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Abstract: Rumors refer to spontaneously formed false stories. As rumors have shown severe
threats to human society, it is significant to curb rumor propagation. Rumor clarification is an
effective countermeasure on controlling rumor propagation. In this process, anti-rumor messages can
be published through multiple media channels, including but not limited to online social platforms,
TV programs and offline face-to-face campaigns. As the efficiency and cost of releasing anti-rumor
information can vary from media channel to media channel, provided that the total budget is limited
and fixed, it is valuable to investigate how to periodically select a combination of media channels to
publish anti-rumor information so as to maximize the efficiency (i.e., make as many individuals as
possible know the anti-rumor information) with the lowest cost. We refer to this issue as the dynamic
channel selection (DCS) problem and any solution as a DCS strategy. To address the DCS problem, our
contributions are as follows. First, we propose a rumor propagation model to characterize the influences
of DCS strategies on curbing rumors. On this basis, we establish a trade-off model to evaluate DCS
strategies and reduce the DCS problem to a mathematical optimization model called the DCS model.
Second, based on the genetic algorithm framework, we develop a numerical method called the DCS
algorithm to solve the DCS model. Third, we perform a series of numerical experiments to verify
the performance of the DCS algorithm. Results show that the DCS algorithm can efficiently yield a
satisfactory DCS strategy.
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1. Introduction

Rumors refer to spontaneously formed false stories [1]. Benefiting from the wide audience coverage
and fast information circulation of social media, rumors can quickly propagate over a social network
and compromise a large number of individuals in a short time [2]. If rumor spreading is out of control,
severe consequences would occur [3, 4]. Hence, it is of significance to curb rumor propagation [5].

Rumor clarification, which means revealing the erroneous aspects of rumors with facts, is one of the
most commonly used ways to curb rumor propagation [6]. Generally, the process of rumor clarification
consists of the following three steps. First, after rumors have emerged and spread over a social network,
the victim of rumors may have a group of righteous journalists (or its public relations department)
collect evidence about the facts and write rebuttal reports against the rumors. Second, the victim needs
to select a set of media channels (including but not limited to online social media, television programs,
short messages and offline face-to-face campaigns) to publish the rebuttal reports. Third, after a certain
period of time, the victim may need to re-select the media channels to achieve better results—namely,
if most of the audiences of an in-used media channel have acquired the truth, the victim may deactivate
this channel and activate other unused channels to make more individuals know the truth. This step can
be iteratively performed until everyone on the social network knows the truth. A diagram illustrating
the above three steps is shown in Figure 1.

Publish
 re

butta
l re

ports
 

through th
is c

hannel
Publish rebuttal reports 

through this channel

Publish rebuttal reports 

through this channel

Social network

Media channel A

(e.g., Sina Weibo)

Media channel B

(e.g., Twitter)
Media channel C

(e.g., Facebook)

Step 1 Step 2 Step 3

Victim of rumors Victim of rumors Victim of rumors

Individuals who do not 

know the truth

Individuals who know 

the truth

Seperator line

between steps

Seperator line

between steps

Coverage of 

Channel A

Coverage of 

Channel B
Coverage of 

Channel C

Righteous journalist Public relations department

Provide 

rebuttal reports

Provide 

rebuttal reports

Figure 1. A diagram illustrating the process of rumor clarification. In the first step, righteous
journalists and a public relations department are preparing rebuttal reports for the victim. In
the second step, the victim determines to publish rebuttal reports through Channels A and C.
As a result, in the third step, all the audiences of Channels A and C know the truth, and there
is no need to continue publishing rebuttal reports through these two channels. So, the victim
may activate Channel B in the third step to make more individuals on the social network
know the truth.
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1.1. Motivations and problem statement

In this paper, we focus on the last two steps of rumor clarification, in which the victim needs to
periodically determine which media channels to activate or deactivate so as to expand the ultimate
influence of rumor clarification. The victim’s decision can be affected by two essential factors:
efficiency and cost. On the one hand, the victim has to estimate the efficiency of different
combinations of media channels. Research shows that media channels may have different information
diffusion efficiency due to the differences in user types, audience ratings and other aspects [7–10].
Thus, releasing the same rebuttal report through different media channels may result in different
effects. On the other hand, the victim needs to consider the costs of different combinations of media
channels. As media channels can have different pricing manners for their information exposure
services [11], the monetary expenditure of publishing the same rebuttal report can vary from media
channel to media channel. Hence, provided that the total budget for rumor clarification is limited and
fixed, the victim must consider the costs of different channels.

Considering the above two aspects, we formulate the following issue:
Dynamic Channel Selection (DCS) problem: Consider a process of multiple periods. Under a fixed

total budget, how should the victim select proper media channels at each period to publish rebuttal
reports, so as to maximize the efficiency (i.e., make as many individuals as possible know the truth)
with the lowest actual expenditure?

For writing simplicity, we refer to any solution to the DCS problem as a DCS strategy.
Next, let us analyze the challenges in addressing the DCS problem. In order to find the optimal DCS

strategy, the victim must carefully calculate the overall trade-offs of different combinations of media
channels in terms of their efficiency and costs. Normally, pricing manners of media channels are open
and transparent, so the cost of using any media channel can be calculated easily. However, estimating
the collaborative efficiency of multiple media channels is not a low-hanging fruit but the key challenge.
Two reasons are as follows. First, because there exists the Word-of-Mouth phenomenon [12] in the
process of information diffusion, it is indispensable to microscopically understand how multiple media
channels will interact with each other during rumor clarification, which is very complex. Second, as
we are considering a multi-period process, we must meticulously determine the timing of choosing a
media channel, which is also complicated. In fact, choosing a certain media channel too early or too
late may reduce the ultimate efficiency of rumor clarification, and more importantly, the choices in the
previous periods may affect the subsequent periods. Therefore, it will take much effort to address the
DCS problem. Unfortunately, as far as we know, there is no research on solving the DCS problem. So,
our work is of novelty.

1.2. Contributions

Recall that this paper is devoted to addressing the DCS problem. The contributions are as follows.

• We reduce the DCS problem to a mathematical optimization model. First, we propose a rumor
propagation model to estimate the effects of different DCS strategies on controlling rumor
propagation. Second, with the proposed rumor propagation model, we quantify the trade-offs of
different DCS strategies in terms of their efficiency and costs. Third, we formulate an
optimization model called the DCS model to describe the DCS problem from a mathematical
perspective, with the trade-off model as the objective function and the propagation model as a
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constraint condition.
• Based on the genetic algorithm framework [13], we develop a numerical method called the DCS

algorithm to solve the DCS model. Specifically, we first discuss the designs of the initialization,
fitness evaluation, crossover, mutation and repair operators of the genetic algorithm framework,
and then provide a pseudo code and an overall flow chart for the DCS algorithm.
• We conduct a series of numerical experiments to verify the performance of the DCS algorithm.

First, with a rumor dataset, we estimate the parameter values involved in the proposed rumor
propagation model to reconstruct a historical rumor event. Second, we investigate the optimal
setting of the DCS algorithm and then explore the contribution degree of each operator of the
DCS algorithm. Third, by comparing the DCS algorithm with the Monte Carlo method [14], we
validate the effectiveness of the DCS algorithm. Finally, we examine how the obtained optimal
strategy can restrain rumor propagation. Results show that the DCS algorithm can efficiently yield
a satisfactory DCS strategy.

The remainder of this paper is organized by the following manner. Section 2 reviews the related
work and highlights our novelty. Section 3 discusses the mathematical modeling of the DCS problem.
Section 4 shows the solution. Section 5 performs massive numerical experiments. Section 6 closes this
paper.

2. Related works

In this section, we review the related work and highlight the novelty of our work. First, we briefly
introduce the recent research on rumor propagation models. Second, we discuss the existing research
on developing rumor clarification strategies.

2.1. Rumor propagation models

Rumors refer to spontaneously formed false stories. In order to develop effective anti-rumor
countermeasures, it is necessary to first understand the spread process of rumors at a micro level.
Normally, mathematical models used to characterize rumor spreading are referred to as rumor
propagation models.

Because there are essential similarities between rumors and biological viruses in their infective
behaviors, rumor propagation models are generally developed based on the epidemic theory [15],
which is primarily used to comprehend the spread process of contagion. Epidemic-based rumor
propagation models can be population-level or individual-level. Population-level models
(e.g., [16, 17]) first classify individuals into several groups according to their stances toward rumors,
and then capture the population evolution of each group with a dynamic system. In this type of model,
there is a basic assumption that individuals on a social network can be considered completely
consistent. However, as social networks are assumed to be homogeneously mixed, population-level
models cannot well characterize the interactions between individuals and thus are not accurate
enough.

To enhance the accuracy, individual-level models (e.g., [18, 19]) take into account the topological
structures of social networks and regard every individual as an independent entity. Based on this
characteristic, researchers can perform fine-grained simulations on social networks to predict the
trend of rumor propagation. Particularly, there are some outstanding individual-level models
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developed based on machine learning and game theory. In [20], a rumor propagation model is
proposed based on data enhancement and evolutionary game. In [21], a game-based rumor diffusion
model is designed inspired by image restoration. [22] proposes an information dissemination model to
predict the influences of rumors, anti-rumors, and stimulate-rumors by considering their interactions.
Because individual-level models can characterize any type of social networks, individual-level models
are generally considered more accurate and universal than population-level models.

Unfortunately, as far as we know, there exists no individual-level model on characterizing the
interactions between multiple media channels. In this paper, we fill this research gap.

2.2. Rumor clarification strategies

Clarifying the truth to the public has been considered one of the most efficient approaches to rumor
propagation containment. In recent years, how to develop cost-effective clarification strategies has
attracted much attention from academic communities. In terms of the number of media channels
exploited for releasing anti-rumor messages, existing clarification strategies can be classified into two
categories: single-channel clarification strategies and multi-channel clarification strategies.

Single-channel clarification strategies are those with which the truth is released through only one
(or one type of) social media channel, which is generally represented by Twitter or Facebook.
Research of single-channel clarification strategies has not considered the impact of exploiting
multiple media channels, or believe that all types of media channels (including but not limited to
online social platforms, television programs and face-to-face interactions) can be abstractedly
combined to be a sole “global” entity, through which all individuals in society can be directly affected
by anti-rumor messages. Accordingly, instead of characterizing the differentiation of various media
channels, studies on single-channel clarification strategies focus more on optimizing the rate at which
anti-rumor messages are published through the only channel. See [23–28] for some typical works.

However, single-channel models cannot well characterize the real-world process of rumor
clarification. The primary reason is that in reality there does not exist such a perfect global media
channel which can completely cover all individuals worldwide. Even the most popular media channel
at present, i.e., online social platforms, just has a usage ratio of no more than 57% [29]. Hence,
single-channel clarification strategies are relatively not comprehensive.

In order to make up for the deficiency of single-channel models in depicting the real world,
research of multi-channel strategies is devoted to consider the influences of various media channels.
In multi-channel rumor propagation models, each channel has its own attributes of information
diffusion, such as the forwarding rate of messages, the coverage range of audience and so on [30]. In
this context, research on multi-channel clarification focuses more on addressing the so-called rumor
influence minimization problem, that is, to select proper clarification channels to accelerate and
expand the spreading of anti-rumor information in competition with rumors. See [31–36] for typical
literature.

Unfortunately, in the existing works on solving the rumor influence minimization problem,
strategies are generally assumed to be static over time. That is, in their mathematical models, the
selection of clarification channels is considered a one-off act which happens only at the initial stage.
However, this assumption makes the obtained clarification strategies not flexible enough in reality,
because clarification channels cannot be re-selected dynamically over time according to the latest
situation of rumor propagation. Therefore, it is valuable to consider multi-stage channel selection
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problems and develop corresponding dynamic strategies.
In this paper, we are devoted to filling the above-mentioned research gap by studying the dynamic

selection strategies for clarification channels. As far as we know, this is the first time to make such an
attempt.

3. Problem formulation

This section discusses the mathematical modeling of the DCS problem. First, we introduce a set of
terms and notations to formalize DCS strategies with a mathematical expression. Second, we propose
a rumor propagation model to describe the influences of DCS strategies on rumor containment. Third,
with the propagation model, we establish a trade-off model to evaluate different DCS strategies and,
on this basis, formulate a mathematical optimization problem to describe the DCS problem, with DCS
strategies as the decision variable, the trade-off model as the objective function and the rumor
propagation model as a constraint condition.

3.1. Terms and notations

Let us begin by the formalization of DCS strategies. Consider a social network of N individuals.
Denote the set of them by V I = {vI

1, . . . , v
I
N}. For a pair of individuals vI

i and vI
j, let a ji = 1 if and only

if vI
i is a social follower of vI

j; otherwise, a ji = 0. Particularly, let aii = 0 for all i. Let a = [ai j]N×N .
Suppose there are M media channels on the network. Let VC = {vC

1 , . . . , v
C
M} denote the set of them.

If the individual vI
i can be directly affected by the channel vC

j , denote bi j = 1; otherwise, bi j = 0. Let
b = [bi j]N×M denote the relationship matrix between individuals and media channels.

Suppose when refuting rumors, media channels can be periodically activated or deactivated to
publish anti-rumor information on the social network. Let τ be the time interval between any two
times of channel selection. Each time interval tk = [(k − 1)τ, kτ) is called a stage, where k = 1, . . . ,K
and K is the maximum number of stages. Denote a binary matrix x = [xk j]K×M such that xk j = 1 if and
only if the channel vC

j is activated at the stage tk; otherwise, xk j = 0. In this paper, the matrix x is
referred to as the DCS strategy.

Any available DCS strategy should be limited within a pair of upper and lower bounds. In practice,
we must take into account the total expenditure of using media channels to clarify the truth. Denote c j

as the average cost of using the channel vC
j at one stage. Let c = (c1, . . . , cM). Denote B as the total

budget. Because the total expenditure must be lower than the total budget, it holds that∑K
k=1
∑M

j=1 c jxk j ≤ B. Hence, the feasible set of DCS strategies is

X =

x = [xk j]K×M

∣∣∣∣∣ xk j ∈ {0, 1}, k = 1, . . . ,K, j = 1, . . . ,M,
K∑

k=1

M∑
j=1

c jxk j ≤ B

 . (3.1)

3.2. Rumor propagation model

Having defined the feasible set X in (3.1) for DCS strategies, we now need to establish a quantitative
model to evaluate the influences of different DCS strategies so that we can have a criterion to select the
best DCS strategy from the feasible set X.

Intuitively, the performance of a rumor-containment strategy can be represented by the evolution of
individuals’ stances toward rumors—the better the strategy, the more people oppose rumors. Hence, if
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we intend to evaluate the influence of a strategy, we may need first to predict how individuals’ stances
will evolve under that strategy. In the following, we use a rumor propagation model to capture the
effect of a DCS strategy on the changes in individuals’ stances.

Establishing a rumor propagation model requires the following three steps [37]: (a) specifying all
possible individual stances to rumors; (b) introducing assumptions for all possible stance transitions;
(c) formulating a differential dynamic system that characterizes the evolution of individuals’ stances.
Below, we discuss these three steps.

First, we specify all possible individual stances to rumors. Suppose each individual can have three
possible stances to rumors: supportive, opposed and judgment-reserved, which indicate the individual
agrees, disagrees and neither agrees nor disagrees with existing rumors, respectively. In this paper, we
assume that individual stances are time-varying stochastic variables. Denote S i(t), Oi(t) and Ji(t) as the
probabilities with which the individual vI

i holds the supportive, opposed and judgment-reserved stances
at time t, respectively. Then, the function Pi(t) = (S i(t),Oi(t), Ji(t)) defined on time t ≥ 0 is called the
stance probability distribution function of the individual vI

i .

Second, we introduce the following notations to estimate the evolution of stance probability
distribution functions:

• α: the average rate at which a judgment-reserved individual becomes rumor-opposed due to the
persuasion of a rumor-opposed social friend.
• β: the average rate at which a judgment-reserved individual becomes rumor-supportive due to the

persuasion of a rumor-supportive social friend.
• γ: the average rate at which a rumor-supportive individual becomes rumor-opposed due to the

persuasion of a rumor-opposed social friend.
• δi: the average rate at which a judgment-reserved or rumor-supportive individual becomes rumor-

opposed due to the rumor clarification from the channel vC
i . Let δ = (δ1, . . . , δM).

Besides, we introduce the following three assumptions, which have been widely adopted in other
individual-level rumor propagation models (e.g., [34, 38–41]).

• The overall influence of the persuasion from multiple social friends on a person’s stance can be
linearly accumulated by the influence of each friend.
• The overall influence of the clarification from multiple media channels on a person’s stance can

be linearly accumulated by the influence of each channel.
• The overall influence of the persuasion from social friends and clarification from media channels

on a person’s stance can be linearly accumulative.

Then, combining the above notations and assumptions, we formulate a differential dynamic
system, which is given in Theorem 1, to capture the influence of a DCS strategy on stance probability
distribution functions Pi(t), i = 1, . . . ,N. This result is obtained by directly applying the epidemic
theory (see [37] for an introduction to the epidemic theory).

Theorem 1. Given the initial values Pi(0) = P0
i , i = 1, . . . ,N, stance probability distribution functions
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Pi(t), i = 1, . . . ,N, t ≥ 0, can be characterized by the dynamic system (3.2).

dJi

dt
(t) = −Ji(t)

β N∑
j=1

ai jS j(t) + α
N∑

j=1

ai jO j(t) +
M∑
j=1

bi jδ ju j(t)

 , t ≥ 0, i = 1, . . . ,N,

dS i

dt
(t) = Ji(t)β

N∑
j=1

ai jS j(t) − S i(t)

γ N∑
j=1

ai jO j(t) +
M∑
j=1

bi jδ ju j(t)

 , t ≥ 0, i = 1, . . . ,N,

dOi

dt
(t) = Ji(t)α

N∑
j=1

ai jO j(t) + S i(t)γ
N∑

j=1

ai jO j(t) + [Ji(t) + S i(t)]
M∑
j=1

bi jδ ju j(t), t ≥ 0, i = 1, . . . ,N,

(3.2)
where

u j(t) = xk j, if t ∈ tk = [(k − 1)τ, kτ), j = 1, . . . ,M. (3.3)

Proof. According to the individual-level epidemic theory (see [37] for a basic introduction and [34,
38, 39] for some representative applications), the evolution of stance probability distribution can be
modeled as a continuous-time Markov process. Hence, we derive the dynamic system (3.2) from the
perspective of constructing a Markov process.

First, we calculate the transition rates among all individual stances. Based on the assumptions
introduced earlier, the following three transition rates can be obtained: (a) at any time t, the total
transition rate at which a judgment-reserved individual vI

i becomes rumor-opposed is
λJO

i (t) = α
∑N

j=1 ai jO j(t) +
∑M

j=1 bi jδ ju j(t); (b) at any time t, the total transition rate at which a
judgment-reserved individual vI

i becomes rumor-supportive is λJS
i (t) = β

∑N
j=1 ai jS j(t); (c) at any time

t, the total transition rate at which a rumor-supportive individual vI
i becomes rumor-opposed is

λS O
i (t) = γ

∑N
j=1 ai jO j(t) +

∑M
j=1 bi jδ ju j(t).

Second, given a very small time interval ∆t, we calculate the stance probability distribution at time
t + ∆t for any time t and for any individual i. Let Ri(t) = RJ, Ri(t) = RS and Ri(t) = RO denote
the events that the individual vI

i holds the judgment-reserved, rumor-supportive and rumor-opposed
stances at time t, respectively. Then, according to the definition of conditional probabilities, the three
total transition rates obtained from the first step can yield the following transition probabilities

Pr[Ri(t + ∆t) = RS | Ri(t) = RJ] = λJS
i (t)∆t + o(∆t), t ≥ 0, i = 1, . . . ,N,

Pr[Ri(t + ∆t) = RO | Ri(t) = RJ] = λJO
i (t)∆t + o(∆t), t ≥ 0, i = 1, . . . ,N,

Pr[Ri(t + ∆t) = RO | Ri(t) = RS ] = λS O
i (t)∆t + o(∆t), t ≥ 0, i = 1, . . . ,N.

(3.4)

According to Total Probability Formula, for all i = 1, . . . ,N and t ≥ 0, the following results can be
derived: 

S i(t + ∆t) = Ji(t)λJS
i (t)∆t + S i(t)[1 − λS O

i (t)∆t] + Oi(t) · 0,
Oi(t + ∆t) = Ji(t)λJO

i (t)∆t + S i(t)λS O
i (t)∆t + Oi(t) · 1,

Ji(t + ∆t) = 1 − S i(t + ∆t) − Oi(t + ∆t).
(3.5)

Third, based on the first two steps, we derive a dynamic system for stance probability distribution
functions. By the definition of differential equations, there are

dJi

dt
(t) = lim

∆t→0

Ji(t + ∆t) − Ji(t)
∆t

,
dS i

dt
(t) = lim

∆t→0

S i(t + ∆t) − S i(t)
∆t

,
dOi

dt
(t) = lim

∆t→0

Oi(t + ∆t) − Oi(t)
∆t

,

(3.6)
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for all i = 1, . . . ,N and t ≥ 0. By direct calculation, the dynamic system (3.2) is obtained. The proof is
completed. □

The dynamic system (3.2) is an individual-level rumor propagation model, based on which we can
predict the stance probability distribution for all time and individuals and further quantify the efficiency
of different DCS strategies. A diagram of possible stance transitions is shown in Figure 2.
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Figure 2. A diagram of possible stance transitions in the proposed rumor propagation model.

3.3. Mathematical modeling of the DCS problem

Next, we need to establish a criterion to evaluate different DCS strategies. With respect to a given
DCS strategy, a proper criterion must calculate the overall trade-off between the total expenditure of
conducting this strategy and the efficiency of this strategy in curbing rumor propagation. Let us discuss
these two aspects. First, by definition, the total expenditure of the strategy x is calculated as y1(x) =∑K

k=1
∑M

j=1 c jxk j. Second, as the goal of rumor clarification is to increase rumor-opposed individuals as
many as possible, the effectiveness of the strategy x is represented by the expected number of increased
rumor-opposed individuals during rumor clarification, that is, y2(x) =

∑N
i=1 Oi(Kτ) −

∑N
i=1 Oi(0). Then,

combining the above two aspects, the cost-effectiveness of the strategy x is calculated as the trade-off
between the effectiveness and monetary expenditure of the strategy, i.e.,

y(x) = ωy2(x) − y1(x) = w

 N∑
i=1

Oi(Kτ) −
N∑

i=1

Oi(0)

 − K∑
k=1

M∑
j=1

c jxk j, (3.7)

where ω is a weight coefficient that measures the importance of rumor clarification, which practically
represents the financial benefit gained from increasing one rumor-opposed individual.

Combining the above discussions, we formulate an optimization model as shown in (3.8) to describe
the DCS problem in a mathematical modeling perspective. For writing convenience, we refer to (3.8)
as the DCS model. The DCS model is a K-dim optimization problem with the strategy x as the decision
variable, the trade-off criterion (3.7) as the objective function, and the rumor propagation model (3.2)
and (3.3) and feasible set (3.1) as constraint conditions. After solving it, the optimal DCS strategy will
be attained.

max
x∈X

y(x) = w

 N∑
i=1

Oi(Kτ) −
N∑

i=1

Oi(0)

 − K∑
k=1

M∑
j=1

c jxk jJi(t), S i(t), Oi(t) satisfy the rumor propagation model (3.2) and (3.3) for all i = 1, . . . ,N, t ≥ 0,
Pi(0) = P0

i , i = 1, . . . ,N.
(3.8)
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In addition, to make our mathematical modeling process more clear, we provide a diagram in
Figure 3 to illustrate the meanings, derivation and relations of all the equations.

Feasible set (3.1)

Derived from the definition 

of the DCS problem.

Composed of the upper and 

lower bounds and cost 

constraint of DCS strategies.

Rumor propagation model 

(3.2)-(3.3)

Derived from directly 

applying the individual-level 

epidemic theory [15].

Estimating the efficiency of 

a DCS strategy.

Trade-off model (3.7)

Derived from the definition 

of the DCS problem.

Balancing the trade-off 

between the efficiency and 

cost of a DCS strategy. 

Optimization model (3.8)

Describing the DCS problem 

from a mathematical view.

The objective function

A constraint condition

A constraint condition

Equation (3.4)

Showing the stance 

transition probabilities of 

each individual.

Obtained from the 

definition of conditional 

probabilities.

Equation (3.5)

A simplified formula of (3.4).

Obtained by applying Total 

Probability Formula on (3.4).

Equation (3.6)

Characterizing the changes 

in individuals' stance 

transitions.

Derived from the definition 

of differential equations.

Figure 3. A diagram illustrating the meanings, derivation and relations of all the equations
involved in this section.

4. Solution

In the previous section, we reduced the DCS problem to a K-dim optimization model (3.8), i.e., the
DCS model. In this section, we discuss how to solve it numerically.

Particularly, we apply the genetic algorithm (GA) framework [13] to solve the DCS model (3.8).
GA is a heuristic framework commonly used to find satisfactory solutions to complex optimization
problems by relying on biologically-inspired operators such as crossover and mutation. In regard to
our work, instantiating a GA-based method to solve the DCS model requires completing the following
primary steps. First, design an initialization scheme to generate random DCS strategies from the
feasible set (3.1). Regarding the jargon of the GA framework, each DCS strategy is referred to as a
chromosome, and a certain scale of candidate chromosomes together form a population, which needs
to iteratively evolve to cover more high-quality chromosomes until a certain number of iteration steps.
Second, design a fitness evaluation scheme as a criterion to select high-quality chromosomes from
the existing population. Third, design a crossover operator to generate two new chromosomes from
a pair of ones in the population. Next, design a mutation operator to generate a new chromosome
from an existing one. Finally, design a repair operator to ensure the chromosomes after crossover and
mutation will still keep feasible, i.e., satisfying the feasible set (3.1). The details of the above steps are
as follows.

4.1. Initialization

First, let us focus on the initialization scheme of our GA-based method. An initialization scheme
generates a random DCS strategy from the feasible set (3.1). As [42] reports, the most important thing
in population initialization is to maintain good diversity of the yielded chromosomes to prevent
premature convergence, and thus a good initialization scheme should make the resulting
chromosomes uniformly distributed throughout the whole feasible set. This condition can be well
achieved by applying standard random number generators (RNGs) [43]. Besides, we need to ensure
that every yielded chromosome satisfies the total budget constraint

∑K
k=1
∑M

j=1 c jxk j ≤ B defined in the
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feasible set (3.1).
Hence, in the initialization scheme, we repeatedly generate a (K × M)-dimensional uniformly

random binary matrix x by using standard uniform RNGs, and then accept the matrix as a
chromosome if the matrix satisfies the condition

∑K
k=1
∑M

j=1 c jxk j ≤ B. The corresponding pseudocode
is shown in Algorithm 1.

Algorithm 1 Initialization
Output: A feasible strategy x.
1: repeat
2: Generate a (K × M)-dim uniformly random binary matrix x by using standard uniform RNGs

[43];
3: until

∑K
k=1
∑M

j=1 c jxk j ≤ B
4: return x.

4.2. Fitness evaluation

Next, we focus on the fitness evaluation of DCS strategies. A fitness function measures the quality
of different DCS strategies. The higher the fitness, the more satisfactory the strategy is. With a proper
fitness function, GA can eliminate low-quality strategies and reserve high-quality strategies. Normally,
the fitness of a strategy x can be directly represented by its cost-effectiveness function y(x), i.e., F(x) =
y(x).

4.3. Crossover operator

Next, we discuss the crossover operator. The crossover operator of GA is a mechanism to generate
new strategies (i.e., children) from a pair of existing ones (i.e., parents) by exchanging their elements.
With the crossover operator, GA can find the optimal strategy with a relatively-large probability. In
this paper, we adopt the standard uniform crossover operator [13]. Specifically, for a pair of strategies
x1 and x2, the crossover operator exchanges each pair of elements of the two matrices, i.e., x1

k j and x2
k j,

with the same probability. The corresponding pseudocode is shown in Algorithm 2.

Algorithm 2 Crossover
Input: Probability p, a pair of strategies x1 and x2.
Output: Two new strategies x1′ and x2′ .
1: for k = 1 : K do
2: for j = 1 : M do
3: Get a random number q from [0, 1];
4: if q < p then
5: Swap x1

k j and x2
k j;

6: end if
7: end for
8: end for
9: return x1 and x2.

Mathematical Biosciences and Engineering Volume 20, Issue 8, 14995–15017.



15006

4.4. Mutation operator

Next, we discuss the mutation operator. The mutation operator of GA is a mechanism to generate
a new strategy from an existing one such that GA can find the globally-optimal strategy with a certain
probability. In this paper, we adopt the standard uniform mutation operator [13]. Specifically, for
an existing strategy x, with the same probability, the mutation operator replaces each element of the
strategy, i.e., xk j, with 0 or 1 uniformly. The corresponding pseudocode is shown in Algorithm 3.

Algorithm 3 Mutation
Input: Probability p, a strategy x.
Output: A new strategy x′.
1: for k = 1 : K do
2: for j = 1 : M do
3: Get a random number q from [0, 1];
4: if q < p then
5: Get a random number r from {0, 1};
6: xk j ← r;
7: end if
8: end for
9: end for

10: return x.

4.5. Repair operator

Finally, we discuss the repair operator. Recall that after crossover and mutation, the population may
contain unfeasible chromosomes which do not satisfy the linear inequality constraint

∑K
k=1
∑M

j=1 c jxk j ≤

B defined in the feasible set (3.1). Therefore, we need to repair these unfeasible chromosomes.
As discussed in [44], a proper way to repair an unfeasible chromosome in constrained optimization

is to replace the unfeasible chromosome with its nearest feasible one. Denote x̃ as an unfeasible
chromosome. Denote || · ||2 as the Euclidean distance. Then, searching the nearest feasible chromosome
for the unfeasible chromosome x̃ can be reduced to the following optimization problem:

min
x
||x − x̃||2

s.t. xk j ∈ {0, 1}, k = 1, . . . ,K, j = 1, . . . ,M,
K∑

k=1

M∑
j=1

c jxk j ≤ B.

(4.1)

By observing the crossover and mutation operators, we can learn that any chromosomes generated
by the initialization scheme will still be 0-1 binary matrices after crossover and mutation no matter
they are feasible or unfeasible, because the two operators do not introduce any element value other
than 0 and 1. In this context, the optimization problem (4.1) can be easily solved.

Denote x̃(i) as one of the new chromosomes yielded by changing i elements in x̃ from 1 to 0. For
example, if x̃ = [1, 1, 1], then x̃(1) can be [0, 1, 1], [1, 0, 1], or [1, 1, 0]. Denote I =

∑K
k=1
∑M

j=1 x̃k j
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as the number of elements with a value of 1 in x̃. Then, the corresponding pseudocode to solve the
optimization model (4.1) is shown in Algorithm 4, followed by a proof of the correctness. In addition,
Figure 4 shows a diagram of the repair operator.

Input an unfeasible 

chromosome

Calculate

e.g.,                           

e.g.,             

For each

i from 0 to I

Generate all the 

possible       

e.g., when i=1,       can be

[0,1,1], [1,0,1], and [1,1,0]

For each
Do

    Is                         

    feasible?
Do Output      Yes

No

After the loop is finished

i.e., if                              ?

Figure 4. A diagram of the repair operator.

Algorithm 4 Repair
Input: An unfeasible chromosome x̃.
Output: A feasible chromosome x closest to x̃ on Euclidean distance.

1: Calculate I =
∑K

k=1
∑M

j=1 x̃k j;
2: for i = 0 : 1 : I do
3: Calculate all the possible x̃(i);
4: for each x̃(i) do
5: // Validate if the x̃(i) is feasible. If yes, return it as the result; otherwise, check the next x̃(i).
6: if

∑K
k=1
∑M

j=1 c j̃x(i)
k j ≤ B then

7: return x̃(i).
8: end if
9: end for

10: end for

Theorem 2. The result of Algorithm 4 is a solution to the optimization model (4.1).

Proof. Recall that any unfeasible chromosome is a 0-1 binary matrix. Then, it is clear that ||̃x− x̃(i)||2 =√
i, and thus

||̃x − x̃(0)||2 ≤ ||̃x − x̃(1)||2 ≤ · · · ≤ ||̃x − x̃(I)||2. (4.2)

Because Algorithm 4 scans all the possible x̃(i) with the increment of i to check if x̃(i) is feasible, the
result of Algorithm 4 must have the shortest Euclidean distance to the unfeasible chromosome x̃. The
proof is complete. □

4.6. DCS algorithm

After having designed the above operators, we now are ready to apply GA to solve the DCS
model (3.8). Combining the above descriptions, we provide a full view of our GA-based method in
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Algorithm 5, which we refer to as the DCS algorithm for writing simplicity. By applying the DCS
algorithm, we are able to find satisfactory DCS strategies. In addition, we show a diagram of the DCS
algorithm in Figure 5.

Initialization

(Algorithm 1)

Selection

[13]

Crossover

(Algorithm 2)

Mutation

(Algorithm 3)

Fitness 

evaluation

Repair

(Algorithm 4)

Reach the 

maximum 

iteration step?

OutputYes

No

Trade-off model 

(3.7)

Rumor propagation 

model (3.2)-(3.3)

Dependent on

Dependent on

Reserve high-quality 

chromosomes from the 

population

Ensure that 

chromosomes after 

crossover and mutation 

can still be feasible

Generate a population of 

uniformly random 

chromosomes
Combine the advantages 

of two chromosomes

Help find the globally 

optimal chromosome

Figure 5. A diagram of the DCS algorithm.

5. Performance of the DCS algorithm

In this section, we verify the performance of the DCS algorithm with numerical experiments. First,
with a rumor dataset, we estimate the parameter values of the proposed rumor propagation model to
reconstruct a historical rumor event. Second, we investigate the optimal setting of the DCS algorithm
and explore the distribution degree of each operator of the DCS algorithm. Third, we validate the
effectiveness of the DCS algorithm by comparing it with the Monte Carlo method [14]. Finally, we
examine how the obtained optimal strategy can restrain rumor propagation.

5.1. Estimation of model parameters

Let us begin by estimating the three primary parameters of the proposed rumor propagation (3.2):
α, β and γ. To this end, we introduce a rumor dataset called NERT (Newly Emerged Rumors in
Twitter) [45], which has been widely used in other rumor-related research. NERT is the result of an
empirical study on the spreading process of newly emerged rumors in Twitter. Specifically, it collects
rumor-related tweets during a rumor event whose topic is about “A screenshot from MyLife.com
confirms that mail bomb suspect Cesar Sayoc was registered as a Democrat”. In the dataset, each row
represents a tweet associated with the rumor topic, and each column explains an attribute of the tweet,
such as the user ID, the date and time when the tweet is published, and the stance of the tweet.

On one hand, by using the method in [2], from the dataset we can extract the proportions of
different categories of individuals for every time interval during a finite time horizon. Denote each
time interval by Ti. Denote the proportions of judgment-reserved, rumor-supportive and
rumor-opposed individuals at the time interval Ti by J̄(Ti), S̄ (Ti) and Ō(Ti), respectively. On the other
hand, in our rumor propagation model, the expected proportions of judgment-reserved,
rumor-supportive and rumor-opposed individuals at time t are calculated by

J̃(t) =
N∑

i=1

Ji(t), S̃ (t) =
N∑

i=1

S i(t), Õ(t) =
N∑

i=1

Ji(t), (5.1)
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Algorithm 5 DCS algorithm
Input: Population size NP, crossover probability pC, mutation probability pM, maximum number of

iteration Q.
Output: A satisfactory strategy x∗.
1: // Generate NP random strategies x1, . . . , xNP and calculate their fitness F(xi)
2: for i = 1 : NP do
3: xi ← Initialization();
4: Calculate the fitness F(xi) = y(xi) by using the trade-off model (3.7);
5: end for
6: //Main iteration
7: for m = 1 : Q do
8: // Select high-quality strategies by using the classical roulette-wheel selection operator [13]
9: (x1, . . . , xNP)← RouletteWheel(F(x1), . . . , F(xNP));

10: // Crossover
11: for i = 1 : NP/2, i = i + 2 do
12: (xi, xi+1)← Crossover(pC, xi, xi+1);
13: end for
14: //Mutation and repair
15: for i = 1 : NP do
16: xi ←Mutation(pM, xi);
17: if

∑K
k=1
∑M

j=1 c jxi
k j > B then

18: xi ← Repair(xi);
19: end if
20: end for
21: // Fitness calculation
22: Calculate the fitness F(xi) = y(xi) by using the trade-off model (3.7);
23: end for
24: x∗ ← arg maxx=x1,...,xNP F(x);
25: return x∗.

respectively. Hence, the optimal estimation of the parameters α, β and γ should make the following
conditions hold true as much as possible:

J̄(Ti) = J̃(Ti), S̄ (Ti) = S̃ (Ti), Ō(Ti) = Õ(Ti), ∀i. (5.2)

To evaluate the goodness of the three parameters, we define the following Sum-of-Squares-due-to-Error
(SSE) equation

SSE(α, β, γ) =
∑

i

[(J̄(Ti) − J̃(Ti))2 + (S̄ (Ti) − S̃ (Ti))2 + (Ō(Ti) − Õ(Ti))2]. (5.3)

Then, the optimal-estimated parameters can be attained by solving

(α∗, β∗, γ∗) = arg min SSE(α, β, γ). (5.4)
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Consider the experiment settings as follows. Let 6 hours be one unit time. Let each time interval Ti

be 10 minutes. From the NERT dataset, we extract the proportion curves for a 24-hour time duration
from 04:00 on Oct. 27th to 04:00 on Oct. 28th, 2018. After iterating each parameter from the space
{0.002, . . . , 1}, we attain the optimal-estimated parameters α∗ = 0.060, β∗ = 0.088, γ∗ = 0.006. Figure
6 compares the real and estimated proportion curves, from which it is seen that our rumor propagation
model can well approximate the real-world situation.

0 0.5 1 1.5 2 2.5 3 3.5 4

0.25

0.3

0.35

0.4

0.45

0.48

Figure 6. A comparison between the real and estimated curves of the proportions of rumor-
supportive and rumor-opposed individuals, where one unit time represents 6 hours.

Besides, let us make the following assumptions for other model parameters:

• The relationship matrix between individuals and channels, b: In practice, this matrix depends on
the actual situation. In our experiments, we set b by an arbitrary randomly-generated matrix in
which each element is set by 1 with a probability of 0.3.
• The channel-activating costs c: As reported by [46], launching an ads campaign will averagely

cost about 2 to 4 dollars per audience. Because the number of connected individuals of the channel
vC

j is
∑N

i=1 bi j, the cost c j is therefore calculated by c j = rc
∑N

i=1 bi j, where 2 ≤ rc ≤ 4 is a random
number.
• The spreading rates of clarification channels, δ: In our experiments, we set each δ j empirically by

a random number such that δ j ∈ [0.1, 0.3].
• The average benefit rates per individual, ω: In our experiments, we set ω = 40 empirically.

5.2. Optimal setting of the DCS algorithm

Next, we investigate the optimal setting of the DCS algorithm. Because the DCS algorithm is based
on the GA framework, there are three crucial parameters that can dramatically affect the effectiveness of
the DCS algorithm. They are the population size NP, crossover probability pC and mutation probability
pM. In this subsection, we determine the optimal setting of the DCS algorithm by trying to set these
three parameters with different values and observing the results.

Specifically, we consider the case where τ = 0.5, K = 8, M = 3. Besides, let NP ∈ {12, 24, 60},
pC ∈ {0.1, 0.2, 0.3, 0.4} and pM ∈ {0.025, 0.050, 0.075, 0.100}. Then, we run the DCS algorithm for
every parameter combination with the same iteration steps and observe the performance. Denote y∗
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as the trade-off of the DCS strategy obtained from the DCS algorithm. Then, Tables 1–3 show the
obtained trade-offs under different crossover and mutation probabilities when the population size is set
by NP = 16, NP = 24 and NP = 60, respectively.

Table 1. The trade-offs under different crossover and mutation probabilities when the
population size is set by NP = 16.

pC

y∗ pM
0.025 0.05 0.075 0.1

0.1 439.254 456.581 443.973 446.916
0.2 460.922 443.973 429.494 443.272
0.3 456.58 443.604 418.767 435.879
0.4 459.278 442.984 401.924 433.603

Table 2. The trade-offs under different crossover and mutation probabilities when the
population size is set by NP = 24.

pC

y∗ pM
0.025 0.05 0.075 0.1

0.1 460.922 447.156 443.761 425.238
0.2 460.922 456.579 435.534 422.586
0.3 460.922 460.922 449.446 438.425
0.4 460.922 460.922 450.772 420.510

Table 3. The trade-offs under different crossover and mutation probabilities when the
population size is set by NP = 60.

pC

y∗ pM
0.025 0.05 0.075 0.1

0.1 460.922 456.579 460.922 460.922
0.2 460.922 460.922 460.922 449.446
0.3 460.922 456.174 456.579 459.277
0.4 460.922 460.922 460.922 446.916

From the three tables, we can learn that when the population size is small, the mutation probability
is the most important factor, which will dramatically affect the performance of the DCS algorithm.
Normally, the smaller the mutation probability, the greater the performance. Thus, we should set the
mutation probability as small as possible. Besides, it can be understood that the population size is
another key factor of the algorithm performance. With the increase of the population size, the trade-off
increases no matter what the crossover and mutation probabilities are. So, in practice, the population
size should be set as large as possible while ensuring that the runtime is acceptable. Combining the
above discussion, we recommend NP = 24, pC = 0.3, pM = 0.025 as the optimal setting with respect
to the case we study.
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5.3. Effectiveness of the DCS algorithm

Next, we validate the effectiveness of the DCS algorithm. Although the GA framework has been
proven effective in solving most optimization models [13], we still need to examine whether the
solution obtained from the GA-based DCS algorithm can reach global optimality. To achieve that, we
compare the DCS algorithm with the Monte Carlo (MC) method [14].

The MC method aims to find the globally optimal solution to an optimization problem by
extensively exhausting random feasible solutions. Normally, with the increase of the number of
random seed solutions, the maximum performance among all the random seed solutions will
gradually approach the globally optimal value. Therefore, if the trade-off obtained by the DCS
algorithm can outperform the best trade-off of the MC method, the strategy yielded from the DCS
algorithm will probably be the globally optimal one.

Based on the above discussions, we run the MC method with different numbers of random seeds,
and compare the MC method with the DCS algorithm in terms of their runtime and trade-offs. Table 4
shows the results. We mention that all the experiments are performed under the same environment.
More specifically, all the experiments are conducted by a C++ procedure and the hardware device for
computation is a PC machine with 16GB memory and a CPU of AMD 5800x.

Table 4. Comparison between the DCS and MC algorithms with respect to their runtime and
trade-offs.

Algorithm MC MC MC MC MC MC DCS
Number of seeds 1,000 10,000 50,000 100,000 200,000 500,000 N/A

Trade-off 411.892 428.829 443.272 443.272 443.272 443.272 460.922
Runtime 0.988s 9.662s 48.602s 1m 35.301s 3m 3.903s 8m 2.710s 0.297s

From the table, we can learn that the best trade-off as well as the runtime of the MC method increases
with the number of random seeds, which exactly satisfies the MC theory. More importantly, the trade-
off of the DCS algorithm far exceeds the best trade-off of the MC method. So, we can deduce that the
DCS algorithm can probably reach global optimality. Besides, we notice that the runtime of the DCS
algorithm is much smaller than that of the MC method. Therefore, the DCS algorithm is more efficient
than the MC method.

5.4. Influences of the optimal DCS strategy

Finally, we examine how the optimal strategy obtained from the DCS algorithm will influence rumor
propagation.

Recall that Õ(t) and S̃ denote the expected proportions of rumor-opposed individuals and rumor-
supportive individuals at time t without rumor clarification, respectively. Denote Õ∗(t) and S̃ ∗(t) as the
expected proportions of rumor-opposed individuals and rumor-supportive individuals at time t under
the optimal DCS strategy obtained from the DCS algorithm, respectively. Then, Figure 7 compares the
proportion curves in terms of the cases with and without the optimal DCS strategy. From the figure,
it can be seen that the optimal DCS strategy can dramatically increase rumor-opposed individuals and
reduce rumor-supportive individuals. Hence, the optimal DCS strategy is effective in controlling rumor
propagation.
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Figure 7. Comparison of the proportion curves in terms of the cases with and without the
optimal DCS strategy.

6. Conclusions

In this paper, we have addressed the DCS problem. First, we have proposed a novel rumor
propagation model to characterize the influences of different DCS strategies on preventing rumor
spreading. On this basis, we have reduced the DCS problem to a mathematical optimization model.
Second, we have developed a GA-based numerical method to solve the DCS problem. Third, we have
conducted numerical experiments to verify the performances of the developed method.

Still, there are some open problems. First, parameters in our rumor propagation model are assumed
as constant coefficients. In fact, because of the trending decay of information topics [47], the influence
of a rumor can be decreasing over time. Hence, it would be valuable to extend this work by considering
a dynamic rumor spreading rate. Second, in our numerical simulations, some model parameters are
set empirically. In possible future research, it would be valuable to consider the accurate estimation of
these model parameters.
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