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Abstract: Protein interactions are the foundation of all metabolic activities of cells, such as apoptosis, 
the immune response, and metabolic pathways. In order to optimize the performance of protein 
interaction prediction, a coding method based on normalized difference sequence characteristics 
(NDSF) of amino acid sequences is proposed. By using the positional relationships between amino 
acids in the sequences and the correlation characteristics between sequence pairs, NDSF is jointly 
encoded. Using principal component analysis (PCA) and local linear embedding (LLE) dimensionality 
reduction methods, the coded 174-dimensional human protein sequence vector is extracted using 
sequence features. This study compares the classification performance of four ensemble learning 
methods (AdaBoost, Extra trees, LightGBM, XGBoost) applied to PCA and LLE features. Cross-
validation and grid search methods are used to find the best combination of parameters. The results 
show that the accuracy of NDSF is generally higher than that of the sequence matrix-based coding 
method (MOS) coding method, and the loss and coding time can be greatly reduced. The bar chart of 
feature extraction shows that the classification accuracy is significantly higher when using the linear 
dimensionality reduction method, PCA, compared to the nonlinear dimensionality reduction method, 
LLE. After classification with XGBoost, the model accuracy reaches 99.2%, which provides the best 
performance among all models. This study suggests that NDSF combined with PCA and XGBoost 
may be an effective strategy for classifying different human protein interactions. 

Keywords: amino acid sequences; protein interactions; sequence feature extraction; dimensionality 
reduction methods; integrated learning 
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1. Introduction  

Proteins are the main performers of cellular activities in living organisms and are involved in 
various aspects of organism growth and reproduction, such as cell signaling, metabolism, apoptosis 
and necrosis, and the regulation of gene expression [1]. In an organism, proteins do not exist in 
isolation nor exert their biological properties alone, but rather interact with other proteins in some way 
to drive or trigger specific biochemical reactions together and synergize their biological properties [2]. 
The study of protein interactions helps to explore the mechanisms of disease occurrence and to find new 
drug targets [3], which opens the way for new drug development. Therefore, the interaction of proteins 
is necessary for classification and prediction. Initially, researchers have often used traditional low-
throughput techniques to detect protein interactions, such as nuclear magnetic resonance, 
chromatographic electrophoresis, and other methods [4]. More mature and well-established 
experimental techniques for high-throughput detection of proteins, such as yeast two-hybrid screening [5], 
fluorescence resonance energy transfer [6], phage display [7], and tandem affinity purification [8], are 
used to detect the interactions between proteins. However, this routine analysis can only identify 
minimal protein interactions and is not suitable for all proteins of the organism because the accuracy 
of the identification results is not high [9]. Therefore, a computational protein interaction prediction 
method that can support highly efficient and high accuracy is needed. 

Among the calculation and prediction methods of protein interaction, protein-coding methods, 
feature extraction methods, and classification algorithms are the three main factors that affect the 
performance of protein interaction prediction models [10]. Protein sequence data has the characteristics 
of non-numerical, strong correlations, and varying lengths, which makes it difficult for machine 
learning methods to process these data directly. Therefore, the coding of the protein sequence data 
becomes very important. Conjoint triads (CT) [11] used any three consecutive amino acids as a unit 
and calculated their frequencies and adjacent interactions in amino acid sequences, demonstrating that 
protein interactions can be predicted by sequences alone. Auto-covariance (AC) [12] considers 
proximity effects within 1 to 30 amino acids in a protein sequence. However, it is limited to the 
frequency of occurrence of each amino acid in the sequence. For the local descriptor (LD) [13], the 
construct feature vectors are constructed by dividing the amino acid sequence into ten local segments, 
composed, transformed, and distributed, and the codes of the used local segments are linked together 
to form a complete amino acid sequence code. Recently, in the existing methods, the association 
characteristics between sequence pairs are not considered in the amino acid sequences. Therefore, the 
classification process of the traditional methods display obvious classification characteristics, and the 
classification result is poor. For example, Gui et al. proposed a sequence matrix-based coding method 
(MOS), which considered amino acid sequences’ global features, longevity effects, and coded amino 
acid sequence data into a vector with consistent dimensionality. The sequential order of the whole 
sequence was not considered in the CT, AC, and LD coding methods to solve the problem. Although 
MOS considers the amino acid sequence by constructing the amino acid sequence frequency matrix, 
it only considers the frequency information of the whole amino acid sequence; it does not consider the 
anterior-posterior position order relationship of the whole protein sequence. 

Although protein-coding methods can represent protein sequences by numbers, digital protein 
sequences contain correlated noise and redundant feature information to a certain extent. Protein 
feature extraction methods can accurately and objectively reduce redundancy, shorten training time, 
and reduce losses, which plays a vital role in protein interaction classification. Linear and nonlinear 
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dimensionality reduction techniques have been widely used in the field of biological proteins. For 
example, principal component analysis (PCA) transforms raw data into a set of linearly independent 
representations of various dimensions through linear transformation, and PCA has been widely used in 
sequence data processing [14]. Shao et al. conducted a principal component analysis on the amino acid 
content and composition of the woolly bones chicken to obtain an accurate evaluation of the amino acid 
composition and nutritional value [15]. The local linear embedding (LLE) method represents local 
linearity as global non-linearity while ensuring that the topology of the original data is maintained after 
dimensionality reduction. Zhang et al. performed LLE dimensionality reduction to sort out protein 
sequences from the static protein interaction network (SPIN) and dynamic protein interaction network 
(DPIN) perspectives [16], thus improving the performance of the classification model. 

The encoding methods and feature extraction of sequence data carry protein sequence information 
that often requires suitable classifiers for the classification prediction of complex compounds, which 
are formed by molecular interface interactions. Currently, researchers have focused on integrated 
learning algorithms to construct classification prediction models to address the shortcomings of 
traditional machine learning algorithms, such as using a single classifier [17]. For example, Liu et al. 
used AdaBoost to construct a prediction model to predict protein-protein interaction hotspot and 
non-hotspot residues. The prediction model index recall value reached 53.4%, and the F1 value 
was 51.2% [18]. Liu et al. proposed the protein crotonylation site prediction model LightGBM-
CroSite, and the evaluation metrics on the training set were greatly improved compared with other 
models [19]. Moreover, Zhang et al. proposed a new StackPDB method for DNA binding protein 
prediction based on stacking integration, where the optimal feature subset is selected by XGBoost-
recursive feature elimination [20]. Extratrees, a variant of RandomForest, uses random sampling of 
the original training set and random selection of a feature value to divide the decision tree. Han et al. 
used the extra-trees method to build a forest stock estimation model, and the results showed that the 
algorithm could effectively reduce the experimental error. Therefore, in the above studies, the four 
integrated learning algorithms belonging to bagging and boosting used the negative gradient of the 
loss function as the residual approximation of the current decision tree to fit the new decision tree. 
Although these integrated learning algorithms are widely cited for plant protein classification 
prediction problems, the raw sequences are directly used as the input to the model. 

In this study, a coding method of a protein sequence based on normalized difference sequence 
features is proposed. In the protein sequence coding method, the combination of the position 
relationships between amino acids and the correlation characteristics between sequence pairs is 
considered, and a normalized difference sequence characteristic coding method is proposed. The 
position sequence relationships and frequency characteristic relationships of amino acid sequences are 
analyzed to retain more information about the amino acid sequence. In the feature extraction of protein 
sequence coding information, PCA and LLE dimensionality reduction methods are used to extract 
protein sequence features from the coding results. The performance is compared to determine the ideal 
method for extracting human proteins. In order to make better use of the proposed protein feature 
descriptor, NDSF is combined with four ensemble learning algorithms to predict and classify: 
AdaBoost, Etratress, LightGBM, and XGBoost. The technical roadmap is shown in Figure 1. 
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Figure 1. Technology line. 

2. Materials and methods 

The dataset was provided by Pan et al. [21]. In this dataset, positive samples were obtained from 
the Human Protein Reference Database (HPRD, 2007 edition) and contained 9476 protein sequences, 
with a total of 36,630 pairs of protein interaction sequences. Negative samples were collected from 
Swiss-Prot [22] (http://www.expasy.org/sprot/, version57.3) according to the following requirements: 1) 
only human proteins were collected; 2) unclear or uncertain subcellular localization terms are excluded 
(e.g., “potential”, “possible” or “by similarity”); 3) exclude sequences where the annotated has two or 
more positions; and 4) exclude sequences marked with “fragments” and remove sequences with less 
than 50 amino acid residues in sequence length. After the above-mentioned process, a total of 2184 
human proteins were collected from six different subcellular organelles (cytoplasm, nucleus, 
endoplasmic reticulum, Golgi apparatus, lysosome, and mitochondria). The data for the negative set 
were collected using a method that counts proteins specific to different subcellular organelles and 
constitutes protein interaction pairs for proteins that are in different subcellular organelles. Since these 
proteins exist in different physical locations, they can be considered as not interacting with each other. 
It is important to exclude those proteins that are bilocalized, a transcription factor, etc. Although this 
approach does not necessarily lead to the construction of a precise protein non-interaction library, there 
is some theoretical basis for using it as a negative set. 

The dataset was preprocessed with most protein sequences ranging from 100 to 1000 amino acids 
in length, de-selecting sequence pairs with less than 50 amino acid residues in sequence length for both 
positive and negative samples, and protein pairs with uncommon amino acids (B, J, O, Z, U, and X) 
in the protein sequences in the deleted samples. A total of 36,545 positive and 36,323 negative 
sample pairs were produced by protein pairs with unusual amino acid deletions. 30,000 positive 
samples and 30,000 negative samples were selected to form the training data set, and the remaining 
part was used as the test set to validate the model. 

2.1. Normalized differential sequence feature extraction method 

To mine the most representative attributes from the samples, protein sequences of different 
lengths are normalized to carriers of the same size. Efficient feature descriptors can improve the 
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performance of classification models [23]. Therefore, we have proposed the normalized difference 
sequence feature method, the basic flow of which is shown in Figure 2. It is connected to the sequence 
pairs to form a new sequence, which encapsulates the global sequence information and local 
information of the protein. The new sequence pair needs to calculate the relative frequency and position 
features to establish the connection with a single sequence pair. That is, after the new sequence pair is 
statistically fused with the merged frequency (MF) and merge position (MP) features, the 
corresponding values of frequency information MF and position information MP are compared with 
the original sequence single frequency (SF) and single position (SP). The corresponding value 
frequency information MF and position information MP are crossed with the original sequence SF 
and SP, and a crossover feature is calculated, which can be named a normalized difference 
sequence feature (NDSF). 

 

Figure 2. Step-by-step diagram of the NDSF calculation method. 
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2.1.1. Classification of amino acids 

Electrostatic (including hydrogen bonding) and hydrophobic interactions dominate PPIs. These 
two kinds of interactions may be reflected by the dipoles and volumes of the side chains of amino 
acids, respectively. To achieve a numerical representation of amino acids, 20 common amino acids 
were classified into seven categories according to the B3LYP/6-31G in density generalization 
theory [24] and molecular modeling methods [25], as shown in Table 1. 

Table 1. Amino acids grouped based on dipole and side chain volume. 

Amino acid type Grouping 

Ala, Gly, Val 1 

IIe, Leu, Phe, Pro 2 

Tyr, Met, Thr, Ser 3 

His, Asn, Gln, Trp 4 

Arg, Lys 5 

Asp, Glu 6 

Cys 7 

2.1.2. Position frequency characteristics calculation 

The product of the two elements on the diagonal of the sequence matrix is equal to the sum of the 
symmetrical elements above and below the diagonal. The values on the diagonal and above the 
sequence matrix are selected to encode the sequences. In addition, the reciprocal of the one-
dimensional sequence length (1/L) is added as a component of the sequence matrix encoding, which 
differentiates the lengths of amino acid sequences. Finally, the sequence matrix is used to encode 
MOS_CODE for amino acid sequences, and a 29-dimensional vector is obtained as the frequency 
feature of the sequences. 

𝑀𝑂𝑆_𝐶𝑂𝐷𝐸 ൌ ሺ𝑀𝑂𝑆ଵଵ, . . . , 𝑀𝑂𝑆ଵ଻, . . . , 𝑀𝑂𝑆଻଻, ଵ

௅
ሻ      (1) 

The elements in the upper half of the position matrix cover the positional information of all 
elements in the sequence. To be consistent with the sequence matrix encoding, the inverse of the amino 
acid sequence length is chosen as the encoding component of the position matrix. Finally, the position 
matrix encoding MOP_CODE of the amino acid sequence data is a 29-dimensional vector called the 
position feature of the amino acid sequence. 

𝑀𝑂𝑃_𝐶𝑂𝐷𝐸 ൌ ሺ𝑀𝑂𝑃ଵଵ, . . . , 𝑀𝑂𝑃ଵ଻, . . . , 𝑀𝑂𝑃଻଻, ଵ

௅
ሻ      (2) 

The overall calculation flow of NDSF is shown in Figure 3. 
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Figure 3. NDSF overall flow chart. 

1) Matrix Of sequence calculation 
Based on the sequence matrix, the position characteristics of amino acid sequence data are 

proposed, which allows the amino acid sequences to retain enough original information. It reduces 
the manual coding algorithm’s time and space complexity to the maximum extent. When 
constructing the location feature matrix, assume a non-empty finite set: 𝛺 ൌ ሼ𝑤ଵ, . . . ,  𝑤ேሽ . In 
sequence S, 𝑆 ൌ 𝑆ଵ, 𝑆ଶ, . . . , 𝑆௅, where N represents the eigenvalues of the sequence S, and L represents 
the length of the sequence S, 𝑆௜ ∈ 𝛺, 1 ൑ 𝑖 ൑ 𝐿. The position matrix of sequence S: 𝑀𝑂𝑃 ൌ ൣ𝑥௜௝൧

ே∗ே
, 

where 

𝑋ூ௃ ൌ ൜
𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 . . . 𝑤௜. . . 𝑤௜. . . 𝑖𝑛 𝑆,     𝑖 ൌ 𝑗

𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 . . . 𝑤௜. . . 𝑤௝. . . 𝑜𝑟 . . . 𝑤௝. . . 𝑤௜. . . 𝑖𝑛 𝑆, 𝑖 ് 𝑗     (3) 

Finally, since the sum of all the elements in the position matrix is L3-L2-L, normalizing all the 
elements in the position matrix to unify the magnitudes: 

𝑀𝑂𝑃௜ ൌ ெை௉೔

௅ሺ௅∗௅ି௅ିଵሻ
         (4) 

Although the amino acid sequence position feature calculation algorithm has a time-delay 
complexity directly related to the length of the sequence, it contains positional information between 
amino acids at extra-long distances in the amino acid sequence. However, its effect is negligible. 

2) Matrix Of position calculation 
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In the same way, as the sequence matrix is calculated, the position matrix of the sequence S 

𝑀𝑂𝑃 ൌ ൣ𝑥௜௝൧
ே∗ே 

𝑋ூ௃ ൌ ൜
𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑜𝑓 . . . 𝑤௜. . 𝑜𝑟 . . . 𝑤௜. . . 𝑤௜. . . 𝑖𝑛 𝑆,     𝑖 ൌ 𝑗

𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑜𝑓 . . . 𝑤௜. . . 𝑤௝. . . 𝑖𝑛 𝑆, 𝑖 ് 𝑗      (5)
 

Similarly, to normalize the elements in the sequence matrix： 

𝑀𝑂𝑆௜ ൌ ெைௌ೔

௅ሺ௅ାଵሻ
          (6)

 

2.1.3. Normalization process 

The specific normalized differential series feature calculation function is as follows: 

𝑀𝐹௡௘௪ ൌ 𝑁𝑜𝑟𝑚 ൬ඥௌிభൈௌிమ

ெி
൰        (7) 

𝑀𝑃௡௘௪ ൌ 𝑁𝑜𝑟𝑚 ൬ඥௌ௉భൈௌ௉మ

ெ௉
൰        (8) 

Equation (9) shows the linearized transformation of initial data using normalized methods, in 
which Xnorm represents the normalized value, and x is the initial data. The corresponding 29-
dimensional feature vectors are obtained, the original 58-dimensional feature vector pair are spliced 
together as an 87-dimensional vector, and the 174-dimensional vector input is obtained. 

𝑋௡௢௥௠ ൌ
௑೔ି ሺ௫೔ሻభರ೔ರ೙

೘೔೙

ሺ௫೔ሻି ሺ௫೔ሻభರ೔ರ೙
೘೔೙

భರ೔ರ೙
೘ೌೣ          (9) 

2.1.4. Dimensionality reduction processing 

Dimension reduction in machine learning is realized by mapping high-dimensional spatial data 
to a low-dimensional spatial representation, which is divided into linear and nonlinear mappings [26]. 
PCA is commonly used in linear mapping, and LLE is commonly used in the nonlinear mapping. 
Therefore, we use the PCA method to transform the data vectors of amino acid sequences that may 
have a linear correlation into a set of linearly uncorrelated vectors in each dimension by orthogonal 
transformation [27]. Therefore, these converted data vectors can represent the original information 
without losing the original data, and this group of converted variables is the main part of the original 
data [28]. LLE is a data dimension reduction method based on streamlet learning, in which the shape 
of the stream can be understood as embedding a subspace in a high-dimensional Euclidean space [29]. 
We used LLE to perform a protein sequence feature extraction on the encoded results to ensure that 
the topology of the original data is maintained after dimensionality reduction. 

In order to reduce the computational complexity, these features were extracted again from the 
encoded amino acid sequences. Since the NDSF encoded sequence vector has 174 dimensions, we 
roughly chose the range of vector dimensionality scaling based on the interpretable variance plotted as 
dimensionality, as shown in Figure 4. The optimal data dimension was precisely found by repeating 
the experiment. 



14742 

Mathematical Biosciences and Engineering  Volume 20, Issue 8, 14734–14755. 

2.2. Integrated learning classification model 

Four classification models (AdaBoost, Extratrees, LightGBM, XGBoost) were selected to 
distinguish the results of the interactions between different amino acid sequences [30]. AdaBoost has 
the main advantage of adaptive enhancement. In each iteration round, a new weak classifier is added 
until some predefined sufficiently small error rate. A pre-specified maximum number of iterations is 
reached before determining the final strong classifier [31]. In this study, the weights of amino acid 
sequence samples misclassified by the previous basic classifier are increased. In contrast, the weights 
of correctly classified amino acid sequence samples are decreased, which is additionally used to train 
the next basic classifier [32]. The AdaBoost algorithm flow is as follows: 

a. Given the training sample set, 

𝐷 ൌ ሺ𝑥ଵ, 𝑦ଵሻ, . . . , ሺ𝑥௠, 𝑦௠ሻ, . . . , 𝑦 ∈ ሼ1, െ1ሽ      (10) 

b.  

𝑤ூ௃ ൌ ቐ
  ଵ

ଶெ
,  𝑦௜ ൌ െ1

ଵ

ଶ௅
,  𝑦௜ ൌ 1

        (11)
 

we initialize and normalize the weight coefficients with the formula, where L represents the 
number of correctly classified samples and M represents the number of incorrectly classified samples. 

c. At each time, in the loop t: 
1) train the samples according to the probability distribution D1 of the training set and obtain the 

basic classifier hi, and 
2) update the weighting factors according to  

𝐷௧ାଵሺ𝑖ሻ ൌ ஽೟ሺ௜ሻ∗௘షങ೔೤೔೓೔ሺೣ೔ሻ

௓೟
ൌ ௘

ష ∑ ങ೔೤೔೓೔ሺೣ೔ሻ೟
ೕసభ

௅∗∏ ௓೟
೟
ೕసభ

ൌ ௘ష೘ೝ೒ሺೣ೔,೤೔,೑೔ሻ

௅∗∏ ௓೟
೟
ೕసభ

    (12)
 

where 𝑍௧  is the normalization factor, hi is the basic classifier, and 𝑚𝑟𝑔ሺ𝑥௜, 𝑦௜, 𝑓௜ሻ  is the function 
boundary of the data points in the following function: 

𝑍௧ ൌ ∑ 𝐷௧ሺ𝑖ሻ ∗ 𝑒𝑥𝑝ሺ𝜕௜𝑦௜ℎ௜ሺ𝑥௜ሻሻ௅
௜ୀଵ .       (13) 

3) Obtain the basic classifier hi with the minimum forecast error. 
d. Output the final strong classifier H 
The second model is Light-GBM, which differs from AdaBoost in that the data sampling and 

feature sampling are performed in the implementation of Light-GBM to bind mutually exclusive 
features together, thus reducing the training time of the feature dimensions and model. 

The difference of the XGBoost model is that a set of loss functions are customized with the Taylor 
expansion, which further increases the generalization ability of the model. Its gradient boosting tree-
based algorithm adds a regularization term to the objective function, which can reduce the complexity 
of the model and avoid overfitting: 

𝑂𝑏𝑗ሺ𝜙ሻ ൌ ∑ 𝑙ሺ𝑦௜, 𝑦௝ሻ௡
௜ୀଵ ൅ ∑ 𝛺ሺ𝑓௞ሻ௞        (14) 

𝛺ሺ𝑓ሻ ൌ 𝛾𝛵 ൅ ଵ

ଶ
𝜆𝜔ଶ        (15) 
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where 𝑦௜  is the predicted value, 𝑦௝ is the true value, 𝛺ሺ𝑓௞ሻ is the regular term, 𝑓௞ is the decision 
tree, 𝑇 represents the number of leaf nodes, ω represents the proportion of leaf nodes, 𝜔 controls 
the number of leaf nodes, and 𝜆 controls the proportion of leaf nodes. 

The XGBoost algorithm performs an iterative operation and a second-order Taylor expansion 
during the solution of the objective function, as shown in Eq (16): 

𝑂𝑏𝑗ሺ𝜙ሻ ൌ ∑ ቂ𝑙ሺ𝑦௜, 𝑦௝
ሺ௧ିଵሻሻ ൅ 𝑔௜𝑓௜ሺ𝑥௜ሻ ൅ ଵ

ଶ
ℎ௜𝑓௧

ଶሺ𝑥௜ሻቃ௡
௜ୀଵ ൅ 𝛺ሺ𝑓௞ሻ     (16) 

𝑔௜ ൌ 𝛼
௬ೕ

ሺ೟షభሻ𝑙ሺ𝑦௜, 𝑦௝
ሺ௧ିଵሻሻ         (17) 

ℎ௜ ൌ 𝛼
௬ೕ

ሺ೟షభሻ
ଶ 𝑙ሺ𝑦௜, 𝑦௝

ሺ௧ିଵሻሻ         (18) 

where Eqs (17) and (18) are the first and second-order derivatives of the loss function, respectively. 
As a bagging method, extra trees are different from the random forest in that it randomly selects 

a characteristic value to divide the decision tree. Compared with random forest, the variance of the 
model is further reduced, but the deviation is further increased. Finally, these four models use cross-
validation and grid search methods to find the best parameters (learning rate and n_estimator) to 
optimize the parameters. The models are evaluated by comparing their accuracy, recall, and loss. 

2.3. Evaluation indicators 

To evaluate the performance of the protein interaction prediction model based on amino acid 
sequences proposed in this paper, three widely used evaluation criteria, including precision, accuracy, 
recall, loss, Matthews correlation coefficient (MCC) and F-measure (F1) were used in this experiment 
and calculated as follows: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ൌ ்௉

்௉ାி௉
         (19)

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 ൌ ்௉ା்ே

்௉ା்ேାி௉ାிே
        (20)

 

𝑅𝑒𝑐𝑎𝑙𝑙 ൌ ்௉

்௉ାிே
         (21)

 

𝐿𝑜𝑠𝑠 ൌ െሺ𝑦𝑙𝑜𝑔ሺ𝑝ሻ ൅ ሺ1 െ 𝑦ሻ𝑙𝑜𝑔ሺ1 െ 𝑝ሻሻ       (22)
 

𝑀𝐶𝐶 ൌ ்௉∗்ேିி௉∗ிே

ඥሺி௉ା்ேሻሺ்௉ାிேሻሺ்ேାி௉ሻሺ்ேାிேሻ
       (23) 

𝐹1 ൌ ଶ∗௉௥௘௖௜௦௜௢௡∗ோ௘௖௔௟௟

௉௥௘௖௜௦௜௢௡ାோ௘௖௔௟௟
         (24) 

where TP (true positives) denotes the number of times the initial positive sample is correctly predicted 
as positive by the model, TN (true negatives) denotes the number of times the model correctly 
predicted the initial negative sample as negative, FP (false positives) denotes the number of times the 
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initial positive sample is incorrectly predicted as negative by the model, FN (false negatives) denotes 
the number of times the model incorrectly predicted the initial negative sample as a positive sample, y 
denotes the actual label of the sample (1 or 0), and p denotes the probability that the model predicts a 
positive sample [31]. 

The Gitee website provides access to the data and codes collected as part of the survey 
(https://gitee.com/mandy1023/ml). 

3. Results and discussion 

3.1. Comparison of the efficiency of coding methods 

The feature vector dimension and coding time corresponding to the amino acid sequence coding 
method are shown in Table 2. After experimental comparison, the dimensionality of the sequence 
vector after NDSF encoding is 174, which is only second to MOS. The reduction in the dimensionality 
of the NDSF encoding vector results in a shorter time to encode an amino acid than that of the 
conventional encoding method, which is about 80% less than the encoding time of the AC method. 
NDSF has the complexity of a time delay directly related to the sequence length, so it is suitable for 
applications with high time requirements. 

Table 2. Dimensionality of feature vectors. 

Method Feature vector dimension Time to encode an amino acid*10^-3 

CT 686 2.42 

AC 420 2.11 

LD 1260 2.52 

MOS 58 0.41 

NDSF 174 0.64 

3.2. Classification prediction results of different amino acid coding methods 

After completing data preprocessing, the problem of noisy data and large dimensionality of 
protein sequence-based numerical features still exists. The inefficiency of traditional coding methods, 
such as sequence matrices and other methods, to characterize only part of the key features of biological 
information was addressed. In this study, we put forward a standardized differential sequence feature 
method for protein-coding and compared it with the results of classification prediction by the protein 
sequence coding method. Based on a sequence matrix combined with an ensemble learning algorithm, 
it considers the whole sequence relationship and long-range effect of amino acid sequences, the results 
of which are shown in Table 3. The accuracy of all four protein interaction prediction models 
constructed by NDSF combined with AdaBoost, EtraTress, LightGBM, and Xgboost is higher than 
that of MOS. In the test set, regarding the MOS method, among the four models, the best model was 
LightGBM, with an accuracy rate of 96.15% and a loss rate of 3.84%. The combination of AdaBoost 
and MOS had the lowest accuracy rate of 73.85%, a loss rate of 26.14%, and a recall rate of 73.47%. 
The NDSF optimal model was Light-GBM, with an accuracy of 98.65%, a 2.5% improvement over 
the MOS method, a loss rate of 1.34%, and a recall rate of 98.43%. The lowest accuracy of AdaBoost 
combined with NDSF is 81.40%, with a loss rate of 18.59%, and a recall rate of 80.37%. 
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Table 3. Classification results of MOS and NDSF applied to the integrated learning algorithm. 

  AdaBoost Etratress LightGBM XGBoost 

  Train Test Train Test Train Test Train Test 

MOS 

loss 24.99% 26.14% 0.08% 5.41% 1.43% 3.84% 2.71% 5.72% 

acc 75.00% 73.85% 99.91% 94.58% 98.56% 96.15% 97.28% 94.27%

recall 74.47% 73.47% 99.91% 93.42% 98.16% 94.80% 96.42% 92.64%

MCC 0.4822 0.4617 0.9821 0.9017 0.9697 0.9248 0.9597 0.8978 

F1 0.7422  0.7241  0.9944  0.9214  0.9787  0.9411  0.9571 0.9114 

 

NDSF 

loss 18.04% 18.59% 4.63% 1.34% 0.38% 1.23% 1.09% 1.77% 

acc 81.95% 81.40% 99.99% 98.65% 99.61% 98.76% 98.90% 98.22%

recall 80.80% 80.37% 99.99% 98.23% 99.60% 98.43% 98.66% 97.65%

MCC 0.6054 0.5874 0.9914 0.9801 0.9784 0.9741 0.9755 0.9612 

F1 0.7818  0.7940  0.9879  0.9783  0.9911  0.9781  0.9799 0.9589 

Based on the physical and chemical properties of amino acids and the spatial structure of the 
protein, the normalized difference sequence feature coding method proposed in this paper takes into 
account the frequency information of the whole amino acid sequence, as well as the position sequence 
relationship between the front and back of the whole amino acid sequence. Although the dimension of 
the sequence vector after NDSF coding is slightly higher, combined with the ensemble learning 
algorithm and compared with the MOS coding method, although, more satisfactory results are obtained, 
and the accuracy of the algorithm is verified. Because the frequency and positional features of the 
sequences are inconsistent in magnitude, the two features need to be spliced. Therefore, it is necessary 
to normalize the sequences to ensure that the obtained information is consistent. A matrix needs to be 
constructed by dividing the amino acids into seven categories: one step for every seven amino acids, 
hence the term “difference”. NDFS can retain more information on amino acid sequences by analyzing 
the position sequence relationship and characteristic frequency relationship of amino acid sequences. 
On the training set, the accuracy rate of NDSF is 81.95%–99.9%, and MOS is 75.00%–99.91%. 
Compared with MOS, the average loss rate of the NDSF model decreases by 1.44%, and the average 
recall rate increases by 2.5%. 

3.3. Classification prediction results of different amino acid coding methods followed by 
dimensionality reduction 

To keep most of the information on the original features as much as possible, it avoids the 
influence of correlation between sequence features on the classification results. Before using principal 
component analysis for dimension reduction, it is necessary to select the appropriate dimension and 
draw the explanatory variance as a function of the dimension. It is usually an inflection point on the 
curve where the interpretable variance rapidly stops increasing. Therefore, 45 dimensions are selected 
as the termination point, as shown in Figure 4. Figure 4(a) represents the feature selection performed 
by the model constructed by combining PCA and MOS; Figure 4(b) represents the feature selection 
performed by the model constructed by combining PCA and NDSF. 
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Figure 4. (a) PCA_MOS feature selection, (b) PCA_NDSF feature selection. 

Figure 5(a)–(d) show the classification accuracy of the test set constructed from negative-positive 
samples applied to the two best protein feature extraction methods based on feature dimensionality 
and four classifiers. The MOS method combined with PCA shows an increasing and then decreasing 
trend in the accuracy of the model in the range of 0 to 45 dimensions. When it is reduced to 30 
dimensions, the performance is superior. For the four classifiers, LightGBM is effective, and the 
accuracy rate of the best result is 96.16%. In the proposed NDSF method, the accuracy of the PCA-
LightGBM model is 99.01% under the conditions of 35 dimensions, and the accuracy is generally 
higher than that of the MOS coding method. In the NDFS coding method, the difference between the 
four ensemble learning algorithms is only 4%. Feature extraction of protein sequence data can 
effectively retain enough information, remove redundant data, and reduce training time. Meanwhile, 
it obtained a data accuracy rate as high as 99.2%, which is a practical application value.

 Using linear mapping and nonlinear mapping to extract features from coding sequences can 
remove redundant features and reduce training time. Meanwhile, it makes up for the shortage of NDSF 
coding time, which proves the practicability of the NDSF coding method. As a local linear 
representation of the global nonlinear coding method of LLE, it has been shown in many studies that 
it has something to do with keeping the local linear characteristics of the sample when it is reduced 
(keeping the original topology) [33]. Protein sequence data usually have linear and nonlinear 
characteristics. Among the NDSF method, the model dimension is 30, the performance is superior, and 
the accuracy of all models is not less than 75%. Protein interactions are determined by adjacent amino 
acids and stabilizing the functional interface of specific molecules, which may be the main reason why 
LLE classification results are lower than PCA dimensionality reduction results. If more features can 
be found, there will be more room for improvement for the performance of classification prediction. It 
is believed that an effective combination of computational and feature methods may lead to better 
prediction results. 
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Figure 5. (a) Accuracy of LLE_MOS, (b) Accuracy of LLE_NDSF, (c) Accuracy of 
PCA_MOS, (d) Accuracy of PCA_NDSF. 

3.4. Integrated learning 

There are many types of base-based classifiers in machine learning, such as a support vector 
machine (SVM) algorithm and a K-nearest neighbor (KNN) algorithm. SVM has the following 
advantages: it can efficiently solve the classification problem of high-dimensional, nonlinear data, 
ultra-high-dimensional text classification problem, and can perform machine learning for small 
samples of data [34]. KNN algorithm has the following advantages: easy to understand, high accuracy, 
insensitive to multiple outliers, and can be used for both regression and classification [35]. A strong 
classifier is generated by combining base classifiers according to a combination strategy, and the 
classification performance of the strong classifier is better than the classification performance of each 
base classifier that combines it. In this paper, to generate a better classification method, we will 
construct a multi-classifier integration model. 

Table 4 summarizes the classification results of different dimensionality reduction methods in 
which MOS and NDSF are applied to ensemble learning algorithms. The accuracy of the NDSF-based 
model is improved with different classifiers. The evaluation metrics for each training and test set 
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classification also validate that NDSF outperforms MOS. Similarly, the classification accuracy with 
either PCA or LLE treatment improves by an average of 4.82%, the recall rate improves by an 
average of 5.08%, and the loss rate decreases by an average of 4.54%. 

When the encoded amino acid sequences contained LLE-processed or PCA-processed features, 
the accuracy was higher than that of a single encoded result combined directly with the classifier. The 
accuracy of each classifier was 87.74%, 98.71%, 98.85%, and 98.70%, respectively, when the NDSF 
feature descriptors processed by the LLE method were used for classification prediction. When the 
principal component analysis is used instead of the dimension reduction method, the accuracy rates 
are 86.00%, 98.98%, 99.01%, and 99.29%, respectively. Although the results of the PCA and LLE had 
advantages and disadvantages under each of the four classifiers, the overall feature extraction results 
are slightly improved. 

Table 4. Comparison of the test set and a training set of integrated learning algorithm. 

  AdaBoost Etratress LightGBM XGBoost 

  Train Test Train Test Train Test Train Test 

MOS_LLE 

loss 16.45% 17.43% 4.01% 4.77% 0.12% 1.22% 0.20% 4.18% 

acc 82.55% 81.86% 92.21% 96.23% 97.93% 96.81% 95.18% 95.19% 

recall 80.06% 80.00% 93.31% 96.71% 97.21% 96.86% 95.01% 94.92% 

MCC 0.7215 0.5975 0.8954 0.9314 0.9577 0.9365 0.9245 0.9264 

F1 0.7887  0.7899 0.9256 0.9585 0.9702 0.9599  0.9485  0.9315 

 

NDSF_LLE 

loss 15.14% 15.26% 11.45% 1.30% 0.12% 2.70% 0.22% 4.58% 

acc 87.86% 87.74% 95.43% 98.71% 98.05% 98.85% 98.74% 98.70% 

recall 86.93% 86.89% 99.92% 98.53% 94.62% 90.20% 98.81% 98.90% 

MCC 0.8479 0.8367 0.9287 0.9734 0.9764 0.9831 0.9733 0.972 

F1 0.8555  0.8513 0.9872 0.9707 0.9277 0.8757  0.9724  0.9713 

 

MOS_PCA 

loss 23.61% 24.67% 0.06% 3.91% 1.45% 3.81% 2.85% 5.68% 

acc 76.39% 75.33% 99.93% 96.01% 98.60% 96.17% 97.30% 94.08% 

recall 75.67% 74.66% 99.12% 95.04% 98.22% 95.01% 96.12% 93.99% 

MCC 0.5671 0.5109 0.9824 0.9311 0.9712 0.9285 0.9621 0.9203 

F1 0.7346  0.7398 0.9874 0.9441 0.9753 0.9345  0.9534  0.9212 

 

NDSF_PCA 

loss 14.01% 14.78% 11.45% 1.32% 0.30% 0.90% 0.91% 1.19% 

acc 87.00% 86.00% 99.01% 98.98% 99.80% 99.01% 99.32% 99.29% 

recall 87.13% 87.15% 98.77% 98.73% 99.70% 98.97% 99.10% 98.54% 

MCC 0.8244 0.8094 0.9877 0.9746 0.9824 0.9878 0.9801 0.9781 

F1 0.8556  0.8574 0.9742 0.9813 0.9914 0.9809  0.9874  0.9722 

Among comprehensive learning methods, this study focuses on the bagging and boosting methods. 
Bagging uses the same basic classifier, which is very sensitive to training sample data and suitable for 
parallel learning of multiple basic classifiers. Although it is a simple and effective integrated learning 
method, its limitation lies in data duplication. In this way, many classifiers also have different errors, 
which leads to different results for the classifiers. Another boosting focus on learning difficult-to-
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classify samples can effectively improve prediction accuracy [36]. The bagging (AdaBoost, 
LightGBM, XGBoost) and boosting methods (Extra trees) are used in the integrated algorithm model 
of this research. The model has two common parameters-learning rate and N estimator-and cross-
validation and grid search methods are used to optimize the parameters to find the best combination 
of parameters. By comparing the prediction models constructed by AdaBoost, Extratrees, LightGBM, 
and XGBoost, we further found that LightGBM and XGBoost have better prediction results, and the 
accuracy rate using these four integrated algorithms is higher than that of traditional machine learning 
algorithms, which are all above 75%, as shown in Figure 6. 

AdaBoost is used for many training data samples and continues to train the model more precisely 
according to the feedback of the model during the training process and to continuously improve the 
classification model’s prediction accuracy. As shown in Figure 6, Adaboost’s classification results are 
not as ideal as the other three algorithms, and the accuracy rate is within 90%. The reason may be that 
Adaboost is an algorithm trained by combining multiple weak classifiers and has dependencies among 
the individual weak classifiers. For samples with unbalanced data, the algorithm will focus on learning 
a few classes of samples, so the possibility of misclassification of a few classes of samples increases. 

Extra trees are classified directly using the random feature and random threshold values on the 
random feature [20]. The randomness of each sub-model (decision tree) in the extra tree becomes 
greater, so the variability between each sub-model (decision tree) becomes remarkable. When Extra 
trees are used as the classification model, the results are significantly improved, with an accuracy 
of 98.98%, a MCC of 0.9746, a F1 of 0.9813, and a recall rate of 98.73% using the NDSF_PCA 
model feature descriptors. Because every decision tree is highly random, the over-fitting of the entire 
model is suppressed. 

Compared to the Extra trees model, the best accuracy of the LightGBM model is 0.2% higher 
than that of the Extra trees model, which shows that the model based on the gradient lifting algorithm 
improves the fitting degree of the basic classifier [37]. It is pointed out that LightGBM used the 
histogram algorithm, which takes up less memory and reduces the calculation cost. Therefore, it can 
improve the calculation speed. It proved that the time efficiency of ensemble learning execution is 
generally better than that of a single classifier. 

XGBoost is mainly used to solve the problem of supervised learning. In order to achieve the best 
performance of the XGBoost prediction, it is necessary to first obtain the best parameter combination [38]. 
It is known empirically that the model may be challenging to perform grid search with parameters of 
high dimensionality. Because of this, this study uses a random search to achieve the best parameter 
settings, then follows the principle of taking smaller combinations of parameters at a time, and finally 
sets a reasonable range of parameter values to achieve the training of the model. The hyperparameter 
adjustment range of the Xgboost algorithm is shown in Table 5. After selecting the best dimensionality 
reduction method, the results of applying the four integrated learning methods to the test set 
constructed from the negative-positive samples were compared, as shown in Figure 6. The results of 
NDSF_PCA combined with the integrated learning algorithm were generally satisfactory. 



14750 

Mathematical Biosciences and Engineering  Volume 20, Issue 8, 14734–14755. 

Table 5. Hyperparameter range of the XGBoost model. 

Hyperparameters Description Value field 
md Depth of tree 1, 2, 3, 4 
eta Learning rate 0.01~0.5 (at 0.01 intervals) 

ga 
Minimum loss function descent 

value 
0~1 (at 0.1 intervals) 

cb 
Proportion of features randomly 

sampled while building the tree 
0~1 (at 0.1 intervals) 

mw Minimum leaf weights 1~10 

The NDSF_PCA model based on the XGBoost classifier has the highest accuracy on the training 
set and the test set, with 99.32% and 99.29%, respectively, a loss rate of 0.91% and 1.19%, a recall 
rate of 99.10% and 98.54%, a MCC of 0.9801 and 0.9781, and a F1 of 0.9874 and 0.9721, respectively. 
The classification accuracy of the NDSF PCA model feature descriptors processed by AdaBoost was 
the lowest, with an accuracy of 87.00% and 86.00% on the training set and the test set, respectively, a 
MCC of 0.8244 and 0.8094, a F1 of 0.8556 and 0.8574, and a recall rate of 87.13% and 87.15% 
respectively. The research results were shown that Etratress and LightGBM were 98% to 99%, 
respectively, and the classification accuracy of the LightGBM classifier even reached 99.80% in the 
training set. 

 

Figure 6. Comparison of methods. 

In the NDS_PCA_XGBoost model, an accuracy of 99.2% was achieved with the best 
performance among all models. The best results were obtained on loss, recall, and acc. The results 
were shown that the gradient lifting algorithm was based on learning classification. The regression 
trees (CART) are used to calculate the complexity of each leaf node and minimize the loss in finding 
the best prediction score. It avoids the over-fitting of the learning model and effectively controls the 
complexity of the model, which improves the accuracy of the model, as shown in Table 6. 
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Table 6. Best results of the XGBoost model. 

 loss acc recall MCC F1 

NDSF_PCA 1.19% 99.29% 98.54% 0.9781 0.9721 

NDSF_LLE 4.58% 98.70% 98.90% 0.9720 0.9713 

In summary, we constructed prediction models based on the AdaBoost, Extra trees, LightGBM, 
and XGBoost algorithms for the human Proteogene dataset. The results showed that the integrated 
algorithm model with feature extraction significantly improved the predicted protein interactions after 
coding. In this study, we also found that the integrated learning approach achieves better prediction 
results for highly unbalanced data and effectively controls the complexity of the model because the 
algorithm avoids overfitting the learned model. 

The prediction models constructed using the ensemble learning methods AdaBoost, Extra trees, 
LightGBM and XGBoost have better classification results. It can effectively identify positive and 
negative protein interaction effects, which proves that our modeling methods are effective and 
available. Protein sequence coding is widely used in chemistry and biology. Peptide-initiated N-
substitutedN-carboxyanhydrides (NNCAs) polymerization provides a peptide synthesis mimic to 
increase its structural diversity and applications [39]. Protein sequence interactions can be used to 
detect serum histone G levels, which are antibody- and enzyme-independent [20]. Chiral recognition 
of essential amino acids provides good chiral splitting of essential amino acids for enantiomeric 
recognition of essential amino acids [40]. With the improvement of various algorithms, the research 
on coding methods has laid a good foundation for predicting protein interaction. 

4. Conclusions 

This study verifies the feasibility of a normalized differential sequence feature protein sequence 
encoding method, which is combined with an integrated learning algorithm to classify protein 
interactions. In this paper, we compare two dimensionality reduction methods, PCA and LLE, for 
protein sequence feature extraction of the encoded results. The results are shown that PCA combined 
with the proposed normalized differential sequence feature protein sequence encoding method can 
effectively retain sufficient information and remove redundant data, which greatly reduces the 
reduction loss and decrease the training time. In addition, we combine it with four integrated learning-
based algorithms, AdaBoost, Extratrees, LightGBM, and XGBoost. For predictive classification, the 
XGBoost obtains better classification results to avoid overfitting to the learning model, and effectively 
controls the complexity of the model. 
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