
MBE, 20 (8): 15407–15430.
DOI: 10.3934/mbe.2023688
Received: 28 February 2023
Revised: 18 June 2023
Accepted: 16 July 2023
Published: 24 July 2023

http://www.aimspress.com/journal/MBE

Research article

MEMINV: A hybrid efficient approximation method solving the multi

skill-resource constrained project scheduling problem

Huu Dang Quoc

Department of Economic Information System and Electronic Commerce, Thuong Mai University, 79
Ho Tung Mau, Cau Giay, Ha Noi, Viet Nam.

Correspondence: Email: huudq@tmu.edu.vn.

Abstract: The Multi-Skill Resource-Constrained Project Scheduling Problem (MS-RCPSP) is an NP-
Hard problem that involves scheduling activities while accounting for resource and technical
constraints. This paper aims to present a novel hybrid algorithm called MEMINV, which combines the
Memetic algorithm with the Inverse method to tackle the MS-RCPSP problem. The proposed
algorithm utilizes the inverse method to identify local extremes and then relocates the population to
explore new solution spaces for further evolution. The MEMINV algorithm is evaluated on the
iMOPSE benchmark dataset, and the results demonstrate that it outperforms. The solution of the MS-
RCPSP problem using the MEMINV algorithm is a schedule that can be used for intelligent production
planning in various industrial production fields instead of manual planning.

Keywords: memetic algorithm; evolutionary computing; optimization; MS-RCPSP problem

1. Introduction

The MS-RCPSP [1–5] is a complex scheduling problem widely studied in operations research
and project management. It is a type of project scheduling problem that considers the order in which
tasks should be performed and the resources required to perform each task, such as labor, equipment
and materials. In the MS-RCPSP, resources are considered limited, finite and reused, meaning there
are restrictions on the number of renewable resources available at any given time. The goal of solving
the MS-RCPSP is to minimize the project's completion time, cost or both (multi-objective) while
ensuring that all resource constraints are satisfied. It is a widely studied problem with numerous real-

15408

Mathematical Biosciences and Engineering Volume 20, Issue 8, 15407–15430.

world applications, including construction, software development and manufacturing.
The MS-RCPSP problem has an important constraint: a resource can only perform the task if it

possesses the right skill type and the skill level is greater than or equal to the required skill level. This
constraint accurately describes reality. Moreover, resources have many skill types and skill levels, so
it is necessary to plan for allocating resources to perform practical tasks to improve the efficiency of
project implementation. MS-RCPSP is a problem of class NP-Hard, so the optimal solution cannot be
found in polynomial time. However, metaheuristic methods can solve the problem to find approximate
solutions in less time. In order to find a suitable solution for the MS-RCPSP problem, this paper
proposes the MEMINV algorithm developed from the Memetic algorithm [6–8] integrated with the
Inversion method. The solution to the MS-RCPSP problem when applying MEMINV is a schedule
that allocates resources to perform project tasks.

 The major contributions of this paper involve the following:

• Proposing the Inversion method to detect the local extreme of populations in the evolutionary
process over the generations. The local extreme detection is based on examining the number of
successive evolutionary generations of a population without changing the total project time.

• Proposing the Adaptive Localserach method to dynamically change the parameters during the
algorithm's evolution, including mutation coefficient, crossover coefficient and the number of
neighboring individuals used to perform the search.

• Proposing hybrid algorithm MEMINV based on combining the Memetic algorithm and the
Inversion method to improve problem-solving efficiency.

• Conduct experiments on the iMOPSE[4,5] dataset to verify the proposed algorithm.

The remainder of this paper is organized as follows: Part 2 provides an overview of related works
in the RCPSP and MS-RCPSP problems and studies existing research on evolutionary methods
employed to address these problems. Additionally, this section introduces the Memetic algorithm,
known for its effectiveness in solving NP-Hard class problems. Section 3 describes the mathematical
formulation of the problem, including the mathematical constraints and their implications. Part 4
presents the MEMINV algorithm, a hybrid approach combining the Memetic algorithm with the
Inversion method, aimed at enhancing solution efficiency.

2. Background and Literature review

The MS-RCPSP [2–5,9–11] is a sub-classification of the Resource-Constrained Project
Scheduling Problem (RCPSP), which has been proven to be an NP-Hard class, meaning that their
solutions cannot be found in polynomial time. Therefore, it is common to use approximate,
evolutionary algorithms to find an acceptable solution quickly.

2.1. Approximate methods to solve the Resource-Constrained Project Scheduling Problem

Numerous scientists have extensively researched and published various methods to discover
practical solutions for RCPSP and MS-RCPSP problems. These solutions are primarily based on
evolutionary computation algorithms, including Genetic Algorithms (GA), Particle Swarm
Optimization (PSO), Differential Evolution (DE) and Cuckoo Search (CS). Table 1 summarizes some
outstanding works to solve those problems.

15409

Mathematical Biosciences and Engineering Volume 20, Issue 8, 15407–15430.

Table 1. Summary of early works.

No. Based on Algorithm Problem References

1

GA

RCPSP 13,14,15,16

2 NPV-RCPSP 12

3 MS-RCPSP 17,18,19,20

4
PSO

RCPSP 21,23

5 MS-RCPSP 2,22

6
DE

RCPSP 24,25

7 MS-RCPSP 26

8 CS MS-RCPSP 31,32

Many authors widely use the GA algorithm to solve the RCPSP family of problems.
In [12], the authors use the GA integrated with the Immune to solve the NPV-Based RCPSP

problem. The algorithm is also applied with two additional variables to improve efficiency: local
search and forward-backward improvement. Mateja Đumíc et al. [13] using GA combined with many
different methods to determine the feasible schedule of RCPSP. In [14], O. Shuvo et al. consider
RCPSP by integrating chemical reaction optimization and genetic algorithm (CRO-GA), and the
authors have redesigned the basic operators of CRO and GA and the priority-based selection operator
to find out the schedules. The authors [15] introduce the quantum-inspired genetic algorithm (QIGA),
which is an adjusted GA algorithm to solve the RCPSP problem. In this algorithm, the authors improve
the initialization and update stages population using quantum gates and superposition. In paper [16],
the authors employ a combination of GA (Genetic Algorithm) and a two-point crossover operator to
tackle the resource-constrained project scheduling problem with transfer times (RCPSPTT).

The GA algorithm is used to solve the MS-RCPSP. In [17], the authors proposed the genetic
programming hyper-heuristic (GP-HH) algorithm, which has many improvements to improve solution
quality, including repair-based decoding of a solution, using ten simple heuristic rules designed to
construct a set of low-level heuristics, using GA with a high-level strategy and the design-of-
experiment (DOE) method is employed to investigate the effect of parameters setting. The performance
of GP-HH is evaluated on the iMOPSE dataset. The authors [18] use the breadth and depth methods
hybrid with the GA algorithm. In [19], the authors proposed the MOGP-HH/D algorithm to find out
the multi-objective of MS-RCPSP, which uses many technicals, including NSGA-II algorithm, local
search... design-of-experiment (DOE) by Taguchi method. In their study [20], the authors used several
methods to obtain a multi-objective solution for the problem. The first utilized a priority rule for
population initialization, followed by applying the NSGA-II algorithm to facilitate the search process.
Finally, they integrated a local search into the search process to enhance the quality of the results

Particle Swarm Optimization (PSO) is another commonly used metaheuristic for solving
scheduling problems. The authors of the paper [21] proposed an algorithm that is improved from PSO
to solve RCSPS. The new algorithm uses the "Valid Particle Generator" technique to detect feasible
solutions and, at the same time, applies more adaptive methods to improve the quality of the solutions.
In [2], the authors proposed a novel M-PSO algorithm to solve MS-RCPSP. The M-PSO is a hybrid

15410

Mathematical Biosciences and Engineering Volume 20, Issue 8, 15407–15430.

between the PSO algorithm and the Migration method that supports the population escapes from local
extrema. D. Q. Huu et al. [22] combined PSO with the re-assignment technical to recalculate the
resource assigned to execute the task after each generation. The proposed algorithms are conducted
with the iMOPSE dataset. In [23], the authors used PSO for the resource-constrained project
scheduling problem with varying resource levels (RCPSPVRL), an RCPSP extension. In the
RCPSPVRL, the total project duration is divided into many periods, each requiring a different quantity
of resources.

Additionally, the DE algorithm discovers extensive applications among various research groups
for solving scheduling problems. In [24], the authors proposed a two-stage multi-operator differential
evolution (DE) algorithm to solve RCPSP. The algorithm processes each generation through two stages,
including the exploration stage, and based on the diversity of the population and the quality of solutions,
this approach dynamically places more importance on the most-suitable DE and then repeats the same
process during the exploitation phase. In [25], improving DE (IDE) with the mutation technique is
used to speed up the algorithm's convergence speed. The author evaluates the new algorithm and
compares it with other algorithms, such as HGA and PSO, to demonstrate its effectiveness. The
authors [26] consider a multi-objective MS-RCPSP problem with priority constraints to find the
minimum deviation from the expected time to complete each project and allocate resources. The
schedule alternative is found based on the improved DE algorithm.

Researchers have also proposed and developed some variations of the MS-RCPSP problem.
In [27], the author extended MS-RCPSP to resource scheduling and cooperative multi-robot system
problem task allocation. for SAR (RSTA-RSSAR). In RSTA-RSSAR, the skills of multi-robot systems
are considered from both depth and breadth. In it, the processing time of activities in RSTA-RSSAR
changes with skill ability resources provided. In order to solve the problem effectively, a genetic
differential evolution algorithm (PS-GDEA) is proposed. Another variant is Real-RCPSP [28], which
extends from MS-RCPSP by adding a constraint on task execution time that varies according to
resource ability usage instead of a fixed duration. The authors also proposed an algorithm to solve the
Real-RCPSP problem based on the Adaptive method combined with the DE algorithm called A-DEM.

Furthermore, numerous research groups have embraced the utilization of the CS algorithm as a
valuable tool for addressing scheduling problems effectively. The authors use the Cuckoo Search
(CS) [29,30] algorithm to solve the scheduling problem. The CS uses Lévy Flight random walk to
evolve the population, using two search techniques: Local Search and Global Search. Authors of [31,32]
use this metaheuristic to solve the MS-RCPSP.

Moreover, many other researchers have also proposed state-of-the-art algorithms that offer
practical solutions for finding feasible schedules for the MS-RCPSP problem. The authors [33]
recommend the multi-objective evolution strategy (MOES) framework to discover multi-objective
solutions by focusing on generating and using mutation operators for good scheduling. In [34], the
authors proposed a discrete oppositional multi-verse optimization (DOMVO) algorithm with many
processing steps to get high effective such as using the black/white holes technique combined with the
path relinking technique, the opposition-based learning (OBL), a repair-based decoding scheme, and
the design-of-experiment (DOE) method.

Usually, to experiment with the proposed algorithms, the authors often use two primary datasets,
PSLIB [35] and iMOPSE [4,5], which was suggested by P. B. Myszkowski.

15411

Mathematical Biosciences and Engineering Volume 20, Issue 8, 15407–15430.

2.2. Memetic algorithm

Memetic algorithms (MAs) [6–8] are optimization algorithms that incorporate both evolutionary
and local search procedures to solve complex optimization problems. MAs have gained increasing
popularity in recent years due to their ability to overcome the limitations of traditional evolutionary
algorithms (EAs) by incorporating problem-specific knowledge to guide the search process.

In a memetic algorithm, individuals in the population are encoded as solutions to the optimization
problem and evolve through selection, crossover (recombination) and mutation. The genetic algorithm
generates new candidate solutions, while the local search method is used to refine the solutions
generated by the genetic algorithm.

Using local search methods in memetic algorithms can lead to faster convergence and improved
solution quality compared to traditional genetic algorithms. This is because local search methods can
exploit the structure of the problem space to find better solutions quickly. Moreover, the genetic
algorithm provides a mechanism for exploring the search space and avoids getting trapped in local
optima.

The Memetic algorithm performs the following steps:

• Step 1. Initialization: Generate an initial population of candidate solutions, each represented
as a chromosome.

• Step 2. Fitness evaluation: Evaluate the fitness of each chromosome in the population using
a fitness function.

• Step 3. Selection: Select pre-chromosomes for reproduction based on their fitness values.
• Step 4. Crossover: Combine the selected pre-chromosomes to create offspring chromosomes

through crossover (recombination) operation.
• Step 5. Mutation: Introduce random variations into the offspring chromosomes through

mutation operation.
• Step 6. Local search: To improve their solutions, perform a local search on some of the

offspring chromosomes.
• Step 7. Acceptance: Accept the offspring as the new population if they are better than the

current population, otherwise keep the current population.
• Step 8. Termination: Terminate the algorithm if a satisfactory solution is found or a stopping

criterion is met.
• Repeat steps 2 to 8 to create the next generation of solutions.

However, there are also some disadvantages to using MAs. One of the main drawbacks is that
MAs can be computationally expensive, as they require both global and local search procedures.
Another challenge is designing effective, problem-specific and efficient local search procedures can
be complex. Furthermore, MAs can also suffer from premature convergence, where the algorithm
becomes stuck in a local optimum and cannot escape finding the global optimum.

3. MS-RCPSP problem model

The MS-RCPSP has a wide range of real-world applications, such as in project management,
scheduling of manufacturing processes and resource allocation in large-scale engineering projects. The
ability to effectively solve the MS-RCPSP has significant implications for the efficiency and success

15412

Mathematical Biosciences and Engineering Volume 20, Issue 8, 15407–15430.

of these real-world applications.
To solve the MS-RCPSP, advanced optimization techniques are required to find the optimal

schedule. Solving the MS-RCPSP is to minimize the makespan, or the total time required to complete
the project while ensuring that all resource constraints are satisfied. The solution must also consider any
dependencies between tasks, meaning that predecessor tasks must be completed before others begin.

3.1. Resource-Constrained Project Scheduling Problem (RCPSP) and MS-RCPSP

RCPSP (Resource-Constrained Project Scheduling Problem) [1,9–12] is a problem of finding a
schedule to complete project tasks with limited renewable resources (usually smaller than the number
of tasks). The RCPSP problem is to find the best schedule to perform the project tasks under resource
constraints, and the tasks have a fixed order of execution. The objective function of the RCPSP problem
is evaluated based on the execution time (makespan), the cost of implementation (cost) or a
combination of both (multi-objective).

In RCPSP, multiple tasks are performed, and each task is described by start and end times with
some significant constraints as follows:

• When a task starts, it cannot be stopped until it is finished.
• Tasks are related to each other in order of execution. That is, the predecessors' task needs to

be completed before the start of the successor's task.
• Resources are finite and can be reused for other tasks. The number of resources allocated

should not exceed the amount available. Although a task can use multiple resources, a resource can be
used for only one task concurrently.

Multi-Skill (MS) RCPSP problem [2–5] is extended from the RCPSP. The MS-RCPSP added a
new constraint to the resources: each resource has many skills and a certain level. Therefore, each task
will require a specific skill type and skill level resource. The MS-RCPSP is a widely studied problem
with numerous real-world applications, including construction, software development and
manufacturing.

Example 1: A project with 10 tasks and 3 renewable resources.

• Tasks that require resources with the skill level required to perform are shown in Table 2.
• Resources with complementary skills and skill levels are shown in Table 3.

The notations:
• Wi: Task i, Lj: Resource j
• Si.j represents a skill type i with a skill level of j.

Table 2. The task requirement.

Task W1 W2 W3 W4 W5 W6 W7 W8 W9 W10

Required skill of the resource S2.1 S1.2 S1.3 S3.1 S2.2 S1.3 S2.2 S3.2 S3.1 S1.2

Based on the resource requirements for execution and the capacity of the given resources, we can
build a matrix describing the resource's ability to perform the task, as shown in Figure 1 below.

15413

Mathematical Biosciences and Engineering Volume 20, Issue 8, 15407–15430.

Table 3. The skills of resources.

Resource L1 L2 L3 L4

Skills
S1.3 S1.2 S1.3 S2.2

S2.1 S3.2 S3.1 S3.1

Figure 1. Resource's ability to perform the tasks.

3.2. Problem definitions

The MS-RCPSP problem can be conceptually formulated based on the notations in Table 4.

Table 4. The notations.

Symbol Description
Ci The set of tasks need to be completed before task i can be executed

S The set of all resource’s skills Si: the subset of skills owned by the resource
i, Si ⊆ S;

Si The skill i;
tj The duration of task j
L The resources used to execute tasks of the project
Lk The subset of the resources which can be performed task k; Lk ⊆ L
Li The resource i
W The tasks of the project need to do
Wk The subset of task which can be executed by the resource k, Wk ⊆ W
Wi The task i

15414

Mathematical Biosciences and Engineering Volume 20, Issue 8, 15407–15430.

ri The subset of the skill required by task i. A resource has the same skill and
skill level equal to or greater than the requirement that can be performed.

Bk, Ek The begin time and end time of the task k

Au,v
t The variable to identify the resource v is running task u at time t; 1: yes, 0:

no;
hi The skill level i;
gi Type of skill i;
m Makespan of the schedule
P The feasible solution

Pall The set of all solution
f(P): The function to calculate the makespan of P solution

n Task number
z Resource number

The MS-RCPSP problem could be state as follow:
f(P) → min (1)

Where:

𝑓𝑓(𝑃𝑃) = 𝑚𝑚𝑚𝑚𝑚𝑚
𝑊𝑊𝑖𝑖∈𝑊𝑊

{𝐸𝐸𝑖𝑖} − 𝑚𝑚𝑚𝑚𝑚𝑚
𝑊𝑊𝑘𝑘∈𝑊𝑊

{𝐵𝐵𝑘𝑘} (2)

Subject to the following constraints:

• Sk ≠ ∅ ∀ Lk ∈L (3)

• tjk ≥ 0 ∀ Wj∈ W, ∀ Lk∈ L (4)

• Ej ≥ 0 ∀ Wj∈W (5)

• Ei ≤ Ej - tj ∀Wj∈W, j≠1, Wi∈Cj (6)

• ∀ W𝑖𝑖 ∈ 𝑊𝑊𝑘𝑘 ∃ 𝑆𝑆𝑞𝑞 ∈ 𝑆𝑆𝑘𝑘 ∶ 𝑔𝑔𝑆𝑆𝑞𝑞 = 𝑔𝑔𝑟𝑟𝑖𝑖 and ℎ𝑆𝑆𝑞𝑞 ≥ ℎ𝑟𝑟𝑖𝑖 (7)

• ∀ 𝐿𝐿𝑘𝑘 ∈ 𝐿𝐿,∀𝑞𝑞 ∈ 𝑚𝑚 ∶ ∑ 𝐴𝐴𝑖𝑖,𝑘𝑘
𝑞𝑞𝑛𝑛

𝑖𝑖=1 ≤ 1 (8)

• ∀ 𝑊𝑊𝑗𝑗 ∈ 𝑊𝑊 ∃! 𝑞𝑞 ∈ [0,𝑚𝑚], ! 𝐿𝐿𝑘𝑘 ∈ 𝐿𝐿:𝐴𝐴𝑗𝑗,𝑘𝑘
𝑞𝑞 = 1; where 𝐴𝐴𝑗𝑗,𝑘𝑘

𝑞𝑞 ∈ {0; 1} (9)

The above constraints have the following meanings:

• Constraint (3) guarantees that each resource has at least one skill
• Constraints (4, 5) say that the execution time of any task must be at least 0 (in fact, every real

task, with a minimum execution time, is always greater than 0, the case is zero to illustrate two dummy
tasks representing the start and end of the project)

• Constraint (6) implies that the predecessor task (task i) must end before the successor task
(task j) starts. The time when task i ends is denoted Ei, and the time when successor task j starts is Ej -
tj (finish time minus execution time).

• Constraint (7) ensures that for every task i ∈ Wk (set of tasks that resource k can perform),

15415

Mathematical Biosciences and Engineering Volume 20, Issue 8, 15407–15430.

there is always a skill S ∈ Sk (skill set of resource k) such that gS= gSi : r’s skill type coincides with Li's
skill type that task i requires. hSq ≥ hr

i : the skill level of the performing resource is higher or equal to
the required skill level.

• Constraint (8) states that at each time (q), each resource can only perform at most one task. If

∑ 𝐴𝐴𝑖𝑖,𝑘𝑘
𝑞𝑞 =𝑛𝑛

𝑖𝑖=1 0, then resource k is not assigned to any task. If ∑ 𝐴𝐴𝑖𝑖,𝑘𝑘
𝑞𝑞𝑛𝑛

𝑖𝑖=1 =1, then resource k is assigned

to a single task.
• Constraint (9) ensures that each task is assigned to only one renewable resource and

performed by only one resource.

In the MS-RCPSP problem, each task has additional skill requirements of the renewable resource
needed to perform. Each resource is also divided into different skill types and skill levels. Figure 1
depicts an example of the resource skill constraints required to complete a task.

4. Proposed algorithm

This section describes the proposed evolutionary algorithm for the MS-RCPSP problem named
MEMINV, a variation of the Memetic algorithm [6-8] enhanced with the Inversion method.

4.1. Individual presentation

In the MS-RCPSP problem, the population is calculated and evolved over several generations to
improve the makespan of the project. Representing each individual in the population is a vector whose
elements correspond to the total number of project tasks. The value at each vector element denotes the
resource index assigned to perform the corresponding task.

Considering the project in example 1, an individual can be represented as a vector as shown in
Figure 2 below.

 Figure 2. Individual vector.

4.2. Adaptive Local Search method

The goal of the adaptive method is to adjust the crossover parameter µCR through each generation
to increase the algorithm's efficiency. The adjustment depends on the results of the evolutionary
performance of the population. The specific steps are as follows:

• The crossover parameter of the ith individual, denoted CRi, is calculated by the Cauchy
random function of the crossover parameter CR. The CR is calculated based on the number of
successful evolution individuals.

• When implementing the MEMINV algorithm, instead of using a fixed number of neighboring
individuals at the local search step, the algorithm dynamically calculates and changes the number of

Task index 1 2 3 4 5 6 7 8 9 10

Resource index 4 3 1 2 4 1 4 2 3 3

15416

Mathematical Biosciences and Engineering Volume 20, Issue 8, 15407–15430.

neighboring individuals based on the number of individuals that successfully evolve.
• Suppose the population has ten individuals, with the project duration given in Figure 3. It is

necessary to find three neighboring individuals with P5, the algorithm runs through the following steps:
o Step 1: Sort the population in ascending order of the project execution time of each

individual (calculated using the objective function); the result is shown in Figure 4.
o Step 2: Considering the sorted list of Pall to calculate the distance with the P5 individual,

it gets d5 = 13.
o Step 3: Considering Pall to get three individuals adjacent to P5. Neighboring individuals

obtained include P5
S = {P2, P4, P6}.

Pall Project time
P1 123
P2 130
P3 175
P4 127
P5 137
P6 150
P7 201
P8 185
P9 162
P10 173

Figure 3. The population to find neighbors.

Pall sorted Project time d5
P1 123 14
P4 127 10
P2 130 7
P5 137 0
P6 150 13
P9 162 25
P10 173 36
P3 175 38
P8 185 48
P7 201 64

Figure 4. Finding the neighboring individuals by distance from d5.

15417

Mathematical Biosciences and Engineering Volume 20, Issue 8, 15407–15430.

The Adaptive local search is shown in the algorithm 1.

Algorithm 1. AdaptiveLocalSearch
 Input: Pall: the population

current: the current individual to find the neighbors
µCR: crossover probability (global variable)

 Output: Pi
best: the best individual gets from the neighboring individuals

Begin
1. PR = {}; wmin = 3; wmax = 10;
2. fitness ← f(Pall)
3. i = index(current) // the index of current individual in Pall

4. mp = fitness(i)

5. N = sizeOf(Pall)
6. Psort

all ← sort(Pall, fitness) // sort population by fitness
7. Di = findDistance(i)
8. For j=1 to N
9. If abs(fitness(j) – mp) ≤ Di
10. PS= PS + {Pj}
11. End if
12. If (sizeOf(PS)>w) break;
13. End for
14. Pi

best = fbest(PS)
15. If (Pi

best != localbest) SCR = SCR + {µCR}
16. CRi = randci (µCR, 0.1)
17. c = rand(0,1)
18. µCR = (1 - c) × µCR + c × mean(SCR) //Adaptive factor
19. w = wmax – i/N × (wmax – wmin)
20. Return Pi

best
End Function
where:
 findDistance: function to find the maximum distance from position i (index of the curent individual)

to others to be able to get enough number of individuals neighboring of Pi.

4.3. Catching the local extreme

The traditional memetic algorithm operates by evolving a population over several generations
through several steps, including selection, crossover, mutation, local search and recombination to
create a new population. However, while evolving, the algorithms may fall into the local extreme and
iterate infinitely without leaving, so finding a better result is impossible. Therefore, the Inversion
technique moves the population to another solution space far from the local extreme. Integrating the
Inversion technique into the memetic algorithm leads to improved results.

In this step, the algorithm uses a marked variable cfail to count the times the makespan is not
changed over generations; if cfail was more significant than a specified threshold (cmax), then the
population has fallen into the local extreme. Equation (10) represents the calculation of cfail.

15418

Mathematical Biosciences and Engineering Volume 20, Issue 8, 15407–15430.

𝑐𝑐𝑓𝑓𝑓𝑓𝑖𝑖𝑓𝑓 = �
𝑐𝑐𝑓𝑓𝑓𝑓𝑖𝑖𝑓𝑓 + 1 𝑚𝑚𝑓𝑓 𝑚𝑚𝑛𝑛𝑤𝑤𝑚𝑚𝑓𝑓𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚𝑓𝑓𝑛𝑛 = 𝑜𝑜𝑜𝑜𝑜𝑜𝑚𝑚𝑓𝑓𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚𝑓𝑓𝑛𝑛

0 𝑚𝑚𝑓𝑓 𝑚𝑚𝑛𝑛𝑤𝑤𝑚𝑚𝑓𝑓𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚𝑓𝑓𝑛𝑛 ≠ 𝑜𝑜𝑜𝑜𝑜𝑜𝑚𝑚𝑓𝑓𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚𝑓𝑓𝑛𝑛
 (10)

4.4. Inversion method

Throughout the algorithm's evolution, upon detection of a local extreme, the Inversion method is
invoked to facilitate the population's elimination of the local extreme. This is achieved through the
following steps:

Step 1: Repeating with each individual
Step 2: Considering each task i of the individual, get out the Li of resources to execute the current
task, reordering the resources index in Li.
Step 3: Replacing the current resource with the resource which mirrors in Li. The formula (11)
shows this action.

 Li = {L1, L2, ..., Lm},m ≤ n

∀ 𝑊𝑊𝑖𝑖 ∈ 𝑊𝑊, 𝑗𝑗 ∈ [1,𝑚𝑚] ∶ 𝐿𝐿𝑗𝑗 ← 𝐿𝐿𝑚𝑚−𝑗𝑗 (11)

Figure 5 presents the Inversion technical by replacing the execution resource. Primarily, the task
being performed by resource L2 will be changed to Lm-1, and resource Lm does the task will be allocated
to L1.

Figure 5. Replace the resource that performs the task.

After applying the Inversion method, the population will be moved to a new location, allowing
the algorithm MEMINV to escape the local extreme, continue the evolutionary computation and
expand the solution space.

The Inversion method is present in Algorithm 2 below.

L1

L2

L3

...

...

...

Lm-2

Lm-1

Lm

L1

L2

L3

...

...

...

Lm-2

Lm-1

Lm

15419

Mathematical Biosciences and Engineering Volume 20, Issue 8, 15407–15430.

Algorithm 2. Inversion
Input: Pall – the population needs to move

 Output:Pnew – the result population
Begin
1. {
2. Pnew = {}
3. i = 1
4. p_size = size(P)
5. while(i < p_size) {
6. Pi ← Pall[i];
7. j_task = 1
8. n_task = size(Pi)
9. for { j_task = 1; j_task < n_task; j_task++)
10. {
11. Li ← the resources matching with L(j_task) requirement
12. Li ← Reorder(Li)
13. i_current ← current resource index to run task i
14. i_current = size(Li) – idx + 1
15. Lj_task = Li[i_current]
16. } // j_task
17. Pnew = Pnew + {Pi}
18. }
19. Return Pnew
20. }

4.5. MEMINV algorithm

The MEMINV algorithm is a hybrid algorithm from the memetic algorithm and the Inversion
method. The steps of the algorithm are detailed in Figure 6.

In the Figure 6, ALC is Active Local Search method used to dynamically find the individual in
the algorithm's evolution. The improvement of MEMINV is demonstrated in the ALC and “Inversion
steps”, with the ALC, the algorithm will conduct an individual based on dynamically changing the
number of neighboring and the crossover coefficient in the evolutionary process to get the local best
and "Inversion steps" will check for local extrema within the population and redirects it to another
region if it has fallen into one. This step is executed by applying the Inversion method.

15420

Mathematical Biosciences and Engineering Volume 20, Issue 8, 15407–15430.

Figure 6. The MEMINV algorithm diagram.

The MEMINV algorithm is present in Algorithm 3.

Algorithm 3. MEMINV
Input: dataset, gmax: number of generation,
 SCR: global variable, set of crossover coefficients of successful

evolution individuals

µCR: Crossover Probability (global variable)
µMP: Mutation Probability (global variable)

Pall = Init population
g = 0; gmax=50000; cfail = 0; cmax = 50;

Caculate makespan, fitness, best solution

g < gmax

Selection

Return {makespan, best}
End

Begin

False

True

new_makespan
makespan

False

Mutate

Crossover

ALC

Pall = CombinePopulation

Caculate new_makespan,
new_best, fitness

cfail = 0

cfail += 1 cfail = cmax

Pall = Inversion(Pall)
cfail = 0

new_makespan
< makespan

best = new_best
makespan = new_makespan

True

g += 1

True

False

Inversion steps

True False

15421

Mathematical Biosciences and Engineering Volume 20, Issue 8, 15407–15430.

w: number of neighbors for local search (global variable)
Output: best individual and makespan
1. Begin
2. {
3. {Read dataset}.
4. g = 0, cfail = 0, cmax = 50, SCR = {}; µCR = 0.5; w = 3;
5. Pall = {population initallation}
6. {makespan, best, fitness} = {Caculating the fitness of population

and the best individual}
7. while(g<gmax)
8. {
9. predecessors = Selection(population); // Select predecessor

chromosomes for reproduction based on their fitness values
10. offspring = Crossover(predecessors, µCR); // Perform crossover

on the population
11. offspring = Mutate(offspring, µMP); // Perform mutation on the

offspring
12. offspring = AdaptiveLocalSearch(Pall,offspring); // Perform

local search on some of the offspring
13. Pall = CombinePopulation(Pall, offspring); // Combine the pre-

population and offspring to create the new population
14. {new_makespan, new_best, fitness} = {Caculating the fitness

of population and the best individual from Pall}
15. if new_makespan != makespan then
16. cfail = 0
17. else
18. cfail += 1
19. end if
20. if (cfail = cmax)
21. Pall = Inversion(Pall)
22. cfail = 0
23. end if
24. if (makespan<new_makespan)
25. makespan = new_makespan;
26. best = new_best;
27. SCR += 1;
28. end if
29. g = g+1
30. } // end while
31. return {best, makespan }
32. }

In Algorithm 2, lines 15–19 aim to detect local extremes, while commands in lines 20–23 move
the population by calling the Inversion function. After moving the population, the algorithm continues

15422

Mathematical Biosciences and Engineering Volume 20, Issue 8, 15407–15430.

on the new solution area. In order to facilitate the parameter adjustment during the evolutionary process,
the algorithm utilizes a global variable called SCR. This variable keeps track of the number of
individuals that have successfully evolved over multiple generations.

5. Experimental results and analysis

In order to evaluate the performance of the proposed MEMINV algorithm, we experimented on
the iMOPSE [4,5] dataset presented in Table 5.

Table 5. The iMOPSE dataset

 Code Name Tasks Resources Precedence
Constraints Skills

1 iM01 100_5_22_15 100 5 22 15
2 iM02 100_5_46_15 100 5 46 15
3 iM03 100_5_48_9 100 5 48 9
4 iM04 100_5_64_15 100 5 64 15
5 iM05 100_5_64_9 100 5 64 9
6 iM06 100_10_26_15 100 10 26 15
7 iM07 100_10_47_9 100 10 47 9
8 iM08 100_10_48_15 100 10 48 15
9 iM09 100_10_64_9 100 10 64 9
10 iM10 100_10_65_15 100 10 65 15
11 iM11 100_20_22_15 100 20 22 15
12 iM12 100_20_46_15 100 20 46 15
13 iM13 100_20_47_9 100 20 47 9
14 iM14 100_20_65_15 100 20 65 15
15 iM15 100_20_65_9 100 20 65 9
16 iM16 200_10_128_15 200 10 128 15
17 iM17 200_10_50_15 200 10 50 15
18 iM18 200_10_50_9 200 10 50 9
19 iM19 200_10_84_9 200 10 84 9
20 iM20 200_10_85_15 200 10 85 15
21 iM21 200_20_145_15 200 20 145 15
22 iM22 200_20_54_15 200 20 54 15
23 iM23 200_20_55_9 200 20 55 9
24 iM24 200_20_97_15 200 20 97 15
25 iM25 200_20_97_9 200 20 97 9
26 iM26 200_40_133_15 200 40 133 15
27 iM27 200_40_45_15 200 40 45 15
28 iM28 200_40_45_9 200 40 45 9
29 iM29 200_40_90_9 200 40 90 9
30 iM30 200_40_91_15 200 40 91 15

15423

Mathematical Biosciences and Engineering Volume 20, Issue 8, 15407–15430.

5.1. Experimental parameters

Experiments were conducted with the following parameters and data:
• Benchmark instances: iMOPSE dataset (iM01 to iM30), each instance is a project with full

input parameters such as the number of tasks, the number of resources used to execute the
project, the number of precedence constraints and the number of resource skills.

• The initial number of individuals (i.e., solution, individual, schedule): 100
• The number of generations: 50,000
• The number of times the experiment was carried out on each element of the dataset: 30
• Experiment tools: Visual Studion 2019, C#, Net Framework 4.5
• PC configuration: CPU Core i5 2.2 GHz, 6GB RAM, Windows 10

5.2. Performance Analysis

Experimental results with the iMOPSE dataset are presented in Table 5. The results are aggregated,
compared and evaluated based on three factors:

• BEST - best makespan values - this is the shortest time to complete the project
• AVG - average execution time of 50 experiments with each instance dataset
• STD values - the standard deviation value between experiments on the same data instance

The schedule found by the proposed MEMINV algorithm is compared with the GA algorithm
developed by Myszkowski [36], as shown in Table 6.

The experimental results show that the proposed algorithm MEMINV is more efficient than the
GA algorithm on the following parameters:

• In term of BEST values, the MEMINV algorithm outperforms GA in 26 out of 30 projects,
achieving improvements ranging from 0 to 22.33%. However, in 4 projects, MEMINV performs worse
than GA, including the projects with 100 tasks and one project with 200 tasks. Figure 7.a and 7.b
illustrate the BEST values comparisons for 15 projects with 100 tasks and 15 remains with 200 tasks,
respectively.

• Regarding AVG values, MEMINV yields better results than GA in 25 out of 30 projects,
achieving improvements ranging from 0 to 23.31%. However, in 4 projects, MEMINV performs worse
than GA, including four projects with 100 tasks and one project with 200 tasks. Figure 8.a and 8.b
detail the AVG values comparisons for 15 projects with 100 tasks and 15 others with 200 tasks,
respectively.

• Moreover, MEMINV exhibits greater stability than GA with a total standard deviation of
133.9, compared to GA's 177.2 on 30 datasets of iMOPSE. Figure 9.a and 9.b present the STD values
comparisons for 15 projects with 100 tasks and 15 projects with 200 tasks, respectively. Overall, these
results suggest that MEMINV is a more stable and efficient algorithm for scheduling projects with a
large number of tasks, making it well-suited for real-world industrial applications.

15424

Mathematical Biosciences and Engineering Volume 20, Issue 8, 15407–15430.

Table 6. The results from the iMOPSE dataset.

Code Name
GA MEMINV

BEST AVG STD BEST AVG STD
 The projects have 100 tasks

iM01 100_5_22_15 517 524 5.3 475 478 2.8
iM02 100_5_46_15 584 587 4.7 584 596 4.5
iM03 100_5_48_9 528 535 9.7 523 526 10.7
iM04 100_5_64_15 527 530 2.5 505 506 1.8
iM05 100_5_64_9 508 521 9.9 487 498 4.9
iM06 100_10_26_15 292 292 1.7 295 301 0.3
iM07 100_10_47_9 296 296 2.3 283 285 2.0
iM08 100_10_48_15 279 282 2.9 272 281 3.7
iM09 100_10_64_9 296 305 6.6 256 260 0.9
iM10 100_10_65_15 286 290 5.0 285 296 3.6
iM11 100_20_22_15 163 169 5.8 140 141 2.1
iM12 100_20_46_15 197 207 6.9 166 172 8.3
iM13 100_20_47_9 185 186 0.5 181 183 0.6
iM14 100_20_65_15 240 240 0.5 207 212 5.5
iM15 100_20_65_9 181 187 4.5 181 182 1.3

 The projects have 200 tasks
iM16 200_10_128_15 577 583 4.9 576 585 2.3
iM17 200_10_50_15 553 577 17.5 546 572 17.5
iM18 200_10_50_9 585 589 5.0 549 554 4.8
iM19 200_10_84_9 567 583 11.4 535 542 6.8
iM20 200_10_85_15 549 555 4.9 540 543 3.7
iM21 200_20_145_15 326 329 1.9 282 285 1.7
iM22 200_20_54_15 363 385 20.8 328 345 14.5
iM23 200_20_55_9 312 318 4.2 267 273 5.0
iM24 200_20_97_15 424 438 9.7 409 422 11.2
iM25 200_20_97_9 321 326 6.2 283 285 1.1
iM26 200_40_133_15 215 222 6.2 169 171 5.3
iM27 200_40_45_15 201 210 6.3 178 179 0.1
iM28 200_40_45_9 209 213 2.9 181 183 1.9
iM29 200_40_90_9 211 215 3.1 196 200 1.8
iM30 200_40_91_15 200 205 3.4 174 181 3.2

 Sum 177.2 133.9

15425

Mathematical Biosciences and Engineering Volume 20, Issue 8, 15407–15430.

7.a. The BEST values of iM01 to iM15

7.b. The BEST values of iM16 to iM30

Figure 7. Comparison of the BEST parameter between MEMINV and GA.

a. The AVG values of iM01 to iM15

15426

Mathematical Biosciences and Engineering Volume 20, Issue 8, 15407–15430.

b. The AVG values of iM16 to iM30

Figure 8. Comparison of the AVG parameter between MEMINV and GA.

a. The STD values of iM01 to iM15

b. The STD values of iM16 to iM30

Figure 9. Comparison of the STD parameter between MEMINV and GA.

15427

Mathematical Biosciences and Engineering Volume 20, Issue 8, 15407–15430.

Experimental results demonstrate that the MEMINV algorithm is less effective for projects with
fewer tasks, but it achieves higher efficiency for larger projects. This suggests that MEMINV is well-
suited for scheduling real-world projects consisting of a series of jobs with a significant number of
tasks. For instance, MEMINV can be applied in various fields, such as equipment manufacturing and
industrial sewing lines.

6. Conclusion

In this paper, we have presented a mathematical formulation of the MS-RCPSP problem and
proposed a new algorithm, MEMINV, that combines the strengths of the Memetic algorithm and the
Inversion method. Our experiments on the IMOPSE dataset demonstrate that MEMINV outperforms
previous algorithms regarding BEST and AVG values, achieving up to a 22.33% improvement on
BEST values and a 23.31% improvement on AVG values. The total STD value suggests that the
proposed algorithm exhibits more excellent stability, meaning that it produces less difference between
experiment times.

The results suggest that MEMINV is a promising approach for solving complex scheduling
problems with a large number of tasks, which is critical for various real-world industrial production
scenarios, such as industrial machine lines or some other manufacturing sectors. Specifically,
MEMINV can enable enterprises to create more efficient production schedules, leading to more
automated and intelligent production systems that can replace manual labor.

In future work, we plan to investigate other approximation methods, such as random moves based
on Gauss, Cauchy, etc., to enhance further the quality of the schedules produced by MEMINV. Overall,
our research provides valuable insights into the MS-RCPSP problem and offers a practical solution
that can improve the efficiency of production scheduling in various industries.

Funding

This research is funded by Thuongmai University, Hanoi, Vietnam.

Use of AI tools declaration

The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

Conflict of interest

The authors declare that there are no conflicts of interest regarding the publication of this paper.

References

1. R. Klein, Scheduling of Resource-Constrained Projects, Springer Science & Business Media., 10
(2012).

2. D. Q. Huu, N. T. Loc, N. D. Cuong, An effective hybrid algorithm based on particle swarm
optimization with migration method for solving the multiskill resource-constrained project

15428

Mathematical Biosciences and Engineering Volume 20, Issue 8, 15407–15430.

scheduling problem, Appl. Comput. Intell. Soft Comput., 2022 (2022), Article ID 6230145.
https://doi.org/10.1155/2022/6230145

3. D. Q. Huu, N. T. Loc, N. D. Cuong, P. T. Toan, New effective differential evolution algorithm for
the multi-skill resource constrained project scheduling problem, in 2020 2nd International
Conference on Computer Communication and the Internet (ICCCI 2020)., Published by IEEE,
Nagoya, Japan, June 26–29, (2020). https://doi.org/10.1109/ICCCI49374.2020.9145982

4. P. B. Myszkowski, M. Laszczyk, Investigation of benchmark dataset for many-objective multi-
skill resource constrained project scheduling problem, Appl. Soft Comput., 127 (2022), 109253.
https://doi.org/10.1016/j.asoc.2022.109253

5. P. B. Myszkowski, M. Laszczyk, I. Nikulin, M. Skowro, iMOPSE: A library for bicriteria
optimization in Multi-Skill Resource-Constrained Project Scheduling Problem, Soft Comput. J., 23
(2019). https://doi.org/10.1007/s00500-017-2997-5

6. A. J. Wilson, D. R. Pallavi, M. Ramachandran, S. Chinnasamy, S. Sowmiya, A review on memetic
algorithms and its developments, Electr. Autom. Eng., 1 (2022), 7–12.
https://doi.org/10.46632/eae/1/1/2

7. S. Afsar, J. J. Palacios, J. Puente, C. R. Vela, I. González-Rodríguez, Multi-objective enhanced
memetic algorithm for green job shop scheduling with uncertain times, Swarm Evolut. Comput., 68
(2022), 101016. https://doi.org/10.1016/j.swevo.2021.101016

8. W. Seo, M. Park, D. W. Kim, J. Lee, Effective memetic algorithm for multilabel feature selection
using hybridization-based communication, Expert Syst. Appl., 201 (2022), 117064.
https://doi.org/10.1016/j.eswa.2022.117064

9. J. Piotr, E. Ratajczak-Ropel, A-team solving multi-skill resource-constrained project scheduling
problem, Proced. Computer Sci., 207 (2022), 3300–3309.
https://doi.org/10.1016/j.procs.2022.09.388

10. M. Laszczyk, P. B. Myszkowski, Improved selection in evolutionary multi–objective optimization
of multi–skill resource–constrained project scheduling problem, Inform. Sci., 481 (2019), 412–431.
https://doi.org/10.1016/j.ins.2019.01.002

11. J. Lin, L. Zhu, K. Gao, A genetic programming hyper-heuristic approach for the multi-skill resource
constrained project scheduling problem, Expert Syst. Appl., 140 (2020), 112915.
https://doi.org/10.1016/j.eswa.2019.112915

12. M. Asadujjaman, H. F. Rahman, R. K. Chakrabortty, M. J. Ryan, An Immune Genetic Algorithm
for Solving NPV-Based Resource Constrained Project Scheduling Problem, IEEE Access, 9 (2021),
26177–26195. https://doi.org/10.1109/ACCESS.2021.3057366

13. M. Đumić, D. Jakobović, Ensembles of priority rules for resource constrained project scheduling
problem, Appl. Soft Comput., 110 (2021), 107606. https://doi.org/10.1016/j.asoc.2021.107606

14. O. Shuvo, S. Golder, M. R. Islam, A hybrid metaheuristic method for solving resource constrained
project scheduling problem, Evolut. Intell., 16 (2023), 519–537. https://doi.org/10.1007/s12065-
021-00675-x

15. H. M. H. Saad, R. K. Chakrabortty, S. Elsayed, M. J. Ryan, Quantum-Inspired Genetic Algorithm
for Resource-Constrained Project-Scheduling, IEEE Access, 9 (2021), 38488–38502.
https://doi.org/10.1109/ACCESS.2021.3062790

16. R. L. Lilia Kadri, F. F. Boctor, An efficient genetic algorithm to solve the resource-constrained
project scheduling problem with transfer times: The single mode case, European J. Operat. Res.,
265 (2018), 454–462. https://doi.org/10.1016/j.ejor.2017.07.027

https://doi.org/10.1155/2022/6230145
https://doi.org/10.1109/ICCCI49374.2020.9145982
https://doi.org/10.1016/j.asoc.2022.109253
https://doi.org/10.1007/s00500-017-2997-5
https://doi.org/10.46632/eae/1/1/2
https://doi.org/10.1016/j.swevo.2021.101016
https://doi.org/10.1016/j.eswa.2022.117064
https://doi.org/10.1016/j.procs.2022.09.388
https://doi.org/10.1016/j.ins.2019.01.002
https://doi.org/10.1016/j.eswa.2019.112915
https://doi.org/10.1109/ACCESS.2021.3057366
https://doi.org/10.1016/j.asoc.2021.107606
https://doi.org/10.1007/s12065-021-00675-x
https://doi.org/10.1007/s12065-021-00675-x
https://doi.org/10.1109/ACCESS.2021.3062790
https://doi.org/10.1016/j.ejor.2017.07.027

15429

Mathematical Biosciences and Engineering Volume 20, Issue 8, 15407–15430.

17. J. Lin, L. Zhu, K. Gao, A genetic programming hyper-heuristic approach for the multi-skill resource
constrained project scheduling problem, Expert Syst. Appl., 140 (2020), 112915.
https://doi.org/10.1016/j.eswa.2019.112915

18. J. Snauwaert, M. Vanhoucke, A new algorithm for resource-constrained project scheduling with
breadth and depth of skills, European J. Operat. Res., 292 (2021), 43–59.
https://doi.org/10.1016/j.ejor.2020.10.032

19. L. Zhu, J. Lin, Y. Y. Li, Z. J. Wang, A decomposition-based multi-objective genetic programming
hyper-heuristic approach for the multi-skill resource constrained project scheduling problem,
Knowledge-Based Syst., 225 (2021), 107099. https://doi.org/10.1016/j.knosys.2021.107099

20. T. Zhou, Q. Long, K. M. Y. Law, C. Wu, Multi-objective stochastic project scheduling with
alternative execution methods: An improved quantum-behaved particle swarm optimization
approach, Expert Syst. Appl., 203 (2022), 117029. https://doi.org/10.1016/j.eswa.2022.117029

21. C. Stiti, O. B. Driss, A new approach for the multi-site resource-constrained project scheduling
problem, Proceed. Computer Sci., 164 (2019), 478–484.
https://doi.org/10.1016/j.procs.2019.12.209

22. D. Q. Huu, N. T. Loc, N. D. Cuong, The R-PSO algorithm solving multi-skill resource-constrained
project scheduling problem, J. Milit. Sci. Technol., 5 (2021), 71–82. https://doi.org/10.54939/1859-
1043.j.mst.CSCE5.2021.71-82

23. J. Joy, S. Rajeev, V. Narayanan, Particle swarm optimization for resource constrained-project
scheduling problem with varying resource levels, Proceed. Technol., 25 (2016), 948–954.
https://doi.org/10.1016/j.protcy.2016.08.185

24. K. M. Sallam, R. K. Chakrabortty, M. J. Ryan, A two-stage multi-operator differential evolution
algorithm for solving Resource Constrained Project Scheduling problems, Future Gener. Computer
Syst., 108 (2020), 432–444. https://doi.org/10.1016/j.future.2020.02.074

25. L. Wu, Y. Wang, S. Zhou, Improved differential evolution algorithm for resource-constrained
project scheduling problem, J. Syst. Eng. Electron., 21 (2010), 798–805.
https://ieeexplore.ieee.org/abstract/document/6075518

26. H. Kazemipoor, R. Tavakkoli-Moghaddam, P. Shahnazari-Shahrezaei, A. Azaron, A differential
evolution algorithm to solve multi-skilled project portfolio scheduling problems, Int. J. Adv. Manuf.
Technol., 64 (2013), 1099–1111. https://doi.org/10.1007/s00170-012-4045-z

27. J. Sun, Z. Peng, J. Cai, Problem specific genetic differential evolution algorithm for multi-skill
resource-constrained project scheduling of collaborative multi-robot systems for search and
rescue, in 2021 40th Chinese Control Conference (CCC)., Shanghai, China, (2021), pp. 1808–1813.
https://doi.org/10.23919/CCC52363.2021.9549589

28. N. T. Loc, Q. D. Pham, A-DEM: The adaptive approximate approach for the real scheduling
problem, in: Intelligence of Things: Technologies and Applications (eds N. T. Nguyen, N. N. Dao,
Q. D. Pham and H. A. Le), ICIT 2022 Lecture Notes on Data Engineering and Communications
Technologies., 148 (2022), Springer, Cham. https://doi.org/10.1007/978-3-031-15063-0_10

29. X. S. Yang, Nature-Inspired Metaheuristic Algorithms, Luniver Press, ISBN-13: 978-1-905986-
28-6, (2010).

30. X. S. Yang, S. Deb, Cuckoo search via Lévy flights, Proc. World Congress Nat. Biol. Inspired
Computing (NaBIC 2009), USA, (2009), pp. 210–214.
https://doi.org/10.1109/NABIC.2009.5393690

https://doi.org/10.1016/j.eswa.2019.112915
https://doi.org/10.1016/j.ejor.2020.10.032
https://doi.org/10.1016/j.knosys.2021.107099
https://doi.org/10.1016/j.eswa.2022.117029
https://doi.org/10.1016/j.procs.2019.12.209
https://doi.org/10.54939/1859-1043.j.mst.CSCE5.2021.71-82
https://doi.org/10.54939/1859-1043.j.mst.CSCE5.2021.71-82
https://doi.org/10.1016/j.protcy.2016.08.185
https://doi.org/10.1016/j.future.2020.02.074
https://ieeexplore.ieee.org/abstract/document/6075518
https://doi.org/10.1007/s00170-012-4045-z
https://doi.org/10.23919/CCC52363.2021.9549589
https://doi.org/10.1007/978-3-031-15063-0_10
https://doi.org/10.1109/NABIC.2009.5393690

15430

Mathematical Biosciences and Engineering Volume 20, Issue 8, 15407–15430.

31. D. Q. Huu, N. T. Loc, N. D. Cuong, P. T. Toan, New cuckoo search algorithm for the resource
constrained project scheduling problem, in 2020 RIVF International Conference on Computing
and Communication Technologies (RIVF)., Ho Chi Minh City, Vietnam, (2020), pp. 1–3.
https://doi.org/10.1109/RIVF48685.2020.9140728

32. H. Maghsoudlou, B. Afshar-Nadjafi, S. T. A. Niaki, Multi-skilled project scheduling with level-
dependent rework risk, three multi-objective mechanisms based on cuckoo search, Appl. Soft
Comput., 54 (2017), 46–61. https://doi.org/10.1016/j.asoc.2017.01.024

33. Y. Tian, T. Xiong, Z. Liu, Y. Mei, L. Wan, Multi-objective multi-skill resource-constrained project
scheduling problem with skill switches: Model and evolutionary approaches, Comput. Industr. Eng.,
167, (2022),107897. https://doi.org/10.1016/j.cie.2021.107897

34. L. Zhu, J. Lin, Z. J. Wang, A discrete oppositional multi-verse optimization algorithm for multi-
skill resource constrained project scheduling problem, Appl. Soft Comput., 85 (2019),105805.
https://doi.org/10.1016/j.asoc.2019.105805

35. R. Kolisch, A. Sprecher, PSPLIB-a project scheduling problem library: or software-ORSEP
operations research software exchange program, European J. Oper. Res., 96 (1997), 205–216.
https://doi.org/10.1016/S0377-2217(96)00170-1

36. GArunner tool. Available from: http://imopse.ii.pwr.wroc.pl/rcpsp_spsp_library.html

©2023 the Author(s), licensee AIMS Press. This is an open access
article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/4.0)

https://doi.org/10.1109/RIVF48685.2020.9140728
https://doi.org/10.1016/j.asoc.2017.01.024
https://doi.org/10.1016/j.cie.2021.107897
https://doi.org/10.1016/j.asoc.2019.105805
https://doi.org/10.1016/S0377-2217(96)00170-1
http://imopse.ii.pwr.wroc.pl/rcpsp_spsp_library.html
http://creativecommons.org/licenses/by/4.0

