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Abstract: Multivariate statistical monitoring methods are proven to be effective for the dynamic 
tobacco strip manufacturing process. However, the traditional methods are not sensitive enough to 
small faults and the practical tobacco processing monitoring requires further root cause of quality 
issues. In this regard, this study proposed a unified framework of detection-identification-tracing. This 
approach developed a dissimilarity canonical variable analysis (CVA), namely, it integrated the 
dissimilarity analysis concept into CVA, enabling the description of incipient relationship among the 
process variables and quality variables. We also adopted the reconstruction-based contribution to 
separate the potential abnormal variable and form the candidate set. The transfer entropy method was 
used to identify the causal relationship between variables and establish the matrix and topology 
diagram of causal relationships for root cause diagnosis. We applied this unified framework to the 
practical operation data of tobacco strip processing from a tobacco factory. The results showed that, 
compared with traditional contribution plot of anomaly detection, the proposed approach cannot only 
accurately separate abnormal variables but also locate the position of the root cause. The dissimilarity 
CVA proposed in this study outperformed traditional CVA in terms of sensitiveness to faults. This 
method would provide theoretical support for the reliable abnormal detection and diagnosis in the 
tobacco production process. 

Keywords: tobacco processing; canonical variable analysis; transfer entropy; reconstruction-based 
contribution; anomaly detection 
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1. Introduction  

Current modern light industry has witnessed intelligent transformation towards a smart 
manufacturing paradigm [1]. The level of quality control and equipment management remains an 
important indicator for assessing the intelligent manufacturing capabilities [2]. The current industrial 
big data platform in tobacco workshops makes real-time monitoring of production equipment state and 
production parameters possible [3]. Line quality monitoring and abnormal diagnosis based on 
production process data have become key technologies for ensuring high-quality and efficient 
operation in tobacco workshops [4]. How to fully utilize monitoring data to achieve intelligent root 
cause also pose a great challenge for tobacco enterprises. 

As the core process in tobacco production, tobacco strip processing technology transforms 
tobacco leaves into qualified tobacco with stable and consistent quality based on the physical and 
chemical characteristics of the leaf tobacco [5]. It typically includes three major production stages: 
primary processing, tobacco strip processing and blending and flavoring. Among them, the tobacco 
strip processing stage is the main process in the entire tobacco process [6]. This stage is a typical 
dynamic manufacturing process that operates in batch mode, characterized by multiple batches and 
frequent product changes. Such characteristics of the operation process could scientifically challenge 
precise monitoring and root cause of quality issue of the tobacco strip processing.  

Current research on monitoring and diagnosing the consistency of quality of tobacco strip 
processing is mostly based on univariate or multivariate statistical process control (MSPC) methods [7,8], 
using Partial Least Squares (PLS) [9], Principal Component Analysis (PCA) [10] and their extension 
models, such as Recursive PCA [11], Kernel PCA [12], Multidirectional PLS [13] and Sparse PLS [14], 
in conjunction with multivariate control charts, such as Hoteling T2 control chart [15] and 
Exponentially Weighted Moving Average Control Chart [16] or multivariate generalized likelihood 
ratio control chart [17], to monitor the anomalies and fluctuations in indicators of tobacco production 
status. Neural networks [18,19] or contribution plots [20] are then used for anomaly diagnosis. Zhao 
and Gao [21] developed sparse dissimilarity algorithm to isolate the incipient abnormal variables in 
cigarette production particularly the cut-made process. Feng et al. [22] proposed a dual attention-based 
encoder-decoder model as a long short-term memory network to make an online fine-grained quality 
prediction for the cigarette production process. The primary quality indicators are the moisture content 
from drier machines. Wang and Zhao [23] combined the nest-loop fisher discriminant analysis and 
relative change analysis to perform a probabilistic fault diagnosis. They demonstrated the effectiveness 
of this method via online monitoring and diagnosis of the cigarette cut-made process. Zhao et al. [24] 
developed an adversarial smoothing regularization for soft sensor and also design a tri-regression 
framework to improve the generalization performance. They applied this approach to the cigarette 
manufacturing process to predict the moisture at the outlets of drier machines. Shao et al. [25,26] 
proposed a bi-dimensional empirical wavelet transform based filtering approach and extended discrete 
modal decomposition approach to separate irregularities of the manufacturing process. 

The above research can effectively improve the control of quality fluctuations within different 
batches, to a certain extent, controlling batch consistency and stability. Nonetheless, the PLS, PCA and 
their extension algorithms contain complex singular value decomposition calculations. This 
calculation would lead to a significant increase in computational complexity with increasing data size, 
prohibiting real-time monitoring of process quality. Given that modeling with canonical variate 
analysis (CVA) only requires a one-step singular value decomposition with low computational cost [27], 



15311 

Mathematical Biosciences and Engineering  Volume 20, Issue 8, 15309-15325. 

CVA has been adopted as a typical MSPC approach for nonlinear dynamic process monitoring [28]. 
However, traditional CVA is not sensitive to incipient small faults and takes longer time to identify 
faults. This is because the initial faults are usually small enough to be masked by external disturbance, 
noise or accommodated by the control system. Additionally, traditional contribution plots and neural 
network methods can preliminarily identify the abnormal-related variables [29]. However, it is 
impossible to trace the root cause of anomalies and fail to achieve satisfactory monitoring and 
diagnostic results. The essential reason is that such methods highly depend on the correlation 
characteristics rather than the causal relationship between variables.   

To fill the research gaps above, we drew insight from dissimilarity analysis algorithm from the 
works by [21] and integrated this concept into traditional CVA. To enhance the sensitiveness of 
identifying incipient small faults in dynamic processes while ensuring the accuracy of online 
monitoring, we developed a dissimilarity CVA-based quality monitoring model for the tobacco strip 
processing. Transfer Entropy (TE) unifies information transfer and signal complexity to describe the 
causal relationship produced by information flow and is widely used for driving-response relationships 
in linear or nonlinear time series [30]. Based on the dissimilarity CVA model, this paper established 
an abnormal root cause diagnosis model based on TE and validated the effectiveness of proposed 
method using actual operational data from the tobacco production process. The contributions of this 
paper lie in the following aspects: (i) a unified framework of detection-identification-tracing was 
proposed for the purpose of identifying the root cause of faults ; (ii) a dissimilarity CVA was developed 
to avoid the insensitiveness of small faults in traditional CVA; (iii) superior performance of the 
proposed method was demonstrated via a detailed tobacco strip processing case. This study could 
arguably offer theoretical support for process state monitoring and intelligent diagnosis in tobacco 
production to ensure the stable and reliable operation.  

The rest of this study is organized as follows: Part 2 described the theoretical framework for the 
dynamic monitoring and anomaly tracing in tobacco strip processing. Part 3 illustrated the procedure 
of tobacco strip processing and analyzed the dynamic characteristics. Part 4 provided the model 
validation and results analysis via a practical case of strip processing in tobacco plant of China. Part 5 
discussed and concluded the study. 

2. Theoretical framework of anomaly monitoring and root cause of quality issue 

The framework for quality detection and diagnosis in tobacco production’s dynamic process 
mostly consists of three parts: offline modeling, online monitoring and identification and root cause 
diagnosis, as shown in the figure below. Starting with the offline process data of the tobacco strip 
processing, the dissimilarity CVA algorithm is used to extract high-dimensional data features, establish 
statistical estimates and control limits. Fault variables are separated adopting the Reconstruction-Based 
Contribution (RBC) and form a candidate set of quality-related variables for abnormal diagnosis. The 
TE model was used to quantify the causal relationships between variables in the candidate set and 
construct a topology diagram of causal relationship for root cause diagnosis. 
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Figure 1. Flowchart of quality monitoring and abnormal diagnosis of tobacco strip processing. 

2.1. Revisit the dynamic process modeling based on CVA 

CVA is a canonical subspace identification method in multivariate statistical analysis that 
achieves dimensionality reduction of high-dimensional data by maximizing variable correlations [27]. 
Assuming that the dynamic characteristics of the system state space model are represented as follows: 
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where   nt x R  and   mt y R  represent n-dimensional state vector and m-dimensional mass vector, 

respectively.   lt u R  is time series input data of the system, w(t) and v(t) are independent process and 

measurement white noise respectively; A, B, C and D are the coefficient matrices of the system. In 
order to decompose time series data, let time t denote the current time, and define the past information 
vector and present-to-future information vector as: 

                             '( )
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where l ' and f ' are the number of past and future truncation times, respectively. Based on this, the 
Hankel matrices of the aforementioned vectors are defined as follows: 

    '( ),..., 1 l l m Nt t N       P p p R                                    (4) 

    ',..., 1 f m Nt t N      F f f R                                      (5) 

where      t t t p p p ,      t t t f f f ,  tp  and  tf  are the sample mean. The covariance matrix 

and cross-covariance matrix of the two Hankel matrices can be represented as: 
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The linear combination of past and present-to-future information vectors  T tJ p  and  T tL f , and 
TJ and TL , can be regarded as the projection directions of vectors, and Pearson correlation is used to 

express their correlation. The maximum correlation can be achieved by performing singular value 
decomposition on matrix H: 

1/2 1/2

PP PF FF
ˆ ˆT 

    H J L                                      (7) 

where, the element on the diagonal of ∑ is the characteristic value of H, corresponding to the degree 
of correlation, also 1/2

PP
ˆ

 J J , 1/ 2

FF
ˆ

 L L . 

The CVA method divides the state space into a canonical correlation subspaces and residual 
subspaces. Since the two statistics often exhibit similar variations in dynamic processes, this paper 
adopts the statistics and control limits in canonical correlation subspace to monitor the quality of 
dynamic processes. When the process data follows a normal distribution, the statistical estimates and 
control limits in canonical correlation subspace can be expressed as [31]: 

2 T T
t q q tT p J J p                                             (8) 
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where q is the selected maximum correlation order, Jq is the first q row of J,  ,F q N q   represents 

the F distribution with degrees of freedom, N-q and q, and the confidence level is α. For new sample 
data i, if 2

i sT C , it indicates that the system is in a normal state, otherwise, an anomaly occurs. 

2.2. Dissimilarity CVA  

The traditional CVA is insensitive to small changes, such as sensor drifts, ambient temperature 
and humidity variations, or process parameter declines. Motivated by the dissimilarity algorithm [21,32] 
that quantitatively estimates the data distribution difference between fault and normal situations, one 
can capture small changes by evaluating how well the future canonical values are predictable from the 
past canonical values. The basic idea in the dissimilarity algorithm was that change of operation state 
can be reflected via the monitoring distribution of time-series data covering corresponding operation 
conditions. This suggests that evaluation of differences between the canonical variables (CVs) 
projected by past and future data can serve as an index for operation condition. The dissimilarity 
feature can be presented as below: 

     n n nd t L f t J p t                                  (10) 

where the t denotes the sample at time t, n is the number of singular values in CVA model, we selected 
the top n states to reduce Ln and Jn to first n rows, and  1 2, ,...,n ndiag     . The first term in this 

formula refers to the future projected CVs, while the second term past projected CVs.  
Let p nZ L F

 
and p nZ J P , the covariance of d(t) can be determined by: 
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At normal operation condition, d(t) is zero mean. The dissimilarity index can be formed as 
Mahalanobis distance of d(t) from zero, namely normalizing the squared of d(t) by Eq (11): 

       2 TT

nD t d t I d t                                            (12) 

Clearly, different from the T2 index in traditional CVA that only considers the past data, the 
dissimilarity index D(t) considers information both in the past and future data. Therefore, small 
changes of operation can be better detected as the departure of current state from the states predicted 
using past data. As the index is not necessarily satisfy normal distribution, we utilized the kernel 
density estimation (KDE) to estimate the probability distribution of D(t). Given the significance level 
of α, the corresponding control limit can be obtained, such that 
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where xk represents the samples of x and M is the total number of samples and h denotes the kernel 
bandwidth. Details regarding KDE can be found in [21]. A fault is detected when the dissimilarity 
index exceeds the upper control limit (UCL) of D(t). 

2.3. Variable selection based on the RBC model 

By monitoring production process data using statistical estimates and control limits, once a fault 
is detected, diagnosis of the fault source is necessary. The contribution plot reflects the degree of 
influence of variable changes on system stability. By comparing the contribution rates of various 
variables to the anomaly, the separation of fault variables can be achieved. RBC was first proposed by 
Alcala [28]. Its idea is to estimate the nominal normal measurement values of the variables affected 
by faults, and to identify and estimate the type and impact of the fault, balancing the difference between 
the fault sample statistics and the minimum value of the reconstructed sample statistics for measuring 
the contribution of the variable to the fault. For a fault sample, x=[x1, x2,…, xm]T, the statistical 
indicators of the reconstructed value zi are as follows: 

  2T
i i i i i M

index z z z f  M x , i i iz f x                         (14) 

where fi is the fault amplitude, ξi is the variable direction vector, with the i-th element as 1 and others 
as 0, M corresponds to zi in the canonical correlation subspace. Differentiating the above formula with 
respect to obtain the minimum index (zi): 

    
d

2 0
d
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i i i
i

index z
f

f
    x M                          (15) 

we get: 

  1T T
i i i if   


 M Mx                                    (16) 

Thus, the expression for the reconstructed contribution value of variable xi is as follows: 
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This section takes the reconstructed contribution diagram of the statistics in the canonical 
correlation subspace as the criterion, namely T

q qM J J  . If the reconstructed contribution value of 

variable xi is greater than the average contribution value, it is selected into the target candidate set of 
quality-related variables for abnormal diagnosis. 

2.4. Construction of quality topology diagram of causal relationship based on TE 

The TE model can describe the causal relationship among multiple variables, provided that the 
time series objects under study satisfy the Markov process [33]. The parameters of tobacco strip 
processing are only related to the current state, and belong to independent random processes, which 
meets the requirements of Markov without aftereffect. Let p

vu  and p
ru  be the time series input data 

corresponding to the two elements in the target candidate set of root cause variables; then the TE 
between variables is given by: 
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The equation reflects the dynamic information among variables in the target candidate set, where 
the joint probability  , ,p p

v v rp u u u  represents the dynamic correlation of the variables. Since the joint 

probability distribution cannot be calculated directly, it can be estimated using kernel density functions. 
The kernel density estimation function of vector, 1 2, , ...,

Tp p p
s  u u u  is given by: 
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where S is the data covariance matrix,  1/ 41.06 sN     is the bandwidth of the kernel function, which 
is a K-Gaussian kernel. To further determine the direction of influence, an influence direction 
measurement variable is introduced: 
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In the above formula, 0
v ru ut    indicates that uv is the dependent variable and ur is the causal 

variable; 0
v ru ut    means that uv is the causal variable and ur is the dependent variable; and   0

v ru ut    

indicates that there is no causal relationship between uv and ur. Based on the above causal relationship 
judgments, the matrix of causal relationship can be further synthesized to build the topology diagram 
of causal relationship and diagnose the root cause of abnormalities. 
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3. Description of the tobacco strip processing 

Tobacco strip processing serves as an important procedure in cigarette production and determines 
the flavor, style characteristic and final quality of cigarettes [34]. It mostly contains two operation 
machines, i.e., the HT warming and humidification machine and the SH drier machine. The illustrative 
plot of machines was shown in Figure 2. The leaf-silk is dampened and inflated by the HT machine to 
increase the filling rate of leaf-silk and better prepare for the following operation. Mechanical vibration 
and saturated steam injection in the vibrating body of HT made the leaf-silk fully mix and contact with 
the steam and absorb a large amount of heat energy.  Moisture on the surface of the leaves could be 
penetrated into the interior and soften itself. The leaves continuously absorb moisture from the 
surrounding hot steam and then evaporate and vaporize it repeatedly, causing the volume of the woody 
fibers in the leaves to expand significantly. The SH machine dries the moist leaf-silk rapidly in a barrel 
heated with conduction-convection of saturated steam. Leaf-silk is fed into the pre-chamber using a 
vibrating conveyor, and the heat exchanger plate mounted on the inner wall of the cylinder dries, lifts 
and scatters the leaf-silk. This process increased the curl and elasticity of leaf-silk with the required 
moisture content and improved the filling capability. Another merit of this process is to mix well the 
leaf-silk for even distribution of formula ingredients and additives, and thus ensure the basic stability 
of the composition and flavor of the same batch of cigarettes. 

 

Figure 2. Major machines in tobacco strip processing: (a) HT machine and (b) SH machine.  

The tobacco production state data collected by the intelligent monitoring system contains rich 
quality information. The fluctuation of the quality of the tobacco can be characterized by the dynamic 
physical data of temperature, humidity and stress. The fluctuation performance of complex and diverse 
environmental factors, such as high humidity, high temperature and variable pressure at different stages, 
largely determines the final quality of the tobacco. Due to the numerous quality-related factors and 
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complex coupling relationships, even a slight anomaly will cause the system to gradually deviate from 
the initial designed operation state over time [35]. Figure 3 shows the quality fluctuation factors of the 
tobacco strip processing. 
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quality of tobacco
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personnel, materials, 

measurements and methods

AbnormalitIes caused by 
fluctuation of equipment 

parameter

Exceptions caused by 
environment
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Abnormal factors lead to 
variation of other factors

Uneven 
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Steam 
temperature

Moisture 
content of 
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Figure 3. Analysis of fluctuation characteristics of quality of tobacco production. 

Table 1. Process variables of the tobacco strip processing. 

No. Variable description Unit 
1 Material flow setting value kg/h 
2 Rotational speed of the cylinder r/min 
3 Opening of the moisture exhaust valve % 
4 Steam flow rate m3/h 
5 Material moisture content at HT inlet % 
6 Cylinder wall temperature in zone I ℃ 
7 Cylinder wall temperature in zone II ℃ 
8 Steam flow rate at HT m3/h 
9 Negative pressure of the exhaust air μbar 
10 Temperature of material at HT outlet ℃ 
11 Material moisture content at HT outlet % 
12 Temperature of hot air ℃ 
13 Flow rate of material in the SH kg/h 
14 Flow rate of material in the HT kg/h 
15 Temperature of material at the outlet ℃ 
16 Steam pressure of the HT bar 

This paper focused on the tobacco production process of Golden Leaf (Dihao Brand) at the 
Nanyang Tobacco Factory of Henan China Tobacco Industry Co., Ltd. The core equipment on the 
production line includes SH thin-plate drying equipment and HT temperature-and-humidity-control 
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equipment, which integrated with various intelligent instruments and sensors, such as temperature and 
humidity sensors, flow meters, etc. Real-time data was recorded and transmitted to the control terminal, 
providing rich production process data. The process variables monitored by the model were shown in 
Table 1, and the process data were obtained from the MES system of the tobacco factory, which can 
comprehensively describe the status of the system equipment and production. Although some variables 
are set to their rated values, such as the hot air moisture content of 5500 L/h and the negative pressure 
of 600 μbar for dehumidification, the control module kept these variables in a dynamic state. Since the 
quality characteristics consider both the stability of quality within batches and the consistency of 
quality among batches, the system needs to be continuously monitored at high frequency over a long 
period of time. The initial data collection interval was set to 0.5 minutes, and 240 normal operating 
data samples were continuously collected for 2 hours to establish the model. 

The moisture content of the exported material was adopted as an important quality performance 
indicator. The process standard for the Golden Leaf (Dihao Brand) tobacco product required a moisture 
content of 12.5–13.5%. The corresponding quality abnormality was that the tobacco at the export stage 
under the limit of a reasonable moisture content. This article temporarily took this indicator as the 
quality variable to verify the effectiveness of the proposed quality monitoring-diagnostic model. 

4. Model verification and result analysis 

4.1. Model parameter setting 

In modeling the dynamic process of tobacco strip processing, the quality vector had a dimension of 
one, and the dimension of the input time series data was 16, with both variables l' and f' set to 3. The 
confidence level of the F distribution was 95%, and the relevant order q of the projection direction matrix 
J was 8. Based on historical operational data, quality monitoring of dynamic process was calculated. To 
verify the effectiveness of the model, an additional hour of normal operation data, consisting of 120 
samples, was collected as test data under the product brand of Golden Leaf (Dihao Brand). 

4.2. Online monitoring and abnormal identification 

Based on the offline monitoring data samples of two hours of normal operation, statistics and 
control limits in canonical correlation subspace were constructed, and the projection direction matrix 
J was calculated. The process monitoring statistical result was shown in Figure 4(a). The T2 value has 
been consistently maintained within the control limit and has a certain distance from the upper and 
lower control limits, indicating that the system has good process capability. To further test the 
monitoring ability of the model for system variations, two types of faults were designed, as shown in 
Table 2. Those faults were brought into the system at the 20th sample time (half minutes). It should be 
noted that the criterion for determining whether a process is out of control is to exceed the control limit 
five consecutive times, rather than just one or two occurrences.  

Table 2. Fault scenarios in tobacco strip processing. 

ID Variables Description Value of δ Type 

F1 Steam flow rate Ri = Ri,0 + δt 0.05 Additive 
F2 Material moisture content at HT inlet Mi = Mi,0 + δt 0.005 Additive 

*Note: δ shows the rate of fault progress, subscript 0 denotes nominal value and unit of t is half minutes. 
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In terms of the F1, the results of the T2 process monitoring are shown in Figure 4(a). The control 
limits of T2 and D in Figure 4 were 11.8 and 12.3, respectively. The control chart issued an alarm at 
the 96th sampling time, accurately detecting the system anomaly after a delay of 38 minutes. While the 
anomaly can be detected at the 37th sample time, suggesting 8.5 minutes delay when using dissimilarity 
CVA. The comparison in Figure 4 indicated significant superior performance of dissimilarity CVA in 
detecting small changes. 

Sample time

Sample time

(a)

(b)

normal faulty

normal faulty

D‐UCL

T2‐UCL

96‐th

37‐th

 

Figure 4. Process monitoring for Fault F1 using: (a) CVA; (b) dissimilarity CVA. 

These two methods could effectively monitor abnormal operating conditions in the tobacco strip 
process. Performance comparison regarding fault F2 was presented in Figure 5. The control limits of 
T2 and D in Figure 5 were 18.6 and 13.4, respectively. The dissimilarity CVA detected the anomaly 5 
sample time, i.e., 2.5 minutes earlier than the traditional CVA. Even though the dissimilarity CVA had 
slight better performance, the D index showed a significant increasing trend. The T2 index in traditional 
CVA, however, presented a sharp fluctuation along with time. Such a feature could lead to false alarm 
or correct rejection under specific criteria for identifying anomalies. 
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Figure 5. Process monitoring for Fault F2 using: (a) CVA; (b) dissimilarity CVA. 

 

Figure 6. Identification of variable of fault F1 based on RBC. 

Figure 6 presented the identification results of fault F1 based on RBC, reflecting the contribution 
rate of process variables to the changes in statistical estimates. It can be seen that variable 4, the rate 
of steam flow, has the highest reconstruction contribution rate among the variables in Table 1. Due to 
the propagation effect of abnormal influences, variables 2, 6, 7 and 9, the rotational speeds of the 
cylinder, cylinder wall temperature of zone I and zone Ⅱ, and negative pressure of the exhaust air will 
also affect the quality. The monitoring results show that the adopted RBC method can effectively 
separate the relevant fault variables and display their values of contribution rate in real time, 
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demonstrating good abnormal identification capability. To more precisely identify the root cause of the 
anomalies, the TE method was used to further quantify the causal relationships between these five 
variables, as shown in Table 3, by selecting the elements of target candidate set from the variables with 
high rates of reconstructed contribution in Figure 6. The row numbers in Table 3 correspond to the 
dependent variables, and the column numbers correspond to the causal variables. “-” indicates that the 
value of causal relationship between variables is negative or reversed. 

Table 3. Matrix of causal relationship of target candidate set of Fault F1. 

Variable number Variable 2 4 6 7 9 

2 Rotational speed of the cylinder 0 - 0.426 0.418 - 
4 Steam flow rate 0.146 0 0.378 0.353 0.179 
6 Temperature of cylinder wall in zone 1 - - 0 - 0.514 
7 Temperature of cylinder wall in zone II - - 0.062 0 0.532 
9 Negative pressure of the exhaust air 0.211 - - - 0 

For fault F2, Figure 7 illustrated the fault identification results based on RBC, reflecting the 
contribution of each variable to the abnormal moisture content of the tobacco strip at the outlet. The 
results indicate that the operating parameters of the HT humidification and temperature-raising 
equipment, such as the material moisture content at inlet, rate of working steam flow and material 
moisture content, have higher contribution rates. To clarify the correlation between the key variables, 
Table 4 presents the matrix of causal relationship between the five major influential variables, where 
the material moisture content at inlet is the dependent variable of the other variables. Based on the 
matrix of causal relationship in Tables 3 and 4, a topology diagram of causal relationship of the 
variables is constructed, as shown in Figure 8. Variables 4 and 5 can be accurately identified as the 
root cause variables that triggered the abnormal moisture content of the tobacco strip. The proposed 
method based on canonical variable analysis and transfer entropy for dynamic monitoring and root 
cause of quality issue can be used for quality control of the tobacco production process, where the 
abnormal fluctuations in the moisture content of the tobacco strip at outlet can be analyzed using the 
statistical quantities and control limits of the canonical correlated subspace, and the root cause of 
abnormal variables can be traced through a quality causality topology model based on transfer entropy. 
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Figure 7. Identification of fault F2 variables based on RBC. 
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Table 4. Matrix of causal relationship of target candidate set of fault F2. 

Variable number Variable 5 8 10 11 14 

5 Inlet material moisture content of the HT 0 0.318 0.139 0.624 0.141
8 Working steam flow rate of the HT - 0 0.124 0.298 0.527
10 Material temperature at outlet - - 0 - - 
11 Materia moisture content at outlet  - - 0.031 0 - 
14 Material flow rate - - 0.097 0.146 0 

2

4

6

7

9

8

10

5
11

14

(a) (b)

 

Figure 8. TE based anomaly root cause diagnosis chart: (a) Fault F1 diagnosis; (b) Fault 
F2 diagnosis. 

5. Conclusions 

This paper describes the dynamic process of tobacco production using a state space model and 
developed a dissimilarity CVA method to fully capture the relationship between process variables and 
quality variables. The proposed dissimilarity CVA method presented more sensitiveness to slow 
change faults in the case of tobacco strip processing. As the quality of the tobacco is influenced by 
multiple variables that exhibit complex correlations, when quality issues arise, the process variables 
responsible for the anomalies will gradually affect other process variables over time. While fault tree 
methods can identify potential variables responsible for the anomalies, it is difficult to extract the 
underlying root causes. This paper adopts reconstruction-based contribution and constructs a target 
candidate set for quality-related anomalies. The TE method is introduced to mine the correlation 
information of process variables from historical data, and based on the matrix of causal relationship 
among the target variables, a topology diagram of causal relationship of process variables is 
constructed to achieve root cause diagnosis. 

The actual operational data of the tobacco production equipment in normal operation are divided 
into two parts, one for constructing a quality monitoring model and the other for verifying the accuracy 
of the model. The results of the analysis demonstrate that compared with traditional contribution plot 
of anomaly detection, the proposed method not only accurately identifies quality issues caused by 
variable anomalies such as rate of working steam flow and temperature of drum wall, but also 
determines that the root cause is the rate of working steam flow or material moisture content at HT 
inlet and other variables, thus improving the reliability of anomaly monitoring and diagnosis. 

The method proposed in this paper can be extended to other sections of tobacco production, such 
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as sections of primary processing or blending and flavoring. It has certain application value for the 
precise monitoring and tracing of anomalies in the tobacco production and provides a reference for on-
site equipment maintenance. 
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