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Abstract: Predicting construction costs often involves disadvantages, such as low prediction accuracy, 
poor promotion value and unfavorable efficiency, owing to the complex composition of construction 
projects, a large number of personnel, long working periods and high levels of uncertainty. To address 
these concerns, a prediction index system and a prediction model were developed. First, the factors 
influencing construction cost were first identified, a prediction index system including 14 secondary 
indexes was constructed and the methods of obtaining data were presented elaborately. A prediction 
model based on the Random Forest (RF) algorithm was then constructed. Bird Swarm Algorithm (BSA) 
was used to optimize RF parameters and thereby avoid the effect of the random selection of RF 
parameters on prediction accuracy. Finally, the engineering data of a construction company in Xinyu, 
China were selected as a case study. The case study showed that the maximum relative error of the 
proposed model was only 1.24%, which met the requirements of engineering practice. For the selected 
cases, the minimum prediction index system that met the requirement of prediction accuracy included 11 
secondary indexes. Compared with classical metaheuristic optimization algorithms (Particle Swarm 
Optimization, Genetic Algorithms, Tabu Search, Simulated Annealing, Ant Colony Optimization, 
Differential Evolution and Artificial Fish School), BSA could more quickly determine the optimal 
combination of calculation parameters, on average. Compared with the classical and latest forecasting 
methods (Back Propagation Neural Network, Support Vector Machines, Stacked Auto-Encoders and 
Extreme Learning Machine), the proposed model exhibited higher forecasting accuracy and efficiency. 
The prediction model proposed in this study could better support the prediction of construction cost, 
and the prediction results provided a basis for optimizing the cost management of construction projects. 
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1. Introduction 

As a pillar industry of the country, particularly in developing countries, the construction industry 
plays a major role in domestic economic growth. Moreover, competition in the construction market 
has intensified. For construction enterprises, the cost management of construction projects is the center 
of all business and management activities, and forecasting construction cost is an important part of the 
entire cost management system [1]. Therefore, the accurate prediction of the cost of construction 
projects bears profound significance in reducing the construction cost and improving the efficiency 
of enterprises. 

Currently, research results related to cost forecasting have been widely available, but two 
prominent problems remain. 1) Most research results are tantamount to developing the construction 
cost prediction index system for construction projects at the project level. This type of index system is 
highly detailed, and its scope of application is narrow, failing to provide reference and insight into the 
cost management of construction enterprises. 2) Current research methods are mainly static qualitative 
predictions, such as expert meetings, procedural investigation and subjective probability methods. 
These approaches are largely influenced by subjective factors, and the effective handling of the 
nonlinear characteristics of small samples in cost forecasting presents a challenge [2]. 

With the development of artificial intelligence, the application of machine learning algorithms in 
the study of cost prediction has become a trend [3]; however, inadequacies in related research results 
still arise. A decision tree (DT) requires considerable data preprocessing, and the prediction results 
easily fall into a local optimum [4]. A Support Vector Machine (SVM), a typical nonlinear modeling 
tool, has a highly complex computational function and its computational performance in solving multi-
classification problems is minimal [5]. The Artificial Neural Network (ANN), the most commonly 
used nonlinear modeling tool, possesses excellent nonlinear modeling ability but has several 
disadvantages related to learning, local minimum and slow convergence speed [6]. 

Proposed by Breiman in 2001, random forest (RF) [7] is a combined classification intelligent 
algorithm based on statistical learning theory. The basic ideas for the application of RF in nonlinear 
modeling are as follows. 1) A plurality of weak classifiers is combined to form a strong classifier. 2) 
These weak classifiers play a complementary role. 3) By reducing the influence of a single classifier 
error, the classification accuracy and stability are improved. Compared with other classical nonlinear 
modeling techniques, RF exhibits robust data mining ability, high prediction accuracy and good 
tolerance for outliers and noise. In addition, RF is not easy to appear in the fitting scene. At present, 
RF has been successfully applied in forecasting precious metal prices [8], the gross domestic product 
(GDP) [9] and power load [10]. 

In the RF model, the appropriate selection of the number of DTs and split features can efficiently 
reduce the complexity of the RF and improve its computational performance to form an enhanced 
integrated classifier. Classical metaheuristic optimization algorithms, such as the Particle Swarm 
Optimization (PSO) [11] and Genetic Algorithms (GA) [12], are broadly used to solve the optimal 
calculation parameters of the RF. However, the capabilities of these two algorithms for global retrieval 
are not satisfactory. 

Bird Swarm Algorithm (BSA) is a novel biological heuristic algorithm proposed by Meng et al. [13] 
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in 2015. BSA simulates the biological behaviors of birds in nature, such as foraging, vigilance and 
migration. Reporting to the classical metaheuristic optimization algorithm, this algorithm has the 
characteristics of decentralized search, maintaining population diversity and avoiding falling into a 
local optimum. BSA has been successfully applied in the optimal parameter calculation of the Back 
Propagation Neural Network (BPNN) [14], torsional capacity evaluation of RC beams [15] and the 
optimization of the vehicle powertrain [16]. To the best of our knowledge, there is no research result 
on the optimization of RF calculation parameters based on BSA. 

Therefore, to address the inadequacies, such as low prediction accuracy and efficiency, we 
developed a novel model for predicting the construction cost of a building. This study presents the 
following major contributions. 1) Most index systems of construction cost prediction in related studies 
were built at the project level, which had some disadvantages, such as a narrow scope of application. 
From the perspective of construction enterprises, the index system of construction cost prediction was 
constructed for the first time. The index system exhibited good adaptability and could be widely 
applied in construction cost management for construction enterprises. 2) A construction cost prediction 
model based on RF optimization by BSA was proposed. This model showed strong data mining ability 
and high prediction accuracy, effectively enhancing the prediction accuracy and efficiency of the 
construction cost.  

The remainder of this manuscript is arranged as follows. Section 2 summarizes the research 
results associated with this study; Section 3 analyzes the factors influencing architectural project 
construction cost, and constructs the related prediction index system; Section 4 introduces the 
construction cost prediction method based on the RF optimized by BSA; and Section 5 presents a case 
study to verify the science and effectiveness of the proposed model. Section 6 compares the 
computational performance of different algorithms to emphasize the advantages of the model proposed 
in this study. Section 7 summarizes the research results and limitations of this study. 

2. Related work 

Kim et al. [6] proposed a prediction model of construction cost, based on the Regression 
Comprehensive Moving Average Model (RCMAM) and ANN. The complexity and prediction 
workload of this hybrid model were larger than those of RCMAM or ANN. Whether the prediction 
accuracy was improved due to the increase in model complexity or the advanced nature of the hybrid 
model itself was difficult to assess. Thus, the evaluation that this hybrid model proposed by Kim 
exhibited enhanced calculation accuracy might be biased. With research on the concrete engineering 
cost in Egypt, Elfaham [17] emphasized the influence of inflation on the prediction results. The 
reasonable method of eliminating this effect was to translate the costs generated at different time points 
into the same time position. In the study by Elfaham, ANN was designed to build the prediction model 
but was not compared with other nonlinear modeling methods. Cao and Ashuri [18] constructed a 
highway construction cost prediction model based on Long Short-Term Memory. However, their study 
only considered the quantitative factors, such as the price of building materials and the wages of 
construction workers; it lacked research on the qualitative factors, such as the level of construction 
management and the ecological environment of construction. In accordance with the project 
management practice in construction engineering, these qualitative factors also exerted a significant 
effect on the construction cost. Using Complex Network Analysis, Mao and Xiao [19] developed a 
novel construction cost prediction model. The influencing factors of the construction cost were 
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regarded as network nodes, and the cost was expected by analyzing the relationship of each network 
node. However, CNA is a typical sociological research technique, which is easily influenced by the 
subjective judgment of managers. 

Pierioch and Risse [8] used RF to construct the price prediction model of precious metals. Reports 
on classical methods, such as Multiple Linear Regression (MLR), indicate that the results based on RF 
showed higher prediction accuracy. In addition, multivariate and unifoliate prediction results were 
compared, and the multivariate prediction was found to be more accurate than univalent prediction. 
Using the economic data of Japan from 2001 to 2018, Yoon [9] constructed an RF-based forecasting 
method for Japan’s GDP. However, the effect of RF initial calculation parameters on the prediction 
results was not analyzed. Fast and accurate forecasting of short-term power load has consistently been 
a difficult area in power management research. Accordingly, Dang et al. [10] developed a stochastic 
RF model to effectively quantify the uncertainty of power load forecasting. Compared with three other 
classical power load forecasting techniques, this model, based on stochastic RF, was proved to exhibit 
higher forecasting speed and forecasting accuracy. 

Imitating the foraging, alert and flight behaviors of birds, Meng et al. [13] proposed BSA, which 
more effectively avoided falling into the local optimal solution by solving 18 classic test problems. 
Zhang et al. [14] successfully found BPNN for Quadrature Amplitude Modulation Signal Recognition 
in 5G communication systems by BSA. However, their study failed to compare the computational 
performance of BSA and the classical optimization algorithm. Using ANN as an example, Kaya [20] 
analyzed the optimization performance of 16 metaheuristic algorithms. Numerous tests showed that 
calculation by BSA showed the highest speed and stability. Wu et al. [16] solved the typical multi-
objective optimization problem with a vehicle powertrain by using BSA. Compared with other 
optimization algorithms, BSA was more suitable for multi-objective optimization. 

3. Prediction index system for building project construction cost 

3.1. Analysis of factors influencing the building project construction cost 

The project construction cost is the sum of all costs incurred by construction enterprises to 
successfully complete construction projects. Construction projects are one-off and distinct, rendering 
the construction costs of different projects significantly different. The building project construction 
cost generally includes the material, labor, machinery, financial and management costs. 

Regulations on the Construction Cost Management of Capital Construction Projects in China, 
together with previous research results [4,17–19], indicate that the influencing factors of project 
construction cost are determined from the following aspects. 

1) Building scale (��) 
Building scale refers to the size of the volume, pattern, or scope of building projects. The scale of 

the building is directly proportional to the materials, machinery and personnel needed for the project; 
thus, it is directly proportional to the construction cost. The scale of the building generally includes 
influencing factors, such as the type of structure, total height, area of the standard floor and basement area. 

2) Project Management (��) 
Project management is an important factor considered to determine whether the project cost 

control is economical. Contrary to other research results [4], project management is separately listed 
to more clearly analyze its main effect on the construction cost. Project management consists of four 
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types: type of contract, the difficulty of resource scheduling, the proportion of managers and the 
difficulty of quality and safety management. 

3) Site conditions (��) 
On-site conditions determine the difficulty of the construction and thus also markedly influence 

the consumption of construction costs. This primary index includes the quality of life of employees 
and the quality of the construction environment, all of which influence the smooth progress of a project. 
In this study, site conditions were mainly divided into the distance from the location of the material 
supply, frequency of disasters and rationality of site layout. 

4) Fluctuation of price (��) 
The cost of project construction could be simply regarded as quantity multiplied by the unit price. 

The first three indicators mostly affect the project construction cost of buildings by influencing the 
quantity of work. Fluctuation in price was selected as an indicator representing the influence of price 
change on the project construction cost. Fluctuation in price mostly included fluctuations in material, 
labor and machinery costs. 

3.2. Proposed prediction index system 

On the basis of the principles of comprehensiveness, science, timeliness, applicability and 
comparability, the prediction index system was constructed. Details are listed in Table 1. 

Table 1. Prediction index system of the building project construction cost. 

Primary index Secondary index Unit References 

Building scale: �� 

Type of structure: ��� - [4,21] 
Total height: ��� m [17,18] 
Area of standard floor: ��� m2 [6,18,22] 
Area of basement: ��� m2 [2,23] 

Project Management: 
�� 

Type of contract: ��� - [3,24] 
Difficulty of resource scheduling: 
��� - [6,17] 

Proportion of managers: ��� % [2,18] 
Difficulty of quality and safety 
management: ��� - [4,19] 

Site conditions: �� 

Distance from the material supply 
place: ��� Km [21,23] 

Frequency of disasters: ��� Times/Year [18,25] 
Rationality of site layout: ��� - [2,3,5] 

Fluctuation of price: 
�� 

Material price index: ��� - [18,26] 
Rationality of site layout: ��� - [26,27] 
Machinery price index: ��� - [19,26] 

In order to facilitate readers, this paper briefly summarized the types and data characteristics of 
indicators in Table 1. There were two kinds of indicators in Table 1, qualitative indicators and 
quantitative indicators. Qualitative indicators (���, ��� and ���) were obtained by questionnaires or 
expert interviews, while quantitative indicators (all indicators excepted ��� , ���  and ��� ) were 
obtained by quantitative methods based on statistics. For the data of ���  and ��� , preset and 
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corresponding integers were taken according to the types of projects. The data sources of ���, ���, 
��� were questionnaire survey results. See the following Section 3.3 for the qualitative explanation of 
different data results. ��� was the average number of natural disasters in recent years. ���, ��� and 
��� could be calculated statistically, or referred to the cost information issued by the local government. 

It should be emphasized that the rationality of the prediction index system of the construction cost 
has a significant effect on the subsequent prediction accuracy. Section 6.1 elaborates on the importance 
of each prediction index to reveal the regular pattern of the effect of the prediction index system on 
the accuracy of prediction. 

3.3. Data processing methods 

a) Type of structure (���) 
The type of structure determined the choice of construction technology and building materials, 

affecting the direct construction cost. The most common types were the frame structure 1), steel 
structure 2), shear wall structure 3), the brick–concrete structure 4) and tube structure 5). The values 
in brackets represented the index scores corresponding to the different types. The ��� data point was 
obtained by consulting the project management information and was an index without the 
measurement unit. 

b) Total height (���) 
The total height of the buildings was calculated as the height of the highest point to the outdoor 

ground as the reference. The higher the building, the more rigorous the performance requirements set 
on the materials and the higher the cost of construction management. The ��� data point, the area of 
the standard floor (���) and the area of the basement (���) were determined by consulting design 
drawings. The measurement unit of ��� was m, whereas that of ��� and ��� was m2. 

c) Area of the standard floor (���) 
The area of the standard floor was a critical factor in the construction cost. The larger the area of 

the standard floor, the higher the labor, material and machinery costs needed. Notably, the cost 
estimation method commonly used in engineering practice is to approximate the construction cost 
based on the standard floor building area. 

d) Area of the basement (���) 
The construction of the foundation and the basement entailed difficulty, comprising about 15–30% 

of the total construction cost. The construction cost of the foundation and the basement was 
approximately considered proportional to the basement area. 

e) Type of contract (���) 
The type of contract determined the organization and management system of the project and the 

contracting method, which was crucial for the implementation of the project. If the same construction 
project adopted different contract types, the construction costs would vary. Common contracts included 
fixed lump-sum contract 1), fixed unit-price contract 2), variable lump-sum contract 3) and variable 
unit-price contract 4). The ���  data point was obtained by consulting the project management 
information and was an index without a measurement unit. The values in brackets represented the 
index scores corresponding to the different types. 

f) Difficulty in resource scheduling (���) 
Resource scheduling is the rational allocation and mobilization of construction machinery and 

materials. Reasonable resource scheduling enables site coordination and reduces the construction cost. 
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In this study, the difficulty of resource scheduling was selected as a comprehensive qualitative index 
because of the complexity of resource scheduling at the construction site. The data of ��� , the 
difficulty of quality and safety management (���) and the rationality of the site layout (���) were 
obtained using the questionnaire survey or the expert interview. They were indexes without the 
measurement unit. In this study, it is very easy, easy, general, difficult and very difficult to divide the 
evaluation results of ���  into five grades. The quantitative evaluation interval of very easy was 
(80, 100], and its qualitative language description was that the coverage of resources was small and 
the quantity was small, which would not cause trouble to the project cost management. The quantitative 
evaluation interval of easy was (60, 80], and its qualitative language description was that the resource 
coverage was moderate and the quantity was appropriate, and the demand could be met through simple 
scheduling. The quantitative evaluation interval of general was (40, 60], and its qualitative language 
description was that resources covered a wide range and had a large number, which required more 
detailed and comprehensive scheduling. The quantitative evaluation interval of difficult was (20, 40], 
and its qualitative language description was that resources covered a wide range and a large number, 
and scheduling required a high level of technology and management, which was easy to encounter 
bottlenecks. The quantitative evaluation interval of very difficult was [0,20], its qualitative language 
description was that resources covered a very wide range and had a large number, scheduling needed 
superb technology and management experience, and needed to overcome various complicated 
problems and difficulties. Experts could quantify the index according to the actual situation of the 
project and the qualitative language description of the index. 

g) Proportion of managers (���) 
Organization and coordination refer to the organization and distribution of personnel inside and 

outside the project. A reasonable organizing staff can effectively avoid an increase in management 
costs caused by oversaturation. In this study, the proportion of managers was selected as an index 
describing the influence of personnel organization and coordination on the construction cost. ��� is 
calculated as follows: 

��� = ���
�

���
� × 100%,                              (1) 

where ���
�  is the number of managers, and ���

�  is the number of construction workers. During the 
construction stage, the staff mobility of the project management team and the construction operation 
team is considerably strong. Thus, the data points ���

�  and ���
�  should be observed and averaged 

several times. 
h) Difficulty of quality and safety management (���) 
Quality and safety management are important contents of project management. If quality 

management is improper, the completed construction content can be easily reworked, and the 
construction cost could increase. The occurrence of a construction safety accident can result in 
casualties and property losses. In this study, the difficulty of quality and safety management was 
selected as a comprehensive qualitative index because of the complexity of quality and safety 
management at the construction site. The evaluation grade of ��� was divided into five grades, which 
are very easy (80, 100], easy (60, 80], average (40, 60], difficult (20, 40] and very difficult [0,20]. 
The qualitative language description of very easy was that the quality and safety management in project 
implementation was very comfortable, easy to control and extremely low in risk. Qualitative language 
description of easy meant that the quality and safety management in project implementation was not 
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difficult, could be well controlled and has low risk. The qualitative language of general described that 
the quality and safety management in project implementation was not difficult and needed to be 
controlled through reasonable management measures, and there were certain risks. The qualitative 
language description of difficult was that the quality and safety management in project implementation 
is difficult, which required more powerful management measures to be controlled and might face 
certain risks. The qualitative language description of very difficult was that the quality and safety 
management in project implementation was extremely difficult, requiring extremely powerful 
management measures to be controlled, and might face high risks. Experts could quantify the index 
according to the actual situation of the project and the qualitative language description of the index. 

i) Distance from the material supply place (���) 
The transportation cost of materials was an important component of the construction cost. The 

farther the distance between the construction site and the material supply location, the greater the 
transportation cost. The material loss in transit and the cost of material preservation measures were 
also proportional to the distance. ��� is calculated as follows: 

��� =
∑ ∑ ���

���
���

�
���

∑ ��
�
���

,                                (2) 

where ���
��  is the distance from the �-th supplier of the �-th material to the construction site; � is the 

number of materials; and �� is the number of suppliers of the �-th material. 
j) Frequency of disasters (���) 
Natural disasters interrupted the construction process and caused casualties and property losses 

within the construction scope. In addition, the higher the frequency of natural disasters, the more 
disaster prevention and mitigation measures were needed, which increased the construction cost. The 
data point of ��� was obtained by consulting local meteorological data and geological survey reports. 
This paper suggested that the annual frequency of natural disasters in recent 10 years should be the 
score of this index. 

k) Rationality of the site layout (���) 
The layout of the construction site significantly affected the construction efficiency. The more 

reasonable the layout, the higher the construction efficiency, and the lower the amount of labor and 
machinery used. In this study, the layout of the construction site included too much content; thus, the 
rationality of the site layout was selected as a comprehensive qualitative index. The evaluation grade 
of ��� was divided into five grades, very reasonable (80, 100], reasonable (60, 80], half (40, 60], 
unreasonable (20, 40] and very unreasonable [0,20]. The qualitative language description of very 
reasonable was that the layout completely conformed to the regulations and standards, achieved the 
best design effect, maximized the space utilization and also considered the user’s use needs and 
comfort. The qualitative language description of reasonable was that the layout basically conformed 
to the regulations and standards, the space utilization rate was high and the user’s use needs were 
basically met. The qualitative language description of half was that the layout basically conformed to 
the regulations and standards, but the space utilization rate needed to be improved, and the user’s use 
needs had been initially met. The qualitative language description of the unreasonable was that there 
were obvious violations or irrationalities in the layout, the space utilization rate was low and the user’s 
use needs were not fully met. The qualitative language description of very unreasonable was that the 
layout was very unreasonable and there were great security risks, which could not meet the needs of 
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the users. Experts could quantify the index according to the actual situation of the project and the 
qualitative language description of the index. 

l) Material price index (���) 
The cost of materials comprised about 30–50% of the total construction cost; thus, the price 

fluctuation of materials significantly influenced the construction cost. The material price index was 
selected to reflect the change in material cost during construction. The data calculation method for 
��� is as follows: 

��� = ∑ ��∗��
�
���

∑ ��∗��
∗�

���
,                                  (3) 

where � is the number of materials, �� is the material planned consumption of the �-th material 
during reporting; �� is the price of the �-th material during the reporting period, and ��

∗ is the price 
of the �-th material during the reference period. 

Notably, the data ���, ��� and ��� could also refer to the construction price index information 
published by the local cost management department. 

m) Labour price index (���) 
The labour price index was selected to reflect the changes in the labour price during the 

construction process. The data calculation method for ��� is given below: 

��� = ∑ ��∗��
�
���

∑ ��∗��
∗�

���
,                                  (4) 

where � is the number of the main types of work; �� is the labor planned consumption of the �-th 
work during the reporting period; �� is the price of the �-th labour during the reporting period; and 
��

∗ is the price of the �-th labor during the reference period.  
n) Machinery price index (���) 
The mechanical price index was selected to reflect the change in the mechanical price during the 

construction process. The data calculation method for ��� is given below: 

��� = ∑ ��∗��
�
���

∑ ��∗��
∗�

���
,                                (5) 

where � is the number of major construction machines; �� is the budgeted consumption of the �-th 
machine during the reporting period; �� is the price of the �-th machine usage fee during the reporting 
period; and ��

∗ is the price of the �-th machine usage fee during the reference period. 
The construction cost of a building has apparent time benefits. Thus, the construction cost of 

different time points should be converted to the same time point: 

�∗ = �
(���)�                                  (6) 

where � is the duration; � is the benchmark interest rate; �∗ is the present value of the construction 
cost; and � is the present value of the construction cost. 
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4. Construction cost prediction model for building engineering 

4.1. Introduction to RF 

RF is a typical machine learning method [7]. It mainly uses the Bootstrap resampling method to 
extract multiple samples from the original data. RF builds the classification and regression trees 
(CARTs) for each Bootstrap sample. The predictions of all classification trees are combined, and the 
final result is derived by voting. With two classifications as an example, the calculation principle for 
RF is presented in this section.  

Supposing two classes, �� and ��, exist and � is the data set at the current tree node, then � is 
divided into ��  and ��  such that the condition � = ��⋃��  is satisfied. ��  and ��  represent the 

sample data assigned to ��  and �� , respectively; ��(��) = |��|
|�|

  is the proportion of ��  in � ; and 

�(��|��) = |��⋂��|
|��|

 is the proportion of �� in ��. 

The variogram ����� in �� is as follows [7]:  

����� = ∑ ���
��� ������� �1 − ����������.                    (7) 

The Gini index � is the weighted sum of the variograms �(��) and �(��). The calculation 
method for � is as follows [7,10]: 

� = ��(��)�(��) + ��(��)�(��)                       (8) 

After constructing a complete forest with � classification trees, it was used to verify or predict 
new known or unknown data. This forest synthesized the prediction results for � trees and determined 
the data category by voting. The mathematical expression for �� is given below [7]: 

�� = ������� ��
�

∑ � �
���,�

���
��

��� �,                       (9) 

where ��  is the classification result corresponding to the feature set � ; �  is the number of 

classification trees; � is the indicator function; ���,� is the classification result for class � by the 

tree ℎ�; and ��� is the number of leaf nodes of ℎ�.  

The forest classification model �(�) is expressed as follows [7]: 

�(�) = �������∑ �(ℎ�(�) = �)�
��� ,                   (10) 

where ℎ� is the �-th taxonomic tree. 
In addition, some data were not selected in each sampling, and the remaining out-of-bag data 

(OOB) were used for internal error estimation. Each classification tree had an OOB error estimation, 
and the average value was used as the generalization error of the model.  

When a certain number of trees was reached, the OOB error of the model was considered similar 
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to that of the optimized model. The major mathematical processes included the following: 
The empirical margin function of the sample data set (�, �) is defined as [7,28], 

��(�, �) = �̂�(ℎ�(�) = �) − max
���

(ℎ�(�) = �).                 (11) 

The generalization error � of the classifier set ℎ is expressed as [7]: 

� = ��,�(��(�, �) < 0),                            (12) 

where (�, �) is the feature-response space composed of � and �.  
With an increase in �, the number of classification and regression trees increases [7,11]: 

��→� → ��,� ���(ℎ(�, �) = �) − max
���

(ℎ(�, �) = �) < 0�,               (13) 

where �� is the generalization error of the classification tree corresponding to the parameter �. In 
accordance with Eq (13), � should approach a finite upper boundary infinitely with an increase in DT 
to prevent overfitting. 

According to the aforementioned analysis, the number of CARTs and the number of features in 
the RF method largely influenced the prediction accuracy. The number of CARTs is used to load 
training samples and their feature factors. The number of features is the number of randomly selected 
features during each node splitting operation. The flow chart of RF for data prediction was shown in 
Figure 1. 

Data-set

Randomization

Training 
Data-set 1

Training 
Data-set n

……

Classification 
result 1

……

Classification 
result n

Voting for 
the best result……

 

Figure 1. The flow chart of RF for data prediction. 

4.2. Introduction to BSA 

For a greater survival advantage, the social behavior of birds includes not only foraging behavior 
but alert behavior as well. BSA is an optimization algorithm derived from the social behavior of birds. 
The algorithm mostly simulates the division of labor and social interaction between different 
individuals in the sparrow population when it is looking for food (target). In BSA, the flight position 
of each bird represents the potential solution. A scattered flight search of birds cannot only maintain 
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the diversity of the population but also effectively avoids a locally optimal solution. The flow of BSA 
is presented in Figure 2 [13]. 

StartSetting parameters and initializing population by 
Rule 1

Calculating the fitness values and initializing the 
global optimal solution by Equation (14) and Rule 2

Updating population by Equation 
(14)

Fly? Foraging?No
Keeping alert by 

Equation (15) 
and Rule 3

Seeker?

Yes

Following Seeker 
by Equation (18) 
and and Rule 5

Searching for 
other targets by 
Equation (19) 
and and Rule 5

No

Yes

Searching for  
targets by 

Equation (14) 
and Rule 4

Yes

Calculating the fitness and updating the global optimal 
solution by Equation (14)

Is the iteration termination 
condition met?

Outputting 
optimal 
solution

End

No

Yes

 

Figure 2. Flow chart of BSA. 

The searching behavior of birds in nature, as determined from their social behavior, is transformed 
into the following five rules [13]: 

Rule 1. Individual foraging behavior and alert behavior are random. 
Rule 2. Foraging behavior. When a bird is foraging, it can quickly record the best position of the 

target and update the best position of the target. This information is dynamically shared within the 
whole flock of birds. 

Rule 3. Alert behavior. The alert behavior of birds is the tendency to move to the center of the 
flock. The more vigilant the bird, the greater the tendency to move. 

Rule 4. Flight behavior. Birds periodically fly to another location. When birds fly to a new place, 
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individuals in the flock switch identities between Seekers and Followers. The birds with high vigilance 
become Seekers, whereas those with low vigilance become Followers. The rest randomly choose 
between Seekers and Followers. 

Rule 5. Seekers continue to forage, whereas Followers randomly follow a bird that becomes the 
individual search target of the Seeker. 

Suppose there are � birds in the ��
� (� ∈ [1, ⋯ , �]) position at time �, foraging and warning in 

a �-dimensional space. 
1) Foraging behavior 
Rule 1 provides a basis for the random decision-making process of birds. When the random 

number between (0,1)  generated by equal probability is greater than the constant � , birds feed, 
otherwise they remain alert. 

In accordance with Rule 2, every bird looks for its target by its own flight experience and group 

experience. Thus, the position ��,�
��� at time � + 1 is given below [16]: 

��,�
��� = ��,�

� + � ∗ ����(0,1) ∗ ���� − ��,�
� � + � ∗ ����(0,1) ∗ ��� − ��,�

� �,        (14) 

where � ∈ [1, ⋯ , �], ����(0,1) represents the random number between 0 and 1; � is the cognitive 
coefficient of the individuals; � is the cognitive coefficient of the groups; ��� is the best position of 
the i-th bird before its renewal; and �� is the best position of the groups. 

If the random number ����(0,1) is less than a constant ��� ∈ (0,1)�, then birds start foraging; 

otherwise, they remain alert. 
2) Alert behavior 
In accordance with Rule 3, the alert behavior is described below [13]: 

��,�
��� = ��,�

� + �� ∗ ����(0,1) ∗ ������ − ��,�
� � + �� ∗ ����(−1,1) ∗ ���,� − ��,�

� �,   (15) 

�� = �� ∗ exp �− �����
���������

��,                         (16) 

�� = �� ∗ exp � �����������
|�����������|��

∗ �∗�����
���������

�,                   (17) 

where � is a positive integer from 1 to �, satisfying the condition � ≠ �; �� and �� belong to [0,2]; 
����� is the optimal fitness value of the �-th bird; ������� is the sum of the optimal fitness values 
of the colony; and � is a considerably small constant to avoid the situation in which ������� is 0; 
and ����� is the average fitness of the �-th birds. 

In Figure 2, Keeping alert means that the bird performs alert behavior. 
3) Flight behavior 
In accordance with Rule 4, to avoid being chased or looking for food, birds will fly to other areas 

regularly, and the migration cycle is set as ��. When they arrive in another area, they will feed again. 
For a Seeker, its flying behavior is described as follows [14]: 

��,�
��� = ��,�

� + �����(0,1) ∗ ��,�
� .                    (18) 
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For a Follower, its flying behavior is as follows [14]: 

��,�
��� = ��,�

� + ����(0,1) ∗ ���,�
� − ��,�

� � ∗ ��,                (19) 

where ����(0,1) is a standard Gaussian random number, � ∈ [1, �] and � ≠ �; ��(�� ∈ [0,2]) 
indicates the interval between birds flying to a place to look for food. 

4.3. Implementation of the proposed model 

The flowchart of the prediction model proposed in this study is presented in Figure 3. 

Start

Pretreating the data of continuous indicators by Equation (20) 

 Establishing training set and test set by random 
sampling 

Determining the parameters of RF, and initializing 
the RF model by Equations (7)-(9)

Determining the parameters of BSA and initializing 
the BSA model by Equations (14)-(19)

Calculating fitness

t=T？

Outputting the best parameter 
combination and constructing the 

optimized  model.

Forecasting construction costEnd

Collecting data by method proposed in Section 3.3

Training set

Test set

t=t+1

Updating individual 
positions according to 
the types of birds by 
Equations (14)-(19)

Getting a new 
parameter 

combination

 

Figure 3. Flow chart of prediction model proposed in this paper. 
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Step 1. Data collection and preprocessing 
As mentioned in Section 3.3, the data for all secondary indicators could be collected. Two types of 

secondary indicators, discrete indicators (��� and ���) and continuous indicators were identified (11 
other secondary indicators). The continuous indicators were normalized to reduce the complexity of 
the model and improve the prediction accuracy. After normalization, the index value ��

∗ is expressed 
as [29] 

��
∗ = �������

���������
，                             (20) 

where ��  is the value before normalization, ����  is the minimum value and ����  is the 
maximum value. 

Step 2. Establishing the training set and the testing set. 
The training set was used to train the prediction model, and the testing set was used to check its 

computational performance. The training set was obtained by random sampling, and the remaining 
data of the sample set were used as the testing set. The common ratios of the training set to the test set 
were 95%:5%, 90%:10%, 85%:15%, 80%:20% and so on. 

Step 3. Determining the calculation parameters of RF and initializing the RF model. 
In RF, the range and initial value of the DT and split features had to be set [7,10]. The RF model 

was initialized by bringing the testing set data and calculation parameters into Eqs (7)–(9). 
The MSE of the training samples was selected as a fitness function. When the fitness function 

was minimum, BSA found the optimal combination of the calculation parameters of RF. The 
calculation method for ��� is given below [30]: 

��� = ∑ (������)�

��

��
��� ,                           (21) 

where �� is the number of samples in the testing set; �� is the predicted value and ��� is the real value. 
Step 4. Determining the calculation parameters of BSA and initializing the BSA model. 
In BSA, the parameters had to be set, including the following: the population size � ; the 

maximum iteration number �; the individual cognitive coefficient �; and the cognitive coefficients 
�, ��, �� and �� [16]. The testing set data and the calculation parameters were input, and the BSA 
model was initialized.  

According to the optimization flow (Figure 2), the optimal combination of the RF calculation 
parameters was determined. If the convergence condition was not met, the number of iterations was 
increased by one, and the individual position and group knowledge of the flock were updated to obtain 
the new number of DTs and split features. If the convergence condition was met, Step 5 was performed. 

Step 5. Outputting the optimal combination of the calculation parameters of RF, including the 
optimal DT (�����) and the optimal split number (�����).  

The construction cost prediction model based on RF was constructed, depending on the best 
parameter combination. 

Step 6. Forecasting the construction cost. 
The testing set data was brought into the optimized construction cost prediction model. The 

�����  DT was randomly selected using the Bootstrap method, and the �����  features were 
randomly selected to split into leaf nodes. The final prediction result of the construction cost of the test 
set was determined by taking the arithmetic average of the results of each DT. 
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5. Case study 

5.1. Data acquisition and preprocessing 

A total of 48 construction cost data of a construction company in Xinyu City were selected as 
sample data. Quantitative indicators were obtained by referring to design documents, local yearbooks 
or project management data. For qualitative data acquisition, 50 engineering experts were invited to 
assign scores, and 43 valid questionnaires were collected. Personal information on the experts in the 43 
valid questionnaires is listed in Table 2. 

Table 2. Basic information of 43 experts. 

Work unit Years of work 
(Year) Education background Title Involved in these projects? 

Government 
7 (16.28%) 

[0, 5) 
0 (0%) 

College 
7 (16.28%) 

Junior 
0 (0%) 

Yes 
42 (97.67%) 

Subcontractor 
9 (20.93%) 

[5, 10) 
0 (0%) 

Bachelor 
22 (51.16%) 

Senior 
43 
(100%) 

No 
1 (2.33%) 

Contractor 
24 (55.81%) 

[10, 20) 
12 (27.91%) 

Master 
10 (23.26%)  - 

Owner 
3 (6.98%) 

[20, +∞) 
31 (72.09%) 

Doctor 
4 (9.30%) - - 

The following conclusions are listed in Table 2. 
1) All experts of 43 valid questionnaires were from work units closely related to the management 

of the project construction cost and participated in the construction cost management. These experts 
were closely related to the object of the case study. 

2) 100% of the experts who participated in this questionnaire had working experience of more 
than 10 years; more than 70% of the experts had working experience of more than 20 years; 93.72% 
of the experts attained a bachelor’s degree or higher; and all of the experts had senior professional 
titles attached to their names. These findings indicated that most of the experts had solid professional 
backgrounds in project construction cost management. 

Therefore, the questionnaire survey results for the 43 experts were considered qualitatively reliable. 
Cronbach’s α is the most commonly used method for reliability testing [31]. To quantitatively 

verify the reliability of qualitative index data, all data for the 43 valid questionnaires were loaded 
into the SPSS 21.0 software, and the Cronbach’s α coefficients of the indexes ���, ��� and ��� 
were 0.7511, 0.8124 and 0.7202, respectively. All Cronbach’s α coefficients of the three qualitative 
indexes exceeded 0.7, which met the general requirements of questionnaire reliability testing [31]. 
Thus, the results of this questionnaire passed the reliability test. 

The averages of the three qualitative indicators rated by 43 experts were used as their scores. The 
original data pertaining to the 48 projects are listed in Table 3. The construction cost (�) was expressed 
in millions. Only some data are included in Table 3 because of space constraints.  
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Table 3. Raw data for the construction cost. 

Index 1) 2) 3) 4) 5) 6) ⋯ 42) 43) 
��� 1 1 3 3 3 1 ⋯ 1 3 
��� 42.5 58.5 103.6 99.5 117.75 26.5 ⋯ 15.6 45.8 
��� 784.41 1674.91 1819.03 2743.51 2321.98 915.47 ⋯ 687.58 1741.15 
��� 720.52 1563.26 3547.14 2402.00 4473.56 845.04 ⋯ 0 3248.6 
��� 4 3 4 3 4 3 ⋯ 1 3 
��� 74.74 57.98 43.12 75.14 25.86 57.00 ⋯ 63.21 75.14 
��� 14.69% 18.20% 16.25% 9.25% 24.89% 12.16% ⋯ 15.43% 13.25% 
��� 69.05 53.84 84.79 49.93 28.23 62.49 ⋯ 59.26 48.98 
��� 24.52 27.66 12.76 58.07 21.01 40.25 ⋯ 18.59 15.74 
��� 1.74 2.03 1.63 5.50 5.27 1.62 ⋯ 1.33 0.97 
��� 61.58 33.07 72.67 66.95 62.30 69.33 ⋯ 29.63 73.49 
��� 101.4 109.5 116.5 118.4 106.4 118.2 ⋯ 106. 2 107.3 
��� 101.9 112.5 122.2 127.5 121.6 114.9 ⋯ 129.2 119.0 
��� 101.7 114.8 105.0 117.1 105.7 102.6 ⋯ 114.6 147.18 
� 39.22 25.32 135.63 164.99 149.28 24.14 ⋯ 17.15 127.48 

In Table 3, almost all structural forms were frame structures 1) or shear wall structures 3). This 
phenomenon was explained in detail. At present, in the field of building engineering, frame structure 1) 
and shear wall structure 3) are common building structures. In newly-built projects in developed 
countries, frame structure 1) and shear wall structure 3) account for about 80%, steel structure 2) 
accounts for about 20%, brick-concrete structure 4), and tube structure 5) rarely appear. In new 
construction projects in developing countries, frame structures 1) and shear wall structures 3) account for 
about 50%, steel structures 2) account for about 10%, brick-concrete structures 4) account for about 40% 
and there are almost no tube structures 5). Among the 43 projects in this paper, there were only 2 steel 
structures 2) and 5 brick-concrete structures 4), and the remaining 36 were frame structures 1) or shear 
wall structures 3). We believed that the different structural types of 43 projects were representative. 

The data for continuous variables in Table 3 are loaded into Eq (20), and the data after normalization 
are presented in Table 4, with the data for two discrete indexes (��� and ���) not normalized. 

Table 4. Normalized data for the construction cost. 

Index 1) 2) 3) 4) 5) 6) ⋯ 42) 43) 
��� 1 1 3 3 3 1 ⋯ 1 3 
��� 0.82 0.71 0.41 0.43 0.31 0.93 ⋯ 1.00 0.80 
��� 0.88 0.61 0.56 0.28 0.41 0.84 ⋯ 0.91 0.59 
��� 0.89 0.77 0.47 0.64 0.34 0.87 ⋯ 1.00 0.52 
��� 4 3 4 3 4 3 ⋯ 1 3 
��� 0.17 0.39 0.59 0.16 0.82 0.41 ⋯ 0.32 0.16 
��� 0.53 0.34 0.44 0.81 0.00 0.66 ⋯ 0.49 0.60 
��� 0.33 0.52 0.13 0.57 0.84 0.41 ⋯ 0.45 0.58 
��� 0.84 0.79 1.00 0.37 0.88 0.62 ⋯ 0.92 0.96 

Continued on next page 
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��� 0.76 0.70 0.78 0.00 0.05 0.79 ⋯ 0.85 0.92 
��� 0.21 0.70 0.01 0.11 0.19 0.07 ⋯ 0.76 0.00 
��� 0.85 0.48 0.16 0.07 0.62 0.08 ⋯ 0.63 0.58 
��� 0.95 0.64 0.37 0.21 0.38 0.57 ⋯ 0.17 0.46 
��� 1.00 0.80 0.95 0.76 0.94 0.99 ⋯ 0.80 0.30 
� 0.90 0.96 0.49 0.36 0.43 0.97 ⋯ 1.00 0.52 

5.2. Acquisition of the optimal combination of parameters 

The ratio of the training set to the testing set was 80%:20%. The data for 38 groups were randomly 
selected from the data in Table 4, and the remaining data for 10 groups were the testing set. Thus, the 
actual ratio of the training set to the testing set in this study was 79.17%:20.83%. The data for the 38 
training sets were entered into the self-compiling program based on Matlab software. 

In the RF method, the conditions were set as follows: the maximum range of the DT, 500; the 
initial value of the DT, 1; the maximum range of split features, 5; and the initial value of split features, 1. 
In BSA, the conditions were set as follows: population size, 50; maximum number of iterations, 500; 
the individual cognitive coefficient C and the group cognitive coefficient S were 2, �� and �� were 1; 
the convergence error was 10-8, and FL, 0.5–0.9. An extremely wide range for the calculation 
parameters would reduce the efficiency of the algorithm, whereas an extremely narrow range might 
not find the optimal solution. Therefore, in this case study, a broad range was used for the calculation 
parameters of RF and BSA to ensure that the optimal calculation parameters would be determined. 

The optimization results for BSA are presented in Figure 4. BSA determined the global optimal 
solution around the 120th generation. 

 

Figure 4. The optimization process of the BSA. 

The details of the optimization of BSA are given in Table 5. With the termination iteration 
requirements considered, BSA found the best combination of RF parameters in the 118th generation. 
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Table 5. Details of the optimization of BSA. 

Iteration (n) Fitness (n-1) Fitness (n) Fitness (n) – Fitness (n-1) Result 
116 4.00741×10-5 4.00436×10-5 3.05×10-8＜10-8 Continue 
117 4.00436×10-5 3.94791×10-5 5.65×10-7＞10-8 Continue 
118 3.9101×10-5 3.9101×10-5 0＜10-8 Continue 
1000 3.9101×10-5 3.9101×10-5 0＜10-8 Stop 

In this study, the optimization of the RF algorithm was repeated 1000 times. BSA found the best 
parameter combination in 123.941 generations on average; the best solution was the 97th generation, 
and the worst solution was the 161st generation. The standard deviation of the convergent generation 
was only 14.747, and 99.96% of the 1000 calculations found the same optimal parameter combination. 

On the basis of the aforementioned analysis, RF was considered to successfully determine the 
optimal solution. The optimal parameter combination of RF was as follows: the number of DTs, 124; 
and the number of split features, 1. The computational performances of BSA and other metaheuristic 
optimization algorithms are compared in Section 6.2. 

5.3. Prediction of the construction cost 

The 10 sets of testing data and the optimal calculation parameters of RF were brought into the RF 
model, and the prediction results of the 10 sets were obtained. When training the model, the normalized 
real cost was adopted; thus, the predicted value output by the model was also the normalized value. 
The forecast result was loaded into Eq (20), and the corresponding forecast cost was calculated (Table 6). 
The maximum errors appear bolded in Table 6. 

Table 6. Prediction results for the testing set. 

Real cost Forecast cost Absolute 
error 

Relative 
error Before 

normalization 
After 
normalization 

Before 
normalization 

After 
normalization 

25.32 0.945 25.586 0.943 0.266 1.05% 
135.63 0.199 134.640 0.205 0.990 0.73% 
124.99 0.271 125.352 0.268 0.362 0.29% 
134.78 0.204 135.934 0.197 1.154 0.86% 
68.00 0.656 68.374 0.654 0.374 0.55% 
79.54 0.578 78.999 0.582 0.541 0.68% 
86.38 0.532 85.398 0.538 1.072 1.24% 
115.40 0.335 116.727 0.326 1.327 1.15% 
106.38 0.396 105.423 0.403 0.957 0.90% 
59.85 0.711 60.305 0.708 0.455 0.76% 

Calculated from the normalized data, the absolute error is the absolute value of the predicted value, 
minus the real value (Table 6). The relative error is the absolute error, divided by the real cost. The 
prediction results in Table 6 show that the maximum absolute error of 10 test sets is 1.154, and the 
maximum relative error is 1.24%. In this study, all errors in the prediction results met the requirements 
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of engineering practice [32]. 
To further analyze the prediction accuracy of the model, the coefficient of determination (��) is 

selected to analyze the correlation between the actual construction cost and the predicted construction 
cost. The calculation method for �� is given below [33]: 

�� = ∑ (������)��
���

∑ (�����)��
���

                              (22) 

where � is the number of testing data; ��� is the predicted value of the �-th test set; �� is the real 
value of the �-th test set; and �� is the average of the real values. 

The data in Table 6 were brought into Eq (22), and �� of the results predicted using the proposed 
model was 0.9997. The coefficient of determination between the predicted result and the real value 
was very close to 1, indicating that the predicted result was almost equal to the real value. 

The Coefficient of Variation is also a commonly used error analysis tool, which is equal to the 
ratio of standard deviation to average value. After calculation, the Coefficient of Variation of the case 
study object was 6.329383364. This is very similar to the classic research result [34]. 

All samples were analyzed by tenfold cross-validation to verify the ability of the proposed model 
to extrapolate. In the tenfold cross-validation, the average absolute error was 0.974, and the average 
relative error was 1.05%. These results indicate that the proposed model could possessed the ability to 
generalize, was effective, and could complete the forecasting task with high accuracy. The proposed 
model is compared with the classical and latest prediction models with respect to calculation 
performance in Section 6.3. 

It is worth mentioning that the ratio of the training set and testing set may have an impact on 
the prediction results. Therefore, this paper selected 43:5 (89.6%:10.4%), 34:14 (70.8%:29.2%) 
and 29:19 (60.4%:39.6%). The results of their 1000 repeated calculations were shown in Table 7. 

Table 7. Calculation results of different proportions. 

Ratio 
MAE in 
1000 
calculations 

SDAE in 
1000 
calculations 

SDSD in 1000 
calculations 

AVSD in 1000 
calculations 

Ten-fold 
cross-
validation 
ratio 

89.6%:10.4% 1.31% 0.000763471 0.00040985320 0.00718178858 100% 
79.17%:20.83% 2.26% 0.001609144 0.00144919951 0.01312937482 100% 
70.8%:29.2% 3.47% 0.008471769 0.04223584591 0.03598123199 99.7% 
60.4%:39.6% 9.23% 0.026951901 0.06827255313 0.09305018740 86.2% 

In the Table 7, MAE is the maximum average error, SDAE is the standard deviation of average 
errors, SDSD is the standard deviation of standard deviations and AVSD is the average value of 
standard deviations. 

As could be seen from Table 7, with the decrease of the proportion of training sets, the prediction 
accuracy gradually decreased. When the proportion of training set was as high as 89.6%, the MAE 
in 1000 calculations was only 1.31%. If the proportion of training set was 60.4%, the MAE in 1000 
calculations was increased to 9.23%. In addition, when the proportion of training sets was 70.8 and 60.4%, 
the model proposed in this paper might not pass tenfold cross-validation every time. Therefore, this 
paper suggested that the proportion of training set should not be less than 80% when BSA-RF model 
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was adopted. 
It was worth mentioning that each calculation had an average error in 1000 repeated calculations. 

The average error was the average of the prediction errors of the test sets. Because the samples of the 
test set were randomly selected in each calculation, the average error of each calculation was different. 
MAE in 1000 calculations was the MAE of test set prediction results in these 1000 calculations. In this 
study, it was not to solve the average error of all the calculation results of 1000 calculations, so it was 
not a definite value. 

To analyze the stability of the prediction results, the standard deviations of 1000 calculations 
under different ratios of the training set and testing set were calculated and shown in Column 3 of Table 7. 
The calculation results showed that the standard deviation increased rapidly from 0.000763471 
to 0.026951901 with the decreasing proportion of training sets. It could be considered that with the 
decreasing proportion of training sets, the prediction stability of the proposed model was decreasing. 
This was consistent with the results of similar studies [35,36]. 

It should be emphasized that in Column 3 of Table 7, the SDAE in 1000 calculations was to 
directly find the variance of the average error obtained by 1000 repeated calculations, and it studied 
the deviation between the average errors and their mathematical expectation in 1000 repeated 
calculations. Specifically, when the ratio was 89.6%:10.4%, five errors and an average error of five 
test samples were obtained by the one-time repeated calculation, and the SDAE in 1000 calculations 
was the standard deviation of these 1000 average errors. Similarly, at 70.8%:29.2%, it was also the 
standard deviation of 1000 average errors. In each of the 1000 calculations, 14 errors and an average 
error were generated, so it was 1000. 

Studying the distribution of standard deviations in 1000 repeated calculations was also helpful 
to reveal the stability of the proposed model in 1000 repeated calculations. For this reason, the SDSD 
in 1000 calculations was also calculated. It should be emphasized that standard deviations in 1000 
calculations was the standard deviation of test set prediction errors in 1000 repeated calculations, 
which had 1000 data. SDSD in 1000 calculations was used to describe the distribution of standard 
deviation in 1000 calculations, and there was only one data. The relevant calculation results were in 
Column 4 of Table 7. Its calculation process was to solve the standard deviation of all test set errors 
obtained in a repeated calculation, which had 1000 variance results, and then calculated the standard 
deviation of these 1000 standard deviation results. Specifically, when the ratio was 89.6%:10.4%, 
five errors and an average error of five test samples were obtained by repeated calculation. First, the 
standard deviation of the errors of five test samples was solved, and then the standard deviation of these 
standard deviations was solved, so that the data in Row 2 and Column 4 in Table 7 was obtained. In 
Table 7, with the decrease of the proportion of test sets, the number of standard deviations in 1000 
calculations was increasing. The calculation results showed that the stability of the prediction results 
of the model proposed in this paper was positively correlated with the proportion of test sets. 

In addition, the AVSD in 1000 calculations under different ratios of the training set and testing 
set was further calculated. With the proportion of training set reduced from 89.6% to 60.4%, the AVSD 
in 1000 calculations increased from 0.00718178858 to 0.09305018740. This calculation also showed 
that the stability of prediction results was decreasing with the decrease of the proportion of test sets. 
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6. Discussion 

6.1. Analysis of the importance of the prediction index 

RF can overcome the interference of the possible complex linear relationship between the 
characteristic variables; however, the influence of the scale of the characteristic variables on the 
performance of the model still needs to be considered. The index system proposed in Section 3 was 
adjusted, based on the difference in the degree of importance of the variables, to determine the 
relatively most appropriate variable scale. 

The Mean Decrease Accuracy Index (MDAI) is one of the most common tools used in Variable 
Importance Analysis [37]. MDAI indicates the extent to which the prediction accuracy decreases when 
a randomly selected indicator is removed. The larger the MDAI, the stronger its effect, and the greater 
the importance of the index. The index importance analysis of this study is shown in Figure 5. 

Start

Deleting any secondary index, 
calculating the average decline 

accuracy, and sorting it.

The accuracy meets the 
requirements？

Yes

Adding a secondary index

Using the current index system 
to predict the construction cost

No

 Retaining the last deleted 
index

Deleting the last index of 
average descending accuracy 

ranking Outputting the minimum index 
system satisfying the 
prediction accuracy.

End

The accuracy meets the 
requirements？ No

Yes

 

Figure 5. Flowchart of indicator importance analysis by the MDAI. 

The prediction accuracy requirement was set to 10%, allowing the average relative error to fall 
within 10%. The research results in Section 5 indicate that the current predictive index system met the 
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accuracy requirements, and no secondary indexes had to be added. 
Any one of the secondary indexes (Table 1) was deleted, successively, to reconstruct the predictive 

index system. The newly constructed index system was adopted, and the prediction model described in 
Section 4 was used for iterative calculations. The calculation results are shown in Figure 6(a). The 
ordinate in Figure 6 represents the secondary index deleted in this step. 

  
(a) (b) 

  
(c) (d) 

Figure 6. Ranking of indexes importance during gradual dimensionality reduction. 

In Figure 6(a), the prediction accuracy of the 14 cases met the requirements when only one index 
was deleted. The average reduction accuracy of ��� was the smallest, only 4.041%. Thus, ��� was 
deleted on the premise of satisfying the prediction accuracy. 

On the basis of deleting ���, the successive deletion of a secondary index in Table 1 continued 
to reconstruct the predictive index system. The calculation results are shown in Figure 6(b). The 
prediction accuracy of all cases satisfied the requirements. ���  had the lowest average reduction 
accuracy, which was 5.778%; thus, ��� was deleted on the premise of satisfying the prediction accuracy. 

On the basis of deleting ��� and ���, one more secondary index was deleted to reconstruct the 
predictive index system. The prediction calculation results are shown in Figure 6(c). All 12 cases met 
the requirements with respect to the prediction accuracy. ���  had the lowest average reduction 
accuracy, which was 7.403%; thus, ��� was further deleted. 

On the basis of deleting ���, ��� and ���, the deletion of one more secondary index (Table 1) 
proceeded. The prediction calculation results are shown in Figure 6(d). However, the average relative 
error was 12.34%, which failed to satisfy the preset accuracy requirements. 
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Therefore, the smallest set of input parameters in the case study was the predictor system, 
excluding ���, ��� and ���. 

6.2. Comparison of different optimization algorithms by performance 

PSO [20], GA [20], Tabu Search (TS) [38], Simulated Annealing (SA) [39], Ant Colony 
Optimization (ACO) [40], Differential Evolution (DE) [41], Chicken Swarm Algorithm (CSA) [42], 
Artificial bee colony algorithm (ABC) [43], Covariance Matrix Adaptation Evolutionary Strategies 
(CMAES) [44], Wolf pack algorithm (WPA) [45], Whale Optimization Algorithm (WOA) [46] and 
Artificial Fish School (AFS) [47] were selected to compare their computing performance. The 
calculation parameters of these algorithms are presented in detail in the corresponding references. All 
optimization calculations were conducted using the same personal computer (i7-10510U, 1.8GHz, 
acceleration frequency 4.9GHz quad-core 8MB, 512G SSD, DDR4-2400 8GB). The results of 1000 
repetitions of all optimization algorithms are listed in Table 8. 

Table 8. Computational performance of different optimization algorithms. 

Algorithm Best result Worst result Average result Standard deviation Correct rate 
BSA 97 161 123.941 14.747 99.96% 
PSO 173 249 201.928 13.134 98.69% 
GA 267 368 314.428 26.354 98.47% 
TS 243 492 298.286 39.582 97.25% 
SA 394 647 541.776 30.305 97.58% 
ACO 127 247 202.415 35.386 97.89% 
DE 194 381 270.897 25.426 97.13% 
CSA 122 262 185.527 37.835 98.55% 
ABC 234 316 294.893 52.322 93.77% 
CMAES 282 405 362.816 46.268 96.98% 
WPA  245 439 324.164 47.139 97.68% 
WOA 212 648 387.322 50.106 95.15% 
AFS 186 326 279.637 27.884 98.76% 

As shown in Table 8, BSA determines the best parameter combination of RF in 123.941 
generations, on average, which was 77.987 generations faster, compared with PSO, which had the 
second-highest calculation speed. In the 1000 repeated calculations, the accuracy of BSA optimization was 
also significantly higher, compared with other metaheuristic optimization algorithms, reaching 99.96%. 
However, PSO exhibited the smallest standard deviation, indicating that the computational stability of 
BSA in this case study was slightly lower than that of PSO. 

From the perspective of optimization, BSA includes the advantages of PSO and DE, which 
improved the search efficiency and had relatively good average stability [14]. Therefore, the results in 
Table 8 are interpretable. The research results in this section are similar to previous research results [20], 
which proves not only the correctness of the research results but also the more efficient computational 
performance of BSA. 
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6.3. Comparison of different prediction models by performance 

Data forecasting methods, such as BPNN [14], SVM [5], Stacked Auto-Encoders (SAE) [48] and 
Extreme Learning Machine (ELM) [49], were selected to compare the computing performance. The 
parameter settings of the three prediction models referred to the corresponding literature, and BSA was 
used to determine the best calculation parameters of these three models. In this study, the average value 
of the relative error, the standard deviation of the relative error, �� and the average calculation time 
were selected as the evaluation indexes of the calculation performance of the prediction model [28]. 
The results of 1000 calculations of the four prediction models are listed in Table 9. 

Table 9. Computational performance of different prediction models. 

Model 
Average 
relative 
error 

Standard 
deviation of 
relative error 

SDSD in 1000 
calculations 

AVSD in 
1000 
calculations 

�� 
Average 
calculation 
time 

RF 1.05% 0.000763471 0.00144919951 0.000699460 0.9997 2789.72 s 
BPNN 3.87% 0.009122608 0.00789358696 0.010262891 0.9503 4188.89 s 
SVM 6.97% 0.012512118 0.00889102508 0.075292102 0.9284 8673.31 s 
SAE 5.43% 0.008754721 0.00402412706 0.006578722 0.9674 5742.98 s 
ELM 4.84% 0.005957893 0.00227706946 0.006064134 0.9780 1122.95 s 

The four prediction models could effectively predict the project construction cost of buildings, 
but their prediction accuracies noticeably varied. The average relative error of the prediction mode 
based on RF was only 1.05%. Relative to those of BPNN, SVM and ELM, the average relative error 
of RF was reduced by 2.82, 5.92 and 3.79%, respectively. The prediction accuracy based on SVM was 
the lowest, probably because SVM was not suitable for the prediction of small sample data in the 
current study [5]. The standard deviation of the relative error of the prediction model based on RF was 
at least one order of magnitude smaller than that of the other three models. Compared with those of 
BPNN, SVM and ELM, �� of RF was increased by 0.0494, 0.0713 and 0.0217, respectively. Among 
the four prediction models, the average calculation time of ELM was the shortest, only 1122.95 s. The 
calculation principle of ELM was to randomly select the input weight and analyze it to determine the output 
weight of the network. Therefore, ELM can provide the ultimate performance in learning speed [49]. On 
the basis of the aforementioned analysis, RF exhibited better computing performance than BPNN, 
SVM, or ELM. 

In Table 9, the calculation errors of RF, ELM and BPNN were all less than 5%, which all met the 
practical requirements. The main reason was that BSA was used to determine the optimal combination 
of calculation parameters of ELM and BPNN, which made the calculation accuracy of ELM and BPNN 
very good. Therefore, this paper further adopted the GA, a classical meta-heuristic optimization 
algorithm, to determine the best calculation parameter combination of RF, ELM and BPNN. The 
average errors of GA-BPNN, GA-ELM and GA- RF were 6.47, 8.53 and 4.39% respectively. This also 
proved the advanced nature of RF and BSA. As could be seen from Table 9, among many prediction 
algorithms, the SDSD in 1000 calculations bases on RF was also the smallest. This implied that the 
prediction result of RF was more stable. In addition, the AVSD in 1000 calculations based on different 
forecasting models was analyzed in this paper. The average values of standard deviations in 1000 
calculations based on RF, BPNN, SVM, SAE and ELM were 0.000699460, 0.010262891, 
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0.075292102, 0.006578722 and 0.006064134, respectively. Obviously, the average value based on the 
RF was the minimum, which also exhibited that RF had better prediction performance. 

Different algorithms might have different calculation results for different data sets. The 
calculation result of RF was better than that of BPNN, which is a classical supervised learning 
algorithm. There are great differences between RF and BPNN in their implementation methods and 
characteristics, which affect their performance in this case study [50]. RF makes the decision more 
robust by training multiple decision trees and voting or averaging. Each decision tree is trained with 
random samples and features, so it has good generalization ability and robustness. In contrast, the 
performance of BPNN depends on the structure of neurons, activation function, initial weight and other 
factors and the effect may be poor for more than two types of classification tasks [51].  

6.4. Sensitivity analysis of indicators 

The construction cost forecasting system is a typical multi-parameter nonlinear system. In order 
to improve the analysis efficiency and system performance, this section used the Sobol index method 
to analyze the sensitivity of indicators [52]. Sobol index method is a global sensitivity analysis method 
proposed by Russian scholar Sobol in 1993. The core of this method is to analyze the sensitivity of 
parameters by calculating the influence of variance of single parameters and combined parameters on 
the total variance [53]. 

In this paper, the BSA-RF model was used as the benchmark model, and the quasi-Monte Carlo 
method was used for specific sensitivity analysis, and the sensitivity of each index was sorted, as shown 
in Table 10. In addition, BSA-SAE and BSA-BPNN were also used for sensitivity analysis. 

Table 10. Sensitivity coefficient and ranking of secondary indicators. 

Index 
BSA-RF BSA-SAE BSA-BPNN 
Sensitivity  
coefficient Ranking Sensitivity 

 coefficient Ranking Sensitivity  
coefficient Ranking 

��� 0.0566  9 0.0741  8 0.0917  5 
��� 0.1314  4 0.1103  4 0.1078  4 
��� 0.0882  8 0.0487  9 0.0738  8 
��� 0.1574  2 0.1302  1 0.1272  2 
��� 0.1078  6 0.0870  6 0.0382  10 
��� 0.1578  1 0.1301  2 0.1274  1 
��� 0.0968  7 0.0782  7 0.0837  7 
��� 0.0026  14 0.0081  14 0.0063  14 
��� 0.0483  10 0.0430  10 0.0367  11 
��� 0.0321  12 0.0290  12 0.0302  12 
��� 0.0466  11 0.0385  11 0.0491  9 
��� 0.1123  5 0.0911  5 0.0894  6 
��� 0.1455  3 0.1178  3 0.1213  3 
��� 0.0131  13 0.0139  13 0.0171  13 

It could be seen from Table 10 that the global sensitivity analysis results of the three models were 
basically the same. ��� , ���  and ���  were the most sensitive. Combined with the construction 
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practice of building engineering, the possible reasons why these three factors had the greatest influence 
on the construction cost error were as follows. 1) Reasonable resource scheduling could improve the 
construction efficiency, avoided the waste and lack of resources and reduced the construction cost. 
However, if the resources were not properly scheduled, it would lead to the delay of working procedure, 
the delay of construction period and the waste of resources, thus increasing the construction cost. 2) 
The basement was an important part of the building, and the construction of the basement was 
relatively difficult, and there were many materials and human resources needed, so the change of the 
basement area had a great influence on the error of the construction cost. 3) Reasonable site layout 
could make full use of the site, optimize the structure and design of the building. In addition, ���, ��� 
and ��� were the least sensitive. In BSA-RF, their sensitivity coefficients were only 0.0026, 0.0321, 
and 0.0131 respectively. This was consistent with the analysis results of the importance of indicators 
in Section 6.1 of this paper. 

7. Conclusions 

The complex and unpredictable construction costs of building projects were analyzed in this study. 
A prediction index system of the construction cost was established to address the complicated problem 
of construction cost. The system included 14 secondary indexes, such as the type of structure, total 
height and standard floor area. A novel prediction model of construction cost based on RF was 
proposed to solve the problem of low construction cost prediction accuracy. BSA was used to optimize 
the number of DTs and split features of RF, considering the tendency of randomly set parameters in 
RF to cause low prediction accuracy. A case study of a construction company in Xinyu, China showed 
that the optimal combination of RF calculation parameters was i) the number of DTs set to 124 and ii) 
number of split features equal to 1. The maximum absolute error of the proposed model was 1.154, 
and the maximum relative error was 1.24%. These findings confirmed the feasibility of the prediction 
model in the construction cost prediction of building projects. Compared with the classical 
metaheuristic optimization algorithm, BSA could more quickly determine the optimal combination of 
the calculation parameters, on average. Compared with the classical and recent predictive methods, 
the proposed model presented advantages in prediction accuracy and generalization ability. 

The major limitations of the current study were as follows. 1) The index system constructed in 
this study was only applicable to housing construction projects, and a more general index system of 
construction cost prediction will be constructed in the future. 2) The case study presented in this article 
included a small data sample, and the prediction accuracy of the proposed model for large sample data 
is yet to be determined. 3) The relationship between the prediction index and the construction cost is 
highly complex. Thus, a hybrid model combining linear and nonlinear methods will be built in the future. 
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