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Abstract: Drugs, which treat various diseases, are essential for human health. However, developing 
new drugs is quite laborious, time-consuming, and expensive. Although investments into drug 
development have greatly increased over the years, the number of drug approvals each year remain 
quite low. Drug repositioning is deemed an effective means to accelerate the procedures of drug 
development because it can discover novel effects of existing drugs. Numerous computational methods 
have been proposed in drug repositioning, some of which were designed as binary classifiers that can 
predict drug-disease associations (DDAs). The negative sample selection was a common defect of this 
method. In this study, a novel reliable negative sample selection scheme, named RNSS, is presented, 
which can screen out reliable pairs of drugs and diseases with low probabilities of being actual DDAs. 
This scheme considered information from k-neighbors of one drug in a drug network, including their 
associations to diseases and the drug. Then, a scoring system was set up to evaluate pairs of drugs and 
diseases. To test the utility of the RNSS, three classic classification algorithms (random forest, bayes 
network and nearest neighbor algorithm) were employed to build classifiers using negative samples 
selected by the RNSS. The cross-validation results suggested that such classifiers provided a nearly 
perfect performance and were significantly superior to those using some traditional and previous 
negative sample selection schemes. 

Keywords: drug-disease association; drug repositioning; negative sample selection; network embedding; 
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1. Introduction 

Diseases are a core issue of human health, has and have existed since the emergence of human 
beings. A large number of people die from various diseases every year. The problem of how to treat 
different diseases is always a hot topic in medical science. Numerous efforts have been made over the 
years, especially in the past 100 years. Plenty of schemes have been designed to treat diseases. 
Among them, drug is considered to be one of the effective ways. However, it is not easy to develop 
a new drug, which always requires some rigorous and complex steps; drug development is a long 
procedure and is always very expensive. According to relevant reports, the average time for designing 
a new drug is about 10−15 years [1] and can cost up to 802 million dollars [2]. Although the investment 
on drug development has sharply increased in these years, the number of drug approvals each year 
remains quite low. Designing new techniques for accelerating the procedures of drug development 
remains quite urgent.  

Drug repositioning is deemed as an alternative pipeline, which can promote drug development 
procedures. For most existing drugs, our cognizance is not very complete, as some latent effects have 
not been discovered. The purpose of drug repositioning is to discover the latent effects of existing 
drugs, thereby discovering the new diseases that these drugs can treat. Because numerous clinical tests 
have been conducted on existing drugs, the launch of these drugs for treating new diseases can be 
evidently accelerated. However, it is still laborious to find out and confirm the new effects of existing 
drugs. The use of computational methods is an effective alternative procedure, which has become quite 
popular [3−7].  

In recent years, lots of computational methods have been designed for drug repositioning. Many 
of these methods focused on the prediction of drug-disease associations (DDAs). The validated DDAs 
were deeply analyzed and some special patterns were discovered, which can be used to identify latent 
DDAs. Previous studies have modeled such prediction problems as a recommender system [8−12]. 
These methods always set up one or more kernels of drugs, diseases, or drugs and diseases. Some 
complex fusion procedures were applied to these kernels, thereby scoring each pair of drugs and 
diseases. Network-based methods are another group for predicting DDAs. They always construct 
multiple networks, which contain not only drugs and diseases but also other related objects, such as 
long non-coding RNAs (lncRNAs), micro RNAs (miRNAs), target proteins, etc. Among these methods, 
some can be directly applied to networks to make predictions [13−19], whereas others can adopt 
networks to access features of drugs and diseases, and the downstream classification algorithms 
complete the prediction task [20−25]. Recently, deep learning algorithms have been used to construct 
methods for predicting DDAs, such as convolutional neural networks [26] and graph convolutional 
networks [27,28]. Several computational methods designed binary classifiers to predict DDAs. The 
validated DDAs were retrieved from public databases, which were termed as positive samples. 
However, the selection of negative samples was a problem. Some studies adopted random selection to 
pick up the same number of negative samples from unlabeled pairs of drugs and diseases [21,26,27]. 
As latent DDAs may be included, such selection may lead to an unstable decision boundary of the 
following constructed classifiers. This study gave a contribution in this regard. 

In this study, a novel reliable negative selection scheme, named RNSS, was proposed, which can 
help us select reliable negative samples (i.e., pairs of drugs and diseases with low probabilities of being 
actual DDAs). Such a scheme employed the k-neighbors of a drug in a drug network and evaluated the 
relationships between one drug and one disease based on the relationships between k-neighbors and 
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the disease. Three classic classification algorithms were adopted to construct classifiers using negative 
samples generated by an RNSS: random forest (RF) [29], bayes network (BN), and the nearest 
neighbor algorithm (NNA) [30]. The results indicated that the classifiers with the RNSS provided a 
nearly perfect performance and were much better than those with traditional negative selection 
schemes, indicating that the RNSS can genuinely screen out reliable negative samples.  

2. Materials and methods 

2.1. Data source 

The validated DDAs were directly accessed from a previous study [21]. These interactions were 
extracted from chemical-disease interactions collected in the Comparative Toxicogenomics Database 
(CTD) (http://ctdbase.org) [31−33]. In detail, the file “CTD_chemicals_diseases.csv.gz” in CTD was 
downloaded, from which the chemical-disease associations with “DirectEvidence” were extracted. 
Then, the chemical-disease associations without DrugBank IDs were discarded. Approximately 63,472 
associations remained, which were deemed as positive samples in this study. Approximately 2,794 
drugs (represented by DrugBank IDs) and 3,019 diseases (represented by MESH or OMIM identifiers) 
were involved in the positive samples. 

Generally, negative samples were necessary to build the binary classification model. However, 
the selection of negative samples was a challenging problem as the unlabeled pairs of drugs and 
diseases may be latent DDAs. Some previous studies adopted random selection to construct negative 
samples. Here, we proposed a scheme to select reliable negative samples. Based on such a scheme, 
negative samples that were one, two, and three times as many positive samples were selected and 
combined with positive samples to constitute datasets.  

2.2. Reliable negative sample selection 

In this study, we tackled the prediction of DDAs by modeling a binary classification problem. 
From the CTD, the validated positive samples were obtained as mentioned in Section 2.1. However, 
there are no public databases that collect the negative samples for DDAs due to a lack of their 
application values [26]. Several previous studies adopted a random selection scheme to generate 
negative samples, which may induce an unstable decision boundary of the classifier [34]. Thus, it is 
necessary to design an efficient scheme to select reliable negative samples. These samples should have 
a low likelihood of being actual DDAs. This section introduced a novel scheme to select reliable 
negative samples, named RNSS. Its procedures are described below. 

First, a drug network was constructed, which defined 2,794 drugs as nodes. The associations 
between drugs should be determined, thereby defining the edges within the network. It is known that 
the Simplified Molecular Input Line Entry System (SMILES) [35] format is the most widely used 
representations of drugs, from which the fingerprints of drugs can be extracted. Here, the RDKit 
(http://www.rdkit.org/) was adopted to extract the extended-connectivity fingerprint (ECFP) of each 
investigated drug. For drug p, its fingerprints constitute a set, denoted by F(p). The Tanimoto 
coefficient was applied on the fingerprint sets of two drugs, p1 and p2, to measure their associations, 
formulated by 
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 𝑄 (𝑝 , 𝑝 ) = | ( )∩ ( )|| ( )∪ ( )|.        (1) 

Two nodes in the network were connected by an edge if and only if the association between their 
corresponding drugs was larger than zero. In addition, each edge e was assigned a weight, denoted by 
w(e), which was the association between two drugs. Such a network is denoted by Wd.  

It is known that drugs in similar structures are more likely to treat similar diseases. In view of 
this, the relationships between a drug, denoted by pi, and a disease, denoted by qj, can be measured by 
the relationships between similar drugs of pi and qj. In Wd, these drugs are the direct neighbors of pi, 
(i.e., the 1-neighbors of pi). Furthermore, the drugs with a distance two to pi (2-neighbors of pi) may 
also provide contributions, also for the k-neighbors of pi (k > 2). In view of this, the k-neighbors of pi 
was picked up from Wd, denoted by Nk(pi), which consisted of drugs with distance k to pi. For each 
drug p in N1(pi), the association between it and pi (i.e., the weight on the edge connecting them) can be 
directly used to measure the relationship between pi and qj. However, it is problematic to utilize drugs 
in Nk(pi) (k > 1), as these drugs have no direct associations with pi. To settle such a problem, the weight 
of a path must be defined. For a path P with length l, containing edges 𝑒 , 𝑒 , ⋯ , 𝑒 , its weight, denoted 
by w(P), was defined as 𝑤(𝑃) = (∏ 𝑤(𝑒 )) ( ),       (2) 

where 𝑤(𝑒 ) represents the weight of edge 𝑒 , 𝐹 (𝑃) is a decay function, which can increase 
the influence of path length as the long path indicate weak association between two endpoints, 
computed by  𝐹 (𝑃) = 𝜃 ∙ 𝑙,         (3) 

where 𝜃 is a parameter, which was set to 2.26 as suggested in [36−40]. For each drug p in Nk(pi) 
(k > 1), its linkage to pi can be measured by the weights of the paths connecting them. If multiple paths 
connecting them, the maximum path weight was selected. Based on the above definitions, the linkage 
between pi and drug p in Nk(pi) can be synthesized as follows: 𝐿(𝑝 , 𝑝) =  𝑄 (𝑝 , 𝑝) 𝑝 ∈ 𝑁 (𝑝 )max {𝑤(𝑃 )|𝑖 = 1,2, ⋯ , 𝑚} 𝑝 ∈ 𝑁 (𝑝 ) (𝑘 > 1),   (4) 

where 𝑃 , 𝑃 , ⋯ , 𝑃  represent all paths connecting pi and p with length k. In Nk(pi), some drugs 
can constitute DDAs with qj, whereas others cannot. In view of this, we defined an indictor function 
as follows: ∆ 𝑝, 𝑞 = 1 if 𝑝 and 𝑞  can constitute a DDA0 otherwise  .     (5) 

Then, the relationship between pi and qj can be measured by the following level score: 𝑆𝑐𝑜𝑟𝑒(𝑝 , 𝑞 ) = ∑ ∑ 𝐿(𝑝 , 𝑝) ∙ ∆(𝑝, 𝑞 )∈ ( ) .      (6) 

Because it is time-consuming to find all paths connecting two nodes with a long distance, a 
threshold t was employed in Eq (6). Such a setting was also reasonable because paths with long 
distances play few or even no contributions to measure the linkage between pi and qj. An example is 
shown in Figure 1, where the threshold t is set to 2. 



14140 

Mathematical Biosciences and Engineering  Volume 20, Issue 8, 14136−14157. 

It is clear that the high outcome of Eq (6) indicated the strong relationships between the drug and 
disease. On the contrary, it was almost impossible for the pair of drugs and diseases with a low score 
to be an actual DDA. These pairs can be high-quality negative samples and may be helpful to construct 
classifiers with a high performance. In theory, the unlabeled pairs of drugs and diseases with low level 
scores should be selected as negative samples. Such an operation can be conducted by setting a low 
threshold s to the level score (i.e., the unlabeled pairs of drugs and diseases with level scores no more 
than s were selected). These selected negative samples comprised a negative sample pool, denoted 
by 𝑁𝑆(𝑠). 

 

Figure 1. An example for showing the principle to calculate the level score of one drug 
and one disease using the direct neighbors and 2-neighbors of the drug. 

2.3. Network construction and feature extraction 

In traditional machine learning, it is very important to encode each sample with its essential 
properties. In this study, we directly adopted the drug and disease features reported in our previous 
study [21], which were derived from multiple networks. Networks are recently a popular research form 
as they can overview each object with all other objects as background. As the procedures of network 
construction and feature extraction have been described in detail in a previous study [21], we only gave 
a brief introduction on such procedures.  

2.3.1. Drug network construction 

Twelve drug networks were constructed, where eight contained only drugs, and the other four 
included other objects. For the former eight networks, they were constructed in terms of drug 
associations collected from two public databases: KEGG (https://www.genome.jp/kegg/) [41,42] and 
STITCH (http://stitch.embl.de, version 4.0) [43], and that defined by the Anatomical Therapeutic 
Chemical (ATC) codes of two drugs. As for the later four networks, they indicated the relationships 
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between drug and one of the following objects: proteins, pathways, side effects, and gene ontology 
(GO) terms. The target proteins and side effects of drugs were retrieved from DrugBank 
(https://go.drugbank.com/) [44] and SIDER (http://sideeffects.embl.de/) [45], respectively. In CTD, 
the related GO terms and pathways for chemicals were also collected, which were picked up for 
building drug networks.  

2.3.2. Disease network construction 

Three networks were built for diseases, involving basic information of diseases such as pathway, 
gene, and phenotype information. This information was also sourced from the CTD. According to the 
related pathways of two diseases, their association was measured by the Tanimoto coefficient of two 
pathway sets. The disease associations based on gene and phenotype information can be assessed in 
the same way. Then, three networks were built with these disease associations.  

2.3.3. Feature extraction 

The drug and disease networks mentioned above contained abundant information of drugs and 
diseases, respectively. Informative drug and disease features can be extracted from them. As 
multiple networks were constructed for drug and disease, a powerful network embedding algorithm, 
Mashup [46], was adopted. Its greatest merit is that it can process more than one network. Two stages 
are contained in this algorithm. In the first stage, the raw feature vector for each node in each network 
is extracted in terms of a random walk with restart [47,48]. The feature vectors for the same node that 
are derived from different networks are fused in the second stage. At the same time, the dimension is 
reduced. Mashup was applied to the twelve drug networks to generate drug features and the disease 
features were produced from three disease networks. Various dimensions, changing from 50 to 1000, 
were produced for drugs and diseases. The optimal dimension for drugs and diseases can be determined 
by a ten-fold cross-validation [49].  

2.4. Classification algorithms 

In this study, the RNSS was proposed to select reliable negative samples. Three classic 
classification algorithms were selected to construct models based on positively validated positive 
samples and selected reliable negative samples, thereby elaborating the utility of an RNSS. These 
classification algorithms included RF [29], BN and NNA [30], which were also adopted in the previous 
study [21]. These algorithms were designed using quite different ideas and principles. Their common 
results can provide a universal significance. For this investigation, if the classifiers with an RNSS were 
generally better than those without an RNSS or with other negative sample selection schemes for any 
of these three algorithms, it can prove that an RNSS is an efficient scheme to select high-quality 
negative samples. To quickly implement the above algorithms, corresponding tools (RandomForest, 
BayesNet and IBk) in Weka [50] were employed. Their default parameters were adopted because the 
purpose of this study was to test whether the employment of an RNSS can improve the performance 
of models rather than to build models with excellent performance. 
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2.5. Performance evaluation 

In this study, a ten-fold cross-validation was adopted to evaluate the performance of all 
constructed classifiers [49]. Such a method divides samples into ten parts. Each part is singled out as 
the test set and the rest of the parts constitute the training set. The classifier based on the training set 
is applied to the test set. In an RNSS, the calculation of the level score is related to the positive samples 
in the training set. Thus, we first divided the positive samples into ten parts. When one part of the 
positive samples was singled out, which was put into the test set, we used the rest of the positive 
samples to compute the level scores of unlabeled samples and then selected negative samples. In this 
way, the information of the test samples was completely excluded when training the classifiers. It was 
a rigorous cross-validation.  

For the binary classification, plenty of measurements have been designed to evaluate the performance 
of various models. The direct way to display the predicted results of one model is a confusion matrix, 
which contains four entries: true positive (TP), false negative (FN), false positive (FP), and true 
negative (TN). Several measurements can be calculated according to these entries. In this study, we 
selected sensitivity (SN), specificity (SP), accuracy (ACC), precision, F1-measure [51−57], and the 
Matthews correlation coefficient (MCC) [58], which can be computed by 𝑆𝑁 =            (7) 

𝑆𝑃 =            (8) 

 ACC =          (9) 

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =            (10) 

  F1 − measure = × ×         (11) 

MCC = × ×( )×( )×( )×( )      (12) 

Besides, the receiver operating characteristic (ROC) and precision-recall (PR) curves were used 
to comprehensively evaluate the models’ performance. The ROC curve sets the SN as the Y-axis and 
the false positive rate (i.e., 1-SP) as the X-axis, which are obtained by setting different thresholds. The 
PR curve is defined in a similar way, which defines recall (i.e., SN) as the X-axis and precision as the 
Y-axis. The area under the ROC and PR curves are essential measurements to assess the models’ 
performance, which were denoted by AUROC and AUPR, respectively. 

3. Results and discussion 

In this study, a computation method was proposed to identify DDAs. To enhance the performance 
of the method, a novel negative sample selection scheme, RNSS, was designed. The classifiers using 
samples selected by an RNSS were built and evaluated. The entire procedure is illustrated in Figure 2.  
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Figure 2. Entire procedures of this study. Validated drug-disease associations (DDAs) are 
retrieved from CTD and constitute the positive sample dataset. The reliable negative 
sample selection scheme is designed to screen out negative samples with high quality and 
comprise negative sample dataset. Each sample is represented by drug and disease features 
derived from multiple drug and disease networks via Mashup. Three classification 
algorithms are adopted to build the classifiers for evaluating the effectiveness of the 
negative sample selection scheme. 

3.1. Performance of the classifiers with RNSS on balanced datasets 

When assessing the level score of one drug and one disease, the threshold t (Eq (6)) determined 
which k-neighbors of the drug were considered. It is clear that neighbors with a long distance to the 
drug give few contributions. Here, we set such threshold t as two, that is, the direct neighbors and 2-
neighbors of the drug were included to assess its associations to diseases. After obtaining the level 
scores of all unlabeled pairs using Eq (6) with t = 2, we set two thresholds (0.05 and 0.1) to construct 
two negative sample pools (i.e., NS(0.05) and NS(0.1)). From each pool, the same number of negative 
samples to the positive samples were randomly selected and combined with positive samples to 
constitute a balanced dataset. Each sample was represented by drug and disease features derived from 
multiple drug and disease networks. The dimensions for drug and disease features were set to various 
values between 50 and 1,000. All possible dimension combinations were attempted. Three 
classification algorithms (RF, BN, and NNA) were applied to construct classifiers on balanced 
datasets. These classifiers were assessed by a ten-fold cross-validation. The best performance 
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(measured by MCC) of the RF, BN, and NNA classifiers using negative samples selected from two 
pools is listed in Table 1.  

Table 1. Performance of three classifiers with RNSS built on balanced datasets. 

Classification 
algorithm 

Negative 
sample 
pool 

Dimension 
SN SP ACC Precision 

F1-
measure 

MCC Drug 
feature 

Disease 
feature 

Random 
forest 

NS(0.05) 1000 1000 1.000 0.979 0.989 0.979 0.989 0.979 
NS(0.1) 850 900 1.000 0.953 0.975 0.950 0.974 0.951 

Bayes 
network 

NS(0.05) 550 50 1.000 0.979 0.989 0.979 0.989 0.979 
NS(0.1) 550 50 1.000 0.952 0.975 0.950 0.974 0.950 

Nearest 
neighbor 
algorithm 

NS(0.05) 1000 50 0.978 0.974 0.976 0.974 0.976 0.951 

NS(0.1) 1000 50 0.956 0.954 0.955 0.954 0.955 0.910 

For the balanced dataset with negative samples selected from NS(0.05), the RF classifier yielded 
an MCC of 0.979, which was very high. The other five measurements (SN, SP, ACC, precision, and 
F1-measure) were 1.000, 0.979, 0.989, 0.979, and 0.989, respectively. Such a performance suggested 
that the RF classifier can give a nearly perfect prediction. As for the BN and NNA classifiers, they also 
produced a high performance. The MCC values of these two classifiers were 0.979 and 0.951, 
respectively. Considering that BN and NNA were not very powerful classification algorithms, such a 
performance was extreme high for them. The ROC and PR curves of above three classifiers are 
illustrated in Figure 3. The AUROC values for three classifiers were 0.9962, 0.9893, and 0.9758, 
respectively, and AUPR values were 0.9969, 0.9893, and 0.9653, respectively. They were all very high, 
further suggesting the high performance of three classifiers. The above results implied that the negative 
samples selected from NS(0.05) were quite different from the positive samples, inducing easy 
classifications. This fact also proves the effectiveness of the RNSS.  

For another pool NS(0.1), negative samples were also randomly selected and comprised the 
balanced dataset with positive samples. The MCC of the RF classifier on such a dataset was 0.951, 
which was lower than that yielded by the RF classifier using samples selected from NS(0.05). The SP, 
ACC, precision, and F1-measure all slightly decreased compared with those of the RF classifier using 
the samples selected from NS(0.05) (Table 1). The ROC and PR curves as alongside the AUROC and 
AUPR (Figure 3) of the RF classifier on such a balanced dataset were inferior to those yielded by the 
RF classifier using samples selected from NS(0.05). A similar phenomenon occurred for the BN and 
NNA classifiers. It was suggested that the level score (Eq (6)) can really indicate the quality of negative 
samples, that is, low level scores indicated the high quality of negative samples. It was a proper strategy 
to select negative samples with low level scores.  
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Figure 3. ROC and PR curves of three classifiers on balanced datasets. (A) ROC curves; 
(B) PR curves. The parameters s represents the threshold for constructing negative 
sample pool.  

3.2. Performance of the classifiers with RNSS on imbalanced datasets 

In Section 3.1, all classifiers were set up on balanced datasets. To give a further test, some 
classifiers based on imbalanced datasets were constructed and evaluated. We randomly selected 
negative samples from each negative sample pool that were twice or thrice as many as positive samples 
to comprise imbalanced datasets. On each imbalanced dataset, the classifiers with different 
combinations of drug and disease feature dimensions were set up and evaluated by a ten-fold cross-
validation. The best performance for three classification algorithms is listed in Tables 2 and 3.  

Of the imbalanced datasets, which contained negative samples twice as many as positive 
samples, the RF classifier generated MCC values of 0.984 and 0.962 for two negative sample pools 
(Table 2). The values for the BN classifier were 0.984 and 0.963 (Table 2). For the NNA classifier, 
it yielded MCC values of 0.962 and 0.925 (Table 2). It was amazing that these three classifiers on 
such imbalanced datasets provided even better performance than those on the balanced datasets, as 
described in Section 3.1. Generally, the performance of the classifiers on imbalanced dataset may 
decrease, especially on the minor class. However, the overall performance of the above classifiers 
actually increased. As for their performance on the minor class (positive samples), measured by SN, 
the decrease range was quite limited. The ROC and PR curves of the above classifiers are illustrated 
in Figure 4(A),(B). Based on AUROC and AUPR, the performance of the classifiers on imbalanced 
datasets did not clearly decrease, quite coincident with results assessed by other measurements. 
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Table 2. Performance of three classifiers with RNSS built on imbalanced datasets, where 
the negative samples are twice as many as positive samples. 

Classification 
algorithm 

Negative 
sample 
pool 

Dimension 
SN SP ACC Precision 

F1-
measure 

MCC Drug 
feature 

Disease 
feature 

Random 
forest 

NS(0.05) 1000 1000 1.000 0.989 0.993 0.979 0.989 0.984 
NS(0.1) 850 900 0.999 0.975 0.983 0.950 0.974 0.962 

Bayes 
network 

NS(0.05) 550 50 1.000 0.989 0.993 0.979 0.989 0.984 
NS(0.1) 550 50 1.000 0.975 0.983 0.950 0.974 0.963 

Nearest 
neighbor 
algorithm 

NS(0.05) 1000 50 0.978 0.985 0.983 0.971 0.974 0.962 

NS(0.1) 1000 50 0.953 0.973 0.967 0.946 0.950 0.925 

Table 3. Performance of three classifiers with RNSS built on imbalanced datasets, where 
the negative samples are thrice as many as positive samples. 

Classification 
algorithm 

Negative 
sample 
pool 

Dimension 
SN SP ACC Precision 

F1-
measure 

MCC Drug 
feature 

Disease 
feature 

Random 
forest 

NS(0.05) 1000 1000 0.999 0.992 0.994 0.979 0.989 0.984 
NS(0.1) 850 900 0.999 0.984 0.987 0.950 0.974 0.966 

Bayes 
network 

NS(0.05) 550 50 1.000 0.992 0.994 0.979 0.989 0.985 
NS(0.1) 550 50 1.000 0.984 0.987 0.950 0.974 0.966 

Nearest 
neighbor 
algorithm 

NS(0.05) 1000 50 0.976 0.988 0.985 0.970 0.973 0.962 

NS(0.1) 1000 50 0.951 0.982 0.974 0.945 0.948 0.931 

For other imbalanced datasets containing negative samples thrice as many as positive samples, 
the performance of the three classifiers on two pools is shown in Table 3. It can be observed that such 
a performance was quite similar to that in Tables 1 and 2. The same conclusions can be obtained from 
the ROC and PR curves (Figure 4(C),(D)) of these classifiers. These results indicate that the classifiers 
with an RNSS were not very sensitive to the imbalanced problem. As the negative sample pools 
constructed by the RNSS included negative samples with high quality, the increment on negative 
samples did not amplify the difficulties for learning an efficient classifier. Furthermore, the 
classifiers using negative samples selected from NS(0.05) were superior to those using negative 
samples selected from NS(0.1), suggesting that the level score was a good indicator to select negative 
samples with higher quality. 

3.3. The effect of the distance limitation 

In the RNSS, the distance limitation t was an important parameter, which directly influenced the 
calculation of the level score (see Eq (6)). It was interesting to investigate the effect of such a parameter. 
The above classifiers were all based on negative samples selected by the RNSS with t = 2. Here, we 
investigated the classifiers using negative samples selected by an RNSS with t = 1. In fact, an RNSS 
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with t = 1 was the same as a previous negative sample selection method reported in [59], named finding 
reliable negative samples (FIRE).  

 

Figure 4. ROC and PR curves of three classifiers on imbalanced datasets. (A) ROC curves 
on imbalanced datasets, where negative samples are twice as many as positive samples; 
(B) PR curves on imbalanced datasets, where negative samples are twice as many as 
positive samples; (C) ROC curves on imbalanced datasets, where negative samples are 
thrice as many as positive samples; (D) PR curves on imbalanced datasets, where negative 
samples are thrice as many as positive samples. The parameters s represents the threshold 
for constructing negative sample pool.  

When t was set to 1, numerous unlabeled samples were assigned a level score of 0. Thus, we 
added the threshold 0 for parameter s (i.e., three negative sample pools were considered), including 
NS(0), NS(0.05) and NS(0.1). From each pool, we first randomly selected as many negative samples 
as positive samples to constitute balanced datasets. Three classifiers with different parameter 
combinations mentioned above were constructed on each balanced dataset and evaluated by a ten-fold 
cross-validation. The best performance for each classification algorithm was picked up and detailed 
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measurements listed in Section 2.6 are illustrated in Figure 5. For easy comparisons, the performance 
of classifiers with an RNSS (t = 2) is also listed in this figure. Given the same classification algorithm 
(RF, BN or NNA), classifiers with an RNSS (t = 2) were generally superior to those with an RNSS 
(t = 1) in terms of all measurements. The improvement for BN and NNA classifiers was very great, 
whereas that for the RF classifier was slightly enhanced. As the RF classifiers with an RNSS (t = 1) 
provided a relatively higher performance than BN and NNA classifiers with an RNSS (t = 1), it was 
difficult to achieve any improvements.  

 

Figure 5. Comparison of three classifiers on balanced datasets containing negative 
samples selected by RNSS with different parameters. (A) Comparison of RF classifiers; 
(B) Comparison of BN classifiers; (C) Comparison of NNA classifiers. The parameter t 
represents the distance limitation for calculating level score and s indicates the threshold 
for constructing negative sample pool. 

In addition, the imbalanced datasets were constructed by selecting two and three times as many 
negative samples as positive samples from each of three pools. Classifiers built on these datasets were 
also evaluated by a ten-fold cross-validation. The best performance for each classification algorithm 
is shown in Appendix Figures A1 and A2, from which we can conclude the same result (i.e., the 
classifiers with an RNSS (t = 2) were obviously better than those with an RNSS (t = 1)).  

With the above arguments, despite the balanced or imbalanced datasets, classifiers with an RNSS 
(t = 2) yielded better performance, indicating that the employment of 2-neighbors of drugs can improve 
the selection of negative samples. As mentioned above, numerous unlabeled samples were assigned a 
level score of zero by an RNSS (t = 1). The drug in each of these samples did not have direct neighbors 
that were related to the disease in the same sample. However, such a drug may have some 2-neighbors 
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that were associated with the disease, which made the level score yielded by an RNSS (t = 2) larger 
than zero. The employment of 2-neighbors can help us further classify these unlabeled samples, 
thereby screening out negative samples with a higher quality.  

3.4. Comparison with classifiers using randomly selected negative samples 

In many studies, random selection of negative samples is a widely used scheme to construct 
binary classifiers [21,26,27,60,61]. Here, several classifiers were built using such scheme, which 
were compared with classifiers with an RNSS to elaborate the superiority of the RNSS. To give a 
full comparison, we constructed three datasets containing negative samples one, two, and three times 
as many as positive samples. Three classification algorithms (RF, BN and NNA) were adopted to 
build the classifiers. Feature dimensions of drug and disease were the same as classifiers with an 
RNSS (t = 2, s = 0.05), as listed in Tables 1−3. All classifiers were also assessed by a ten-fold cross-
validation. The performance is listed in Table 4.  

Table 4. Performance of three classifiers using randomly selected negative samples. 

Classification 
algorithm 

Ratio of 
positive and 
negative 
samples 

SN SP ACC Precision
F1-
measure 

MCC AUROC AUPR 

Random 
forest 

1:1 0.739  0.782 0.761 0.773  0.756  0.522  0.818 0.803 
1:2 0.570  0.884 0.779 0.711  0.632  0.483  0.818 0.690 
1:3 0.435  0.925 0.803 0.659  0.524  0.420  0.807 0.591 

Bayes 
network 

1:1 0.667  0.837 0.752 0.804  0.729  0.512  0.751 0.703 
1:2 0.673  0.836 0.782 0.672  0.672  0.509  0.751 0.558 
1:3 0.675  0.826 0.788 0.564  0.614  0.473  0.747 0.460 

Nearest 
neighbor 
algorithm 

1:1 0.695  0.685 0.690 0.688  0.691  0.380  0.671 0.616 
1:2 0.571  0.780 0.711 0.565  0.568  0.351  0.660 0.451 
1:3 0.497  0.826 0.744 0.487  0.492  0.321  0.638 0.346 

For balanced dataset (i.e., the ratio of positive and negative samples was 1:1), the MCC values 
of RF, BN, and NNA classifiers were only 0.522, 0.512, and 0.380, respectively. Compared with the 
MCC values of RF, BN, and NNA classifiers with an RNSS (t = 2, s = 0.05), which were 0.979, 0.979, 
and 0.951 (Table 1), respectively, such a performance was much lower. The same results can be 
obtained in terms of other measurements. Thus, the classifiers with an RNSS were much stronger than 
those using randomly selected negative samples. For the imbalanced datasets (the ratio of positive and 
negative samples = 1:2 or 1:3), we can also conclude that classifiers using randomly selected negative 
samples was much inferior to those with an RNSS (see Tables 2−4). Above results indicated that the 
RNSS was effective to help us select negative samples with high quality, thereby improving the classifiers.  

3.5. Comparison with classifiers using negative samples clustered by K-means 

Besides random selection of negative samples, some studies adopted another scheme to select 
negative samples [62,63]. For unlabeled samples, K-means were adopted to cluster them and negative 
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samples were equally and randomly selected from each cluster. As stated in [64], the clustering effect 
was best when the unlabeled samples were clustered into 23 clusters. We also adopted such a setting 
(i.e., unlabeled pairs of drugs and diseases were clustered into 23 clusters). Unlabeled pairs selected 
from each cluster were combined to constitute the negative sample set, whose size was the same as the 
positive sample set. Three classification algorithms (RF, BN, and NNA) were adopted to build the 
classifiers. Feature dimensions of drug and disease were the same as classifiers with an RNSS (t = 2, 
s = 0.05), as listed in Tables 1. The evaluation results yielded by the ten-fold cross-validation are listed 
in Table 5. Compared with evaluation results of classifiers with an RNSS (Table 1), these classifiers 
were very poor. These results further confirmed the utility of the RNSS.  

Table 5. Performance of three classifiers using negative samples clustered by K-means. 

Classification 
algorithm 

Ratio of 
positive and 
negative 
samples 

SN SP ACC Precision
F1-
measure 

MCC AUROC AUPR 

Random 
forest 

1:1 0.053 0.867 0.460 0.271 0.088 -0.142 0.600 0.510 

Bayes 
network 

1:1 0.662 0.809 0.736 0.776 0.714 0.477 0.734 0.684 

Nearest 
neighbor 
algorithm 

1:1 0.732 0.757 0.745 0.751 0.741 0.490 0.722 0.669 

3.6. Comparison with previous drug-disease association prediction methods 

To date, several DDA prediction methods have been proposed. Here, some of them were selected 
to compare with our method with the RNSS. Their performance is listed in Table 6. For easy 
comparisons, the performance of our method (RF classifier with s = 0.05 and t = 2) is also provided in 
this table. It can be observed that our method provided best performance for all eight measurements. 
This result indicated the superiority of our model and the RNSS. 

Table 6. Performance of different drug-disease association prediction methods$. 

Model SN SP ACC Precision F1-measure MCC AUROC AUPR 
Our model 1.000 0.979 0.989 0.979 0.989 0.979 0.996 0.997 
RepCOOL [24] 0.930 - - 0.530 0.670 - 0.670 - 
RLFDDA [25] 0.897 - 0.901 0.904 0.900 - 0.964 - 
Li et al.’ method [26] 0.862 0.868 0.865 0.867 - 0.730 0.936 0.935 
MGP-DDA [23] 0.842 - 0.867 0.886 0.863 - 0.930 0.944 
Yang and Chen’s method 
[21] 

0.872 0.843 0.858 0.847 0.860 0.716 0.928 0.919 

$: Measurements for all methods except our method were directly picked up from their corresponding literature; -: This 
measurement was not reported. 
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3.7. Similarities and differences to previous negative sample selection schemes 

The selection of negative samples is a challenging problem in association prediction. Some 
schemes have been designed in recent years [59,65,66]. The proposed scheme, RNSS, is more similar 
to the methods in [59,65]. Thus, this section focused on the similarities and differences to the method 
in [66]. This method was called self-paced negative sampling strategy (SNSS). 

SNSS employs a hardness function to indicate the likehood of one unlabeled sample to be an 
actual negative sample, similar to the level score in our scheme. This function relies on a multilayer 
perceptron (MLP) classifier, which is very different from the drug network in our scheme. It is defined 
as the differences of the probability score yielded by an MLP and the ground-truth label. It is hard to 
say which scoring system is better, as there does not exist any generally accepted dataset to validate 
whether the score is correct. On the other hand, the selection strategies of the two methods were quite 
different. In SNSS, it divides unlabeled samples into some categories according to the results of 
hardness function and selects negative samples from each category with different proportions. The 
selection scope was all unlabeled samples. Such a selection can fully train the classifier and increase 
the robustness. In our scheme, we select negative samples from a pool consisting of unlabeled samples 
with low level scores (i.e., the selection scope was a part of unlabeled samples). Such a selection can 
improve the performance of the classifier. The different intentions induce different selection strategies. 
These methods provide alternative ways to select negative samples when building the binary 
association prediction methods. It is also interesting to fuse the merits of these two methods for 
designing a new negative sample selection method. 

4. Conclusions 

In this study, we proposed a novel scheme to select high-quality negative drug-disease samples. 
To elaborate its utility, several classifiers were constructed with negative samples selected by such a 
scheme. The evaluation results suggested that these classifiers had an extremely strong ability to 
identify DDAs. Additionally, these classifiers were much better than those using some traditional 
and previous schemes, confirming the positive effects of the proposed scheme in selecting high-
quality negative samples. It is hopeful that such a scheme can be applied to other related problems for 
building classifiers with a high performance. 
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Appendix 

 

Figure A1. Comparison of three classifiers on imbalanced datasets containing negative 
samples selected by RNSS with different parameters, which are twice as many as positive 
samples. (A) Comparison of RF classifiers; (B) Comparison of BN classifiers; (C) 
Comparison of NNA classifiers. The parameter t represents the distance limitation for 
calculating level score and s indicates the threshold for constructing negative sample pool. 
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Figure A2. Comparison of three classifiers on imbalanced datasets containing negative 
samples selected by RNSS with different parameters, which are thrice as many as positive 
samples. (A) Comparison of RF classifiers; (B) Comparison of BN classifiers; (C) 
Comparison of NNA classifiers. The parameter t represents the distance limitation for 
calculating level score and s indicates the threshold for constructing negative sample pool. 
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