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Abstract: Object detection is a fundamental aspect of computer vision, with numerous generic object 
detectors proposed by various researchers. The proposed work presents a novel single-stage rotation 
detector that can detect oriented and multi-scale objects accurately from diverse scenarios. This 
detector addresses the challenges faced by current rotation detectors, such as the detection of arbitrary 
orientations, objects that are densely arranged, and the issue of loss discontinuity. First, the detector 
also adopts a progressive regression form (coarse-to-fine-grained approach) that uses both horizontal 
anchors (speed and higher recall) and rotating anchors (oriented objects) in cluttered backgrounds. 
Second, the proposed detector includes a feature refinement module that helps minimize the problems 
related to feature angulation and reduces the number of bounding boxes generated. Finally, to address 
the issue of loss discontinuity, the proposed detector utilizes a newly formulated adjustable loss 
function that can be extended to both single-stage and two-stage detectors. The proposed detector 
shows outstanding performance on benchmark datasets and significantly outperforms other state-of-
the-art methods in terms of speed and accuracy. 

Keywords: object detection; single-stage rotation detection; feature refinement; oriented object 
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1. Introduction 

Object detection is a trending research area used in various applications. It is widely used for 
surveillance, scene analysis, autonomous driving, real-time tracking, etc. An efficient detection, 
tracking, and recognition framework consist of the following components—detection, localization, 
classification, tracking and action detection. Object localization and classification are challenging as 
it is difficult to locate objects present in dense and cluttered scenes. Also, many of the benchmark 
datasets restrict object orientations. For example, in sports videos, an athlete's position (such as diving 
or gymnastics) is oriented either vertically or horizontally. To overcome these disadvantages, the model 
is trained with different rotation angles to learn the distinguishing features to improve its localization 
and classification accuracy. Therefore, an efficient technique is required to localize and detect both 
arbitrarily oriented and multi-scale objects. In this paper, an improved single-stage rotation detector 
for fast and accurate detection of oriented and multi-scale objects is proposed. The proposed single-
stage rotation detector aims to address the following challenges – arbitrary orientations, densely 
arranged objects, and discontinuity of loss. The contribution of the proposed work aims to address the 
feature angle problems in single-stage detectors, which have a significant impact on the accuracy of 
classification and regression.  

Existing detectors such as DFN [1], S-SRNN [2], PA-SSD [3], SRN [4] and RAMS-CNN [5] are 
designed to detect objects in a specific orientation, usually upright. When objects are presented in 
arbitrary orientations, it can be more challenging for the model to detect them accurately. Some models 
are designed to handle a range of orientations, but even these can struggle with extreme cases. In 
general, object detection models perform better when objects are presented in a consistent orientation. 
When objects are densely packed together, it can be difficult for object detection models [1–5] to 
distinguish them from one another. This is especially true when the objects are similar in shape or color. 
The model may mistake one object for another or fail to detect some objects altogether. Object 
detection models are typically trained using a loss function [6] that penalizes the model for making 
incorrect predictions. In some cases, this loss function can be discontinuous, meaning that a small 
change in the model’s parameters can result in a huge loss. This can make it difficult for the model to 
learn effectively, as small changes in the parameters may not result in a corresponding improvement 
in the loss function. As a result, the model may struggle to converge to an optimal solution. 

To overcome the existing challenges, the proposed single-stage rotation detector introduces a 
feature refinement module. The feature refinement module is designed to minimize feature angle 
problems encountered in current detectors. It uses a feature interpolation technique to obtain positional 
data corresponding to refined anchors. By reconstructing the entire feature map pixel by pixel, it 
reduces feature angulation issues and the number of bounding boxes generated. Also, this work is the 
first attempt to address the problem of feature angulation in rotated detectors. To effectively handle 
different scenarios, the proposed detector uses a progressive regression approach from coarse to fine-
grained. The first phase uses horizontal anchors for faster object detection and a higher recall rate in 
cluttered backgrounds. During the second phase, the refined rotating anchors are used in subsequent 
refinement levels to adapt to more intense scenarios for oriented object detection. This approach 
leverages the strengths of both horizontal and rotating anchors. Another important contribution is the 
formulation of a tunable loss function to address the loss disruption caused by rotational sensitivity 
error (RSE), which is specific to rotation-based detectors. The proposed loss function is extended to 
both single-stage and two-stage detectors, thus improving their performance. Finally, the proposed 
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single-stage rotation detector is evaluated on publicly available benchmark datasets and demonstrates 
improved performance. By effectively addressing the feature angulation problems, utilizing a 
progressive regression approach, and formulating an adjustable loss function, the proposed detector 
achieves improved accuracy in object detection tasks. 

2. Related work 

Object detection is a fundamental aspect of computer vision, with numerous generic object 
detectors proposed by various researchers. Current object detectors are categorized as single-stage and 
two-stage object detectors. A single-stage detector predicts all bounding boxes at once and requires 
only one pass through the neural network. It has a high reference speed because it overrides the range 
suggestion in two-stage detectors. A two-stage detector consists of two stages—region of interest (RoI) 
extraction and classification. First, the detector proposes an RoI using a selective search approach, and 
the regions are pooled. Second, a classifier processes the candidate regions for accurate classification 
and recognition. 

Visual object detection is a popular topic that witnessed immense progress in recent years. Some 
of the prominent single-stage approaches are Overfeat [10], single stage detector (SSD) [11] and 
YOLO [12]. Similarly, R-CNN [6], fast RCNN [7], R-FCN [8] and R-CNN [9] are some of the 
prominent two-stage approaches. Multiscale feature fusion techniques are widely used in both single-
stage and two-stage approaches, including feature pyramid network [13], RetinaNet [2] and DSSD [14]. 
A few cascaded or sophisticated detectors have recently been proposed. For instance, two-stage 
detectors such as cascade RCNN [15], HTC [16] and FSCascade [17] perform numerous classifications 
and regressions, resulting in noticeable improvements in accuracy in terms of localization and 
classification. In addition, anchor-free methods such as FCOS [18], FoveaBox [19] and RepPoints [20] 
are gaining popularity. By removing anchors, the structures of these detectors can be simplified, and 
anchor-free techniques have thus opened new possibilities for object detection. However, the above 
detectors only produce horizontal bounding boxes, which limits their usefulness in many situations 
encountered in the real world. Objects that are often closely spaced and have large aspect ratios in 
scene text and aerial photography require more accurate localization. As a result, rotated object 
detection has gained popularity in recent years. 

Rotated object detectors gained popularity as they were needed for detecting objects in real 
scenarios such as natural scenes [21], aerial photos [22] and videos. These detectors typically describe 
the positions of objects using rotated bounding boxes, which are more accurate than horizontal boxes. 
Numerous detectors have been proposed for detecting text, medical images, and emotions [48–57]. 
For example, RRPN uses rotating anchors to refine region suggestions. Similarly, R2CNN [23] is a 
detector used to detect both horizontal and rotated text appearing in natural scenes. To accommodate 
elongated texts, TextBoxes++ [25] used an approach that increased the number of region suggestions 
and used a long convolution kernel. The ICN approach [25] combines several modules including image 
pyramid, feature pyramid network, and deformable inception sub-networks to achieve satisfactory 
results on the DOTA benchmark dataset. Likewise, rotationally invariant features are extracted by the 
RoI Transformer [44] to improve subsequent classification and regression. The SCRDet [23] proposes 
a smooth IoU-based L1 loss function to handle the sudden loss change caused by feature angulation 
issues when it comes to handling small, dense, and rotated objects. 

Moreover, the detection and localization of multi-scale and oriented structures is a key challenge 
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in many medical image analysis tasks, such as the detection of tumors, segmentation of blood vessels, 
and localization of anatomical landmarks. In recent years, there has been a lot of research on 
developing methods that can automatically detect and localize such structures in medical images. Many 
deep learning-based methods have been widely used for the detection and localization of multi-scale 
and oriented structures in medical images. These methods use convolutional neural networks (CNNs) 
to learn features from images at different scales and orientations. Some popular deep learning-based 
methods for this medical image analysis include Faster R-CNN, A-CNN [52], T-GAN [53] and YOLO 
[55] with the research area gaining more prominence in recent years.  

However, the above-mentioned approaches do not consider the problem of loss discontinuity. 
Discontinuity of loss can affect the stability of the learning model and influence the detection results. 
The fundamental issue that drives this proposed work has not yet been addressed by any existing 
studies. Furthermore, object detection in sports images or images captured in diverse camera angles is 
more challenging. Similarly, the main difficulties are reflected in complex backgrounds, camera angles, 
dense backgrounds, and the presence of numerous small objects. However, no research has been 
proposed in detecting oriented objects (poses such as gymnastics and diving) obtained from sports 
videos, camera angles (CCTV or overhead fisheye camera), etc. 

3. Proposed work 

The architecture of the proposed single-stage rotation detector is shown in Figure 1 and the 
overview of the process is shown in Algorithm 1. To continuously improve the features of the estimated 
bounding boxes to improve detection and localization accuracy, multiple levels of feature filtering are 
added to the network. Finally, the enhanced feature filtering module is introduced in the last filtering 
stage for an effective feature map reconstruction. 

 

Figure 1. The architecture of the proposed single-stage rotation detector. 
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3.1. Parametrization for oriented object estimation 

To perform oriented object detection, the following five parameters 𝑥, 𝑦, ℎ, 𝑤, 𝜃  are introduced 
to denote the oriented bounding box. The value of 𝜃 is between , 0  and used to predict the offset 

angle (regression subnetwork). The bounding boxes for detecting oriented objects are specified as 
given in Eq (1), it is used to calculate the coordinates, width, height and angle of the ground truth box. 

𝑏 ,  𝑏 , 𝑏 log , 𝑏 log , 𝑏 𝜃 𝜃     (1) 

Equation (2) is used to calculate the coordinates, width, height, and angle of the estimated 
bounding box. 

𝑏 , 𝑏 , 𝑏 log , 𝑏 log , 𝑏 𝜃 𝜃     (2) 

where 𝑥, 𝑦 are the centre coordinates and the ground truth box, 𝑤 denotes width, ℎ denotes height, 
and 𝜃  is the offset angle. Also, 𝑥  denotes the ground truth box and 𝑥  denotes the estimated 
bounding box. 

3.2. Feature angulation loss function estimation 

Each bounding box consists of a centre, width, and height, as shown in Figure 2. The angle 𝜃 
varies between the ground truth and the estimated bounding box for the same aspect ratio. Thus, the 
smooth L1 loss (combination of L1 loss and L2 loss) of both bounding boxes (ground truth and 
prediction) remains the same, but the angular loss varies. As shown in Figure 2, the green and orange 
colours denote the inconsistency between the smooth L1 loss and the angle loss (𝐴 ), making the 
previous loss function unsuitable for detecting oriented objects. For example, oriented objects with a 
large aspect ratio are very sensitive to changes in angle. 

 

Figure 2. Enhanced feature filtering module with feature angulation analysis. 
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Some of the loss functions used in traditional bounding boxes are GIoU [26] and DIoU [27]. These 
loss parameter uses a regression function to overcome the limitations of a traditional bounding box. In 
order to estimate the angle loss (𝐴 ) for oriented objects, a new loss function is proposed. SCRDet [23] 
serves as inspiration for obtaining the derivable loss function as follows. 

𝐿𝑜𝑠𝑠  ∑ 𝑜
,

,
. |𝑓 𝐴 | ∑ 𝐿𝑜𝑠𝑠 𝑑 , 𝑏       (3) 

𝐿𝑜𝑠𝑠 𝑟 , 𝑟  𝐿𝑜𝑠𝑠 𝑟 , 𝑟 𝐼𝑜𝑈 𝑟 , , , , 𝑟 , , ,           (4) 

where 𝑁 is the anchor, 𝑜  specifies the foreground and background objects, 𝑟 denotes the ground 
truth target vector, 𝑟  specifies the offset vector for the predicted box. The probability of the distance 
between classes is provided by 𝑑  and 𝑏  specifies the label of the object. 𝐴  represents the 
overlap between the estimated field and the actual data indicated by 𝐴 , 𝛼  and 𝛼  specify the 
control trade-off between the hyper parameters and their values are set to 1. Finally, the term 𝑓 ∙  
specifies the loss function related to 𝐴  and 𝐼𝑜𝑈 ∙  denotes the IoU calculation function of the 
traditional bounding box. 

From Eq (3) it can be observed that 𝐿𝑜𝑠𝑠  (regression loss) is further categorized into two 
components that are used to estimate the gradient direction (derivable term). Similarly, |𝑓 𝐴 | is 
used to calculate the loss term associated with the gradient and amplitude (non-derivable term). Using 
Eq (3), the 𝐿𝑜𝑠𝑠  is used as the dominant function to address the instability between the smooth L1 
and 𝐴 . As already mentioned, 𝐴  is sensitive to changes in angle. For example, a minimal 
change in angle affects the IoU (intersection over union) score, as shown in Figure 2. Thus, by 
optimizing the estimated bounding box, the recall rate of the proposed single-stage rotation detector is 
improved. Multiple feature refinement phases with different IoU thresholds are used during training to 
improve detection accuracy. Additionally, the 𝐹  (foreground threshold) is fixed at 0.5 and 𝐵  is 
set to 0.4 during the initial testing phase. Subsequently, as more refinement phases are added, the 𝐹  
is fixed at 0.6 and 0.7, while 𝐵  set to 0.5 and 0.6, respectively. Thus, the overall loss function for 
the proposed single stage detector is defined in Eq (5), where, 𝐿𝑜𝑠𝑠  provides the loss term defined 
for the ith stage, while 𝛽  denotes the bias coefficient. 

𝐿𝑜𝑠𝑠 ∑ 𝛽 , 𝐿𝑜𝑠𝑠  𝑤ℎ𝑒𝑟𝑒 𝛽 1                      (5) 

3.3. Improved feature filtering mechanism 

Current detectors [1,3–5,29] uses a single feature map to perform multi-level classification and 
regression. However, these detectors do not consider the angulation problems of the features that arise 
due to the inconsistency between the ground truth and the estimated boxes, as shown in Figure 2. The 
feature angle problem affects the detection accuracy of the detector due to detection of false features. 
These erroneous features affect the detection accuracy for objects with large aspect-ratio. The proposed 
single-stage rotation detector constructs the entire feature map to minimize feature angulation 
problems. As shown in Figure 2, the feature map is constructed by re-encoding the position of the 
estimated bounding box obtained during the feature filtering phase using feature interpolation 
technique in Eq (6). 
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𝑓𝑚 𝑓𝑚 ∗ 𝐴 𝑓𝑚 ∗ 𝐴 𝑓𝑚 ∗ 𝐴 𝑓𝑚 ∗ 𝐴              (6) 

where the term 𝑓𝑚 indicates a feature vector and 𝐴 denotes the areas on the feature map, as shown 
in Figure 2. In Eq (6), a feature refinement mechanism is proposed and the pseudocode is specified in 
Algorithm 1. Using the convolution operation, the feature maps are added to obtain new features. 
During the refinement phase, the estimated bounding box with the highest confidence value is 
considered for processing. The detector must also ensure that each feature point on the map 
corresponds only to one bounding box obtained during the feature refinement phase. For each point 
(feature) on the feature map, the corresponding feature vector is extracted along with its coordinates 
𝑙𝑡, 𝑟𝑏, 𝑟𝑡, 𝑙𝑏, 𝑐  to perform feature recovery. The variables 𝑙𝑡, 𝑟𝑏, 𝑟𝑡 and 𝑙𝑏 denote the four vertices 

and 𝑐 denotes the midpoint of the estimated bounding box. Finally, the points (features) are traversed 
sequentially to regenerate the refined feature map. 

Algorithm 1. Improved feature refinement 
• Input: Feature map 𝑓𝑚 , bounding box 𝑏 , and confidence 𝑐  
• Output: Reconstructed feature map 𝑓𝑚  
1. 𝐵 ← 𝐵𝐹 𝑏, 𝑐  // BB with the highest score for each trait point is kept in the refinement 

phase to increase speed 
2. ℎ, 𝑤 ← 𝑆ℎ𝑎𝑝𝑒𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠 𝑓𝑚 , 𝑓𝑚 ← 𝑧𝑒𝑟𝑜𝑠  
3. 𝑓𝑚 ← 𝑐𝑜𝑛𝑣 𝑓𝑚 𝑐𝑜𝑛𝑣 𝑐𝑜𝑛𝑣 𝑓𝑚 //Two-way convolution to get a new 

feature 
4. 𝒇𝒐𝒓 𝑖 ← 0 𝒕𝒐 ℎ 1 𝒅𝒐 
5.        𝒇𝒐𝒓 𝑗 ← 0 𝒕𝒐 𝑤 1 𝒅𝒐 
6.              𝐸 ← 𝐸𝑥𝑡𝑟𝑎𝑐𝑡𝐶𝑜𝑜𝑟𝑑𝑠 𝑓𝑚 𝑖, 𝑗 ; //5 feature vectors on FM  
7.             𝒇𝒐𝒓 𝑒 ∈ 𝐸 𝒅𝒐 
8.                    𝑒 ← 𝑚𝑖𝑛 𝑒 , 𝑤 1  𝑤ℎ𝑒𝑟𝑒 𝑒 ← max 𝑒 , 0 ; 
9.                   𝑒 ← 𝑚𝑖𝑛 𝑒 , ℎ 1  𝑤ℎ𝑒𝑟𝑒 𝑒 ← max 𝑒 , 0 ; 
10.                   𝑓𝑚 𝑖, 𝑗 ← 𝑓𝑚 𝑖, 𝑗 𝐵𝐼 𝑓𝑚, 𝑒 ; //Exact feature vector from BI 
11.             𝒆𝒏𝒅 𝒇𝒐𝒓 
12.         𝒆𝒏𝒅 𝒇𝒐𝒓 
13.   𝒆𝒏𝒅 𝒇𝒐𝒓 
14.   𝑓𝑚 ← 𝑓𝑚 𝑓𝑚; //Reconstruct FM 
15.   𝒓𝒆𝒕𝒖𝒓𝒏 𝑓𝑚  

To obtain accurate features, bilinear interpolation is performed on the five previously derived 
feature vectors and the result is added to the current feature vector 𝑓𝑚 . The resulting feature vector 
𝑓𝑚  replaces the existing feature vectors. The entire feature map is reconstructed by going through all 
feature points. Once the traversal is complete, the reconstructed feature map is added to the existing 
feature map. Feature refinement is performed multiple times during the feature reconstruction 
procedure specified in Eq (7), where 𝑓𝑚  shows the feature map of 𝑖 1 level, 𝑏 , 𝑐  denotes the 
BB and confidence value of the ith prediction. 

𝑓𝑚 𝐹𝑅 𝑏 , 𝑐 , 𝑃 , … , 𝑃                          (7) 

To handle 𝐴 problems arising during experimental analysis, a feature reconstruction method is 
used. The feature reconstruction procedure is used to minimize feature angulation issue. Initially, 𝐴  
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consists of numerous sampling points, and reducing the sample sizes affects the performance of the 
detector. Whereas, during the feature reconstruction process, sampling is performed by considering 
only the extracted feature points (five-parameters). Due to the fact that only a few points are considered 
for sampling, the computational effort of the detector is drastically reduced. Second, 𝐴  generates 
instance-level features corresponding to a RoI before performing classification and regression. 
However, during the feature reconstruction process, the entire feature map is reconstructed in a pixel-
by-pixel (image plane) manner. Thus, this reconstruction process is efficient and involves a smaller 
number of parameters compared to the previous process. 

3.4. Rotation sensitivity error for oriented detection 

The existing rotated detectors use a five-parameter [23,30,31,44] or an eight-parameter regression 
approach [32–34]. Either one of these parameter regression approaches are used to describe the rotated 
bounding boxes and its corresponding L1 loss function. Though both these approaches have provided 
considerable results, they suffer loss discontinuity issue. 

In five-parameter methods, the angle parameter is primarily responsible for the discontinuity of 
loss (DoL) issue. Once the angle reaches the limit of its range, the loss value increases. To obtain the 
ground truth and the prediction box, a horizontal rectangle is turned one degree clockwise and 
counterclockwise, respectively. The reference box position is only slightly changed, but the angular 
periodicity has significantly altered the angle of the rectangle. Additionally, according to the OpenCV-
standard five-parameter definition method, the height and width are also switched. Furthermore, the 
five parameters of the system (angle, height, width and centers) have different units and show different 
IoU values. Thus, the performance may be negatively impacted by merely adding them up for 
inconsistent regression. Second, though the parameters in an eight-parameter method clearly denote 
the coordinate value, the discontinuity of loss also occurs in this method. This phenomenon is known 
as RSE. 

Rotation sensitivity error occurs primarily due to the sudden loss change (increase) in the 
boundary case and is usually caused by the adoption of the angle parameter and switching of width 
and height. It also occurs due to inconsistency in regression of the five-parameter approach. Loss 
discontinuity is brought about by the angle parameter 𝜃. The horizontal reference bounding box is 
rotated counterclockwise to produce the predicted box that matches the ground truth box. To address 
the DoL issue, an adjustable rotation loss function is proposed. This adjustable loss function follows 
symmetry of L1 loss corresponding to its location. It achieves minimum L1 loss with a continuous loss 
curve and does not reach the boundary range of the angle since it is larger than L1 loss. The equation 
for the proposed adjustable rotation loss 𝐿  function is formulated as follows. 

𝐿 𝑚𝑖𝑛
𝐿1 𝑓𝑖𝑣𝑒 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟

  𝐿1 𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟                     (8) 

The rotation sensitivity error occurs only when the boundaries are discontinuous. Equation (9) 
shows the boundary constraints of the adjustable rotation loss 𝐿  function. 

𝐿 |𝑥 𝑥 | |𝑦 𝑦 |                            (9) 

𝐿  𝑚𝑖𝑛
𝐿 |𝑤 𝑤 | |ℎ ℎ | |𝜃 𝜃 | 

     𝐿 |𝑤 ℎ | |𝑤 ℎ | 90° |𝜃 𝜃 |
    (10) 
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where 𝐿  is the loss function of the center point, Eq (9) specifies 𝐿  as the extension of L1 loss and 
Eq (10) is used for modelling a continuous loss function by removing angular periodicity. Therefore, 
the adjustable angle parameter 𝐿  is large than the normal L1 loss parameter if it fails to reach the 
boundary conditions specified by the angle parameter and ceases if the L1 loss is discontinuous. 

4. Implementation details 

4.1. Dataset 

The datasets ImageNet, Olympic Sports, Sports Videos in the Wild, HABBOF and DOTA were 
used for the assessment due to their modularity and variety of actions as shown in Table 1. The 
ImageNet [35] consists of image dataset with more than 14 million images out of which 5000 images 
are used for training and testing. It consists of varied images with multiple object classes. The Olympic 
sports dataset [36] contains short sequenced YouTube videos of athletes playing 16 different sports in 
an uncontrolled environment. The Sports Videos in the Wild dataset [37] includes a collection of 4200 
video images of amateur gamers. The data set consists of 30 sports with 44 different actions. It is 
considered the most difficult data set to annotate due to the presence of playing amateurs. The 
HABBOF dataset [38] consists of 4 videos recorded with mounted fisheye cameras and consists of 
5847 frames. It consists of people performing normal activities such as walking, sitting, and standing. 
Some frames also consist of people making complex poses in close proximity. Finally, DOTA [52] is 
a large-scale aerial image dataset designed specifically for object detection and instance segmentation 
tasks. The dataset contains more than 2800 high-resolution aerial images covering different geographic 
locations and diverse object categories. 

The single-stage rotation detector is modelled based on RetinaNet [39] and during training 
ResNet50, ResNet101 and ResNet 152 is used for experimental analysis. The ResNet50 backbone [32] 
is used for network initialization and is pre-trained on the ImageNet dataset using TensorFlow. The 
model is trained for 30 epochs for each dataset and the number of iterations is varied according to the 
number of epochs. The initial learning rate is set to 5e-4, momentum as 0.9 and weight decay as 0.0001. 
The learning rate is varied from 5e-5 to 5e-6 for 18 and 24 epochs respectively. Rotating non-maximum 
suppression (R-NMS) inference technique is used in post-processing the results of the final detection. 

Additionally, the image iterations is set as 60,000 (ImageNet), 54,000 (Olympic Sports), 10,000 
(Sports Videos in the Wild), 5,000 (HABBOF), and 45,000 (DOTA) respectively. The iteration is 
doubled when multi-scale training and data augmentation is introduced. A momentum optimizer over 
1 GPU with a total of 4 frames per mini-batch is allocated for processing. For the pyramid levels (P3 
to P7), the anchors range from 322 to 5122 with seven aspect ratios {1, 1/2, 2, 1/3, 3, 5, 1/5} and three 

scales {20, 21/3, 22/3}. Additionally, six angles {−90◦, −75◦, −60◦, −45◦, −30◦, −15◦} are added for the 
rotating anchor-based method (R-RetinaNet). 
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Table 1. Benchmark datasets used for evaluation of the proposed detector. 

Dataset Type Modality Resolution Environment type Features 

ImageNet Diverse RGB 720 × 1280 Uncontrolled Diverse images 

Olympics Sports Sports RGB 640 × 360 Uncontrolled 16 Sports Activities 

Sports Videos in the Wild Sports RGB 640 × 360 Uncontrolled 30 Sports Activities 

HABBOF Fish Eye RGB 2048 × 2048 × 30 Controlled Varied poses with occlusion 

DOTA Aerial 

images 

RGB 1024 × 1024 Uncontrolled Varied scale, orientation and 

shape 

4.2. Baseline methods 

Robust baseline models with different anchor settings are used to analyse the performance of the 
proposed work. Horizontal RetinaNet (H-RetinaNet) takes advantage of horizontal anchoring. 
Although fewer anchors are used, the IoU is computed as a horizontally defining ground truth rectangle 
that fits more positive models but also covers areas with many objects that are irrelevant. For objects 
with high aspect ratio, the predicted rotation limit field is usually not accurate. Similarly, Rotated 
RetinaNet (R-RetinaNet) leverages rotating anchors by adding an angle parameter to prevent the 
introduction of noise regions and offers better detection performance in dense scenarios. However, as 
the number of anchors increases, the efficiency of the model decreases. 

Table 2. Ablative study of each component of the proposed detector on all datasets with 
and without the feature refinement module. It also explores various techniques such as data 
augmentation, sampling, box filtering, feature refinement and angle loss function. 

Baseline Specifications Datasets (mAP %) 

Data 

Aug. 

Sample 

balance 

Box 

filtering 

Feature 

refinement 

Angle 

loss 

ImageNet OSD SVW HABBOF DOTA

ResNet50 Yes Yes No No No 66.7 68.1 63.7 65.9 70.1 

ResNet50 No No Yes Yes Yes 70.7 71.0 64.7 67.3 69.5 

ResNet50 Yes Yes Yes Yes Yes 71.3 73.9 67.3 68.6 73.5 

ResNet101 Yes Yes Yes Yes Yes 72.4 77.1 71.0 70.1 78.2 

ResNet152 Yes Yes Yes Yes Yes 73.6 78.5 73.7 70.2 75.8 

R-RetinaNet Yes Yes Yes Yes Yes 74.9 80.9 76.6 72.3 78.6 

H-RetinaNet Yes Yes Yes Yes Yes 79.2 81.4 78.7 76.0 78.0 

Proposed No No No No No 83.2 84.7 80.2 79.1 80.7 

Proposed No No Yes Yes Yes 85.8 87.8 83.2 81.3 83.6 

Proposed Yes Yes Yes Yes Yes 87.9 89.8 86.8 85.3 85.2 

Table 2 shows the performance of the proposed detector and its comparison with other base 
models. The baseline models considered for assessment are ResNet-50, ResNet-101, ResNet-152, H-
RetinaNet and R-RetinaNet evaluated across all datasets. The performance of the baseline models is 
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evaluated using the following specifications such as data augmentation, sample balancing, box filtering, 
feature refinement, and angle loss. Among the base models, H-RetinaNet has an overall mAP of 76.20% 
and R-RetinaNet has an overall mAP of 78.86%. From the results, it can be concluded that horizontal 
anchors perform efficiently in terms of speed, while rotated anchors have better regression 
functionality. It is suitable for detecting objects in cluttered or dense environments and objects with a 
large aspect ratio. The proposed detector shows an overall mAP of 81.82% without the inclusion of 
the feature refinement module. Similarly, it shows an overall mAP of 87.50% with inclusion of the 
feature refinement module. Comparing the performance of the proposed detector with baseline models 
is important for several reasons. First, it provides a benchmark to evaluate the effectiveness of the 
proposed detector. By comparing the performance of the proposed detector with that of existing 
baseline models, improvement in detection accuracy achieved by the proposed detector is assessed. 
Second, it helps to identify the strengths and weaknesses of the proposed model. From Table 2, it can 
be observed that the detection accuracy of the proposed detector can be improved with more training 
in terms of data augmentation (random cropping, translation, scaling rotation) and by increasing the 
diversity and quality of the training samples. 

5. Ablation studies 

5.1. Enhanced feature refinement module 

Table 3 shows the comparison of the proposed detector with and without the addition of feature 
refinement module on all datasets. It can be observed that the performance of the proposed detector 
shows an accuracy of 81.6, 83.2, 85.1, 86.9 and 89.5% respectively without the addition of the feature 
refinement module. However, with the addition of feature refinement module, it shows a significant 
accuracy of 90.5(+8.9%), 93.2(+10%), 93.8(+8.7%), 92(+5.1%) and 92.3(+2.8%) respectively. From 
the results, it can be observed that precision increases with incorporation of the feature refinement 
module. Since, the feature refinement module reconstructs the entire feature map (pixel-by-pixel) 
based on anchor refinement technique, detection accuracy of the proposed detectors increases. 

Table 3. Comparison of proposed detector with and without feature refinement (RF) module. 

Method FR ImageNet OSD SVW HABBOF DOTA 

P R P R P R P R P R 

Proposed Detector No 81.6 84.9 83.2 90.1 85.1 87.0 86.9 89.1 89.5 91.9 

Proposed Detector Yes 90.5 90.4 93.2 89.2 93.8 91.9 92.0 94.9 92.3 92.3 

5.2. Refinement strategy 

Table 4 analyses the impact of the number of stages used for refinement and construction of the 
entire feature map. It also explores the relationship between the number of refinement stages and 
performance of the model. From Figure 3, it can be observed that as the number of stages increases, 
the performance of the model also increases since more robust features are identified via feature map 
reconstruction and hierarchical representations of the input-data are captured more accurately. The 
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accuracy of the refinement module is obtained as 71.3, 67.2, 70.9, 67.7 and 71.7% respectively, in the 
same experimental setup. Compared to the other deformable learning method, the enhanced feature 
refinement module is more efficient and accurate. This highlights the location responsiveness of the 
feature points, when the features are correctly refined, the performance of the model increases. 

 

Figure 3. Relation between number of refinement stages and precision accuracy. 

Table 4. Study of number of stages used on the benchmark datasets (RS-Refinement Stage). 

Dataset Refinement Stages mAP (%) 

RS1 RS2 RS3 RS4 

ImageNet 62.6 72.7 75.7 73.9 71.3 

OSD 63.5 65.8 72.0 67.4 67.2 

SVW 65.9 70.1 76.3 71.2 70.9 

HABBOF 62.7 66.3 74.2 67.6 67.7 

DOTA 66.1 68.3 79.7 72.5 71.7 

It is observed that RS3 provides improved results when compared to other stages. This is 
attributed to the fact that RS3 captures high-level and complex representations in a detailed manner 
due to an increased receptive field. Also, the inclusion of a feature refinement module enhances the 
process of feature composition to provide discriminative representation and non-linear transformations 
(different object classes) to improve the performance of the model. 

5.3. Validation of detector using skew function 

Additionally, the performance of the proposed detector is compared with various detectors using 
an approximated skew function. RetinaNet-based detectors are more likely to experience non-
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convergence during training due to the occurrence of many low 𝐴  (skew) prediction bounding 
boxes in the early stages of training. The derivative function is related to 𝐴  in comparison to other 
linear function, meaning that it has a higher performance improvement because more attention is paid 
for training challenging samples. 

5.4. Adjustable rotation loss function 

Horizontal RetinaNet (H-RetinaNet) with ResNet50 backbone is used as the baseline model to 
verify the effectiveness of the loss function. As shown in Table 5, an accuracy of 3.25% (ImageNet), 
5.12% (OSD), 5.63% (SVW), 3.02% (HABBOF) and 3.87% (DOTA) is achieved when the loss 
function transitions from smooth L1 loss to adjustable loss function 𝐿 . These ablation experiments 
demonstrate that adjustable loss function 𝐿  is effective at enhancing the accuracy of the detector 
and also minimizes the loss associated with feature angulation issues. Additionally, these two 
techniques add a very small amount of parameters and computation, it does not increase the 
computational overhead of the model. 

Table 5. Comparison of proposed adjustable loss function with other loss functions. 

Loss Function Regression Type 

& Range 

mAP (%) 

ImageNet OSD SVW HABBOF DOTA 

Smooth L1 
𝜋
2

, 0  66.77 79.41 72.16 69.59 77.10 

Smooth L1 [6] 𝜋, 0  68.41 80.62 73.45 72.41 78.24 

IoU Smooth L1 [46] 
𝜋
2

, 0  69.99 81.22 75.59 73.97 78.53 

Proposed Adjustable Loss (Lar) 
𝜋
2

, 0  73.24 86.34 81.22 76.99 82.11 

5.5. Study on rotation sensitivity error 

The concept of rotation sensitivity error has already been explored in previous works [41,42]. The 
previous works explored the concept of eliminating burst loss and incorporates trigonometric functions 
to eliminate the effect of angular periodicity. However, these methods fail to provide the solution for 
solving RSE. When compared to the previous methods, the proposed approach provides promising 
results. 

5.6. Data augmentation and sampling 

The performance of the proposed single-stage rotation detector can be increased with data 
augmentation. A variety of augmentation operations, such as random rotation, image greying, 
horizontal flipping, and vertical flipping is applied. For datasets that show severe imbalance, the 
samples in each category is increased by random copying. This random copying technique boosts the 
operation by 0.43%. Furthermore, the impact of different backbones is studied to enhance the 
performance of the detectors. Similarly, the performance of ResNet50 is 70.29%, RestNet101 is 72.70% 
and ResNet152 is 74.03% respectively as shown in Table 2. 
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6. Performance evaluation and comparison 

6.1. Comparison with state-of-the-art detectors 

The performance of the proposed single-stage rotation detector is compared with other state-of-
the-art single- and two-stage detectors. Figure 4 shows the performance of both type of detectors 
(single- and two-stage) tested on benchmark datasets. 

 

Figure 4. Performance comparison of proposed detector with state-of-the art detectors. 

6.1.1. Comparison with single-stage detectors 

The results on the datasets are shown in Table 6. The proposed detector is compared with eight 
state-of-the-art single-stage detectors such YOLOv2 [12], DRBox [40], IENet [41], DRN [42], P-
RSDet [44], PIoU [43] and O2-Dnet [28]. For the ImageNet dataset, the YOLOv2 detector showed the 
highest performance at 80.21%. For Olympic Sports Dataset, DRN showed an accuracy of 83.27%, 
R3Det shows an accuracy of 82.89% for SVW, and 81.22% for HABBOF. However, the proposed 
detector showed a significant performance in both categories – with and without multi-scale training 
and testing. It outperforms the superior detectors such as YOLOv2, DRN and R3Det for all datasets by 
87.68% (7.47), 90.99% (7.72), 89.70% (6.81) and 89.15% (7.93) without multi-scale training and 
testing. It outperforms YOLOv2, DRN and R3Det by 90.54% (10.33), 93.21% (9.94), 93.89% (11) and 
92.04% (10.82) with multi-scale training and testing. The higher performance is attributed to the fact 
that the proposed single-stage detector is capable of identifying various classes and also classifies the 
significant differences between the classes (people, horses, bicycles, cars, dogs, athletes etc.). 
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6.1.2. Comparison with two-stage detectors 

The performance of the detector is also compared with state-of-the-art two-stage detectors as 
shown in Table 6. Among these, RoI Transformer [46], SCRDet [23], Gliding Vertex [34], FFA [47] 
and CenterMap [5] have performed well. However, their detection accuracy was less when compared 
with the proposed detector as shown in Table 6. This is attributed to the fact that current two-stage 
detectors use complex model architectures that influence their performance. Additionally, the two-
stage detectors increasingly depend on multi-stage regression and generation of low-level feature maps 
for detecting small objects present in dense environments. The proposed detector outperforms these 
detectors significantly due to its light-weight and strong backbone architecture without compromising 
on speed and accuracy. 

Table 6. Performance comparison of proposed detector with state-of-the-art single- and 
two-stage detectors. 

Method Detec

tor 

Backbone MS Image 

Size 

Datasets Speed 

(fps) ImageNet OSD SVW HABBOF DOTA

YOLOv2 [13] SS Darknet-19 Y 448 × 448 80.21 77.12 77.70 76.55 68.05 64.6 

DRBox [40] SS Hourglass104 Y 511 × 511 73.07 75.17 77.16 71.90 73.01 76.1 

IENet [41] SS ResNet101 Y 800 × 800 65.54 72.03 44.66 52.58 72.98 73.9 

PIoU [43] SS DLA-34 N 511 × 511 69.70 60.21 52.58 64.83 75.21 83.5 

P-RSDet [46] SS ResNet101 Y 800 × 800 73.65 78.58 69.75 77.26 72.68 94.9 

O2-Dnet [28] SS Hourglass104 Y 511 × 511 72.76 70.62 77.20 72.99 73.19 87.1 

DRN [42] SS Hourglass104 Y 511 × 511 64.40 83.27 78.62 80.12 74.32 91.4 

R3Det [58] SS ResNet101 Y 800 × 800 77.67 81.72 82.89 81.22 82.87 81.5 

AlignConv [54] SS S2A-Net Y 800 × 800 74.12 78.11 78.39 79.44 90.03 159.2 

G-Rep [18] SS Cas-RetinaNet Y 800 × 800 78.52 84.92 81.64 81.30 83.71 210.1 

RIDet [59] SS ResNet50 Y 800 × 800 79.45 81.40 81.12 84.11 79.58 163.9 

GFNet [51] SS EAST+ResNe

t50 

Y 800 × 800 85.14 83.33 86.92 85.61 80.81 215.2 

R2CNN [24] TS ResNet101 Y 800 × 800 65.17 66.92 72.48 60.73 72.76 145.8 

R-DFPN [31] TS ResNet101 N 800 × 800 73.70  70.61 72.83 71.03 77.10 135.1 

R2PN [22] TS VGG16 N 511 × 511 79.83 78.91 80.01 78.29 78.32 – 

ICN [26] TS ResNet101 Y 800 × 800 64.90 67.80 70.04 69.05 72.03 154.5 

FADet [40] TS ResNet101 Y 800 × 800 68.27 73.18 76.41 79.56 84.89 162.2 

Continued on next page
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Method Detec

tor 

Backbone MS Image 

Size 

Datasets Speed 

(fps) ImageNet OSD SVW HABBOF DOTA

RoI Trans. [44] TS ResNet101 Y 800 × 800 75.92 78.52 73.68 68.81 74.72 180.8 

CAD-Net [2] TS ResNet101 N 800 × 800 73.50 71.10 63.50 73.21 79.81 170.9 

SCRDet [23] TS ResNet101 Y 800 × 800 68.36 60.32 65.02 72.41 81.32 127.4 

Cascade-FF 

[18] 

TS ResNet152 N 800 × 800 75.50 51.73 68.26 75.61 81.36 110.1 

RADet [39] TS ResNeXt101 N 800 × 800 79.45 65.83 74.40 68.86 78.62 146.3 

Gliding Vertex 

[35] 

TS ResNet101 N 800 × 800 72.94 79.02 70.91 72.33 81.46 134.5 

CenterMap [49] TS ResNet101 Y 800 × 800 70.25 66.06 69.23 66.46 78.31 249.1 

FFA [1] TS ResNet101 Y 800 × 800 61.20 71.11 64.63 64.20 70.91 302.9 

APE [25] TS ResNeXt101 N 800 × 800 74.01 76.03 77.27 74.99 79.56 180.5 

WSRD-Net [46] TS ResNet-FPN Y 800 × 800 73.14 79.56 83.40 81.46 82.54 178.3 

MSFC-Net [51] TS ResNeSt-101 N 800 × 800 77.34 79.58 81.43 83.05 84.49 189.2 

FSODM [54] TS ResNet101 Y 800 × 800 79.58 77.81 86.93 84.62 81.30 156.1 

Proposed SS RetinaNet N 800 × 800 87.68 90.99 89.70 89.15 87.52 175.0 

Proposed SS RetinaNet Y 800 × 800 90.54 93.21 93.89 92.04 90.33 192.6 

6.2. Comparison with benchmark datasets 

In order to examine the effectiveness of the proposed detector, the detection results of the base 
model and the proposed detector are analysed using five benchmark datasets. Figures 5–9 show the 
comparison and qualitative illustration of the proposed detector on the benchmark datasets—ImageNet, 
OSD, SVW, HABBOF (overhead fish-eye dataset) and DOTA captured in both outdoor and indoor 
setting. The “red” boxes indicate the original fitted bounding boxes (Horizontal) and “green” boxes 
indicate the rotated bounding boxes. 

The bounding boxes with a confidence value greater than 0.5 are considered. The proposed 
method fits the rotated bounding boxes to the aligned objects more precisely than other methods. The 
methods considered for the assessment had generated multiple bounding boxes, resulting in over-
detection. The resulting over-detection occurs because the detector must find objects in overlapping 
areas throughout the image. Objects that occupy only half of the bounding boxes will degrade recognition 
accuracy because they are caused by the original bounding boxes rotated during training. The proposed 
detector overcomes this problem by closely fitting the boxes to the oriented objects present without using 
the images obtained during training. Compared to the detected boxes of the baseline methods, those of the 
proposed method are rotated according to the angle of appearance of the objects. 
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(a) 

 
(b) 

Figure 5. (a) Comparison and qualitative illustration of the proposed detector on OSD. 
Red colour indicates the original bounding box and green colour indicates the rotated 
bounding box. (b) Comparison and qualitative illustration of the proposed detector on OSD. 
Red colour indicates the original bounding box and green colour indicates the rotated 
bounding box. 

To further analyze the baseline detection results and the proposed methods, an analysis of the 
relationship between the average accuracy and the positions of the objects in the images obtained from 
ImageNet, OSD, SVW and HABBOF datasets is shown in Table 4. The distortion of the records is 
removed based on the number of objects and their difficulty of detection. The object’s position and its 
detection capability are varied for each angle by rotating the images , 0  and calculating their 

mAP (mean average precision) for each interval. It was found that the other detectors showed relatively 
low accuracy in the center and at the limit of the field of view. The reason for the low values is that 
only a part (top, bottom, or part of the objects) is considered. Because this type of phenomenon is rare 
in the selected datasets, the detectors cannot see objects present in the center. 
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Figure 6. Comparison and qualitative illustration of the proposed detector on Sports 
Videos in the Wild (SVW). Red colour indicates the original bounding box and green 
colour indicates the rotated bounding box. 

 

(a) 

 
(b) 

Figure 7. (a) Comparison and qualitative illustration of the proposed detector on the 
HABBOF over-head fish-eye dataset (outdoor setting). Red colour indicates the original 
bounding box and green colour indicates the rotated bounding box. (b) Comparison and 
qualitative illustration of the proposed detector on the HABBOF over-head fish-eye dataset 
(indoor setting). Red colour indicates the original bounding box and green colour indicates 
the rotated bounding box. 



15237 

Mathematical Biosciences and Engineering  Volume 20, Issue 8, 15219–15243. 

 

Figure 8. Comparison and qualitative illustration of the proposed detector on ImageNet 
dataset. Red colour indicates the original bounding box and green colour indicates the 
rotated bounding box. 

Similarly, the reason for the low mAP at the edge is also that the detectors cannot see objects with 
tiny scales. However, the proposed method shows better performance than other detectors across all 
datasets, indicating its effectiveness. The performance of detectors degrades at angles greater than 15 
degrees, while that of the proposed method is nearly the same at any angle. At greater angles, objects 
usually appear tilted, making it difficult to tightly fit bounding boxes around them. These are reasons 
attributed for low performance of the current detectors. The proposed detector differs in that it can 
closely match boxes to objects oriented at any angle, and therefore exhibits a stable performance at 
any angle. 

 

Figure 9. Comparison and qualitative illustration of the proposed detector on DOTA. 

6.3. Comparison of speed 

The benchmark data sets consist of high- and low-resolution test images. These images require 
additional processing techniques such as cropping, merging, and rotating. Therefore, the speed and 
accuracy are maintained for each detector and its performance evaluation is conducted under the same 
test conditions. The effects of different backbone architectures and their frame sizes are also explored, 
as shown in Table 6. Among the two-stage detectors, Cascade-FF showed the highest speed. For single-
stage detector YOLOv2 showed superior speed. These detectors show superior speed when compared 
to the proposed detector because they only work on a few categories while suppressing others during 
training. The speed increase of the proposed detector is because datasets with several categories are 
diverse. As the number of categories increases, so does the speed of the detector. Table 6 presents a 
comparison of the time required for the proposed detector along with other approaches. These methods 
have the same parameters, but differ in their post-processing procedures during inference. Despite the 
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incorporation of multi-scale slowing down the inference speed, the proposed detector demonstrated a 
performance improvement when compared to the baseline detectors. 

6.4. Comparison of loss function 

If there exists any angle loss in the model, it leads to stability issues during training. The issue 
that arises due to regression inconsistency and discontinuity in loss must be eliminated by using an 
adjustable loss function. Additionally, experimental analysis has shown that the proposed detector is 
more stable during training and outperforms other state-of-the-art detectors. The training curve loss 
between the adjustable loss function 𝐿  and the smooth 𝐿1 loss function is shown in Figure 10. It 
can be observed that the mean and variance of the both the curves appears stable after using the 
adjustable loss function. 

 

Figure 10. Comparison of training loss curve after using the adjustable loss function 𝐿 . 

7. Conclusions 

This paper proposes a single-stage rotation detector that can detect oriented, multi-scale objects with 
high accuracy by introducing an enhanced feature refinement module. This module refines the position of 
the oriented bounding box to its corresponding feature points by reconstructing the entire feature map. 
Furthermore, to improve the detection accuracy of oriented objects, the detector introduces an adjustable 
loss function that solves the problem of loss discontinuity. The effectiveness of the proposed detector is 
demonstrated by reconstructing the entire feature map multiple times. The proposed detector overcomes 
the challenges associated with detecting oriented objects, where objects tend to be oriented at various angles, 
leading to angle alignment issues and discontinuity loss with an adjustable loss function. For future work, 
the proposed detector can be trained with more diverse datasets to improve its accuracy. Furthermore, it 
can be optimized for pre-processing in transfer learning and implementation for real-time object detection 
to improve its performance in challenging scenarios. 
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