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Abstract: Predicting the risk of mortality of hospitalized patients in the ICU is essential for timely 
identification of high-risk patients and formulate and adjustment of treatment strategies when patients 
are hospitalized. Traditional machine learning methods usually ignore the similarity between patients 
and make it difficult to uncover the hidden relationships between patients, resulting in poor accuracy 
of prediction models. In this paper, we propose a new model named PS-DGAT to solve the above 
problem. First, we construct a patient-weighted similarity network by calculating the similarity of 
patient clinical data to represent the similarity relationship between patients; second, we fill in the 
missing features and reconstruct the patient similarity network based on the data of neighboring 
patients in the network; finally, from the reconstructed patient similarity network after feature 
completion, we use the dynamic attention mechanism to extract and learn the structural features of the 
nodes to obtain a vector representation of each patient node in the low-dimensional embedding The 
vector representation of each patient node in the low-dimensional embedding space is used to 
achieve patient mortality risk prediction. The experimental results show that the accuracy is 
improved by about 1.8% compared with the basic GAT and about 8% compared with the traditional 
machine learning methods. 

Keywords: patient similarity network; graph neural network; missing value filling; mortality risk 
prediction 
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1. Introduction 

Electronic health records (EHRs) contain a wealth of information on individual patient diagnoses, 
tests, treatments and outcomes, which can be effectively utilized for clinical prediction studies, such 
as disease-assisted diagnosis and risk prediction. Predicting the risk of mortality in the ICU is a critical 
step in the treatment of critically ill patients, and if a patient is at high risk of mortality and stays in the 
ICU for a long time, a lot of medical resources are used and the burden on the patient’s family increases. 
By predicting the risk of mortality for a specific patient, it can help clinicians identify patients whose 
condition is likely to deteriorate, so that they can take appropriate treatment measures to prevent this 
group of patients from worsening and reduce the length of ICU stay. 

In recent years, medical research has gradually shifted from a population-based perspective to a 
personalized perspective, a trend known as precision medicine [1]. Taking inspiration from clinicians, 
who tend to rely on their past experience in treating similar patients when making clinical judgments, 
two patients should have similar clinical outcomes if they have similar clinical variables or histological 
characteristics. Node similarity, based on local information and proposed by some researchers [2], 
argues that the greater the number of common neighbors that exist between two nodes in a network, 
the more similar features these two nodes have, i.e., the greater the likelihood that these two nodes 
belong to the same type of label [3]. However, few people have applied the node similarity problem to 
patient outcome prediction problems, and according to recent surveys on the application of patient 
similarity networks in precision medicine or health data processing [4–7], representing data as graphs 
has the advantage of being highly interpretable and protecting privacy, because patient-specific 
information cannot be recovered from the similarity metric. Based on these findings, this paper 
proposes a patient similarity-based dynamic graphical attention network model for predicting patients’ 
mortality risk. Specifically, the similarity relationship between patients is determined based on their 
clinical data, such as diagnosis, examination and demographics during hospitalization. The two-by-
two similarity between patients can be naturally represented as Graph-Patient Similarity Networks 
(PSNs). Where each node represents a patient and the similarity between patients calculated using 
clinical data is represented as a weighted edge. Similar patients often have similar treatment trajectories 
and outcomes, so information from similar patients can often provide powerful support for outcome 
prediction, disease risk prediction, etc. [6]. This transforms the patient clinical outcome prediction task 
into a node classification task. 

The existence of many cases of unmeasured or unrecorded values of patients in electronic medical 
record data leads to a high number of missing values in the dataset, and most of the current processing 
of missing values focuses on methods, such as deletion [8], manual filling, filling of global constants 
such as N/A and Null and filling of mean or average values [9], which require time and effort on the 
one hand and low precision on the other. The GAT model [10] takes into account the different 
importance of different neighboring nodes, assigns different weights to different nodes in the 
neighborhood, and pays attention to the local structural features of the nodes, but also ignores the non-
local information of the nodes, such as the higher-order nodes that are most relevant to that node. 
Additionally, GAT can only calculate static attention, which has the same attention level for each node, 
and severely impairs and limits the expressiveness of the attention mechanism [11]. 

In order to solve the above problems, we propose a Patient Similarity Dynamic Graph Attention 
Networks (PS-DGAT) based model for mortality risk prediction in ICU, which first constructs a patient 
similarity network by calculating the similarity of patient clinical data to represent similarities between 
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patients, then fills in the missing features based on the data of neighboring patients in the network and 
update the patient similarity network, and finally predicts the risk of mortality of patients by the 
dynamic GAT model. 

The major contributions made in this paper are as follows: 
1) We construct a patient similarity network by calculating the similarity of patient clinical data 

and transforming the structured data into a graph structure, thus representing the relationship between 
patients more clearly. 

2) We use the data of adjacent patients in the network to complete the missing data and reconstruct 
the patient similarity network. 

3) We propose a PS-DGAT model to predict the mortality of ICU patients, and prioritize the 
vectors with large weights by adjusting the operation order of weighted vectors in GAT to make them 
better than GAT. 

4) We conduct a large number of experiments on the international large-scale public data set 
MIMIC-III, and compare with the current popular methods to confirm the effectiveness of the 
proposed model. 

2. Related work 

2.1. Mortality risk prediction 

Mortality risk prediction is an important task in the medical field and has attracted the attention 
of an increasing number of researchers in recent years. For example, some researchers [12,13] used 
traditional machine learning algorithms, such as support vector machines and logistic regression to 
predict the risk of mortality in heart failure patients, but these methods ignore information about the 
similarity between patients, resulting in limited prediction performance. To overcome these problems, 
some researchers have used graph neural networks to predict the risk of mortality in heart failure 
patients. For example, Lu et al. [14] proposed a graph neural network-based creation of weighted 
patient networks to extract potential relationships between patients for chronic disease prediction by 
projecting patient-disease dichotomous graphs. Since traditional GNNs cannot adequately consider the 
variability of neighboring nodes, the structural information learned is not comprehensive and robust 
enough [15]. Some other researchers [16] used the GAT model to predict the mortality risk of heart 
failure patients, achieving adaptive aggregation of different nodes. However, GAT can only calculate 
static attention, and for each query node, the attention level is the same, which limits its expressive power. 

2.2. Patient similarity 

In recent years, an increasing number of researchers have begun to use patient similarity for 
healthcare data analysis and prediction. Patient similarity analysis simulates the thought process of 
senior physicians comparing patients, and it refers to selecting clinical concepts (such as diagnosis, 
symptoms, examination tests, family history, past history, exposure environment, drugs, surgery, genes, 
etc.) as the characteristic terms of patients in a specific medical setting, quantitatively analyzing the 
distance between concepts in the semantic space of complex concepts, thus dynamically measuring 
the distance between patients and screening out the index patient similarity groups [17], so as to assess 
the current status of patients, predict their prognosis and recommend treatment options. Common 
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similarity calculation methods include Euclidean distance, cosine similarity, Pearson correlation 
coefficient, etc. Some researchers have constructed similarity networks by calculating the similarity 
between patients, for example, in disease prediction, drug treatment, etc. [18,19]. However, these 
methods calculate patient similarity based on only a single feature or a few features, without 
considering the combination of patients on multiple features, so it is difficult to reflect the similarity 
relationship between patients comprehensively and accurately. Moreover, these methods often ignore 
the missing data, which may lead to inaccurate similarity calculation and thus affect the accuracy of 
prediction results. 

In summary, traditional machine learning methods usually ignore the problem of similarity 
between patients when predicting their mortality risk. Also, the processing methods for missing values 
are simpler and cannot fully utilize the clinical data information of similar patients. In addition, despite 
the rapid development of deep learning in recent years, there is a lack of research in clinical risk 
prediction using graph neural networks. In this paper, we propose PS-DGAT for predicting the risk of 
mortality of patients in the ICU. The model uses several features, such as demographic characteristics, 
laboratory tests and comorbidities to calculate the similarity between patients, and represent the 
similarity relationship between patients as a patient similarity network. Missing features are filled in by 
using data from neighbor patients in the network. Finally, patient mortality risk prediction was achieved 
using a dynamic graph attention network, thus improving the accuracy of the prediction model. 

3. PS-DGAT model 

The detailed architecture of the PS-DGAT model is shown in Figure 1. 

 

Figure 1. Model flow chart. 

The model consists of the following three modules. 1) Data extraction module, which extracts 
patient feature data from the MIMIC-III database and screens the data according to the screening 
criteria. 2) Data processing module, which in the first step preprocesses the extracted data by filling in 
the missing values and then standardizing them, and then calculates the patient similarity and 
establishes the connecting edges between patient nodes whose similarity is greater than 0.5, thus 
constructing a patient similarity network. Then based on patient similarity the filled missing data is 
processed again by the feature complementation method, which reconstructs the missing features are 
reconstructed by propagating the known features on the graph. 3) The graph neural network module: 
The module mainly uses the dynamic attention mechanism to extract features from the patient 
similarity network reconstructed after feature completion, learns the structural features of the nodes, 
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and obtains the vector representation of the patient nodes in the low-dimensional embedding space to 
realize the prediction of patient mortality risk. The following will introduce these three modules and 
the training process of the PS-DGAT model in detail. 

3.1. Patient similarity network construction 

3.1.1. Patient similarity calculation 

Similarity of binary features. Gender and comorbidity features are 0, 1 binary features, which 
can form a binary feature set respectively. A and B represent two patients respectively, X represents the 
value of a feature corresponding to the patient and the similarity of patients can be calculated according 
to Eq (1), where the Sbf(A,B) value consistency is 1, and value inconsistency is 0. 
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A B

A B

X X
S A B

X X


  

，
（ ）           (1) 

Similarity of numerical features. Age, BMI, laboratory tests and vital signs are numerical features, 
which do not involve the time axis after normal normalization, respectively, and we form a 41-dimensional 
vector to calculate the similarity of numerical features. 

i inf i
S  2

A B（A,B）= （X +X ）                                (2) 

where iAX and iBX denote the value of the i-th feature of the patient, i = 1, 2,...,41. 

According to the degree of influence of each feature on the patient’s outcome, the similarity 
measure between the two patients was obtained after weighted summation. The calculation formula is 
as follows: 

1 2bf nfS S w S （A,B）=w                                (3) 

𝑤   is the weight of feature similarity, satisfying 𝑤 ∈ 0,1 ,  ∑ 𝑤 1. Obviously, 𝑆 𝐴, 𝐵 ∈ 0,1 , and 
the closer to 1, the higher the degree of similarity between patients. Referring to the current relevant 
research, this paper sets the weights of binary features and numerical features not 0.4 and 0.6 respectively. 

3.1.2. Patient similarity network construction 

After using the above method to calculate the similarity of the patient nodes, we obtain a similarity 
matrix, which represents the similarity score between each pair of patient nodes. Due to the large data 
latitude, we use the sampling method to select the data points with a large number of edges from the 
high-dimensional similarity matrix as the seed nodes, and use the random walk to sample the 
probability from the current node according to the weight, select the next node as the sampling result 
and update the current node as a new node. Repeat this step until a sufficient number of data points are 
sampled. In order to clearly show the similarity between patients, we sampled 20 data points and 
plotted the corresponding heat map, label code per cell per patient number. 
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Figure 2. Similarity matrix heat map. 

Through the sampled heat map, we can observe the similar patterns and cluster structures 
between different patients. Although we may lose some details and local information during the 
sampling process, the simplified heat map still provides meaningful information about the overall 
similarity relationship. This can help to understand the similarity between patients and provide 
intuitive visualization. 

Through the analysis of hyperparameters, we set the similarity threshold to 0.5, and add an edge 
between two nodes greater than or equal to 0.5 in the similarity matrix. In this way, we get a weighted 
patient similarity network. In order to visualize the patient similarity network more intuitively, we use 
the network diagram to display the 20 important nodes sampled above. As shown in Figure 3, each 
node represents a patient, and the edge represents the similarity between patients. 

 

Figure 3. Patient similarity network graph. 
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3.2. Missing feature completion 

To address the problem of serious missing data, since in node similarity neighboring nodes tend 
to have similar feature vectors [3], we propose to complete the node features using a patient similarity-
based feature completion method. Specifically, the missing features are updated by iteratively 
propagating the known features of neighboring nodes on the graph to better utilize the relationships 
between neighboring nodes to update in the missing feature values, resulting in a complete feature 
matrix. We then recalculated the patient similarity matrix using the patched feature data, which in turn 
reconstructed the patient similarity network. 

Feature completion is aimed at the problem of missing node attributes, while the dataset in this 
paper has the problem of non-existent edge structure in addition to missing attributes. Therefore, the 
missing data are first filled using KNN, respectively, to add labels to the missing data, and construct 
the similarity network using the method in Section 3.1. Then, the feature complementation algorithm 
reconstructs the missing features by iteratively diffusing the known features in the graph. Finally, the 
patient similarity network is reconstructed with updated node features, which are then fed into the 
downstream GNN model, and then generates predictions. The propagation process of the algorithm is 
implemented through the following steps: 

 

Figure 4. Feature completion framework. 

Initialization. Assignment of known feature values (i.e., non-missing values) to the 
corresponding nodes. 

Propagation. The missing values are updated by calculating the similarity between 
neighboring nodes, specifically, the updated values of the node feature vectors are calculated by 
the following equation: 

( * ( ))
( 1)

( )

ij j
i

ij

sum S x t
x t

sum S
 

                              
(4) 

where 𝑥 𝑡 1  denotes the feature vector of node i at the t-th iteration; 𝑆  denotes the similarity 
between node i and node j; ( )jx t  denotes the feature vector of node j  at the t-th iteration; ( )ijsum S  

denotes the similarity sum between neighboring nodes. 
End condition. Stop feature propagation iteration when the feature vector’s no longer changes or 

changes slightly or reaches the maximum number of iterations (40 times). 

Output result. Output the node feature matrix 'X  after convergence of iterations, where the 
feature vector of node j with missing features is reconstructed. 
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In summary, the flow of the patient similarity-based feature completion algorithm is as follows: 

Algorithm 1. Feature Completion 

Input: node feature vector X, similarity S 
Output: Reconstructed node feature vector X’ 
for each vector x = 1,2,...,i do 
  for neighbor vector x’ = 1,2,...,j do 

if X does not converge then 
Propagation feature: 
X = sum(S·x)/sum(S) 

        Reconstruct known features:
        X’ = X 

end if 
  end for 
end for 

3.3. PS-DGAT prediction model 

Let the feature matrix of the reconstructed patient similarity network 𝜗 𝜈, 𝜀   after feature 
completion be X , denoting the feature vector of node i. First, the attention coefficients of each patient 
and its neighbor nodes are calculated, and then the features of the nodes are learned using the dynamic 
attention mechanism to obtain the vector representation of the patient nodes in the low-dimensional 
embedding space, and finally the fully connected layer is input for binary prediction of patient 
mortality or not. The specific operation process is as follows: 

Attention coefficient. For each patient node i, the weight vector of ,i jh  its neighbor node is 

calculated, and the attention coefficient of ,i ja    each neighbor node is obtained by the softmax 

function, which is calculated as follows: 

,
,

,

exp( Re ( [ || ]))

exp( Re ( [ || ]))
i

i j i
i j

i k ik N

Leaky LU W h h
a

Leaky LU W h h








                      (5) 

where , ||i j ih h   denotes the feature vector ih   of node i is stitched together with the feature vector jh  

of neighbor node j. W is a learnable weight matrix and eaky Re ()L LU  is an activation function. 

Dynamic attention mechanism. The feature vector ih   of node i is obtained by weighting and 

summing the feature vectors of neighboring nodes using the attention coefficients ,i ja : 

,

i

i i j j
j N

h a h


                                         (6) 

Feature representation learning. Using the feature vector '
ih   of node i as input, mapping it to a 

vector representation iz   in a low-dimensional embedding space through a fully connected layer: 

Re ( )i iz LU W h b                                    (7) 
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where Re ()LU   is an activation function, W   is a linear transformation matrix and b  is bias term. 

Prediction. The low-dimensional embedding vector iz   of nodes is used as the input of the fully 

connected layer, and the binary prediction result of whether the patient died is output. 

( )T
i iy W h b                                   (8) 

where iy   denotes the prediction result of the node, TW   denotes the weight, b  denotes the bias and 

  denotes the softmax function. 
In summary, the process of ICU patient death risk prediction algorithm based on patient similarity 

dynamic graph attention network is as follows: 

Algorithm 2. Predicting the risk of mortality in ICU patients based on patient similarity dynamic graph attention network

Input: feature matrix X of the feature-complemented patient similarity network   （ ， ） 

Output: Prediction results for patient nodes iy  

for each node i v  do 

Step 1: Calculate the weight vector i,jh  of node i’s neighbor nodes and get the attention coefficient ,i ja
.
 

Step 2: Use the attention coefficient to weighted sum the feature vectors ,i ja  of neighbor nodes to obtain the 

feature vector ih  of node i . 

Step 3: Using the feature vector '
ih  of node i  in the reconstructed patient similarity network as input, it is 

mapped to the vector representation iz   in the low-dimensional embedding space through a fully 

connected layer. 

Step 4: The low-dimensional embedding vector iz  of the node is used as the input of the fully connected layer 

to output the binary classification result iy  of whether the patient died. 

end for 

4. Experiments 

4.1. Data extraction and data preprocessing 

4.1.1. Data extraction 

We used MIMIC-III v1.4, a large publicly available dataset containing approximately 60,000 
patients treated in intensive care units (ICUs) from 2001 to 2012 [20], and screened data using the 
following criteria: 1) patients diagnosed with heart failure according to International Classification of 
Diseases codes (ICD-9 codes); 2) patients aged ≥ 18 years at the time of ICU admission; 3) repeat 
admissions or repeat ICU admissions of the same patient, and only data from their first ICU admission 
were included; 4) exclusion of patients with missing N-terminal brain natriuretic peptidogen (NT-
proBNP) data. A total of 10,436 patients with a diagnosis of heart failure were queried, and 1255 adult 
patients were finally included in this study through screening. 

Based on previous studies [21–23], we mainly extracted four types of data: 1) demographic 
characteristics: age, gender, height and weight at admission; 2) comorbidities: including diabetes 
mellitus, hypertension, chronic kidney disease, chronic pulmonary obstruction, cardiac arrhythmia, 
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iron-deficiency anemia, hyperlipidemia and atrial fibrillation; 3) vital signs: vital signs within the 
first 24 hours after admission to the ICU, including temperature, heart rate, blood pressure and 
respiratory rate; 4) laboratory tests: throughout the ICU stay Laboratory examination index values, 
including NTproBNP, BNP, troponin, serum creatinine, red blood cells, white blood cells, platelet 
counts and so on. The coding of patient characteristics is shown in Table 1. 

Table 1. Information table of patient characteristics. 

Index Feature name Code 

1 
2 
3 
4 

ID 
hadm_id 
label 
age 

Numerical value 
Numerical value 
0 no dead, 1 dead 
Numerical value 

5 sex 1 male, 2 female 
6 BMI Numerical value 
7–15 comorbidity 0 no disease, 1 disease 
16–22 
23–51 

vital signs 
Laboratory tests 

Numerical value 
Numerical value 

4.1.2. Data preprocessing 

After extracting all the features of the patients according to the above criteria, we further 
processed the data to make it directly usable for the model. 

Missing value processing. We first use the typical missing value processing method, KNN fill, 
to initially process the data for missing values. In order to improve the accuracy of the missing value 
filling, we initially processed the missing values based on the KNN method, we propose the feature 
completion method to deal with the missing values again by constructing the patient similarity network, 
and reconstruct the missing features by iteratively diffusing the known features in the graph, so as to 
further improve the accuracy of the prediction model. The specific method is stated in Section 3.2. 

Data standardization. We categorized the data into binary and numeric. 1) Binary features 
included sex and comorbidities, which were assigned values of 1 and 0, respectively, based on whether 
or not they were male and whether or not they suffered from that comorbidity. 2) Age, BMI, vital signs 
and laboratory tests were numeric features, and we normalized each feature using the min-max 
normalization method, which scales the feature values to between 0 and 1, to ensure that they have 
similar scales. This is shown in Eq (9). 

minmax

min
normalized - XX

XX
X


                             (9) 

After preprocessing the data as described above, we use the method in Section 3.1 to calculate 
patient similarity and construct a patient similarity network. The data size statistics of the final input 
model are shown in Table 2. 
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Table 2. Data set size statistics. 

Dataset Nodes Edges Features Training Validation Test 
MIMIC-III 1255 5336 48 1005 125 125 

4.2. Experimental setup 

In this paper, the experimental data set is divided into training set, verification set and test set 
according to 8:1:1. A dynamic graph attention network was implemented using the Python 
programming language and a PyTorch-based deep learning framework to predict the risk of patient 
mortality. To make the experimental results reproducible, this paper uses SEED = 42 as a random seed 
to ensure the same randomness for each experiment. The hyperparameters of the training model were 
n_epochs = 100, batch_size = 128 and lr = 0.001. CPU was used for model computation during the 
training process. To facilitate the observation of the model performance, the classification effect of the 
model on the test set is measured by three metrics: AUC, Accuracy and F1 score. All experiments were 
run in the same environment. 

4.3. Baseline models 

The purpose of this study was to verify the effectiveness of the PS-DGAT model in predicting the 
risk of death in ICU patients. In order to verify the effect of the model, we compare it with traditional 
machine learning methods and use different graph convolution layers. The following comparison 
algorithms are mostly used. 

RandomForest (RF) [24]: Random forest is an integrated learning method that uses random 
feature selection and self-sampling techniques to improve model accuracy and generalization by 
combining multiple decision tree models for classification and regression. 

SVM [25]: It is a supervised learning algorithm for solving classification and regression 
problems by constructing optimal hyperplanes to establish decision boundaries between different 
classes of samples. 

Light GBM [26]: It is a gradient boosting decision tree algorithm for efficient model training and 
prediction through learning rate-based decision tree training and histogram algorithm acceleration. 

Decision trees [27]: are a typical classification method that first processes the data, generates 
readable rules and decision trees using inductive algorithms and then uses the decisions to analyze the 
new data. Essentially decision trees are a process of classifying data through a set of rules. 

Multilayer perceptron (MLP) [28]: is a feedforward artificial neural network model, which 
consists of input layer, hidden layer and output layer. The working principle is to add a hidden 
layer or a fully connected hidden layer between the output layer and the input layer, map multiple 
input data sets to a single output data set and convert the output of the hidden layer through the 
activation function. 

Graph Convolutional Neural Network (GCN) [29]: is a multilayer convolutional neural 
network where each convolutional layer processes only first-order neighborhood information, and by 
superimposing several convolutional layers, information transfer in multiple-order neighborhoods can 
be achieved. 

Graph attention network (GAT): Using attention mechanisms to learn relative importance 
between nodes and perform node classification or prediction tasks on graph data. 
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GraphSAGE [30]: Learning node representations by aggregating neighboring features of nodes 
enables efficient node classification and embedding learning on large-scale graph data. 

Cluster-GCN [31]: Partitioning large-scale graph data into multiple subgraphs using a clustering 
algorithm and then performing a convolution operation on each subgraph. 

4.4. Experimental results 

4.4.1. Overall experimental results 

In order to verify the effectiveness of our proposed model on the mortality risk prediction task, 
we compared the overall performance of the model with the baseline models on the MIMIC-III 
dataset, using Accuracy, AUC and F1 score as evaluation indicators. The comparison results are 
shown in Table 3. 

Table 3. Overall performance comparison of ours model and baseline models. 

Model 
evaluation metrics 

Accuracy (%) AUC (%) F1 score (%) 
RF 75.30 ± 025 70.53 ± 0.65 55.61 ± 0.29 
SVM 80.78 ± 1.22 72.77 ± 0.38 53.77 ± 0.64 
Light GBM 76.45 ± 0.30 69.45 ± 0.89 49.90 ± 0.44 
Decision Tree 79.20 ± 0.50 53.13 ± 0.21 45.86 ± 0.50 
MLP 87.46 ± 0.25 77.98 ± 0.53 60.50 ± 0.32 
GCN 87.35 ± 1.15 75.02 ± 0.25 62.28 ± 0.43 
GAT 87.96 ± 1.30 70.34 ± 0.67 63.30 ± 0.78 
GraphSAGE 87.20 ± 0.88 78.65 ± 0.38 52.86 ± 0.20 
Cluster-GCN 86.55 ± 0.34 75.48 ± 0.64 60.88 ± 0.56 
PS-DGAT 89.03 ± 0.98 80.92 ± 0.74 69.69 ± 0.23 

The above lists the performance of several models on the test set. From the above chart, it can be 
seen that compared with the other baseline models, the overall effect of the model in the prediction 
task is better than the traditional machine learning methods and GNN methods, and the Accuracy, AUC 
and F1 score values are higher than baseline model. The baseline models are categorized into 
traditional machine learning methods and graph neural network methods, and since the missing feature 
completion method proposed in this paper is based on graph models, the five machine learning models 
mentioned above, RF, SVM, Light GBM, Decision Tree and MLP, processed the missing values using 
only the traditional KNN filling method, and the other graph models use the feature completion method 
on top of the KNN filling to update the missing values. It can be found that the models that have used 
the missing feature completion method generally have higher overall performance. Moreover, in order 
to verify the effectiveness of the missing feature completion method for other graph models, we 
compare the graph baseline models that used feature completion with those that did not, and the 
comparison results are shown in Table 4. 

As shown in Table 4, compared to the traditional missing value processing method, our missing 
feature completion method has improved the performance of all other graph baseline models, and this 
result shows that the missing feature completion method is effective for the processing of missing 
features in graph models. 
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Table 4. Comparison of feature completion for baseline models performance improvement. 

Model 
with feature completion without feature completion 

Accuracy (%) AUC (%) F1 score (%) Accuracy (%) AUC (%) F1 score (%) 
GCN 87.35 ± 1.15 75.02 ± 0.25 62.28 ± 0.43 85.65 ± 0.35 74.53 ± 0.64 60.17 ± 0.13
GAT 
GraphSAGE 

87.96 ± 1.30 70.34 ± 0.67 63.30 ± 0.78 86.27 ± 0.23 69.44 ± 0.73 61.58 ± 0.11
87.20 ± 0.88 78.65 ± 0.38 52.86 ± 0.20 85.63 ± 1.02 76.88 ± 0.26 50.49 ± 0.70

Cluster-GCN 86.55 ± 0.34 75.48 ± 0.64 60.88 ± 0.56 85.11 ± 0.37 73.28 ± 0.74 58.91 ± 0.22
PS-DGAT 89.03 ± 0.98 80.92 ± 0.74 69.69 ± 0.23 86.20 ± 0.68 79.17 ± 0.52 67.30 ± 0.66

4.4.2. Comparison of missing value handling methods 

The processing of missing values is a key step in data preprocessing. The final effect of many 
models depends largely on the effect of missing values processing. In order to select an effective 
missing value processing method and to verify the effectiveness of the feature completion method, the 
prediction results of the model without feature completion and with feature completion methods after 
the missing values are not processed, mean-completion, median-completion and KNN-completion are 
compared, and denoted as unprocessed, Mean, Median, KNN, Mean+FC, Median+FC and KNN+FC, 
respectively. Thus, we verify the necessity and superiority of the feature completion method, and the 
obtained results are shown in Figure 5. 

 

Figure 5. Comparison of different missing value processing methods. 

Through the experiment results in Figure 5, for the MIMIC-III dataset, the use of KNN fill in this 
paper is better than other methods, and the feature completion algorithm to fill in the missing values 
has a significant improvement in the performance of the model and is superior to any traditional 
missing value processing methods. It shows that the effect of filling the missing features by 
propagating the information of neighboring nodes is superior to the use of missing value processing 
methods, such as mean and median. Thus, it verifies the effectiveness of the feature complementation 
method for the data in this paper. 
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5. Discussion 

5.1. Influence analysis of different iterations of the feature completion method 

We reconstruct the missing features by iteratively propagating the known features of adjacent nodes 
on the graph, and make better use of the relationship between neighbor nodes to fill the missing 
eigenvalues, so as to obtain a complete feature matrix. Among them, the condition for the feature iteration 
to stop is that the iteration stops when the feature vector no longer changes or changes slightly or reaches 
the maximum number of iterations (40 times). We explain the difference in the prediction results of the 
feature completion method under different iterations, as shown in Figure 6. 

 

Figure 6. Effect of iteration times on experimental results. 

 

Figure 7. Effect of similarity threshold on accuracy. 
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Figure 6 shows the difference in the prediction results of the feature completion method under 
different iterations. We observe that with fewer iterations, the prediction results may not make full use 
of the relationship between neighbor nodes for feature completion, so there may be a large error. As 
the number of iterations increases, the prediction results gradually converge and stabilize, and the error 
gradually decreases. However, when a certain number of iterations is reached, further increasing the 
number of iterations has no obvious effect on the improvement of the results, and the change of the 
feature vector is very small. Therefore, according to the experimental results and the results of 
convergence analysis, we chose the maximum number of iterations as 40 times. 

5.2. Influence analysis of similarity threshold of patient node edges 

Because setting different thresholds will produce different network structures, which will affect 
the classification results of the model, this paper analyzes the effect of setting the similarity threshold 
between 0 and 1 on the accuracy of the model. The experimental results are shown in Figure 7. From 
the figure, it can be seen that the threshold value has a significant effect on the experimental results. 
As the threshold value gradually increases from 0 to 0.5, the classification accuracy of the model also 
keeps improving. Because the model is classified according to the similarity of nodes, the higher the 
similarity, the more accurate the classification result. So, when the threshold value increases from 0, 
more and more less similar nodes are filtered out, and the effective impact of the embedding 
representation of the node similarity learning nodes based on local information will be smaller and 
smaller until all similar nodes are filtered out and the experimental results return to the initial state. 
The horizontal line in the figure indicates the classification accuracy of this paper’s model when other 
parameters are the same. It can be found that the model accuracy is highest when the similarity 
threshold is set at 0.5, so the threshold is set to 0.5 in this paper. 

5.3. Dimensionality reduction visualization analysis of PS-DGAT model 

 
(a)                             (b)                            (c) 

Figure 8. Visualization results of PS-DGAT model. (a) Initial features; (b) Features 
reconstructed after feature completion; (c) Features after node embedding. 

In order to better understand and explain the effect of the PS-DGAT model, we perform 
dimensionality reduction visualization analysis on the PS-DGAT model. Using t-SNE [32] 
dimensionality reduction technology, the patient feature space is mapped to a two-dimensional plane. 
The relative position and similarity relationship between patients are displayed visually, and the 
distribution and clustering patterns of patients in the two-dimensional space can be observed. 
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For Figure 8(a) initial feature distribution, it can be observed that the patient’s feature vectors 
show a certain aggregation trend. This means that in the initial state, the patient’s characteristics are 
relatively consistent in the numerical range, or have similar characteristic patterns. This may be due to 
the influence of data preprocessing, in which the features are normalized, scaled or outliers are 
removed. In addition, it is also possible that the patient data has similar pathological state or biological 
characteristics, resulting in similar feature vectors in the initial state. It should be noted that the 
aggregation of the initial feature distribution does not necessarily reflect the real differences and 
similarities between patients. Therefore, we explore the similarity between patients through further 
dimensionality reduction and visual analysis, and more accurately capture the feature patterns and 
correlations of patient data. 

For Figure 8(b) feature distribution reconstructed after feature completion, it can be observed that 
the patient nodes show a more dispersed distribution in the dimensionality reduction space, and the 
distribution of the nodes is relatively uniform. This shows that through the iterative propagation and 
similarity calculation of neighbor node features, we successfully recover the feature differences 
between patients and accurately capture the change patterns and correlations of patient data. In the 
process of feature completion, the feature information of neighbor nodes is effectively transmitted 
and utilized, so that the patient nodes can be better separated and expanded in the dimensionality 
reduction space. 

For Figure 8(c) feature distribution of nodes after embedding, it can be observed that the 
distribution of nodes shows the same color aggregation phenomenon, which means that we have 
successfully completed the classification task of nodes. Nodes with the same color clustering represent 
that they are classified as the same category or cluster, with similar feature patterns and attributes. This 
shows that our model effectively captures the similarities and differences between different patients 
when learning node embedding, so that similar nodes are close to each other in the embedding space, 
and different nodes are dispersed. Through this node aggregation phenomenon, we can clearly observe 
the distribution of patient data in the feature space, and further data analysis and interpretation can be 
performed based on these aggregation results. 

6. Conclusions 

In this paper, we propose a patient similarity-based dynamic graph attention network (PS-DGAT) 
for predicting the risk of patient mortality in ICU by combining node similarity with graph attention 
network, and first constructing a patient similarity network by calculating the similarity of patient 
clinical data to transform the structured data into a graph structure. Then, using similarity, missing 
features were entered and the patient similarity network was updated based on the data of adjacent 
patients in the network. Finally, the PS-DGAT model with adjusted order of weighted vector operations 
in GAT was used to predict the mortality of ICU patients. 

In this paper, experimental validation is performed on the MIMIC-III dataset, and the 
experimental results show that PS-DGAT has better prediction effect than the traditional classification 
methods, such as GAT, which proves the effectiveness of the model in this paper. The model in this 
paper also has shortcomings: only structured data are used for clinical data, which may have low 
prediction accuracy, and unstructured text data should be added in future studies to improve the model 
performance. In addition, when filling in the missing data in this paper, it is necessary to reconstruct 
the patient similarity network after reconstructing the features, which increases the complexity, and 
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better methods can be proposed in subsequent studies to improve the prediction accuracy while 
reducing the computational complexity and workload. 
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