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Abstract: The goal of this study is to present an automatic vocalization recognition system of giant 
pandas (GPs). Over 12800 vocal samples of GPs were recorded at Chengdu Research Base of Giant 
Panda Breeding (CRBGPB) and labeled by CRBGPB animal husbandry staff. These vocal samples 
were divided into 16 categories, each with 800 samples. A novel deep neural network (DNN) named 
3Fbank-GRU was proposed to automatically give labels to GP’s vocalizations. Unlike existing 
human vocalization recognition frameworks based on Mel filter bank (Fbank) which used low-
frequency features of voice only, we extracted the high, medium and low frequency features by 
Fbank and two self-deduced filter banks, named Medium Mel Filter bank (MFbank) and Reversed 
Mel Filter bank (RFbank). The three frequency features were sent into the 3Fbank-GRU to train 
and test. By training models using datasets labeled by CRBGPB animal husbandry staff and 
subsequent testing of trained models on recognizing tasks, the proposed method achieved 
recognition accuracy over 95%, which means that the automatic system can be used to accurately 
label large data sets of GP vocalizations collected by camera traps or other recording methods. 

Keywords: Mel filter bank (Fbank); medium Mel filter bank (MFbank); reversed Mel filter bank 
(RFbank); gated recurrent unit (GRU); 3Fbank-GRU; vocalization recognition; deep neural 
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network (DNN) 
 

1. Introduction 

Animal vocalization is a fascinating topic and contains valuable evidence about animal 
behaviors and ecosystems. Giant pandas (Ailuropoda melanoleuca) are monestrous mammals and 
can make 19 different calls in their first 4–5 weeks of life or during their rather short breeding 
periods [1–10]. Each call has a specific meaning and the mixture of different calls expresses a 
certain emotion [1–3]. 

In the 80s’, the most representative system Sphinx [11] was developed by Lee Kaifu et al. of 
California Miramar University (CMU) based on hidden Markov model (HMM) [12], Gaussian 
mixture model (GMM) [13] and multivariate grammar model (N-gram) [14]. It is the first speech 
recognition system which is available to nonspecific person. 

One of the earliest works applied a convolution neural network (CNN) to identifying 10 
anuran species by bio-acoustic data [15]. In the same year, three of the six teams in the 2016 
BirdCLEF challenge submitted CNN systems taking spectrograms as input, including the highest-
scoring team [16]. Stowell investigated computational bioacoustics with deep learning and indicated 
at least 83 of the surveyed articles made use of CNNs until 2021 [17]. 

Recurrent neural network (RNN) [18,19] brought a new breakthrough for acoustic modeling of 
speech recognition. RNN created memory through the superposition of speech in time. Moreover, 
long-short term memory (LSTM) solved the problem of gradient vanishing of RNN [20]. The CS-
CLDNN (CBAM-Switch-CLDNN) combined the CNN and LSTM models with the convolutional 
block attention module (CBAM). The recognition accuracy of CS-CLDNN on 20 bird species 
reached 0.975 [21]. Bergler et al. proposed an orca call types classification based on ResNet18 [22] 
and Waddell et al. classified six fish call types in the northern Gulf of Mexico Stowell based on 
ResNet-50 [23]. 

However, training LSTM was not a trivial task because of its many parameters. Gated recurrent 
unit (GRU) [24] reduced computation cost through updated gates and reset gates while keeping 
“memory”. Zhang et al. presented a framework composed by convolution module and GRU module, 
to predict GP’s mating success using their vocalizations. However, the recognition accuracy is only 
about 85% [25]. 

According to the investigation in [21], there were many efforts on computational Bioacoustics 
using deep neural networks (DNNs). However, most of works focused on the species classifications 
based on animal calls, which were easier than the vocalization recognition since the sound 
differences among species were greater than the differences of the same species vocalizations. Few 
works devoted to call types classification [22,23,25] with classification accuracy about 85% and still 
had gaps between existing methods and vocalization recognition. 

In summary, although animal vocalization recognition is a very important in animal behaviors 
analysis and conservation, it is an unsolved open problem even now. Especially, for GP’s 
vocalization recognition, the difficulties are: 
1) Sound data collection and labeling is very difficult. The giant panda is a silent animal, only 
producing calls within four weeks of birth and during a very short mating season. The sound data 
were all manually labeled by the staff of Chengdu Research Base of Giant Panda Breeding 
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(CRBGPB). Thus, it required long time to collect GP’s calls and very heavy workload to manually 
label the sound data. 
2) There were a lot of ambient noises (such as people talking, opening and closing doors etc.) and 
calls such as peacocks and other birds. 
3) Existing methods cannot be used directly to GP’s vocalization recognition because of their low 
recognition accuracy. 

Therefore, we should propose a new framework both in feature extraction and vocalization 
recognition using DNN to improve the performance of existing methods. After analyzing the GP’s 
sound, we found that it is a broad frequency signal. Thus, two new filters, medium Mel filter bank 
(MFbank) and reversed Mel filter bank (RFbank), were proposed to extract medium and high 
frequency features. Combined above two band features with the low-frequency feature extracted by 
Mel filter bank (Fbank) [17], the three banks’ features were sent to a deep network composed by 
GRUs, named 3Fbank-GRU. 3Fbank indicated the inputs of the DNN were the features extracted by 
three filter banks and GRUs were the main components of the DNN keeping the ‘memory’ while 
reducing computation cost of LSTM. 

The main contributions of this paper are: 
1) Proposed a new feature-extraction scheme that not only used Fbank to extract low frequency 
features but also introduced new RFbank and MFbank to extract high and medium frequency 
features. 
2) Proposed a novel DNN composed by GRUs to process the three-bank features of GP’s sound data. 
3) The proposed 3Fbank-GRU method achieved a high recognition accuracy rate of over 95%, 
and was suitable for labeling large data sets of GP vocalizations collected by camera traps or 
other recording methods. 

The remainder of this paper is as follows: in the second section, the materials and methods are 
presented; Experiments and discussion will be given in Sections 3 and 4. 

2. Materials and methods 

2.1. Sample collection 

The data set of GP vocal samples was collected from 176 pandas at the CRBGPB. The subjects 
include cubs, sub-adult and adult GPs. We used a ShureVP89M directional microphone and a 
TascamDR-100MK3 handheld recorder (10 Hz~192 0.1/-0.5 dB) to record vocalizations made by 
GPs. When recording, sampling frequency was set to 48 KHz and 16 bits, since high sampling rate 
can reduce the distortion of audio and ensure the high frequency vocalizations that were recorded. 
The audio was saved in WAV format. 

At the same time, SONY FDR-AX60 video cameras were used to capture all the video and 
sound data of the subjects as the basis for classification of vocalization types. The experienced 
animal husbandry staff of the CRBGPB labeled the vocalizations of the GPs. 

20h 20min of data plus the data set previously collected, formed a total of 35h 50min data set. 
After data collection, the segments containing GP vocalizations were selected from the original 
datasets manually. Then, the selected segments were classified into 16 types (Table 1). If there was 
data that could not be labeled accurately because of noises or data missing, it was discarded.  

The data was edited with Goldwave audio editing software. The length of each sound clip was 2–4 
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seconds including at least two peaks of the original signal in order to observe dependency among 
neighboring vocalizations. Finally, we obtained a total of 12,800 samples which were divided into 16 
categories. Each category contains 800 samples. 

Table 1. Giant Panda Sound Samples. 

Serial 

number 

Age of Giant Pandas Callout Behavior or state Duration Number of 

segments

1 Giant Panda Baby Squeak Hunger 2–4 s 800

2 Giant Panda Baby Goo Full food 2–4 s 800

3 Giant Panda Baby Mm Fight and fight 2–4 s 800

4 Young Giant Panda Haw Pray for food 2–4 s 800

5 Young Giant Panda Hum Playing games 2–4 s 800

6 Adult Giant Panda Chirping Not willing 2–4 s 800

7 Adult Giant Panda Bleat estrus 2–4 s 800

8 Adult Giant Panda Bird Scream Granted 2–4 s 800 

9 Adult Giant Panda Bark Medium threat 2–4 s 800 

10 Adult Giant Panda Strong Bark Strong stimulus 2–4 s 800 

11 Adult Giant Panda Ow Area 2–4 s 800

12 Adult Giant Panda Howl Searching 2–4 s 800

13 Adult Giant Panda Roar  Precursors of direct attack 2–4 s 800

14 Adult Giant Panda Scream Strong threat 2–4 s 800

15 Adult Giant Panda Hiss Extreme panic 2–4 s 800

16 Adult Giant Panda Gasp Gasping 2–4 s 800

2.2. Preprocessing 

The sound data contained many systems and environmental noises. Therefore, the noise 
suppression was carried out to reduce the influence of background noises. We used the minimum 
mean square error (MMSE) estimation to suppress background noises (see Figure 1 and Table 2). 

      

Figure 1. Waveforms of the original signal and denoised signal of a GP’s call. From left 
to right: a waveform of original signal of a GP’s call, and a waveform of the denoised 
signal using MMSE estimation. 
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Table 2. Signal to noise rate (SNR) of GP sound signals before and after noise reduction. 

Signals 1 2 3 4 5 

Original Signals 8.8 12.26 15.88 28.24 29.35 

Denoised Signals 19.65 26.55 38.71 54.74 56.47 

2.3. Feature extraction 

Voiceprint is the acoustic spectrum that carries speech information. The most commonly used 
voiceprint in sound recognition is Mel filter bank (Fbank) coefficient [21]. However, the classical 
Fbank cannot get satisfied recognition results for GP vocalization recognition because it only 
extracts low-frequency information but the frequency spectrum of GP vocalization is very wide. In 
order to utilize more information from GP’s calls, two new filters were proposed to extract other two 
band coefficients, reverse Mel (RMel) coefficients and medium Mel (Mmel) coefficients, to improve 
the performance of the whole system. 

2.3.1. Fbank feature 

A typical framework of Fbank goes through a pre-emphasis filter, is sliced into overlapping 
frames and a window function is applied to each frame. Afterwards, Fourier transform is 
performed on each frame (or more specifically a short-time Fourier transform) and then the power 
spectrum is calculated. Next, convert the linear frequency to Mel frequency and then designs 
equispaced triangular filters on Mel-scale and coverts it to a linear frequency using Eq (3) to get 
dense triangles on low frequencies while sparse on other frequencies (Figure 2). Finally, converted 
triangular filters are applied to the power spectrum to extract the frequency bands [11]. 

              

Figure 2. Converted Mel filter banks on linear frequency (left) and the 3D diagram of 
the Fbank feature (right). The filters are dense on low frequencies and sparse on other 
frequencies (left). The GP voiceprint, the Fbank feature, was extracted using the 
method in subsection 2.3.1 (right). The frame length was 256 sampling points, frame 
shift was 128 sampling points, the length of FFT was 256 and the order of the filter 
bank was 24. 
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Fbank aims to mimic the non-linear human ear perception of sound by being more 
discriminative at lower frequencies and less discriminative at higher frequencies. However, 
designing filters directly on linear frequency to mimic human ears is not an in trivial task. The 
most useful function of Fbank is the equispaced triangular filters designed on Mel-scale. Then, the 
filters are converted to linear frequency to form dense filters on low-frequencies while sparse 
filters on medium and high frequencies (Figure 2). We designed Rmel and Mmel according to this 
method. The formula of converting linear frequency (f) to Mel frequency m is as follows: 

𝑚 2595 𝑙𝑜𝑔 1                                                              (1) 

Then, the equispaced triangular filters are designed on Mel-scale and the mth triangular filter is: 

𝐻 𝑘

⎩
⎪
⎨

⎪
⎧ ,     𝑓 𝑚 1 𝑘 𝑓 𝑚

0，                          otherwise

,     𝑓 𝑚 𝑘 𝑓 𝑚 1

                                          (2) 

Generally, a group of M (usually 22–26) triangular filters is used. The m represents the mth filter 
on Mel-scale, 0 𝑚 𝑀. 𝑓 𝑚 1 , 𝑓 𝑚 , 𝑓 𝑚 1  represent the lower, central and upper Mel 
frequencies respectively. 

And then, the Mel-scale on Eq (2) is converted to linear frequency using Eq (3) to get filters 
𝐻 𝑘 , 𝑓 1, ⋯ , 𝑀 on linear frequency. 

𝑓 700 10 1                                                         (3) 

The logarithmic energy is calculated as follows: 

𝐸 𝑙𝑜𝑔 ∑ 𝑝 𝑘 𝐻 𝑘 ,  0 𝑓 𝑀                                             (4) 

where p(k) denotes to power spectrum of the sound signal. The obtained value 𝐸  is the Fbank feature. 

2.3.2. New voiceprint features (Rfbank, Mfbank features) 

1) Rfbank feature 

The high-frequencies could be extracted by a group of non equispaced triangular filters which 
were dense on high frequency and sparse on other frequencies (Figure 3). According to the 
discussion in subsection 2.3.1, the non equispaced triangular filters could be designed as equispaced 
on a scale similar to Mel, named reversed Mel-scale first. Then, these equispaced triangular filters 
were converted to linear frequency to form non equispaced filters. 

Here, reversed Mel frequency 𝑚  is: 

𝑚 4292.2-2254× 𝑙𝑜𝑔 1
1400

                                           (5) 

where f is the linear frequency. 
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The triangular filter banks designed on reversed Mel-scale is equispaced and the 𝑚 th triangular is: 

𝐻 𝑘

⎩
⎪
⎨

⎪
⎧ ,     𝑓 𝑚 1 𝑘 𝑓 𝑚

       0，                    otherwise

,     𝑓 𝑚 𝑘 𝑓 𝑚 1

                                 (6) 

And then, covert the reversed Mel-scale on Eq (6) to linear frequency-scale using following 
equation to get filters 𝐻 𝑘 , 𝑓 1, ⋯ , 𝑀 on linear frequency. 

𝑓 8000 10
.

1 1400                                               (7) 

The logarithmic energy calculated using Eq (4) is the Rfbank feature.  

         

Figure 3. Converted Rmel filter banks on linear frequency (left), the 3D diagram RF of 
the bank feature (right). The filters are dense on high frequencies and sparse on other 
frequencies (left). The giant panda voiceprint, the Rfank feature, was extracted using the 
method in subsection 2.3.2 (right). The frame length was 256 sampling points, frame 
shift was 128 sampling points, the length of FFT was 256 and the order of the filter bank 
was 24. 

2) Mfbank 

According to the discussion in subsection 2.3.1, the medium-frequencies could be extracted by 
a group of non equispaced triangular filters which were dense on mediun frequency and sparse on 
other frequencies (Figure 4). The non equispaced triangular filters were designed as equispaced on a 
scale, named medium Mel-scale first. Then, these equispaced triangular filters will be converted to 
linear frequency (Hz) to form non equispaced filters. 

Here, medium Mel frequency 𝑚  is: 

𝑚
1073.05 527 𝑙𝑜𝑔 1 ,     0 𝑓 2000

1073.05 527 𝑙𝑜𝑔 1 ,     2000 𝑓 4000
                       (8) 

where f is the linear frequency. 
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Figure 4. Converted Mmel filter banks on linear frequency (left), the 3D diagram of the 
Mfbank feature (right). The filters are dense on medium frequencies and sparse on other 
frequencies (left). The voiceprint feature was extracted using GP the method in 
subsection 2.3.2, called Mfank feature. The frame length was 256 sampling points, frame 
shift was 128 sampling points, the length of FFT was 256 and the order of the filter bank 
was 24. 

 

Figure 5. 3Fbank-GRU model structure diagram (structures in gray shades). In order to 
show the inputs and outputs of the model, inputs extracted by Fbank, Mfbank and 
Rfbank are shown on the left of the figure while outputs are “labels of GP’s sound clips” 
laid on the top right corner of the figure. Three colors related to three kinds of features: 
Red is related to the Fbank feature and its 4-layer GRUs; Blue is related to the Mfbank 
feature and its 4-layer GRUs; Green is related to the Rfbank feature and its 4-layer GRUs. 
Fi, Mi and Ri, i = 1...n were inputs of Fbank, Mfbank and Rfbank respectively. H 
received the outputs of the three GRUs and merged them here. Dense composed by the 
full connected layers. Softmax represented the Softmax layers. 
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The triangular filter banks designed on reversed Mel-scale is equispaced and the 𝑚 th 
triangular is: 

𝐻 𝑘

⎩
⎪
⎨

⎪
⎧ ,     𝑓 𝑚 1 𝑘 𝑓 𝑚

       0，                    otherwise

,     𝑓 𝑚 𝑘 𝑓 𝑚 1

                                   (9) 

And then, covert the medium Mel-scale on Eq (9) to linear frequency-scale using following 
Equation to get filters 𝐻 𝑘 , 𝑓 1, ⋯ , 𝑀 on linear frequency. 

𝑓 2000 1 10
.

300,     606.86 𝑚 1073.05                         (10) 

The logarithmic energy calculated using Eq (4) is the Mfbank feature.  

2.4. Proposed method: 3Fbank-GRU 

A novel DNN model: 3Fbank-GRU model were proposed based on GRUs. That is, Fbank 
feature, Mfbank feature and Rfbank feature, whose lengths were n, were processed by three 
independent 4-layer GRUs with red, blue and green colors respectively (Figure 5). The final 
processed results of three 4-layer GRUs were fed into h and merged there. Then the merged 
features were sent to the full connected layers (Dense) and the Softmax layer to get vocalization 
labels of the sound clips. The labels were encoded by onehot encoder to define the differences of 
the loss in training. 

3Fbank-GRU model was trained using datasets labeled by senior animal husbandry staffs of the 
CRBGPB. The loss was cross-entropy. During training, the initial value of hyperparameters was: 
dropout was 0.5, parameter initialization used uniform initialization, batch-size was set to 64 in 
minibatch training, initial learning rate was set to 0.0001 with variable learning rates and step 
attenuation (see subsection 3.3). We used 10-fold cross validation to train and test. That is, the 
samples were randomly divided into 10 equal parts in each category. For each unique group, took 
the group as a test data set and the remaining 9 groups as a training data set. Fit 3Fbank-GRU on 
the training set and evaluate it on the test set. The average value of 10 experiments was taken as 
the final result. 

2.5. Method overview 

The target of this research is: to provide an automatic recognition system of GP’s sound clips to 
ecological researchers, which can help researchers to find more about the relationship between GP’s 
sound and their behaviors. The recognition can be carried out automatically according to follow 
procedures (see Figure 6): 
1) The collected sound data formed sound database. Clips in the sound database are preprocessing 
(denoising) firstly. And then, the features were extracted from the preprocessed signals by three 
banks: Fbank, Mfbank and Rfbank. 
2) Given the extracted multi acoustic features: Fbank coefficients, Mfbank coefficients and Rfbank 
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coefficients, the features were fed into 3Fbank-GRU to learn more discriminative features. 
3) The proposed model predicted the labels of GP’s vocalizations by using fully connected layers 
(dense layers) with Softmax activation function based on the acoustic merged features extracted at 
the 3 independent 4-layer GRUs. Specifically, GRUs generated a probability vector 𝑃 ∈ 𝑅 . The 
label was assigned as the category with the highest probability. 

 

Figure 6. The diagram of GP’s vocalization automatic recognition system. 

3. Results 

3.1. data 

There are 12,800 labeled GP vocalization samples, which were divided into 16 categories, each 
with 800 samples. The test and training data set are chosen according to 10-fold cross validation, 
which is explained at the end of subsection 2.4. 

3.2. Feature selection 

MFCC added discrete cosine transform to Fbank filter. In this subsection, we used MFFC features 
and Fbank features to verify the influence of these two types of voiceprint features on recognition 
accuracy. The experimental data was set as subsection 3.1 and 2.5. The recognition model was a single-
layer GRU network, the hidden layer dimension was 300 and the dropout was 0.5. The initialization 
was normal initialization, the learning rate was 0.0001, the training process used minibatch, batch 
size was 64 and the training was 100 epochs. 

From Figure 7, the accuracy of the MFCC feature on the training set was 88.54%, the accuracy 
on the test set was 81.50% and the average accuracy of the 10-fold cross validation on the test set 
was 82.06%. While the accuracy of Fbank on the training set was 92.65%, the accuracy on the test 
set was 85.05% and the average accuracy of 10-fold cross validation on the test set was 85.74%. 
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The experimental results showed that the recognition accuracy of MFCC was 3.68% higher than 
that of Fbank. Thus, the MFCC feature had better recognition performance than the Fbank feature 
when using the GRU for giant panda vocalization recognition. Therefore, we used MFCC feature in 
our recognition framework. 

 

Figure 7. Left: the result of a single experiment of MFCC feature. Right: the result of a 
single experiment of Fbank feature. The MFCC feature was a 36-dimensional vector 
while the Fbank feaure was a 24-dimensional vector. The red curve was the accuracy 
curve of the training set and the blue curve was the accuracy curve of the test set. 

3.3. Hyper-parameter selection 

3.3.1. Network layer 

In order to specify the layer of DNN composed by GRUs, we kept the model parameters except 
for the layers of DNN constant and observed the recognition accuracies of the different layers (see 
Figure 8). From Figure 8, we can conclude that the four layers had the best performance in five 
models and the network layer was set to 4. 

 

Figure 8. The Fbank feature was selected as the feature for different GRU layers. The 
number of model layers was taken from 1 to 5 and the rest parameters were kept 
unchanged. The results were from 10-fold cross validation. 
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3.3.2. Initialization 

From above discussion, when the number of layers of DNN was 4, the recognition accuracy 
reached 88.85%. Here, we fixed the model parameters and investigated parameter. Three commonly 
used parameter initialization methods, normal, uniform and orthogonal, were used to conduct 
experiments, and the experimental results were shown in Table 3. 

From Table 3, the uniform Initialization had the highest accuracy of 90.72%. Thus, the uniform 
was chosen as our initialization method. 

Table 3. Experimental results of different initialization methods. 

Parameter Initialization method Normal Uniform Orthogonal
(%) of Recognition Accuracy 88.85 90.72 84.88 

3.3.3. Batch size 

Batch size was generally 2 to the power of n, such as 16, 32, 64, etc. Here, the model structure 
was kept unchanged and uniform initialization was used with batch sizes of 16, 32, 64, 128 
respectively (see Table 4). From Table 4, the batch size 64 had the best the recognition accuracy and 
was selected as the batch size of proposed model. 

Table 4. Experimental results of different batch size. 

Batch size 16 32 64 128 

Recognition Accuracy (%)  87.88 89.06 92.65 90.28 

3.3.4. Dropout 

The dropout values were 0.2, 0.5, 0.7 and “without dropout”. The dropout 0.5 had the highest 
recognition accuracy and was the dropout of proposed model (see Table 5). 

Table 5. Experimental results of different dropout. 

Dropout 0.2 0.5 0.7 Not used 

Recognition Accuracy (%) 91.33 92.65 90.47 86.92 

3.3.5. Summary 

In summary, the feature of the ablation experiment was the Fbank feature and hyper-parameters 
were: four layers of DNN, 64 batch size, 0.5 dropout and uniform initialization. 

3.4. Model comparison 

Proposed 3Fbank-GRU were compared with Gaussian mixture model-hidden Markov model 
(GMM-HMM) [12,13], Fbank-GRU, Fbank-LSTM [19], 3Fbank-LSTM and KD-CLDNN [21]. All 



15468 

Mathematical Biosciences and Engineering  Volume 20, Issue 8, 15456–15475. 

three models used 16 categories (800 samples each) of GP labeled vocal samples in experiments and 
used 10-fold cross validation to train and test the system. 

3Fbank-GRU/3Fbank-LSTM (proposed method) extracted three kinds of features: Fbank, 
Rfbank, Mfbank and automatically gave labels of GP test sound clips (Figure 5). It had three 
independent GRUs whose parameters were not shared with each other. Each GRU’s layer was four 
and its hidden layer dimension was 300. 

Fbank-GRU/Fbank-LSTM’s feature was its Fbank coefficients and the recognition model was a 
one-layer GRU/LSTM with 300 hidden layer dimension. The other hyperparameters of training 
initialization both of Fbank-GRU, Fbank-LSTM, 3Fbank-LSTM and 3Fbank-GRU were set as 
described in subsection 3.3. 

We built an HMM for each category of samples. The number of states of an HMM was three, 
the number of Gaussian mixture elements for each state was three, the covariance matrix was the 
diagonal matrix and the number of iterations was 2000 times. 

CS-CLDNN proposed in [21] was a CNN-LSTM-DNN model. The low-frequency features of 
bird voices were extracted by Mel FBank and sent to two CNN modules. In each module, the 
convolutional layer was activated by Swish function, followed by a convolutional block attention 
module (CBAM) and MaxPooling. Then, the low frequency features and features extracted by two 
CNN modules were fed to LSTM and full-connected DNN to classification. CS-CLDNN was 
considered as a state-of-art method in bird voice classification because of its high accuracy. 

Table 6 showed average recognition accuracies of GP’s 16 vocalization categories using 6 
models. Not surprisingly, GMM-HMM had the lowest recognition accuracy 87.1%. The performance 
of GRU and LSTM were very similar both using features extracted by Fbank and 3Fbank. That is, the 
recognition accuracy of Fbank-GRU was 92.6% while Fbank-LSTM was 92.8%. The difference 
between two models was 0.2%. Moreover, the recognition accuracy of 3Fbank-GRU (96.9%) was 0.4% 
higher than the 3Fbank-LSTM (96.5%). Considering the training LSTM was more complex than the 
GRU, GRU was the more cost-effective model of the two. 

Table 6. Average recognition accuracy of 16 types of GP vocalizations with different 
models. The bold number are the best result. 

Model GMM-

HMM 

Fbank-

GRU

Fbank-

LSTM

KD-CLDNN

[21]

3Fbank-

LSTM 

Proposed Model 

3Fbank-GRU

Average recognition accuracy 87.1% 92.6% 92.8% 93.9% 96.5% 96.9% 

Although the average classification accuracy of 20 kinds of bird sounds using CS-CLDNN 
achieved 97.5%, the average recognition accuracy of GP’s 16 vocalization categories was only 93.9%. 
However, CS-CLDNN was with the highest recognition accuracy in models whose features were 
extracted only by Fbank. The other two models, Fbank-GRU and Fbank-LSTM were with 
recognition accuracies 92.6% and 92.8% respectively. The recognition accuracy of CS-CLDNN was 
higher 1.3% than Fbank-GRU while 1.1% than Fbank-LSTM. Thus, CS-CLDNN was the best model 
in models using Fbank features. 

When 3Fbank features were introduced, the recognition accuracies were improved by nearly 3% 
even compared to CS-CLDNN with the highest accuracy using Fbank features. That is, the accuracy 
of 3Fbank-LSTM was 2.6% higher than CS-CLDNN while 3Fbank-GRU was 3% higher than CS-
CLDNN. It was a big improvement. 
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Just as above discussion, LSTM and GRU have very similar recognition performance and 
models with 3Fbank features are big improvements over models with Fbank features. Thus, in order 
to observe the performance of different kinds of models in each of GP’s 16 vocalizations recognition, 
GMM-HMM, Fbank-GRU and 3Fbank-GRU are chosen to observe the recognition performance. 

The vocalizations with high recognition accuracies using the Fbank-GRU model included the 
cub’s “goo” and “chirping” and “gasp” of the adult GPs (see Table 7). The recognition accuracies 
of the above-mentioned three calls were higher than 96%. There were eight calls with low 
recognition accuracies: “squeak” of GPs’ cub, “mm-hmm” of sub-adult GPs and “hum”, “bird 
scream”, “scream”, “hiss” of adult GPs. Among them, the recognition accuracies of the six calls 
were lower than 91% while the classification of “bark” and “strong bark” was vague with more 
cases of miscommunication. The recognition accuracy rates for the remain six vocalizations were 
between 92% and 95% respectively. 

Table 7. Recognition accuracy of 16 types of GP vocalizations with different models. 
The bold numbers are the best results. 

Serial 

number 

Age of Giant Pandas Callout Recognition 

accuracy 

(GMM-HMM)

Recognition 

accuracy (Fbank-

GRU)

Recognition accuracy 

(proposed 3Fbank-

GRU) 

1 Giant Panda Baby Squeak 85.35% 89.07% 97.38% 

2 Giant Panda Baby Goo 91.23% 96.50% 98.74% 

3 Giant Panda Baby Mm-Hmm 87.01% 90.62% 96.56% 

4 Young Giant Panda Haw 86.90% 92.77% 96.88% 

5 Young Giant Panda Hum 85.60% 90.54% 96.62% 

6 Adult Giant Panda Chirping 92.52% 97.06% 98.27% 

7 Adult Giant Panda Bleat 89.14% 94.21% 97.95% 

8 Adult Giant Panda Bird scream 82.61% 89.64% 96.35% 

9 Adult Giant Panda Bark 84.58% 91.93% 95.29% 

10 Adult Giant Panda Strong bark 85.17% 91.43% 94.67% 

11 Adult Giant Panda Ow 85.20% 94.14% 97.21% 

12 Adult Giant Panda Howl 87.67% 92.72% 96.53% 

13 Adult Giant Panda Roar  89.56% 94.34% 96.73% 

14 Adult Giant Panda Scream 84.78% 90.61% 96.25% 

15 Adult Giant Panda Hiss 84.51% 89.97% 96.39% 

16 Adult Giant Panda Gasp 92.27% 96.02% 98.52% 

It is obviously that the recognition accuracies using Fbank-GRU for all categories were improved 
comparing with the accuracies using HMM-GMM. The average improvement rate was 5.47%. This 
implies that DNNs composed by GRUs are promising methods in GP’s automatic vocalization recognition. 

The recognition accuracies using 3Fbak-GRU were improved in all GP’s vocalization compared 
with both GMM-HMM and Fbank-GRU. As discussed in the previous paragraph, the performance of 
Fbank-GRU was better than GMM-HMM. Thus, we will only compare the proposed method 
(3Fbank-GRU) with Fbank-GRU. 

Six vocalizations with low recognition rate using Fbank-GRU: “squeak”, “mm-hmm”, “hum”, 
“bird scream”, “scream” and “hiss” whose recognition accuracies were about 90% are significantly 
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improved with more than 6% improvement rates and their recognition accuracies were all over 96%. 
The improvement of recognition accuracies for “barking” and “strong bark” were relatively small. 
There were still misclassifications, but recognition accuracies were increased more than 3%. Three 
calls: “goo”, “chirping” and “gasp” which had high recognition accuracies also had a slight 
improvement and their recognition accuracies exceed 98%. The recognition accuracies of the other 
kinds of vocalizations were also improved. 

In summary, all recognition accuracies using the proposed model were over 95% and the 
proposed model was best among the three recognition methods. The proposed DNN improved 
average accuracy by 4.3% compared with Fbank-GRU and by 9.77% compared with GMM-HMM.  

4. Discussion 

Both for the infant and adult GPs, vocalizations convey important information of breeding or 
needs to the mother. Considering captive GP’s, their low success rate of natural mating and low birth 
rate of newborns, vocalization recognition is very important to the management of captive GPs. 

4.1. Spectrogram characters of GP’s voice 

When Fbank features were used in speech recognition, the low frequency components of speech 
signals usually reflect the essential information of speech well. Nevertheless, for the GPs, the 
recognition accuracy of only using the Fbank feature and the GRUs was unsatisfied because of broad 
spectrum of animal calls. 

Table 8. Voice frequencies of giant pandas. 

Serial 

number 

Age of Giant Pandas Callout Frequency range of 

concentrated energy (Hz) 

Average frequency (Hz) 

1 Giant Panda Baby Squeak 260–10,200 6800 

2 Giant Panda Baby Goo 570–2200 1550 

3 Giant Panda Baby Mm-Hmm 875–7900 2950 

4 Young Giant Panda Haw 490–4100 1980 

5 Young Giant Panda Hum 910–5000 2830 

6 Adult Giant Panda Chirping 410–1900 1155 

7 Adult Giant Panda Bleat 280–4500 1890 

8 Adult Giant Panda Bird scream 410–6000 3160 

9 Adult Giant Panda Bark 270–3220 1745 

10 Adult Giant Panda Strong bark 220–3420 1820 

11 Adult Giant Panda Ow 150–2940 1545 

12 Adult Giant Panda Howl 180–3530 1855 

13 Adult Giant Panda Roar  310–4260 1985 

14 Adult Giant Panda Scream 560–6380 3370 

15 Adult Giant Panda Hiss 600–8450 3850 

16 Adult Giant Panda Gasp 350–1600 860 
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From Table 8, we can see that the frequency distribution of GP’s vocalizations is wide. Baby 
panda “cuckoo” sound, adult pandas “chirping” and “gasp” are the lowest frequency over all calls 
and their frequencies of concentrated energy are below 2000 Hz. The baby giant panda’s “goo”, the 
young giant panda’s “mm”, the adult giant panda’s “hum”, “bird scream”, “scream” and “hiss” have 
high frequency, whose average frequency is above 2000 Hz. The frequency of “squeak” is the 
highest, and can reach about 10.2 kHz. The average frequency of the vocalizations of the rest types is 
between 1500 and 2000 Hz. 

In order to observe the change trends between the recognition accuracy of Fbank-GRU and the 
average frequency of GP’s vocalizations, the GP’s vocalizations were coded to their serial numbers 
defined in Table 1. Moreover, the recognition accuracy of Fbank-GRU and 3Fbank-GRU was 
magnified by 40,000 times and subtracted by 35,000 to show it with the same order of the average 
accuracy’s values (see Figure 9). 

 

Figure 9. The average frequency of GP’s vocalizations (the blue curve), the 
magnification and translation versions of recognition accuracy using Fbank-GRU (the 
red curve) and using 3Fbank-GRU (the orange curve). In order to observe the change 
trends of recognition accuracy using Fbank-GRU and 3Fbank-GRU and the relation 
between each of model and the average frequency of GP’s vocalizations, the recognition 
accuracy of two models was magnified by 40,000 times and subtracted by 35,000 to let 
them be of the same order of magnitude as the average frequency. The x axis shows the 
serial number of GP’s vocalizations defined in Table 1. 

Observing Figure 9, we can conclude: 
1) The recognition accuracy of Fbank-GRU (the red curve) and the average frequency (the blue 

curve) had opposite trends. That is, the minimum of the recognition accuracy curve was the 
maximum of the average frequency curve, which mean the GP’s vocalizations with high average 
frequency were with low recognition accuracy while the low average frequency were with high 
recognition accuracy. In other words, Fbank-GRU had good performance only in low frequency signal. 
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2) The orange curve of 3Fbank-GRU floated above the red curve of Fbank-GRU, which mean 
the recognition accuracy of 3Fbank-GRU was higher than the Fbank-GRU. In addition, the orange 
curve was smoother than the red curve. Thus, the 3Fbank-GRU can handle wide average frequency 
signals better than the Fbank-GRU. 

As mentioned above, the GP’s vocalization frequency is very wide. Therefore, extracting high 
frequency and medium frequency features can help us increase the recognition accuracy.  Two new 
features, Mfbank and Rfbank, were proposed to improve the performance of Fbank features and the 
GRUs. In order to handle three features, three GRUs with not shared parameters were designed in 
our framework. The output of the three GRUs were spliced into one output finally (Figure 6). 
Experimental results were obviously improved compared with the Fbank-GRU model and the 
GMM-HMM. All accuracies of 16 vocalizations using the proposed model were over 95%, which 
mean that the system based on the proposed model can be used directly for the automatic recognition 
of GP’s vocalizations. 

4.2. Robustness in noise 

There are environmental and device noises in collected sound dataset. Fortunately, the highest 
energy of these noises concentrated on the low frequency. Thus, the most of noises can be suppressed 
by traditional high-passed filters. The MMSE was used to reduced noises (see subsection 2.2 and 
Table 2). 

4.3. Weakness 

However, there are some weaknesses that need further study. 
1) There are 16 categories of sample data in our paper, some kinds of calls are not included 

because of the small amount of data, such as “single call” and “low ow”. 
2) Although the recognition results of 16 kinds of panda calls are satisfactory, but the 

differences between each type of calls are not analyzed. 
3) The number of layers, Initialization and other parameters of the identification model have 

been discussed in this paper. However, the limited number of panda calls samples cannot fully reflect 
the statistical characteristics of all kinds of parameters. More data are needed to optimize the model. 

4.4. Future works 

1) Collect more types and numbers of giant panda calls to train and design new DNN model. 
2) Analyze the differences between the frequency features of different kinds of panda calls and 

study the voiceprint features more suitable for panda voice signals. 
3) Focus on both automatically recognize, locate and segment the PD’s vocalizations. 

5. Conclusions 

This paper is mainly based on using the voiceprint features and deep learning to identify GP 
vocalizations. Two new voiceprint features, Mfbank features and Rfbank features, were extracted 
by designing two new filters. These two types of voiceprint features were combined with the 
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Fbank voiceprint features to improve GP vocalization recognition. We designed a DNN model 
named 3Fbank-GRU to realize the automatic recognition of GP vocalizations based on the features 
of Fbank, Mfbank and Rfbank. Finally, our experiments showed that the recognition accuracies of 16 
vocalizations were over 95% and improved average accuracy by 4.3% compared with the Fbank-
GRU and by 9.77% compared with GMM-HMM. As the first effort to design a system for the 
automatic recognition of GP vocalizations, the proposed model will help researchers to better 
understand the role that vocalizations play in giant panda behavior. Moreover, since the system based 
on 3Fbank-GRU can label sound clips automatically, it will greatly reduce the work burden of 
manually analyzing vocalizations. 
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