
http://www.aimspress.com/journal/mbe

MBE, 20(8): 14158–14179.
DOI: 10.3934/mbe.2023633
Received: 12 April 2023
Revised: 23 May 2023
Accepted: 15 June 2023
Published: 26 June 2023

Research article

AD-DETR: DETR with asymmetrical relation and decoupled attention in
crowded scenes

Yueming Huang1,2 and Guowu Yuan1,2,*

1 School of Information Science and Engineering, Yunnan University, Kunming 650504, China
2 Yunnan Key Laboratory of Intelligent Systems and Computing, Kunming 650504, China

* Correspondence: Email: gwyuan@ynu.edu.cn; Tel: +8687165033748.

Abstract: Pedestrian detection in crowded scenes is widely used in computer vision. However, it
still has two difficulties: 1) eliminating repeated predictions (multiple predictions corresponding to
the same object); 2) false detection and missing detection due to the high scene occlusion rate and
the small visible area of detected pedestrians. This paper presents a detection framework based on
DETR (detection transformer) to address the above problems, and the model is called AD-DETR
(asymmetrical relation detection transformer). We find that the symmetry in a DETR framework causes
synchronous prediction updates and duplicate predictions. Therefore, we propose an asymmetric
relationship fusion mechanism and let each query asymmetrically fuse the relative relationships of
surrounding predictions to learn to eliminate duplicate predictions. Then, we propose a decoupled
cross-attention head that allows the model to learn to restrict the range of attention to focus more
on visible regions and regions that contribute more to confidence. The method can reduce the noise
information introduced by the occluded objects to reduce the false detection rate. Meanwhile, in our
proposed asymmetric relations module, we establish a way to encode the relative relation between
sets of attention points and improve the baseline. Without additional annotations, combined with the
deformable-DETR with Res50 as the backbone, our method can achieve an average precision of 92.6%,
MR−2 of 40.0% and Jaccard index of 84.4% on the challenging CrowdHuman dataset. Our method
exceeds previous methods, such as Iter-E2EDet (progressive end-to-end object detection), MIP (one
proposal, multiple predictions), etc. Experiments show that our method can significantly improve the
performance of the query-based model for crowded scenes, and it is highly robust for the crowded
scene.

Keywords: pedestrian detection; crowded object detection; DETR; end-to-end detector; crowded
pedestrian scene; relation net; attention mechanism; symmetry
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1. Introduction

1.1. Background

Object detection in crowded scenes is widely used in self-driving, surveillance and robotics. There
are two challenges for object detection in crowded scenes. One is the elimination of dense repetitive
predictions, and the other is high false detection due to high occlusion rates. A good detector must
detect all objects while avoiding repetitive prediction.

To solve these problems, one-stage [1–3] and two-stage detectors [4–6] use dense-to-dense and
dense-to-sparse structures to generate dense candidate boxes or sparse candidate boxes by setting dense
anchors, respectively. The matching strategy achieves higher recall by assigning multiple candidates
to one ground truth (GT). Since the network itself cannot de-duplicate, the higher recall will result
in many repeated predictions, so these methods require additional post-processing to de-duplicate.
De-duplication refers to the following: when multiple predictions correspond to the same GT, the
model can eliminate the other repeated predictions while reserving the best one. Those anchor-based
approaches use non-maximum suppression (NMS) [6,7] based on greedy algorithms or improved post-
processing methods as the de-duplication module. In the NMS algorithm, different intersection over
union (IOU) threshold configurations is a trade-off strategy. A high threshold increases accuracy but
decreases recall and reduces repeated predictions; a low threshold raises the recall rate but decreases
accuracy and generates a large number of repeated predictions. At the same time, when the IOU
between GTs is higher than the IOU threshold specified by NMS, there will inevitably be missed
detection. AdaptiveNMS [6] introduces an additional network to learn the density of GTs in different
scenes to dynamically modify the NMS threshold in real time to adapt to scenes with different densities.
Soft-NMS [7] improves the original NMS, directly removes the GT with high surrounding overlap and
reduces the surrounding prediction confidence, but it is still a greedy algorithm. In the dense object
scene, the detectors based on greedy algorithm post-processing still have serious repeated prediction
and missed detection.

A series of end-to-end query-based detection methods [8–10], represented by DETR [11] and
sparse-RCNN (sparse region convolutional neural network) [12], regard target detection as a set
prediction problem and integrate the de-duplication ability into the network through the end-to-end
learning prediction of bipartite graph matching. These methods avoid the repeated prediction and
missed detection caused by the manual anchor setting and NMS based on the greedy algorithm. The
improved methods of DETR [8–10, 13] solve the slow convergence, low accuracy and poor
interpretability of the basic model of DETR. These improved methods have achieved state-of-the-art
results on some famous general datasets such as COCO [14], PASCAL VOC [15], etc. They have
significantly improved the performance compared with the previous framework [1, 16] of NMS
post-processing methods based on greedy algorithms.

However, these DETR-like models generally use a symmetrical decoder structure, which means
that queries can equally pay attention to and gather information from each other in networks. As
shown in Figure 1, we found that in a symmetrical structure, the prediction boxes at each stage tend
to adopt the same strategy to update themselves, because they can sense each other equally. In the left
of Figure 1, both prediction boxes a and b reduced their confidence and gave up regression to the GT,
resulting in missed detection; In the right of Figure 1, both prediction boxes increased their confidence
to regress to the GT, resulting in repeated predictions; we call it the synchronous update problem.
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Figure 1. The synchronous update of the prediction boxes in the fine-tuning stage. The solid
boxes a and b represent the prediction boxes in the current fine-tuning stage by the decoder
blocks, and the dashed boxes represent the possible synchronous updates after fine-tuning by
the symmetric decoder structure.

Since the synchronous update problem is caused by a symmetrical decoder structure in the fine-tuning
stage, the de-duplication ability learned by the network is still limited. Moreover, DETR-like models
generally use a fixed attention range. Because of the high occlusion rate of GTs in crowded scenes,
such a strategy will introduce a lot of noise from the occlusion part to the process of predicting. The
visualization of the attention points of deformable DETR is shown in Figure 2; note that, due to the
high occlusion between GTs in a crowded scene, only a few attention points are located in the visible
area of the GT. In contrast, most attention points fall on the surrounding occluded objects, introducing a
large amount of noise into confidence prediction. The detection results of DETR and its improvements
on the highly crowded dataset CrowdHuman [17] show that the de-duplication ability learned by the
network itself and its adaptability to crowded scenes are still limited.

In those optimization works on query-based detectors in crowded scenes, Zhou and Yuan [18]
eliminated repeated predictions by allowing the model to regress the full-body and visible-region
boxes using additional visible-region annotations. A series of methods based on this idea used the
visible prediction boxes with a low repetition rate to assist the full-body box predictions with a high
repetition rate in crowded scenes [19–21]. The pedestrian end-to-end detector (PED) [22] reduced
missing detection by guiding the cross-attention range by annotating the visible box region. However,
these methods required additional costs for visible-box labeling and had limited improvement in
performance. Iter-E2EDet [23] regarded prediction box de-duplication as a de-noising task. It
considered the predictions higher than the fixed confidence threshold as accepted predictions and
other predictions with low confidence as noise to eliminate duplication. However, this method was
effective only when repeated predictions are between low-confidence and high-confidence
predictions. This method had no effect when repeated predictions were between low-confidence
predictions or high-confidence predictions.
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Figure 2. Confidence prediction of occluded GT (yellow attention points are attention points
that contribute to confidence prediction in the visible area, and red attention points are noise
information).

1.2. Our motivations

The DETR-like detection framework can learn end-to-end de-duplication and has competitive
state-of-the-art results on the standard datasets [14, 15]. Therefore, we follow the overall design of
deformable DETR [9], but we divide the decoders into decoupled decoder blocks and asymmetrical
relation decoder blocks.

In decoupled decoders, we can reduce missed and false predictions by narrowing the attention range
for confidence prediction to eliminate the noise from the occlusion decoupled decoder. Asymmetrical
relation decoder blocks are designed to break the model’s symmetry, which can eliminate duplicate
predictions by solving simultaneous updates in the fine-tuning stage.

Figure 3 shows our overall framework. The feature extractor includes backbone and transformer
encoders, and the cascaded decoders query the extracted feature maps to make predictions. In the
decoupled encoder blocks, we decouple the information of confidence prediction and regression tasks.
The regression output of the last decoupled encoder is a prediction of the position of the detection
boxes, and the output for confidence prediction is fed into the following asymmetrical block. In the
asymmetrical block, we propose an asymmetrical relation net(ARN) to break the model’s symmetry,
which can avoid the synchronous update of the prediction boxes to eliminate duplicate predictions.
Asymmetrical relation module. To solve the synchronous update problem caused by a symmetrical
decoder structure, we adopted the idea of Iter-E2EDet [23], which embeds the relationship network in
the model to integrate the relative relationship information between predictions. In our proposed
asymmetrical relation decoder, we have introduced an asymmetric prediction information fusion
mechanism based on confidence. Each prediction only pays attention to and gathers information on
those predictions with a higher confidence score than it. Thus, this mechanism breaks the symmetry
of the original model and avoids repeated or missed prediction caused by the synchronous update.
Decoupled confidence prediction. In the widely used DETR framework, a lot of noise information
from the occlusion part will be introduced by a fixed attention range design of the decoder block.
Moreover, the same attention point set information is used for both confidence and location predictions.
However, the information required for the two types of prediction is different; confidence prediction
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Figure 3. The overall framework of our method. We use the decoupled decoders to restrict
the range of attention to let the model focus more on visible regions. At the end of our
model, we use the asymmetrical relation decoders to break the model’s symmetry to avoid
the synchronous update of the prediction boxes in the fine-tuning stage.

tends to pay more attention to essential areas, such as the visible or head areas. In contrast, location
prediction tends to focus on the location information of the prediction box boundary. Based on the
above analysis, in our symetrical decoupled block, we propose a decoupled cross-attention head to
separate the attention points of confidence and position predictions without any extra parameters added.
The decoupled cross-attention head forces the model to only select a small number of attention points
for confidence prediction. Therefore, our model can self-adaptively learn to focus on visible areas that
contribute more to confidence prediction. By this design, our model can reduce the amount of noise
information from occluded parts, thus reducing the missed detection rate.

Point set relation encoding. Due to the high spatial complexity of traditional sine and cosine spatial
positional encoding [11], it is difficult to encode the relative relationship between the predicted
attention point sets. Therefore, we propose a network to encode the relative relationship between
point sets. Using this encoding method, we also achieved significant improvement on the baseline.

1.3. Our contribution

On the challenging CrowdHuman dataset [17], our experiments demonstrate that our proposed
method can achieve state-of-the-art results. At the same time, we have analyzed the detection results
in different density scenarios and prove the generalization performance in different density scenarios.
The main contributions of this paper are as follows:

1) We propose an asymmetric relation mechanism to solve the synchronous update problem caused
by the model’s symmetry and reduce repeated predictions in crowded scenes.

2) We propose a simple and effective decoupled multi-head cross-attention algorithms to reduce
noise information from surrounding occluded objects without adding any parameters, reducing
the rate of missed and false predictions.
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2. Review of DETR-like detectors

This section reviews the DETR-like detectors and their decoder structure for cascade refining. In
the DETR-like models, the backbone first extracts the image features to form the image sequence
information as the subsequent input. Second, the encoder blocks encode the sequence information with
global attention to create multi-scale feature maps. Third, the decoder blocks update the position and
confidence of the predictions by integrating the multi-scale feature maps in a cascading way. Finally,
the classification head and regression head obtain the final prediction results. A decoder block in the
DETR model can be formulated as follows:

qt
′′ ← MS A(qt−1) + qt−1

q′t ← MCA(q′′t, e f ) + qt
′′

qt ← f f n(q′t)
boxt ← B(qt)
clst ← C(qt)

(2.1)

where q ∈ RN×d denotes the learnable object query; N and d denote the number and dimension of query
q, respectively. The decoder block at the stage t receives the queries qt−1 output from the block at t − 1
layer as an input. Muti-head self-attention MS A (·) is applied to perform self-attention among qt−1 to
generate a multi-scale feature map e f . Then, the multi-scale feature map information is integrated by
the muti-head cross-attention MCA (·) and feed-forward networks f f n (·) to get the query qt for the
next stage. Simultaneously, qt is fed into the box prediction branch B (·) and classification branch C (·)
for the current bounding box prediction boxt and confidence score prediction clst.

In the improved deformable DETR [9], the original global muti-head cross attention is replaced
with deformable muti-head cross attention by adding the prior knowledge of the localization of the
image. The improved deformable muti-head cross attention MCA(q′′t, ef |boxt−1) can be formulated as
follows:

q′t =
N∑
n

Wn

 K∑
k=1

Anqk ·Wn
′e f (pq + ∆pnqk)

 (2.2)

where n indexes the attention head, Wn ∈ C ×Cv (Cv = C/N) represent the learnable weights, the
attention weight Anqk is normalized by

∑K
k=1 Anqk = 1, where q ∈ RN×d denotes the learnable object

query and e f is the multi-scale feature map encoded by encoder blocks. pq is the coordinate of the
center point of the bounding box corresponding to the query q, and ∆pnqk is the offset of the kth attention
point in the nth attention head.

3. Our approach

Due to the excellent convergence and low computational complexity of deformable attention [9]
and the ability to fuse multi-scale feature maps, we chose deformable DETR [9] as our implementation
basis for our default instantiation. This section focuses on the detailed implementation of our method
with a deformable DETR base, and our work can be applied to most query-based object detectors.

Figure 4 shows our approach’s detailed implementation framework, including the asymmetrical
relation decoders with ARN and decoupled decoders with decoupled multi-head cross attention
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Figure 4. The diagram of our proposed DETR detection framework. It includes asymmetric
decoders with ARN and decoupled decoders with DMCA.

(DMCA). The framework first feeds the image into the backbone. Then, the flattened output is
transmitted into the transformer encoder to get multi-scale feature maps, which the decoder blocks
will query to refine the predictions hierarchically.

In the decoupled decoders, we replace the original cross attention with our proposed DMCA to
decouple information for confidence and regression prediction. In the final asymmetrical decoder, the
asymmetric relation mask and the attribute k of each query from the last decoupled decoder are first
fed into the ARN to obtain the asymmetrical relation vector rk of each query. Asymmetrical relation
vector rk is a vector of the same dimension as the query to provide information on the surrounding
predictions; the attribute k denotes the positions of boxes or attention points which are utilized by the
ARN to form the relation vector. Then, those queries summed with the relation vector are fed into the
DMCA and feed-forward network (FFN) later. Finally, the prediction results are obtained through the
regression and classification heads. One improved asymmetrical decoder block can be formulated as
follows:
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rk ← ARk(Pk|M)
qt

rel ← f cn(rk + f cn (qt−1))
qt
′′ ← MS A(qt

rel) + qt
rel

q′t, q
′c
t ← DMCA(q′′t, pt−1, ef) + qt

′′

qt, qc
t ← f f n(q′t, q

′c
t )

boxt ← B(qt)
clst ← C(qc

t )

(3.1)

where ARk (·) denotes our proposed asymmetric relation module to encode the asymmetric relation
of attribute k of the surrounding predictions, Pk represents the set of attributes k of queries and M
represents the mask of asymmetric relation. f cn (·) denotes the fully connected layer. qt

rel represents
the query after incorporating the asymmetric relation vector rk. pt−1 is the centroid coordinates of the
prediction box corresponding to the query at stage t − 1 . DMCA (·) is the DCMA module, whose
outputs q′t

c and q′t are fed into the FFN with the same parameters to obtain qt and qt
c, and finally the

predictions boxt and clst of this stage are outputted through the regression head B and classification
head C by q′t

c and q′t , respectively.

3.1. Asymmetrical relation

As shown in Figure 1, the decoders’ symmetry of the original deformable-DETR can bring about
the synchronous update problem of queries, leading to duplicate predictions. We propose an
asymmetric relational module ARk to fuse the relation of attributes k among queries asymmetrically.
That is, each prediction only focuses on and fuses the information of surrounding predictions with
higher confidence than itself in a one-way manner. At the fine-tuning stage, ARk can asymmetrically
update the predictions to solve the synchronous update problem, thus eliminating duplicate
predictions. The asymmetric relation module can be formulated as follows:

rk = ARk(Pk|M) (3.2)

The ARN accepts the set of attribute k of N queries Pk = {k0, k1, . . . , kN} which denotes the positions
of prediction boxes or attention points of queries and outputs asymmetric relation vector rk.

We use the matrix M = [mi j]N×N to denote the asymmetric relation mask for N queries in the AR
module, where mi j = 1 means that qi can notice q j; mi j = 0 means that qi cannot notice q j and no
relation is computed. The relation matrix M can be decomposed into the Hadamard product of the
spatial adjacency relation MN and the confidence-based asymmetric relation MA. So, we have that
M = MN ◦ MA, where ◦ means Hadamard product and MN and MA are computed as follows:

mN
i j =

{
1, IoUi j > Ithresh

0, otherwise.
(3.3)

mA
i j =


1, if ci < c j and c j > Clow

and ci < Chigh

0, otherwise.
(3.4)
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where ci represents the class confidence score of the ith query. We set a minimum confidence
threshold Clow to avoid incorporating much noise from low-confidence predictions. We also set the
upper confidence limit Chigh to reduce computation, because we found that the accuracy of
high-confidence predictions is often already very high. In the confidence-based asymmetric
relationship MA, each prediction can only one-way notice the surrounding predictions with a higher
confidence level than itself while ignoring the predictions with a lower confidence level.

In the spatial adjacency relation MN , each prediction only focuses on the prediction above the IOU
threshold Ithresh with itself. Predictions too far away from each other generally do not correspond to
the same GT, so setting the threshold Ithresh avoids inefficient computation. The right of Figure 4 shows
how MN and MA obtain the final asymmetric relationship. For each query on the horizontal axis, the
vertical axis is the visible relationship of other queries in the mask to that query.

Intuitively, in the asymmetric relationship, the predictions whose confidence score is between Clow

and Chigh only need to focus on the surrounding predictors with higher confidence scores than
themselves and calculate the relative position relation. The field of view of each prediction in the
asymmetric relationship is shown in Figure 5; in Figure 5a, the prediction box 2 can only see the
information of the prediction box 1 with a higher confidence score than itself, and there are no repeat
predictions in its field of view. In Figure 5b, the prediction box 3 can only see the information of the
prediction boxes 1 and 2 and there are no repeat predictions in its field of view either. In Figure 5c,
the prediction box 4 can see the information of the prediction boxes 1–3 with a higher confidence
score than itself to judge itself as a duplicate prediction.

(a) (b) (c)

Figure 5. The field of view of each prediction in the asymmetric relationship. The dashed
box represents the invisible box in the field of view; the brighter box color represents its
higher confidence score; the confidence score ranking of the prediction boxes is 1 > 2 > 3 >
4.
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3.2. Relation encoding

The asymmetric relation module AR accepts the set of attribute k consisting of N queries Pk =

{k0, k1, . . . , kN}, and it computes the asymmetrical relation vector rk for each query for the attribute k
according to the asymmetric relation M determined by Eqs (3.3) and (3.4). We define those queries
that the ith query qi can perceive in the asymmetric relation as a set N (qi) =

{
q j|mi j = 1

}
. We use two

different relative relation encoding methods for the two different attributes k; Figure 6(a),(b) show the
two different encoding network structures, while attribute k is the location of bounding boxes or of
attention points sets, respectively.

ik
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MaxPool

k

ir

k box=

iq( )iq

( )iq
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Figure 6. The figure shows the different encoding methods used in the ARN for the different
relations k. Figure 6a is the encoding network when k is the relative position relation between
the prediction boxes. Figure 6b is the encoding network when k is the relative relation
between sets of attention points of the predictions. PE - sine and cosine spatial positional
encoding function [24], r - RELU, Linear - f c layer, Concat - concatenate.

In Figure 6a, when attribute k is the location of bounding boxes, we reference the encoding method
in E2EDet [23] to encode the relative relation of bounding boxes. ARbox can be formulated as in
Eq (3.5).

rbox
i j ← H

(
PE(boxi − box j, ioui j)

)
rbox

i ← MaxPool(
{
rbox

i j |mi j = 1
}
)

(3.5)

where PE (·) refers to the sine and cosine spatial positional encoding function [24], andH (·) represents
the function used to encode relative position relations, implemented by two fully-connected layers. rbox

i j

denotes the relative relation encoding vector between the ith query and the jth query.
For the ith query, ARbox first accepts the length, width and center-point coordinates and the iou

value of the predicted boxes at the last stage. Then, we calculate the difference between the length,
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width and center point coordinates of the query prediction box in the N (qi) set, and the difference is
cosine-encoded. Finally, the relation encoding vectors, which are visible in the asymmetric relation M,
are maxpooled to get the final asymmetrical relation vector rbox

i for the ith query.
In Figure 6b, the attribute k is the attention point sets. Because many attention points lead to

enormous space complexity of the sine and cosine spatial positional encoding [24], we propose a new
encoding method to encode the relative relation of attention point sets that considers both the topology
of the point set itself and the position relationship between point sets. ARaps can be formulated as in
Eq (3.6).

O
(
Gi,G j

)
← H (sort({ptn − ptm|n < m})) , pn ∈ Gi, pm ∈ G j

raps
i j ← f cn

(
concat

(
O
(
Gi,G j

)
,O (Gi,Gi)

))
raps

i ← MaxPool(
{
raps

i j |mi j = 1
}
)

(3.6)

where Gi denotes the attention point set {ptn}
T
n=0, which contains T attention points of the ith query,

and sort (·) refers to the ordering of the relative distances between attention points from small to large.
It adds an ordered prior to the distance vector to accelerate convergence. H (·) is the function used
to encode relative position relations, which is implemented by two fully-connected layers. O

(
Gi,G j

)
encodes relative position relations between two attention point sets Gi and G j. However, since the point
sets themselves have different topologies, we use the relative position relation O (Gi,Gi) with itself for
the normalized correction. concat (·) denotes vector concatenation, f cn (·) denotes a fully connected
layer and raps

i j is relative relation encoding vector between two attention point sets. MaxPool (·) is
applied to relative relation encoding vectors which are visible in the asymmetric relation M to get the
final asymmetrical relation vector raps

i for the ith query.

3.3. Decoupled cross attention head

We propose a decoupled cross-attention module, which can partially decouple the attention
information required by the regression and category. We decoupled Nc out of eight attention heads,
forcing the network only to select the attention points of Nc/N and the corresponding Nc/N attention
heads to learn prediction confidence information. All original attention point information is still used
for the position regression prediction of the prediction box. Our proposed DMCA(q, pq, e f ) can be
formulated as follows:

q′t =
N∑

n=1

Wn

 K∑
k=1

Anqk ·Wn
′e f (pq + ∆pnqk)


q′ct =

N∑
n=Nc

Wn

 K∑
k=1

Anqk ·Wn
′e f (pq + ∆pnqk)


(3.7)

where n indexes the attention head, k indexes the sampled keys and K is the total number of sampled
keys. Anqk and ∆pnqk denote the attention weight and the sampling offset of the kth sampling point in
the nth attention head. pq is the centroid coordinates of the prediction box corresponding to the query,
which is used to get the attention point coordinates. Wn ∈ C ×Cv(Cv = C/N) represents the learnable
weights and Anqk is the weight of attention points normalized by

∑K
k=1 Anqk = 1. DMCA(q, pq, e f )
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accepts the queries q, pq from the previous stage and the keys and values from the encoder feature
maps e f , and it outputs the query q′t

c for confidence prediction and the query q′t for location prediction,
respectively.

(a) (b)

Figure 7. Attention point distribution. Figure 7a shows the attention point distribution
from the original un-decoupled eight attention heads. Figure 7b shows the attention point
distribution from the four attention heads decoupled out by DMCA to predict the class
confidence. In Figure 7, each ellipse’s long and short axes are the horizontal and vertical
distributions’ standard deviation of the attention points set, and each ellipse’s center is the
weighted average of the attention points.

Notably, the q′t
c and q′t generated in Eq (3.7) use the same learnable parameters Wn without adding

any additional parameter. q′t
c and q′t are fed into the FFN with the same parameters to generate qc

t and
qt. At the end of each decoder stage, the classification head C and the regression head B conduct a
confidence prediction and a regression prediction using qc

t and qt for this stage, respectively.

Figure 7 visualizes the attention points distribution for the confidence prediction comparing the
DMCA of Nc = 4 and Nc/N = 0.5 with the original muti-head cross-attention. Using DMCA, the
network learns to predict confidence by selecting only a small number of attention points, so the
network will be forced to focus more on regions with a higher confidence contribution, such as visible
regions or human heads. The method can avoid the noisy information from surrounding GT-obscured
regions to reduce false predictions. Figure 8 visualizes other examples of the confidence prediction
attention point distributions decoupled by DMCA.

4. Experiment

In this section, we discuss the experiments on the CrowdHuman [17] dataset. We analyze the
detection results for different crowded scenes and verify the effectiveness and robustness of our
method. At the same time, we conducted ablation experiments on our proposed modules and their
hyperparameters.
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Figure 8. Distribution of attention points decoupled by our proposed DMCA to predict
the class confidence. Each ellipse’s long and short axes are the horizontal and vertical
distributions’ standard deviation of the attention point set, and each ellipse’s center is the
weighted average of the attention points.

4.1. Evaluation metric

We mainly take three criteria: average precision (AP), log-average miss rate MR−2 [25] and Jaccard
index (JI) [26] as evaluation metrics. Generally, good detection results correspond to a larger AP, a
larger JI and a smaller MR−2.

• The AP is represented by the area surrounded by the precision-recall curve and coordinates. AP is
commonly used in object detection to reflect both precision and recall, and a larger AP indicates
better performance.
• MR−2 [25] computes the average miss rate on a log scale of false positives per image. This metric

is commonly used in pedestrian detection as it reflects false and missing detection, and a smaller
MR−2 indicates better performance.
• The JI [26] mainly evaluates how much the prediction set overlaps the GTs. It reflects the total

distribution’s similarity between the prediction box set and the real GTs. A larger JI indicates
better performance.

4.2. Detailed settings

We used a standard ResNet-50 [27] pre-trained on ImageNet [28] as the backbone of deformable
DETR, and each training ran for 55 epochs. We trained our model with the AdamW optimizer; the
momentum was 0.9, and the weight decay was 0.0001. The model’s learning rate was 0.0002, and the
backbone’s learning rate was 0.00002. The batch size was 8, and the task was split into four GPUs. If
there are no special instructions, the query number was set to 1000, the attention head’s number was 8
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Table 1. Comparative experimental results on CrowdHuman validation set.

Method #Queries AP ↑ MR−2 ↓ JI ↑
Box-based
RetinaNet [29] - 85.3 55.1 73.7
ATSS [30] - 87.0 55.1 75.9
ATSS [30] +MIP [4] - 88.7 51.6 77.0
Faster-RCNN [16] - 85.0 50.4 -
FPN [5]+Adaptive-NMS [6] - 84.7 47.7 -
FPN [5]+Soft-NMS [7] - 88.2 42.9 79.8
FPN [5]+MIP [4] - 90.7 41.4 82.3
PBM [19] - 89.3 43.3 -
Query-based
DETR [11] 100 75.9 73.2 74.4
PED [22] 1000 91.6 43.7 83.3
Sparse-RCNN [12] 500 90.7 44.7 81.4
Sparse-RCNN [12] 750 91.3 44.8 81.3
D-DETR [9] 1000 91.3 43.8 83.3
Iter-E2EDet [23] 1000 92.1 41.5 84.0
D-DETR+ours (1 lay) 1000 92.6 40.0 84.4
D-DETR+ours (2 lay) 1000 92.5 39.7 84.3

*Note: where N lay denotes the number of asymmetrical layers.

in the deformable DETR and the block number for both the encoder and decoder was set to 6. For a
fair comparison, we also used six decoders divided into five decoupled decoders and one asymmetrical
relation decoder; the other settings of the six decoders were the same for the deformable DETR. We
selected the best performance in the last five epochs for recording in each training set.

4.3. Comparative experiment on CrowdHuman

The CrowdHuman [17] dataset contains 15,000, 4,370 and 5,000 images for training, validation
and testing, respectively. For a fair comparison, we conducted all experiments on the validation set
using full-body annotations in the same environment. We conducted comparative experiments with
mainstream detectors, including box-based detectors [4–7,16,19,29] and query-based detectors [9,11,
12, 22, 23]. Table 1 shows the experimental results.

We find that the end-to-end query-based methods generally perform better than the box-based
methods based on greedy algorithm post-processing in crowded scenes. Surprisingly, PEDR [22],
designed for crowded scenes and pedestrian detection based on deformable DETR [9], had very
limited performance improvement on the CrowdHuman dataset. When using a sparse number of
queries, the end-to-end CNN-based approach sparse-RCNN [12] was highly competitive and still
performed well with only 500 queries. Using our proposed deformable DETR, the model achieved a
92.6% AP, 40.0% MR−2 and 84.4% JI with 1000 queries. Compared with the baseline deformable
DETR [9], we improved by 1.3% for the AP, 3.8% for the MR−2 and 1.1% for the JI. Compared with
the past best results of Iter-E2EDet [23], we improved by 0.5% for the AP, 1.5% for the MR−2 and
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0.4% for the JI. Our improved model demonstrated significant improvement in all three metrics.

4.4. Ablation study of different module

To verify the effectiveness of our proposed asymmetrical relation module AR and DMCA in the
previous Section 3, we performed ablation experiments based on the deformable DETR with a
backbone of R50 and 1000 queries. Table 2 shows the ablation experiments of different modules.
Comparing with the baseline model [9], our asymmetric relation module AR had the following
improvements: 1.2% AP, 2.4% MR−2 and 0.9% JI, and our decoupled attention mechanism DMCA
can mainly improve by another 0.4% MR−2. Figure 9 shows our method’s intermediate results from
different decoder stages and the original deformable DETR. In our method, the last asymmetrical
relation decoder with the AR module can significantly increase AP and decrease MR−2.

Table 2. Ablation experiments on CrowdHuman validation set.

AR DMCA AP ↑ MR−2↓ JI ↑
91.3 43.8 83.3

✓ 91.7 42.9 83.4
✓ 92.5 40.4 84.2
✓ ✓ 92.6 40.0 84.4

*Note: The baseline model (the first line) is deformable DETR [9] with ResNet-50 [27].
AR—asymmetrical relation module. DMCA—decoupled mult-dead cross-attention.

Figure 9. Detection result comparison for different stage decoders between our method and
the original deformable DETR.

4.5. Analysis of asymmetric relation module

To analyze the effect of the asymmetric relation mask determined by Eqs (3.3) and (3.4) in the
asymmetric relation module, and also to verify the effectiveness of the asymmetric relation module,
we conducted comparative experiments. When the decoupled attention Nc was fixed at 4; we used a
relationship module in the last layer to change the values of Chigh and Clow under the same conditions
for comparative experiments; the results are presented in Table 3. When Chigh is fixed at 0.7, Clow varies
from 0.05 to 0.4. When Clow is 0.1, our method has the best overall performance. When Clow is fixed
at 0.1, Chigh varies from 0.7 to 1. When Chigh is 1.0, our method has the best overall performance.
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The experimental results show that a larger range of asymmetric relation can improve the detector
performance.

Table 3. Experimets with different values of Clow and Chigh in the asymmetric relation
module.

Clow Chigh AP ↑ MR−2↓ JI ↑
0.05 0.70 92.5 41.6 84.2
0.10 0.70 92.4 40.9 84.7
0.20 0.70 92.3 41.4 84.4
0.30 0.70 92.3 41.2 84.1
0.40 0.70 92.4 41.6 84.4
0.10 0.80 92.5 41.1 84.2
0.10 0.90 92.5 39.9 84.1
0.10 1.00 92.6 40.0 84.4

4.6. Analysis of decoupled cross attention head

To analyze the impact of different proportions of points decoupled by DMCA, we conducted
experiments by varying different values of Nc when Clow is set to 0.1 and Chigh is set to 1.0. Our model
can decouple different proportions Nc/N of attention points for confidence prediction. The
experimental results are shown in Table 4. Our model works best when Nc/N is 0.5, meaning that half
of the attention points are taken to predict confidence.

Table 4. Performance of the DMCA with different hyperparameters Nc.

Nc Nc/N AP ↑ MR−2↓ JI ↑
2 0.25 92.6 40.4 84.4
3 0.375 92.4 40.8 84.3
4 0.5 92.6 40.0 84.4
5 0.625 92.5 40.1 84.3
6 0.75 92.5 40.7 84.2

4.7. Ablation study of different attributes k in the asymmetric relation module

To verify the validity of different encoding methods corresponding to different attributes k in
Figure 6, we experimented with two different encodings of relations k in Iter-E2EDet [23] and our
method, respectively. In Table 5, Box is the relative relation of the predicted bounding boxes, and Aps
is the relative relation between attention point sets. The asymmetric networks of both relations have a
significant improvement over the baseline, proving the effective competitiveness of the coding method
for the relative relation of attention point sets.

4.8. Analysis of different number of queries and AR layers

In this section, we analyze the effects of different numbers of asymmetric blocks with asymmetric
relations and different numbers of queries. Table 6 shows the experimental results. We can find that
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Table 5. Ablation experiments of different coding relations k.

Method Box Aps AP ↑ MR−2↓ JI ↑
deformable DETR [9] 91.3 43.8 83.3

Iter-E2EDet [23]
✓ 92.1 41.5 84.0

✓ 92.1 41.6 84.3

Our Method
✓ 92.6 40.0 84.4

✓ 92.5 40.2 84.2

model performance does not improve significantly as the number of asymmetrical decoders with
asymmetric relation increases. However, while we use the asymmetric relation module only in the last
layer, it is the best configuration. Also, we can find a significant improvement in AP after increasing
the number of queries, but with a reduction in MR−2, probably because more queries are needed to
match the GTs in crowded scenes.

Table 6. Performance comparison for different numbers of queries and asymmetrical
decoders.

Number of AR layers #Queries AP ↑ MR−2↓ JI ↑
1 1000 92.6 40.0 84.4
2 1000 92.5 39.7 84.3
3 1000 92.3 40.5 84.1
1 2000 92.9 40.7 84.3
2 2000 92.9 40.8 84.5

4.9. Analysis of false positves in different scenes

To analyze the enhancement of our method in detail, we counted the false positives (FPs) and true
positives (TPs) of our method and the baseline deformable DETR at different confidence scores. In
Figure 10, we show the statistical results of FPs and TPs of the deformable DETR at different
confidence scores, and the relative improvement of our method when the matching rule is at the IOU
threshold 0.5 and IOU threshold 0.7, respectively. Our method can reduce many FPs at a low
confidence range and increase more TPs at a high confidence range.

To verify the effectiveness and robustness of our method for different crowded scenes, we counted
the FPs and TPs under different crowded scenes and their relative variations compared to the baseline.
We define the crowdedness of each GT as the maximum value of the the IOU between that GT and its
surrounding GTs. We divide the GTs by different crowdedness and count their FP and TP separately.
Figure 11 shows the statistics of TPs and FPs for different crowded scenes of the baseline deformable
DETR and the relative improvement of our method when the matching rules of FP and TP are IOU
> 0.5 and confidence score > 0.7. The results show that our method can significantly reduce FPs
and increase TPs for different crowded scenes, verifying our proposed method’s robustness against the
crowdedness.

Figure 12 compares the detection results between our method and the baseline deformable DETR.
Our method still has high recall and significantly fewer duplications and missed predictions when GTs

Mathematical Biosciences and Engineering Volume 20, Issue 8, 14158–14179.



14175

(a) (b)

Figure 10. Comparison of our method and deformable DETR for FP and TP statistical results
at different confidence scores when the IOU matching threshold is set to 0.5 in Figure 10a and
0.7 in Figure 10b. The bottom histogram for each figure describes the prediction distribution
of the baseline deformable DETR [9] for different confidence scores, while the top one
reflects the relative improvements achieved by our approach as compared with the baseline.

Figure 11. The bottom histogram describes the prediction distribution of the deformable
DETR [9] for different crowded scenes, while the top one reflects the relative improvements
achieved by our method as compared with the deformable DETR.
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Figure 12. Result visualization for the baseline deformable DETR (above) and our method
(below). Only predictions with a confidence score higher than 0.3 are plotted in the figure.

are heavily occluded or are just small visible areas in crowded scenes.

4.10. Performance of our method with large model in crowded scenes

To explore the detection upper bound of our method under the condition of crowded scenes, we
replaced the ResNet50 with a large backbone, i.e., Swin-Large [31]. Experiments were conducted with
the same training strategy as described in Section 4.2; our method obtained 94.3% AP, 36.3% MR−2

and 87.4% JI with 1000 queries, which constitutes a state-of-the-art result on CrowdHuman validating
datasets.

5. Conclusions

In this paper, we propose asymmetric relational network modules and decoupled cross-attention
heads to improve the performance of query-based models on crowded scene data. Using our approach,
the deformable DETR improves the de-duplication ability and reduces the miss rate of prediction, with
stable performance gains for different crowded scenes.

Since our approach has been implemented on a DETR-like model, which requires a large amount
of computing resources, our next step is to study how to reduce the model parameters. Moreover, our
asymmetric relation module is only implemented in the last several stages of the fine-tuning process;
how to implement asymmetric relations in the whole fine-tuning stage still needs to be explored.
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