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Abstract: Accurate prediction of patient-specific ventilator parameters is crucial for optimizing
patient-ventilator interaction. Current approaches encounter difficulties in concurrently observing long-
term, time-series dependencies and capturing complex, significant features that influence the ventilator
treatment process, thereby hindering the achievement of accurate prediction of ventilator parameters.
To address these challenges, we propose a novel approach called the long short-term memory relation
network (LSTMRnet). Our approach uses a long, short-term memory bank to store rich information
and an important feature selection step to extract relevant features related to respiratory parameters.
This information is obtained from the prior knowledge of the follow up model. We also concatenate
the embeddings of both information types to maintain the joint learning of spatio-temporal features.
Our LSTMRnet effectively preserves both time-series and complex spatial-critical feature information,
enabling an accurate prediction of ventilator parameters. We extensively validate our approach using
the publicly available medical information mart for intensive care (MIMIC-III) dataset and achieve
superior results, which can be potentially utilized for ventilator treatment (i.e., sleep apnea-hypopnea
syndrome ventilator treatment and intensive care units ventilator treatment.
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1. Introduction

Ventilators are essential medical devices utilized in intensive care units (ICUs) to prevent respiratory
failure during routine treatment, emergency care, or surgery. They play a significant role in treating
severe and life-threatening infections, including coronavirus disease 2019 (COVID-19) [1]. During
ventilator operation, clinicians must adjust the parameters in response to the patient’s real-time physical
state, test results, and symptom analysis. However, the setting of these parameters [2] heavily relies
on clinicians’ expertise, and improper use can lead to serious complications [3], such as respiratory
alkalosis and hypoxemia, which can lead to serious complications (i.e., respiratory failure affecting
kidney function), raising the risk of patient death [4, 5].

Automatic prediction methods based on the principles of automatic control and machine learning
(ML) have been proposed to aid in setting optimal ventilator parameters and reduce medical errors.
Traditional automatic control methods [6–11] provide solutions for automatically predicting optimal
ventilator settings. Nevertheless, they are limited to analyzing characteristic data, and in the complex
medical environment of the ICU, these control systems still rely heavily on the medical experts’
experience. Automation-based systems suffer from low accuracy and efficiency when dealing with
high-dimensional, data-intensive clinical scenarios.

ML algorithms have become increasingly popular in various fields [12,13] such as machine vision,
intelligent driving, and games. In medicine and healthcare, ML algorithms are extensively used for
clinical decision support [14,15], exhibiting a superior performance in handling high-dimensional and
massive data [16, 17]. As a result, they have become a powerful tool for assisting in handling large
amounts of high-dimensional data [18]. The use of ML algorithms can help eliminate subjective
factors in the diagnosis process, providing accurate predictions and decision-making
recommendations for physicians [19, 20]. Therefore, ML algorithms offer potential options for
automatic ventilator parameter control.

A dozen of ML models [21–25] have been proposed for predicting ventilator parameters. These
approaches range from a support vector regression [21], a k-nearest neighbor algorithm, an artificial
neural network (ANN) [22], and a decision tree Bootstrap aggregation [23], to more recent
reinforcement learning (RL) based methods [24]. The aforementioned ML methods have achieved a
superior performance; however, they exhibit two essential limitations. First, they only focus on the
correlation between ventilator parameters and patient vital signs, thereby neglecting the fact that
predicting ventilator parameters involves optimizing time-series prediction, and does not consider the
time-series long-term effects will compromise the accuracy of the models. Second, prior studies have
not addressed the simultaneous prediction of both continuous parameters (i.e., positive end-expiratory
pressure (PEEP), fraction of inspired oxygen (FiO2) and tidal volume (TV), and discrete parameters
(i.e., ventilator modes) in ventilator parameter prediction. Therefore, it is important to explore
methods for more accurate and efficient prediction of optimal ventilator parameters by incorporating
both spatial and time-series features and accounting for both continuous and discrete parameters.

To achieve a precise prediction of optimal ventilator parameters that meets the clinical design
requirements, we propose a novel approach called the long short-term memory relation network
(LSTMRnet). Our approach incorporates a feature selection process, which enhances the influence of
critical information on prediction results by identifying important features that significantly impact
the ventilator parameter selection. Additionally, the time-series information collection process is
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designed to capture time-series information and to improve the overall prediction capabilities of the
model. To facilitate a more effective feature selection, we develop a unique selection process that
utilizes XGBoost [26] to generate predictions, followed by the SHapley Additive exPlanations
(SHAP) algorithm [27] for an interpretability analysis of relevant features. Through this process, we
are able to determine the importance ranking of features in the ventilator treatment process and select
the significant features that influence ventilator parameters. We employ multiple layered long
short-term memory neural networks (LSTM) [28] to capture the time-series information of features.
Then, we combine the embeddings of both spatial and time-series information from the two processes
to enhance the prediction performance of our model.

The main contributions of this study are as follows.

• In this work, we propose LSTMRnet as a novel approach for predicting ventilator parameters
accurately from time-series data. Our approach surpasses the performance of previous ML and
time-series models by effectively capturing complex features selected by an important feature
selector, enabling long-range temporal dependence observation, and improving prediction
accuracy. Additionally, our method can predict both continuous and discrete parameters.
• To obtain a more comprehensive and rich feature representation of both crucial spatial features

and time-series features, we design a feature selection process, and the embeddings produced by
the feature selector are concatenated with LSTM-generated time-series feature embeddings for a
more accurate prediction.
• Extensive validations are performed on the public benchmark dataset (i.e., MIMIC-III). Our

method achieves a significant performance, exceeding the state-of-the-art methods by a
wide margin.

The rest of this paper is organized as follows. The detail of data processing and a detailed description
of our proposed model is shown in Section 3. Experimental details and main results are presented in
Section 4. Section 5 provides a comparison of experiments. Finally, we conclude the paper in Section 6.

2. Related works

Automatic prediction methods for optimal ventilator parameters have been proposed to aid in the
setting of optimal ventilator parameters and to reduce medical errors. These methods are primarily
based on the principles of traditional automatic control and ML.

2.1. Traditional automatic prediction methods

Nemoto et al. [6] combined automatic control theory and proposed a mathematical model for
optimal ventilator settings. The ventilator is controlled by a fuzzy logic algorithm that measures the
patient’s vital signs such as heart rate, TV, respiratory rate, and arterial oxygen
saturation. Rees et al. [7] described the preferred settings and adverse effects of ventilator therapy
using penalty functions and mathematical models for oxygen delivery, carbon dioxide delivery, and
lung mechanics. Karbing et al. [8, 29] proposed a closed-loop system that used a
proportional-integral-derivative (PID) algorithm to automatically control the ventilator by adjusting
oxygen flow, respiratory rate, and TV based on continuous feedback from patient vital signs.
Chatburn et al. [9] combined a closed-loop system with a target scheme by controlling the ventilator
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towards six basic target schemes: setpoint, servo-target, adaptive target, optimal target, and intelligent
target. Marco et al. [10] used flow and pressure waveform analyses generated by the ventilator to
optimize the flow rate of chronic obstructive pulmonary. Karbing et al. [11] presented an open-loop
system that analyzes pulse oximetry and breathing tubes to provide a solution for optimal ventilator
settings. Conclusively, traditional automatic control methods have been designed to analyze some
characteristic data. However, in the complex medical environment of the ICU, the above control
systems still heavily rely on the experience of medical staff, and the above automation-based systems
still suffer from low accuracy and efficiency when dealing with high-dimensional, data-intensive
clinical scenarios.

2.2. ML based automatic prediction methods

Previous studies have proposed various ML models such as decision trees, XGBoost, and support
vector regression for predicting ventilator parameters [21, 30]. Additionally, the k-nearest neighbor
algorithm, logistic regression, and decision trees have been used for an early prediction of respiratory
parameters [31, 32]. Akbulut et al. [22] proposed an artificial neural network (ANN) model that
predicts the output of frequency, TV and FiO2, and employs Softmax activation to predict whether the
output is pressure-supported or volume-supported. Ghazal et al. [23] combine a complex decision tree
with Bootstrap aggregation for predicting ventilator parameters. Venkata et al. [33] present a
respiratory parameter recommendation system based on an ANN and particle swarm optimizer to
predict the ventilator parameter settings for patients under pressure support ventilation (PSV) mode.
Radhakrishnan et al. [25] proposed a respiratory parameter recommendation system based on
multilayer perceptron (MLP) to predict changes in the delivered FiO2, ventilator mode, and PEEP of
mechanical ventilators. However, the above-mentioned methods either did not consider important
information that affects ventilator parameters or overlooked the time-series information in ventilator
parameter prediction. Peine et al. [24] proposed the Q-learning algorithm proposed to optimize the
settings of continuous parameters in ventilators, such as PEEP, the FiO2, and TV. Ventilator
parameters include both continuous parameters (such as PEEP, FiO2, and TV) and discrete parameters
(such as ventilator modes). However, previous studies have not considered the simultaneous
prediction of both continuous and discrete parameters.

3. Methods

The proposed model consists of two key processes: feature selection and time-series
information capture.

The ventilator parameters include continuous parameters (FiO2, PEEP, TV, O2 flow, Rate) and
discrete parameters (ventilator mode). FiO2 represents the concentration of oxygen in the inhaled gas,
which controls the output oxygen of the ventilator. PEEP is a device that maintains a certain positive
pressure in the respiratory tract during the end of exhalation, avoiding early alveolar closure and
achieving the goal of increasing blood oxygen. TV refers to the amount of air either inhaled or
exhaled during calm breathing; it is related to age, gender, surface volume, respiratory habits, and
body metabolism. O2 flow is the rate at which the ventilator delivers TV, adjusted according to the
patient’s needs. The rate refers to the number of breaths per minute the ventilator delivers to the
patient. There are mainly 32 different ventilator modes for discrete parameters, and the ventilator
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mode sets different ventilator treatment plans based on the patient’s physical condition.

The overall framework of our proposed LSTMRnet approach is depicted in Figure 1. The
prediction is divided into two sections: a classification task for the prediction of discrete respiratory
data and a regression task for the prediction of continuous breathing parameters. Initially, features are
predicted using XGBoost and interpreted using the SHAP interpretation model. Then, the selected
features are passed through a multi-layer perceptron (MLP). Concurrently, LSTM networks are
utilized to capture time-series information from all patient vital signs, which is subsequently fed into
an MLP. Finally, we concatenate the information obtained from these two processes to achieve a
ventilator parameter prediction.

Figure 1. The overall framework of LSTMRnet.

We introduce the LSTMRnet approach for predicting respiratory parameters. The model takes 14
patient signs as the input and generates predictions for both continuous and discrete respiratory
parameters as output. The training procedure is presented in Algorithm 1.

Algorithm 1 The training process of LSTMRnet
Input: features x
Output: ventilator parameter

1: performs XGBoost classification through Equation (3.1) and optimize the model by Equation (3.5).
2: performs feature selection using the SHAP framework through Equations (3.6) and (3.7).
3: input the time-series feature into the LSTM model and get ht.
4: concatenate ht with xz and output the final prediction results with Equation (3.8).
5: optimize the model with
6: return discrete and continuous parameters of the ventilator
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3.1. Important feature selection process

As shown in Figure 2, we design a unique process to obtain the important features. This process
incorporates the XGBoost algorithm and the SHAP interpretable model for selecting significant
features. Among the vital ventilator parameters, the mode of ventilation holds a particular importance.
To classify the ventilator mode, we construct a ventilator parameter prediction model using the
XGBoost algorithm, with the patient’s vital signs as the input. Subsequently, an interpretability
analysis is conducted using the SHAP interpretation model to identify the influential features that
impact the ventilator treatment process.

Figure 2. An overview of the important feature selection process.

XGBoost [34] is an improved algorithm derived from gradient-boosted decision trees. Unlike
GBDT, which only utilizes a first-order Taylor expansion for the error component; XGBoost employs
a second-order Taylor expansion to approximate the learning target. This enables the utilization of
both first-order and second-order derivatives. By integrating multiple decision trees, XGBoost
improves the prediction accuracy. It achieves this by continuously splitting features to construct new
decision trees and adding new functions to fit the residuals between the predicted and actual values
from the previous round. The model’s prediction value, denoted as ŷ, is defined as follows:

ŷ =
K∑

k=1

gk (xi) , gk ∈ G, (3.1)

where K is the number of decision trees, G is the function space consisting of K decision trees, and
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gk (xi) is the function of the i decision tree
To simplify the model and prevent model overfitting, a regular term is added to the objective

function to learn the set of G functions of K decision trees. Assuming φ is the function sets of K
decision trees, H is the number of leaf nodes, ω is the leaf node weight matrix, and α and β are the
corresponding parameters of the regular term, the objective function is defined as:

L(φ) =
∑

i

(yi − ŷi)2 +
∑

k

(
αH +

1
2
β∥ω∥2

)
. (3.2)

To increase prediction accuracy, the XGBoost algorithm constructs the loss function using a
second-order Taylor expansion, which has a faster convergence rate compared with the first-order
Taylor expansion. The Boosting algorithm is an additive model (i.e., at each iteration, a new decision
tree is added to the original one, and the residuals of the previous prediction are fitted by learning a
new function g(x)). Thus, the objective function is transformed into the following

Lt =

n∑
i=1

[
yi −

(
ŷt−1

i + gt (xi)
)]2
+ αH +

1
2
β∥ω∥2. (3.3)

After second-order Taylor expansion:

L̃t =

n∑
i=1

(
nigt (xi) +

1
2

mig2
t (xi)

)
+ αH +

1
2
β

T∑
j=1

ω2
j , (3.4)

where ni is the first-order partial derivative and mi is the second-order partial derivative. According
to the objective function and the convex optimization method, the optimal objective function of the
decision tree model is obtained as follows:

Ojb(t) = −
1
2

T∑
j=1

(
∑

i∈I ni)2∑
i∈I mi + β

+ αH. (3.5)

The decision tree models’ performance is evaluated using the optimal objective function. The lower
the output of this function, the better the decision tree model’s performance. The hyperparameters of
this model include the learning rate, the minimum number of leaves, the maximum depth of the tree,
the number of trees, the regularization factor, and some features.

ML algorithms have demonstrated exceptional predictive capabilities. However, their intricate
structures often make it challenging to provide explanations based on the original mathematical
model. In our experiments, we employ the XGBoost model for classifying ventilator modes.
Although the XGBoost model itself has a complex structure and limited interpretability, we address
this limitation by introducing the SHAP interpretable model to enhance its interpretability.

Derived from coalitional game theory, SHAP is an interpretable model that explains black box ML
models [35]. It utilizes the Shapley value as a uniform indicator to quantify the contribution of each
input feature to the prediction result. By calculating the Shapley value for each feature, the model
determines their individual contributions and summarizes them to obtain the final interpretation result.
Based on these interpretation results, the important features influencing the selection of ventilator
parameters are identified.
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The output of the XGBoost prediction model is the pattern prediction result of the ventilator. By
calculating the Shapley value for each input feature, we can determine the contribution of each feature.
Assuming that m is the original model explained, F is the number of input features, σSHAP is the
Shapley value of the feature, and z is a Boolean type representing whether the feature is a missing
value; the SHAP explanatory model is described as:

m(z) = σSHAP
0 +

F∑
i=1

σSHAP
i zi. (3.6)

The Shapley value of each feature represents the feature’s contribution to the overall result. The larger
the Shapley value, the greater the impact of the feature on the prediction result. When z = 0, it
means that the missing value does not contribute to the importance of the feature. We utilize the
SHAP explanatory model to extract important features and improve the reliability of the prediction
results [36, 37]. The important feature xz can be achieved by:

xz = m(x). (3.7)

Moreover, the SHAP model is applied to interpret the ventilator pattern prediction model, aiding in
the identification of critical factors that influence ventilator treatment, hence providing clinicians with
better clinical decision support.

3.2. Time-series information capture process

In clinical scenarios, the patient’s vital signs exhibit time-series characteristics, where the next stage
of the patient’s state depends on both recent and distant past states and events. Time-series data of a
patient’s vital signs plays a critical role in forecasting ventilator parameters, with long-term predictions
being more meaningful for decision support than short-term predictions.

To capture the time-series data of features, we employ the LSTM model [38]. As a recurrent neural
network (RNN) model, LSTM is well-suited for modeling clinical data in time series prediction tasks.
By incorporating forgetting units, input units, and output units to model long and short-term
dependencies, LSTM effectively addresses the challenge of long-term dependence in RNNs. The
LSTM model captures the time-series information, which is subsequently output by the MLP network
to generate accurate predictions.

The elements of the LSTM model include the candidate cell state: c̃t = tanh(Wxcxt +Whcht−1 + bc),
input gate: it = σ(Wxixt + Whiht−1 + bi), forget gate: ft = σ(Wx f xt + Wh f ht−1 + b f ), output gate:
ot = σ(Wxoxt + Whoht−1 + bo), updated cell state: ct = ftct−1 + itc̃t, and hidden state: ht = ottanh(ct),
where σ represents the sigmoid function, tanh represents the hyperbolic tangent function, weights, and
biases are denoted by W and b on different states, respectively.

Here, we concatenate the selected important static feature xz with the last hidden state ht and then
pass the concatenated information to another MLP model o, followed by a Softmax layer:

hcat = o(xz||ht), ŷcls
t = softmax(Wclshcat + by), ŷ

reg
t = Wreghcat (3.8)

where the last linear layer of weights and biases are denoted by W and b, respectively, and || indicates
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the concatenation. The LSTM can be optimized by the following cross-entropy loss:

LCE(y, ŷ) = −
1
N

N∑
i=1

C∑
i= j

yi jlog(ŷi j), (3.9)

with total class number of C, and mean-squared-error regression loss:

LMS E(y, ŷ) =
1
N

N∑
i=1

(yi, ŷi). (3.10)

Finally, the time-series information collection process is combined with the significant feature
selection process to improve the prediction performance. For the prediction of ventilator parameters,
where both continuous and discrete parameters are involved, we treat the prediction of discrete
parameters as a classification task and the prediction of continuous parameters as a regression task. To
effectively address these tasks, the two processes utilize distinct activation functions as outputs,
specifically tailored for classification and regression in respiratory parameter prediction, respectively.

3.3. Data description and experiment setup

The information comes from the Medical Information Mart for Intensive Care III (MIMIC-III).
The MIMIC III database is comprised of information about patients in large tertiary care hospitals,
including vital signs, medications, laboratory measurements, medical orders, procedure codes,
diagnosis codes, impact reports, length of stay, survival data, and a variety of other information. As
illustrated in Figure 3, this database contains 58,976 ICU admissions from 2001 to 2012, with a total
of 46,520 patients, 5,854 of whom unfortunately died during their hospitalization, and a mortality rate
of 9.9% in all ICU units.

We extract the ventilator-related data from the MIMIC III dataset to establish the following
datasets: chartevent (containing the patient’s vital signs), lab event (containing the patient’s laboratory
lab records), d items, and d lab items, where d items and d lab items are utilized to search for the
ITEMID with the corresponding feature.

We extract the data in chartevent and lab events according to the ITEMID corresponding to the
feature and save the SUBJECT ID, ITEMID, CHARTTIME (time from ITEMID), and VALUE
columns of the extracted data to a separate dataset. To completely comprehend the influence of the
ventilator parameter settings on patients, we retrieve a dataset with 20 attributes, including
patient-specific lab test results and monitoring measurements. These attributes are composed of
fractional oxygen concentration in inspiratory air (FiO2), PEEP, respiratory rate, tidal volume (TV),
O2 flow, ventilator mode, inspiratory plateau pressure, mean airway pressure, partial pressure of
carbon dioxide (PCO2), peak inspiratory pressure, mean arterial blood pressure mean, arterial blood
oxygen saturation (SaO2), arterial diastolic pressure, arterial blood pressure diastolic, arterial blood
pressure systolic, arterial pH, lactate, temperature, bicarbonate, weight, and age.

In total, there are 32 ventilator modes. Those 32 ventilator modes are labeled by the encoder with
integers from 0 to 31. After processing these 14 datasets, a dataset containing 12,519 individuals with
time series is obtained. The 14 datasets are merged with the SUBJECT ID (which is the primary key
linking all datasets) and the missing values are initially filled using the values within the proximity
of 24 hours. To ensure data integrity, the average of each feature value is utilized to fill in the missing
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data. Additionally, the combined dataset contains a substantial number of abnormal values, such as
values of unusual size and null values. As individual abnormal data may be generated due to recording
errors and have no reference relevance, we delete all null and abnormal values in this study to improve
the quality of the dataset. The data set is randomly divided into a training set of 80% and a validation
set of 20%.

The experiments are performed using Python 3.9 and Scikit-learn 0.24.2. The operating system
employed is Windows 10 64-bit. The CPU is an AMD Ryzen7 3700X 8-Core Processor @3.59GHZ
with 16GB of RAM and an NVIDIA GeForce RTX 2070 SUPER graphics card.

Figure 3. Statistical chart of patient information.

3.4. Hyper-parameters settings and model evaluation

During the important feature selection process, key hyperparameters include leaning rate,
n estimators, max depth, reg lambda, gamma, reg alpha, subsample, and min child weight. The
XGBoost model is utilized to classify respiratory patterns using the obtained optimal model and
parameters. The optimal parameters of the XGBoost model are presented in Table 1.

Table 1. Optimal parameters of XGBoost model.

Parameter name Parameter meaning Optimal parameters
leaning rate Learning Rate 0.3
n estimators Number of weak learners 500
max depth Maximum depth of tree 5
reg lambda L2 regularisation term 2
gamma Minimum loss rate for node splitting 0.1
reg alpha L1 regularisation term 0.1
subsample Proportion of random sampling 1
min child weight Minimum leaf node sample weights 1
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In the time-series information capture process of the LSTM model, crucial hyperparameters such
as leaning rate, n estimators, reg lambda, reg alpha, subsample, batch size, and LSTM units are
considered. The optimal parameter values for the LSTM model are shown in Table 2.

Table 2. Optimal parameters of LSTM model.

Parameter name Parameter meaning Optimal parameters
leaning rate Learning Rate 0.1
n estimators Number of weak learners 500
reg lambda L2 regularisation term 2
reg alpha L1 regularisation term 0.1
subsample Proportion of random sampling 1
Batch size Batch size 50
LSTM units Number of LSTM cells 50

Regression task assessment measures include mean squared error (MSE), mean absolute error
(MAE), and R2 Score, whereas classification task evaluation metrics include Precision, F1, and
Recall. To better evaluate the performance of the prediction model with both regression and
classification tasks, we use six evaluation metrics: MAE, MSE, R2 Score, Precision, F1, and Recall.
These six metrics are defined as follows.

MAE =
1
n

n∑
i=1

|yi − ŷi| (3.11)

MSE =
1
n

n∑
i=1

(yi − ŷi)2 (3.12)

R2
−Score = 1 −

∑
i
(
yi − ŷi

)2∑
i
(
y − ŷi

)2 (3.13)

where:yi denotes the true value, ŷii denotes the predicted value, and ȳ denotes the mean value.

Precision =
T P

T P + FP
(3.14)

Recall =
T P

T P + FN
(3.15)

F1−Score =
2 × Precision × Recall

Precision + Recall
(3.16)

4. Main results

In this section, we analyze the performance of our model on the MIMIC-III, evaluate its
performance against a number of baselines, and examine the results of the experiments.
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4.1. Important parameter analysis

In this paper, we use the SHAP model to perform an interpretive analysis of the XGBoost model’s
output. The interpretive results are shown in Figure 4. Figure 4(a) shows the analysis of the ventilator
mode CMV/ASSIST/AutoFlow’s effect according to the characteristics, Figure 4(b) shows the analysis
of the effect of ventilator mode CPAP/PSV/, and Figure 4(c) depicts the analysis of ventilator mode
Standby. As shown in Figure 4, the Peak inspiratory pressure (peak airway pressure), Plateau Pressure
(inspiratory plateau pressure), Lactate (lactate), Mean Airway Pressure (mean Lactate, Mean Airway
Pressure, and Bicarbonate have a greater influence on the model for both CMV/ASSIST/AutoFlow
and CPAP/ASV ventilator modes. The influence of Mean Airway Pressure and age are prominent in
the Standby model. According to the SHAP value, peak inspiratory pressure has the greatest effect on
ventilator parameters and exhibits a complex nonlinear relationship.

(a) CMV/ASSIST/AutoFlow Feature analysis (b) CPAP/PSV Feature analysis

(c) Standby Feature analysis

Figure 4. Feature analysis chart.

Figure 5 shows the feature dependence plots of Peak inspiratory pressure (SHAP), SaO2 (oxygen
saturation), Weight (body weight), and Plateau Pressure (PH). Figure 5(a) shows the change of peak
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inspiratory pressure on blood PH. The experimental results show the effect of increasing blood PH
from –1.5 to 1 on the SHAP value of peak inspiratory pressure, with red dots indicating a high PH
value and blue dots demonstrating a low PH value.

(a) Peak inspiratory pressure (b) SaO2

(c) PCO2 (d) Mean Airway Pressure

Figure 5. Feature dependence analysis chart.

When the peak inspiratory pressure is low, the blood PH is predominantly red, indicating that the
blood PH is greater during this time. As the patient’s peak inspiratory pressure increases, the value of
SHAP is nearly stable and the blood PH value gradually changes from red to blue, which indicates
that the interaction coefficient between peak inspiratory pressure and blood PH should be negative.
Figure 5 (a),(b),(c) show the interrelationship between SaO2 (arterial oxygen saturation), PCO2, mean
airway pressure (mean airway pressure) to Weight (body weight), respectively. These three figures
indicate the following: SHAP values remain stable as SaO2 (arterial oxygen saturation) increases; the
Weight value increases as the patient’s arterial oxygen saturation rises, indicating a possible positive
correlation between arterial oxygen saturation and patient weight. When the Weight value is relatively
large and the PCO2 value is less than 1.5, the value of SHAP is mostly negative and negatively
correlated with the Weight value. After the PCO2 value becomes greater than 1.5, the change of the
SHAP value increases with the Weight value and is positive, which indicates that the patient’s weight
will affect the value of PCO2 during ventilator treatment. SHAP values are essentially stable at
different mean airway pressures, regardless of the patient’s weight, indicating that mean airway
pressure exerts minimal influence on the patient.

The importance of ranking of the features of the SHAP model is shown in Figure 6, where the
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most important feature in the ventilator mode selection process is the peak inspiratory pressure [39].
The ventilator therapy is determined by the ventilator mode [40, 41]. To improve treatment efficacy, it
is beneficial to provide the proper ventilator mode for patients with varied degrees of respiratory
illness. In addition to peak inspiratory pressure, vital signs such as mean airway pressure, inspiratory
plateau pressure, bicarbonate, and lactate are also important factors that influence ventilator
therapy [42]. In clinical application scenarios, the clinicians can adjust the ventilator mode according
to the characteristics of the patient’s mean airway pressure, inspiratory plateau pressure, bicarbonate,
and lactate.

Figure 6. Feature importance ranking.

4.2. Comparative experimental results of different models

We compare our model with the following baseline ML algorithms: MLP, LSTM, LSTM+Logistic,
and LSTM+MLP.

MLP: input all features directly into the MLP model to predict ventilator parameters, without any
feature selection process.

LSTM: input all features directly into the LSTM model to predict ventilator parameters, without
any feature selection process.

LSTM+Logistic: incorporates the important features obtained from the XGBoost and SHAP
feature selection process as inputs, and employs a Logistic model to learn and capture the essential
feature information. In the time-series information process, all features are included as inputs.

LSTM+MLP: the important features are selected through the XGBoost and SHAP feature selection
process, utilizing the MLP output. In the time-series information process, all features are included
except for the important features.

LSTMRnet: the XGBoost and SHAP feature selection process is utilized to select important
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features, leveraging the MLP output. Additionally, in the time-series information process, all features
are included as inputs.

The experimental results are presented in Table 3. Our LSTMRnet model demonstrates a superior
performance on the validation set across five evaluation metrics: MSE, MAE, R2 Score, F1 score, and
Recall, achieving values of 0.483, 0.373, 0.515, 0.291, and 0.248, respectively. The experimental
performance of either the MLP or LSTM is found to be unsatisfactory. The suboptimal performance
is attributed to the fact that a single model cannot adequately utilize the feature information, resulting
in a poor prediction performance of the respiratory parameters. The LSTM+MLP model incorporates
a feature selection step. However, the model separately inputs important and non-important features,
leading to an incomplete utilization of the feature set and hampering the connection between features.
Overall, the experimental results indicate that our model outperforms the other widely used ML
models, which indicates that LSTMRent can thoroughly learn information from different dimensions
of input features. The proposed LSTMRnet model is designed to address the limitations of the other
models, and it exhibits superior performance in both regression and classification tasks for ventilator
parameter prediction.

Table 3. Comparative experimental results.

Models Datasets MSE MAE R2 Score Precision F1 Score Recall

MLP
Train 0.557 0.417 0.444 0.374 0.197 0.168
Val 0.544 0.412 0.453 0.359 0.196 0.171

LSTM
Train 0.496 0.386 0.505 0.420 0.251 0.209
Val 0.493 0.380 0.508 0.369 0.234 0.203

LSTM+Logistic
Train 0.556 0.416 0.441 0.298 0.171 0.152
Val 0.551 0.415 0.445 0.299 0.181 0.161

LSTM+MLP
Train 0.524 0.394 0.473 0.378 0.233 0.204
Val 0.507 0.384 0.491 0.417 0.270 0.232

LSTMRnet
Train 0.477 0.373 0.524 0.571 0.362 0.311
Val 0.483 0.373 0.515 0.414 0.291 0.248

5. Discussion

5.1. Ablation studies

The effects of different time-series models: We conduct comparative experiments with different
sequence models to investigate the effect of the LSTM model on the time-series information process.
The XGS-RNN model and XGS-GRU model represent the use of RNN and GRU models, respectively,
in the time-series information process. The compared models adopt the top five important features in
the important feature information process with the same hyperparameters. The performance of different
sequence models on the dataset is shown in Table 4. Our proposed LSTMRnet slightly outperforms the
XGS-GRU model, demonstrating the superiority of the proposed method. Both LSTM and GRU can
preserve time-series information through gate structures, ensuring that long sequences are maintained
during propagation. However, the respiratory dataset has a long sequence, where the longest treatment
sequence for patients is 238 steps. The more complex structure of LSTM can capture longer time-series
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information, leading to a better performance than GRU.

Table 4. The effects of different time-series models.

Algorithm Datasets MSE MAE R2 Score Precision F1 Score Recall

XGS-GRU
Train 0.497 0.381 0.497 0.427 0.241 0.204
Val 0.493 0.382 0.496 0.385 0.236 0.201

XGS-RNN
Train 0.502 0.384 0.494 0.358 0.234 0.201
Val 0.503 0.380 0.493 0.356 0.236 0.202

LSTMRnet
Train 0.477 0.373 0.524 0.571 0.362 0.311
Val 0.483 0.373 0.515 0.414 0.291 0.248

The effects of varying LSTM units on the model: Table 5 illustrates the impact of different LSTM
unit numbers on the model. As shown in the table, the model with 50 LSTM units outperforms the
models with 10 and 30 LSTM units in various indicators of the validation set. Increasing the number
of LSTM units in the model enhances its ability to learn historical information, allowing the model to
learn more feature time-series information.

Table 5. The effects of different LSTM units.

LSTM units Datasets MSE MAE R2 Score Precision F1 Score Recall

10
Train 0.536 0.398 0.461 0.316 0.178 0.157
Val 0.534 0.399 0.463 0.389 0.204 0.176

30
Train 0.506 0.383 0.491 0.364 0.219 0.189
Val 0.505 0.383 0.493 0.370 0.220 0.191

50
Train 0.477 0.373 0.524 0.571 0.362 0.311
Val 0.483 0.373 0.515 0.414 0.291 0.248

The effects of a varying number of important features on the model: To study the impact of
different numbers of important features on the overall model, we conduct comparative experiments
by selecting the top-five, top-ten, and all features based on the feature importance graph. Our goal
is to investigate the extent to which the LSTMRnet model’s accuracy can be improved with different
numbers of important features. Table 6 presents the effects of varying important features on the model.
As illustrated in the table, the model using the top five important features achieved the best performance
on the validation set, with an MSE of 0.483 and a Precision of 0.414. This indicates that the top-five
important features have the greatest impact on the output, which is consistent with the results of the
SHAP analysis, as the SHAP values of the top five important features are higher than the average.
Increasing the number of important features resulted in a decrease in prediction performance, which
might be mainly due to the increased number of less important features, making it difficult for the
model to accurately learn the relationship between input and output.
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Table 6. The effects of different important feature numbers.

Feature numbers Datasets MSE MAE R2 Score Precision F1 Score Recall

5
Train 0.477 0.373 0.524 0.571 0.362 0.311
Val 0.483 0.373 0.515 0.414 0.291 0.248

10
Train 0.494 0.381 0.503 0.405 0.233 0.198
Val 0.498 0.382 0.498 0.392 0.250 0.213

14
Train 0.494 0.381 0.502 0.419 0.265 0.223
Val 0.490 0.380 0.506 0.385 0.258 0.221

The effects of different concatenate strategies on the model: Additionally, we explore the
effects of different fusion methods of the important feature selection and time-series information
capture processes. The first strategy is concatenation (Concat), which is commonly used to combine
features by merging different dimensions of output layer information, thereby increasing the vector’s
dimensions. The second strategy is addition (Add), which adds the output of two-dimensional feature
information without increasing the vector’s dimensions. According to Table 7, the Concat strategy is
superior to the addition strategy. The principal idea of LSTMRnet is to primarily use a time-series
model to improve the predictive performance of the model by strengthening the expression of
important features. The Add strategy will directly superimpose the time-series information and
important feature information, increasing the amount of information that describes the patient’s
condition, but only slightly improving the overall performance of the model. Both blood gas analysis
indicators and vital sign monitoring data have time-series features, but blood gas analysis indicators
have greater clinical reference values. Thus, the fusion method of Concat in our LSTMRnet model
will enhance the expression of different types of features, which also better conforms to the rules of
ventilator parameter settings.

Table 7. The effects of different concatenate strategies.

Fusion Method Datasets MSE MAE R2 Score Precision F1 Score Recall

Concat
Train 0.477 0.373 0.524 0.571 0.362 0.311
Val 0.483 0.373 0.515 0.414 0.291 0.248

Add
Train 0.499 0.382 0.498 0.276 0.186 0.164
Val 0.502 0.384 0.495 0.338 0.214 0.192

5.2. Clinical relevance

Our study is significant to clinical usage because the precise prediction of patient-specific
ventilator parameters is crucial for optimizing patient-ventilator interaction and selecting appropriate
treatment interventions. Inaccurate prediction can lead to ineffective or harmful treatments,
potentially compromising patient safety and care. The proposed LSTMRnet model overcomes these
limitations by simultaneously obtaining essential time-series and feature information, and identifying
crucial factors affecting respiratory parameters. Our study has the potential to improve clinical
outcomes and patient care, particularly in the context of sleep apnea-hypopnea syndrome and
ventilator treatment in ICUs. The validation of the proposed model on a large dataset demonstrates its
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superiority over competing models, indicating its potential use in clinical practice. As a result, our
model has significant clinical implications and has the potential to improve patient outcomes and
quality of care.

6. Conclusions

We present a novel long short-term memory relation network (i.e., LSTMRnet) for ventilator
parameter prediction. We tackle both continuous and discrete ventilator parameter prediction based
on the large medical dataset MIMIC-III. Our model benefits from both spatial and time-series
information while maintaining both features to produce predictions with a higher degree of accuracy.
We extensively validate its superiority by comparing it with conventional ML techniques in public
benchmark datasets, and our model demonstrates the superiority over other state-of-the-art methods.
In the future, we will validate it through more in-vitro and in-vivo experiments to make it more
applicable in clinical usages.
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