
σ2

2(t)
2

Mathematical Biosciences and Engineering Volume 20, Issue 8, 15496–15523.
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≤ −
ew2(t)

y2(t)

(
−w

′

2(t) − m(t) − σ2
2(t) −

cuAu
2H3

hl

)
−

ewl
2βlAl

1y1(t)
H2

+ ruewu
2 + βuAu

1H1 −
clAl

2y3(t)
hu + H2

− ml − rly2(t) −
(σl

2)2

2
;

LV3 = −
ew3(t)

y3(t)

−w
′

3(t) − k(t) − σ2
3(t) +

1
T

p∑
j=1

log
(
1 + α2 j

)
+

d(t)y2(t)
h(t) + y2(t)

−
ρ(t)y2(t)

h(t) + y2(t)
− v(t)A2(t)y3(t)

)
+

1
T

p∑
j=1

log
(
1 + α2 j

)
+

d(t)y2(t)
h(t) + y2(t)

−
ρ(t)y2(t)

h(t) + y2(t)
− v(t)A2(t)y3(t) − k(t) −

σ2
3(t)
2

≤ −
ew3(t)

y3(t)

−w
′

3(t) − k(t) − σ2
3(t) +

1
T

p∑
j=1

log
(
1 + α2 j

)
− ρu


+ ewu

3vuAu
2 +

1
T

p∑
j=1

log
(
1 + α2 j

)
+ du − kl −

ρly2(t)
hu + H2

− vlAl
2y3(t) −

(σl
3)2

2
.

Now, from Eq (3.11), we get

LV =LV1 +LV2 +LV3

≤ −
ew1(t)

y1(t)

 1
T

p∑
j=1

log
(
1 + α1 j

)
−

〈
b(t) + σ2

1(t)
〉

T
− nuH2


−

ew2(t)

y2(t)

(〈
m(t) + σ2

2(t)
〉

T
−

cuAu
2H3

hl

)
−

ew3(t)

y3(t)

 1
T

p∑
j=1

log
(
1 + α2 j

)
−

〈
k(t) + σ2

3(t)
〉

T
− ρu


+

1
T

p∑
j=1

log
(
1 + α1 j

)
+

1
T

p∑
j=1

log
(
1 + α2 j

)
+ βuAu

1H1 + ewu
2ru

+ ewu
3vuAu

2 + du − bl − ml − kl −
(σl

1)2

2
−

(σl
2)2

2
−

(σl
3)2

2
.

Let

Θ∗ =
1
T

p∑
j=1

log
(
1 + α1 j

)
+

1
T

p∑
j=1

log
(
1 + α2 j

)
+ βuAu

1H1 + ewu
2ru

+ ewu
3vuAu

2 + du − bl − ml − kl −
(σl

1)2

2
−

(σl
2)2

2
−

(σl
3)2

2
.
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Then, we have

LV ≤Θ∗ −
ewl

1

y1(t)
ϕ1 −

ewl
2

y2(t)
ϕ2 −

ewl
3

y3(t)
ϕ3 −

ewl
2βlAl

1

H2
y1(t)

−

(
nl + rl +

ρl

hu + H2

)
y2(t) −

(
clAl

2

hu + H2
+ vlAl

2

)
y3(t)

≜Γ(y1, y2, y3).

(3.12)

Obviously,

Γ(y1, y2, y3)→ −∞ a.s. y1 → 0+ or y2 → 0+ or y3 → 0+,
Γ(y1, y2, y3)→ −∞ a.s. y1 → +∞ or y2 → +∞ or y3 → +∞.

(3.13)

From Eqs (3.12) and (3.13), we can take ϵ sufficiently small such that

LV ≤ −1, for (y1, y2, y3) ∈ R3
+ \ U,

where U =
[
ϵ,

1
ϵ

]
×

[
ϵ,

1
ϵ

]
×

[
ϵ,

1
ϵ

]
. Therefore, for the initial values y1(0) > 0, y2(0) > 0 and y3(0) > 0,

the solution y(t) = (y1(t), y2(t), y3(t)) of model (3.7) is a positive T -periodic Markov process. Based on
the previous analysis, one can get that

N(t) =A1(t)y1(t) =

 p∏
j=1

(1 + α1 j)


−( t

T ) ∏
0≤tk<t

(1 + α1k)y1(t),

P(t) =y2(t),

Z(t) =A2(t)y3(t) =

 p∏
j=1

(1 + α2 j)


−( t

T ) ∏
0≤tk<t

(1 + α2k)y3(t),

where A1(t) and A2(t) are T -periodic functions. Thus, one can say that (N(t), P(t),Z(t)) is a positive
T -periodic solution of model (2.2). □

From a biological point of view, the above theorem tells that model (2.2) exhibits a positive T -
periodic solution for an appropriate noise intensity, and that the phytoplankton population will oscillate
periodically.
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4. Numerical simulations

Table 1. Biological explanations of variables/parameters in model (2.1) and the numerical
values of parameters used for simulation results.

Variables/ Descriptions Units Values References
Parameters
N Concentration of nutrients µg/L
P Biomass of phytoplankton µg/L
Z Biomass of zooplankton µg/L

b Washout rate of nutrients day−1 0.05 0.05/0.07
[66]

n Maximal uptake rate of nutrients day−1 0.2 [0.2, 1]
[13]

by phytoplankton

β Conversion rate of nutrients day−1 0.5 0.4
[45]

into the biomass of phytoplankton

d Rate of conversion of day−1 0.8 0.92
[45]

biomass of phytoplankton
into that of zooplankton

m Natural death rate of phytoplankton day−1 0.3 0.2
[65]

k Natural death rate of zooplankton day−1 0.1 0.1
[65]

c Grazing rate of phytoplankton day−1 0.2 0.1/0.3
[66]

by zooplankton
h Half saturation constant for the µg/L 5 —

phytoplankton population

ρ Rate of toxin liberation by L/µg/day 0.01 0.0186
[64]

toxin-producing phytoplankton

r Strength of intraspecific competition L/µg/day 0.1 0.1
[64]

among the phytoplankton population
v Strength of intraspecific competition L/µg/day 0.1 —

among the zooplankton population

In order to have better insight into how impulsive control and environmental fluctuation affects the
distributions of plankton populations in aquatic ecosystems, we present here some numerical results.
To solve the stochastic system, we have used the Euler-Maruyama method whereas the Runge-Kutta
method is employed to solve the deterministic system. If not specified in the text, we adopt the values
of the parameters as in Table 1. To keep the model tractable, we set a common period of 40 d−1 for all
parameters in model (2.2). Further, to capture the impact of periodic environment, we set the following
forms of a model parameters:
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b = 0.05 + 0.01 sin(πt/20), n = 0.2 + 0.01 sin(πt/20), β = 0.5 + 0.01 sin(πt/20),
c = 0.2 + 0.01 sin(πt/20), h = 5 + 0.01 sin(πt/20), m = 0.3 + 0.01 sin(πt/20),
d = 0.8 + 0.01 sin(πt/20), k = 0.1 + 0.01 sin(πt/20), ρ = 0.01 + 0.01 sin(πt/20),
v = 0.1 + 0.01 sin(πt/20), r = 0.1 + 0.01 sin(πt/20).

Here, we mainly focus on the impulsive control and the noise intensity as the key factors in control-
ling the plankton blooms.

4.1. Effects of impulsive control

0 300 600
0

1

2

(a) Time(d)

N
(

g
/L

)

model (1)

model (2)

0 300 600
0
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1.4

(b) Time(d)

P
(

g
/L

)
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0

0.6

1.2

(c) Time(d)

Z
(

g
/L

)

model (1)

model (2)

Figure 1. Time evolutions of (a) nutrients, (b) phytoplankton and (c) zooplankton in models
(2.1) and (2.2).

In real aquatic ecosystems, the oscillatory behavior of population density is observed due to the ex-
istence of ubiquitous pulse perturbations and stochastic fluctuation. For instance, industrial wastewater
discharge can lead to rapid increment in the nutrient concentrations in water bodies, which produces
transient effects on the state of aquatic ecosystems and may trigger the rapid growth of algae. In re-
cent years, the importance of impulsive control has been widely recognized by researchers worldwide.
Here, we present the effects of impulsive control on the plankton populations. The paths of nutrients,
phytoplankton and zooplankton are depicted in Figure 1 for a fixed noise intensity, pulse intensity and
number of pulses per period (σ1 = σ2 = σ3 = 0.02+0.01 sin(πt/20), α1 = exp(2), α2 = exp(2), p = 3).
One can see in the figure that without impulsive fluctuation, both nutrient and plankton populations
tend to extinct. However, when the impulsive control is applied on the stochastic model, nutrient and
plankton populations can coexist. Obviously, the results displayed by Figure 1 are induced by impul-
sive control, indicating that impulsive control has the potential to alter population dynamics and may
promote the coexistence of plankton populations.

In order to investigate how plankton populations respond to the combined effects of nutrient and
zooplankton pulses, in Figure 2, we present the mean for plankton biomasses in the (α1, α2) plane. Ap-
parently, for relatively small nutrient pulses, the phytoplankton population disappears from the aquatic
system even if a high pulse of zooplankton is applied (see Figure 2(c)). One possible explanation for
this behavior of phytoplankton might be the deficiency of nutrients in the aquatic system. Figure 2
depicts that an increment in the nutrient pulse may cause a significant increase in the mean of plankton
biomasses indicating that as the nutrient pulse increases, so does the oscillatory behavior of plankton
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Figure 2. Results for model (2.2) with σ1 = σ2 = σ3 = 0.05 + 0.01 sin(πt/20). (a) The
mean for phytoplankton biomass in the (α1, α2) plane; (b) the mean for zooplankton biomass
in the (α1, α2) plane; (c) the evolution of a single path of the phytoplankton population and
zooplankton population in model (2.2) with α1 = 0.1, α2 = 8; (d) the evolution of a sin-
gle path of the phytoplankton population and zooplankton population in model (2.2) with
α1 = 8, α2 = 0.1; (e) the evolution of a single path of the phytoplankton population and
zooplankton population in model (2.2) with α1 = 5, α2 = 5.

populations. The variance and the third order central moment of plankton populations are presented
in Figure 3 by taking three different sets of pulse intensity. Apparently, the plankton populations dis-
appear from the aquatic system if there is no nutrient pulse. One can also see that the variance of
plankton biomasses show overall an increasing trend as the nutrient pulse increases, but there is a
sharp increase in the skewness of the phytoplankton population. These results indicate that the nutrient
pulse has the potential to alter the survival probability of plankton populations in the aquatic system.
Next, we set the nutrient pulse as α1 = 3 and show the variance and the third order central moment of
plankton populations by differing the zooplankton impulse; see Figure 3(c)–(d). Notably, the variance
and the skewness of the phytoplankton population is unlikely to change significantly with a rise in the
zooplankton impulse. Thus, we can say that the nutrient concentration in the aquatic reservoir is an im-
portant driver in schemes to control phytoplankton growth. Here, our findings concur with the results
reported by the authors of [57]. Specifically, in comparison to the impulsive control of the zooplankton
population, the phytoplankton growth has a stronger relationship with the nutrient pulse.

Further, the frequency of pulses of plankton populations is also expected to rise due to the number
of pulses per period, which may play an important role in stabilizing the plankton systems [19]. Figure
4 shows the mean and the variance of plankton biomasses with respect to the frequency of pulses.
We observed that plankton populations tend to extinction when the number of pulses per period is
small. This might happen because a small number of pulses per period can lessen the concentration
of nutrients in the aquatic ecosystem, which may not support the survival of plankton populations.
However, an increment in the number of pulses may induce a significant increase in the mean and
the variance of plankton biomasses indicating that the densities of plankton populations show stronger
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Figure 3. Results for σ1 = σ2 = σ3 = 0.05+ 0.01 sin(πt/20). (a) The variance and the third-
order central moment of phytoplankton population and (b) zooplankton population versus
different nutrient pulses with α2 = 4; (c) the variance and the third order central moment of
the phytoplankton population and (d) zooplankton population versus different zooplankton
pulses with α1 = 3.

oscillatory behavior. These results reveal that an appropriate frequency of pulses can contribute to the
survival of plankton populations in the aquatic ecosystem.

4.2. Effects of stochastic perturbations

It is well known that all populations show substantial stochasticity in their ecological dynamics
[37]. Importantly, the random fluctuation plays a key role in determining the survivorship of plankton
populations in aquatic systems [39]. But, comparatively little attention has been given to the effect of
environmental fluctuation on an aquatic system with pulse perturbations. As one can see in Figure 5, the
means of nutrient concentration and plankton biomass are less affected by stochastic perturbations, but
environmental noise can significantly affect the variance of nutrient concentration and phytoplankton
biomass. It means that the presence of environmental noise can promote the oscillatory behavior of
nutrients and phytoplankton population.

Studies have shown that an excessive noise intensity can potentially affect the species richness and
completely destroy the plankton system of aquatic reservoirs [8]. For example, a dramatic decrease
in the temperature can cause the complete disappearance of the Cylindrospermopsis filaments [58].
Figure 6, depicts that for a smaller range of noise intensity, the amplitude of oscillations in the plankton
densities increases as the noise intensity increases. But, when the noise intensity is high, the nutrient
concentration becomes zero while the plankton populations disappear from the aquatic system. Similar
results were reported by the authors of [44]. These findings indicate that the control of environmental
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Figure 4. Results for model (2.2) with σ1 = σ2 = σ3 = 0.05 + 0.01 sin(πt/20) and α1 =

α2 = exp(1), showing the mean and the variance of phytoplankton biomass and zooplankton
biomass with respect to number of pulses per period. The path of plankton populations
indicates the changes of plankton biomasses for p = 2 and p = 5, respectively.

noise can have a dramatic role in the survival of both phytoplankton and zooplankton populations in
aquatic ecosystems.

5. Discussion

Over the past few decades, the control of algal blooms has received considerable attention among
research scientists. There has been an increasing focus on the roles of nutrients and zooplankton in the
growth of phytoplankton [59–61]. Due to the advantage of impulsive differential equations, modeling
approaches have become a widely used tool to enhance our understanding of pulsed instantaneous
behaviors that exist in aquatic ecosystems. Here, we have investigated a nutrient-plankton model with
impulsive control and stochastic disturbance. Our theoretical results showed the existence of a global
positive solution for the considered model. Moreover, we found that the amplitudes of oscillations in
the plankton density exhibit a more or less periodic nature under certain conditions.

Numerically, we saw the combined effects of nutrient and zooplankton pulses on the plankton pop-
ulation growth; see Figure 2. We observed that nutrient pulses have a more significant and enduring
impact on the phytoplankton biomass compared to the zooplankton pulse, and that plankton popula-
tions will tend to extinction when the nutrient pulse and zooplankton pulse are low. Importantly, when
the nutrient pulse is low, the phytoplankton population has become extinct in the aquatic system due to
a lack of nutrients, as shown in Figure 3(a). This situation may arise in the aquatic systems because an
inadequate nutrient pulse leads to insufficient nutrient concentration for the uptake of phytoplankton.
However, as the nutrient pulse increases, the variance of phytoplankton and zooplankton populations
exhibit an overall increasing trend, indicating stronger oscillatory behavior. One possible explanation
is that an increment in the phytoplankton biomass due to a higher nutrient pulse may provide sufficient
food for the grazer zooplankton [5]. We also noted that the density of the phytoplankton population
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Figure 5. Results for model (2.2) with σ1 = σ2 = σ3 = 0.1 + 0.01 sin(πt/20) and α1 =

α2 = exp(2). (a) The mean and the variance of phytoplankton and zooplankton biomasses;
evolution of a single path of (b) nutrient concentration, (c) phytoplankton population, (e)
zooplankton population.

does not change much in response to changing the pulse intensity of zooplankton even if a high pulse
of zooplankton is applied, as shown in Figure 3(c). These results further emphasize that the nutrient
pulse is strongly related to phytoplankton growth [62]. Overall, Figure 3 shows a positive association
between the nutrient pulse and the amplitudes of oscillations in the densities of plankton populations.
Notably, the zooplankton pulse does not significantly affect the phytoplankton population. These re-
sults suggest that the growth of phytoplankton is directly correlated with the concentration of nutrients
in the aquatic system.

Apart from the impulsive intensity, the frequency of impulsive control also has a direct role in
regulating plankton dynamics [14]. Our simulation results showed a significant positive correlation
between the number of pulses per period and the intensities of oscillations in the densities of plankton
populations, as shown in Figure 4. Biologically, Figure 4 tells that a low number of pulses per period
leads to stagnation in the growth of phytoplankton as the nutrient concentration declines in the aquatic
system [63]. However, a high frequency of impulsive control leads to an increased input of nutrients
into aquatic ecosystems, which can support the survivorship of the plankton populations. Thus, one
can say that an increasing number of pulses per period may contribute to the survival of plankton
populations in an aquatic habitat.

Environmental disturbances could not be neglected in the process of phytoplankton growth as en-
vironmental noise has the potential to alter population dynamics [37]. For instance, in [58], it was
experimentally demonstrated that a dramatic drop in the temperature can promote the disappearance
of the Cylindrospermopsis filaments. Therefore, we present Figures 5 and 6 to show the effects of
stochastic fluctuations on the impulsive control. It follows from Figure 5 that the noise intensity has
a significant effect on the variance of nutrients and phytoplankton, which implies that oscillations in
the densities of nutrient concentration and phytoplankton population have a positive relationship with
the environmental fluctuations. However, the results in Figure 6 suggest that the entire plankton pop-
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Figure 6. Time evolutions of nutrients (first column), phytoplankton (second column) and
zooplankton (third column) for model (2.2) and the corresponding deterministic model. Here,
we have chosen α1 = α2 = exp(2) and p = 3; σ1 = σ2 = σ3 = 0.2+ 0.01 sin(πt/20) in (a− c)
and σ1 = σ2 = σ3 = 0.5 + 0.01 sin(πt/20) in (d − f ).

ulation may collapse in response to increased noise intensity. This finding is in line with the results
reported in [58]. It suggests that the environmental fluctuations are likely to influence the plankton
dynamics whereas the noise control could be of practical significance for the mitigation of planktonic
growth. From the results obtained here, one can conclude that nutrient pulses may be more likely to
affect phytoplankton dynamics, and that the environmental fluctuations could have larger impacts on
aquatic ecosystems.

6. Conclusions

In this paper, a stochastic-impulsive coupled nutrient-plankton model was investigated. Our the-
oretical analysis showed that model (2.2) has a unique globally positive solution. Some sufficient
conditions have been derived for the existence of a positive T -periodic solution. Numerical results
revealed that due to the existence of impulsive control, the plankton dynamics experienced a transition
from extinction to species coexistence. The results indicated that the nutrient pulse is more effective
than the zooplankton pulse in controlling the phytoplankton growth. We observed that an increased
impulse frequency and an appropriate noise intensity can increase the amplitudes of oscillations in
the plankton density whereas an excessive noise intensity may cause a collapse of the entire aquatic
ecosystem. It is worth noting that our results may not predict the specific events within a particular
lake/ocean, but it contributes to the studies on how the coupling between stochasticity and impulse
influences the growth of phytoplankton species. Overall, the findings of this study may provide some
insights into the research on the relationships between the phytoplankton population, nutrients and
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zooplanktonic predators in a stochastic environment.
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