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Abstract: The present study is based on the derivation of a new extension of the Poisson distribution 

using the Ramos-Louzada distribution. Several statistical properties of the new distribution are 

derived including, factorial moments, moment-generating function, probability moments, skewness, 

kurtosis, and dispersion index. Some reliability properties are also derived. The model parameter is 

estimated using different classical estimation techniques. A comprehensive simulation study was 

used to identify the best estimation method. Bayesian estimation with a gamma prior is also utilized 

to estimate the parameter. Three examples were used to demonstrate the utility of the proposed 

model. These applications revealed that the PRL-based model outperforms certain existing 

competing one-parameter discrete models such as the discrete Rayleigh, Poisson, discrete inverted 

Topp-Leone, discrete Pareto and discrete Burr-Hatke distributions. 
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1. Introduction  

Data modeling has become extremely complicated in recent years as a result of the massive 

amount of data collected from many sectors, mainly in engineering, medicine, ecology, and 

renewable energy. The most popular option for analyzing count data sets is the Poisson distribution. 

The Poisson distribution has the drawback of being unable to represent overdispersed data sets. 

Overdispersion happens when the variation exceeds the mean. For count data sets, many researchers 
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have presented mixed-Poisson distributions such as Poisson inverse Gaussian by [1], Conway–

Maxwell–Poisson [2], Generalized Poisson Lindley [3], Poisson Weibull [4], Poisson Ishita [5], 

Poisson quasi-Lindley [6], Poisson Xgamma [7,8], Poisson XLindley [9], Poisson Moment 

Exponential [10], among authors. Even though there are several discrete models in the literature, 

there is still plenty of room to suggest a new discretized model that is acceptable under a variety of 

scenarios. 

Let X be a random variable having Ramos and Louzada distribution [11] with the probability 

density function (PDF) given by 

𝑓(𝑥; 𝜆) =
(𝜏2;2𝜏:𝑥)

𝜏2(𝜏;1)
𝑒;(

𝑥

𝜏
),              𝜏 ≥ 2, 𝑥 > 0.                                                     (1) 

where 𝜏 is the scale parameter. 

In this study, a new one-parameter discrete distribution for modeling count observations is 

introduced by compounding the Poisson distribution with Ramous-Louzada (RL) distribution. The 

resulting model is called the Poisson Ramous-Louzada (PRL) distribution. The major reason for the 

selection of the RL distribution as a compounding distribution is because of its simple form, which is 

needed to compute the statistical properties of the proposed distribution and estimate the unknown 

parameter. The proposed model may be used to model count datasets, which are frequently seen in 

real-world data modeling. To build a mixed Poisson model, it is assumed that the Poisson model’s 

parameter is a random variable (RV) with a continuous distribution, and the count variable is drawn 

from the Poisson distribution conditional on the random parameter. As a result, the count variable’s 

marginal distribution is a mixed Poisson distribution. 

The remainder of the paper is structured as follows: The new model is described in Section 2 

and gives graphical representations of PMF, and HRF. Section 3 deduces several mathematical 

characteristics. Section 4 estimates the PRL parameter using the following classical estimation 

methods, maximum likelihood estimation (MLE), Anderson Darling (AD), Cramer von Mises 

(CVM), ordinary least-squares (OLS) and weighted least squares (WLS), and a simulation study is 

also given. Section 5 additionally discusses the Bayesian model formulation for the suggested 

distribution. Section 6 examines three real-world data sets to demonstrate the versatility of the PRL 

distribution. Section 6 also includes a Bayesian study of real-world data sets using Markov chain 

Monte Carlo methods. Section 7 concludes with some recommendations. 

2. The Structure of the new model 

A random variable 𝑋 is said to follow the Poisson Ramos-Louzada distribution if it possesses 

the following stochastic representation 

(𝑋|𝜃)~𝑃𝑜𝑖𝑠𝑠𝑜𝑛 (𝑔(𝜃)) 

(𝜃|𝜏)~𝑅𝐿(𝜏) 

We call the marginal distribution of X the Poisson Ramos-Louzada distribution. The model is 

denoted by 𝑃𝑅𝐿(𝜏). 

Theorem 1: The PMF of PRL distribution is given by 
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𝑃(𝑋 = 𝑥, 𝜏) =
(1 +

1
𝜏

)
;𝑥

(𝑥 − 1 + 𝜏(𝜏 − 1))

(𝜏 − 1)(1 + 𝜏)2
;     𝑥 = 0,1,2,3, … & 𝜏 ≥ 2 

Proof: The PMF of the new probability model can be obtained as  

𝑔(𝑥|𝜃) =
𝑒;𝜃𝜃𝑥

𝑥!
;   𝑥 = 0,1,2,3, … & 𝜃 > 0 

when its parameter 𝜃 follows RL distribution  

𝑓(𝜃; 𝜏) =
(𝜏2 − 2𝜏 + 𝜃)

𝜏2(𝜏 − 1)
𝑒

;(
𝜃
𝜏

)
 

We have  

𝑃(𝑋 = 𝑥, 𝜏) = ∫ 𝑔(𝑥|𝜃)

∞

0

𝑓(𝜃; 𝜏)𝑑𝜃 

                        =
1

𝑥! 𝜏2(𝜏 − 1)
∫ 𝑒;𝜃𝜃𝑥(𝜏2 − 2𝜏 + 𝜃)

∞

0

𝑒
;(

𝜃
𝜏)

𝑑𝜃 

                        =
1

𝑥! 𝜏2(𝜏 − 1)
((𝜏2 − 2𝜏) ∫ 𝑒;𝜃𝜃𝑥

∞

0

𝑒
;(

𝜃
𝜏

)
𝑑𝜃 + ∫ 𝑒;𝜃𝜃𝑥:1

∞

0

𝑒
;(

𝜃
𝜏

)
𝑑𝜃) 

                        =
1

𝑥! 𝜏2(𝜏 − 1)
((𝜏2 − 2𝜏) (1 +

1

𝜏
)

;𝑥;1

Γ(1 + 𝑥) + (1 +
1

𝜏
)

;2;𝑥

Γ(2 + 𝑥)) 

𝑃(𝑋 = 𝑥, 𝜏) =
(1:

1

𝜏
)

−𝑥
(𝑥;1:𝜏(𝜏;1))

(𝜏;1)(1:𝜏)2 ;     𝑥 = 0,1,2,3, … & 𝜏 ≥ 2.                                     (2) 

The PMF behavior of the Poisson Ramos-Louzada distribution for various parameter values is 

shown in Figure 1. 

As can be seen, the PMF has a positively skewed and can be used to discuss the count data that 

is positively skewed. The corresponding CDF of the discrete Poisson Ramos-Louzada distribution is 

given as  

𝐹(𝑋 = 𝑥) = 𝑝𝑟(𝑋 ≤ 𝑥) = 1 − ∑ 𝑃(𝑣)

∞

𝑣<𝑥:1

 

                   = 1 −
(1:

1

𝜏
)

−𝑥
𝜏(𝑥:𝜏2)

(𝜏;1)(1:𝜏)2 ;    𝑥 = 0,1,2, … ; 𝜏 ≥ 2.                                                               (3) 



14064 

“Mathematical Biosciences and Engineering”  “Volume 20, Issue 8, 14061–14080. 

 

Figure 1. PMF visualization plots for the PRL distribution. 

The corresponding survival function is  

 𝑆(𝑥; 𝜏) =
(1:

1

𝜏
)

−𝑥
𝜏(𝑥:𝜏2)

(𝜏;1)(1:𝜏)2 ,                                                                  (4) 

The hazard rate function (HRF), and reversed hazard rate function can be expressed as  

𝑕(𝑥; 𝜏) =
𝑥:𝜏(𝜏;1);1

𝜏(𝑥:𝜏2)
,                                                                   (5) 

and  

𝑟(𝑥; 𝜏) =
1;𝑥:𝜏;𝜏2

𝑥𝜏:𝜏3;(1:
1

𝜏
)

𝑥
(𝜏;1)(1:𝜏)2

.                                                      (6) 

The graphs below depict the behavior of the HRF of the discrete PRL distribution for various 

parameter values. 
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Figure 2. HRF visualization plots for the PRL distribution. 

3. Statistical properties of PRL distribution 

This section has examined some statistical measures of the PRL distribution. Moments, the 

moment generating function (MGF), and the probability generation function are among them (pgf). 

3.1. Moments of PRL distribution 

Assume 𝑋 is a PRL random variable, the r
th

 factorial moments can be derived as 

𝜇(𝑟)
′ = 𝐸[𝐸(𝑋(𝑟)|𝜃)], where 𝑋(𝑟) = 𝑋(𝑋 − 1)(𝑋 − 2) … (𝑋 − 𝑟 + 1) 

         =
1

𝜏2(𝜏 − 1)
∫ [∑ 𝑥(𝑟)

𝑒;𝜃𝜃𝑥

𝑥!

∞

𝑥<0

]

∞

0

(𝜏2 − 2𝜏 + 𝜃)𝑒
;(

𝜃
𝜏)

𝑑𝜃 

         =
1

𝜏2(𝜏 − 1)
∫ [𝜃𝑟 ∑

𝑒;𝜃𝜃𝑥;𝑟

(𝑥 − 𝑟)!

∞

𝑥<𝑟

]

∞

0

(𝜏2 − 2𝜏 + 𝜃)𝑒
;(

𝜃
𝜏)

𝑑𝜃 

Taking 𝑥 + 𝑟 in place of 𝑥 within the bracket, we get  
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𝜇(𝑟)
′ =

1

𝜏2(𝜏 − 1)
∫ [𝜃𝑟 ∑

𝑒;𝜃𝜃𝑥

𝑥!

∞

𝑥<0

]

∞

0

(𝜏2 − 2𝜏 + 𝜃)𝑒
;(

𝜃
𝜏

)
𝑑𝜃 

        =
1

𝜏2(𝜏 − 1)
∫ 𝜃𝑟

∞

0

(𝜏2 − 2𝜏 + 𝜃)𝑒
;(

𝜃
𝜏

)
𝑑𝜃 

        =
𝜏𝑟(;1:𝑟:𝜏)Γ(1:𝑟)

𝜏;1
.                                                                      (7) 

The first four factorial moments can be expressed as  

𝜇(1)
′ =

𝜏2

𝜏 − 1
, 

𝜇(2)
′ =

2𝜏2(1 + 𝜏)

𝜏 − 1
, 

𝜇(3)
′ =

6𝜏3(2 + 𝜏)

𝜏 − 1
, 

and 

𝜇(4)
′ =

24𝜏4(3 + 𝜏)

𝜏 − 1
. 

The first four moments about the mean of the PRL distribution are obtained. 

𝜇2 =
𝜏2(𝜏2:𝜏;3)

(𝜏;1)2 ,                                                                    (8) 

𝜇3 =
𝜏2(2𝜏4:3𝜏3;14𝜏2:4𝜏:7)

(𝜏;1)3 ,                                                        (9) 

𝜇4 =
𝜏2(9𝜏6:18𝜏5;92𝜏4:41𝜏3:77𝜏2;41𝜏;15)

(𝜏;1)4 ,                                    (10) 

Using Eqs (8)–(10), the Index of Dispersion (ID), coefficient of skewness (CS), and coefficient 

of Kurtosis (CK) can be derived in closed forms, 

𝐼𝐷(𝑋) =
𝑉𝑎𝑟(𝑋)

𝑀𝑒𝑎𝑛(𝑋)
=

𝜏2:𝜏;3

𝜏;1
,                                                 (11) 

𝐶𝑆(𝑋) =
𝜇3

(𝜇2)
3

2⁄
=

𝜏2(7:4𝜏;14𝜏2:3𝜏3:2𝜏4)

(𝜏;1)3(
𝜏2(−3+𝜏+𝜏2)

(−1+𝜏)2 )
3 2⁄ ,                            (12) 

and  

𝐶𝐾(𝑋) =
9𝜏6:18𝜏5;92𝜏4:41𝜏3:77𝜏2;41𝜏;15

𝜏2(𝜏2:𝜏;3)2 .                        (13) 
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The moment-generating function of RV X can be expressed as  

𝑀𝑋(𝑠) = ∑ 𝑒𝑥𝑠

∞

𝑥<0

𝑃(𝑋 = 𝑥, 𝜏) 

             =
𝜏(𝜏;𝑒𝑠(𝜏;2);1);1

(𝜏;1)(1:𝜏;𝑒𝑠𝜏)2 .                                                                (14) 

The probability-generating function of PRL distribution can be derived as  

𝑃𝑋(𝑡) = ∑ 𝑡𝑥

∞

𝑥<0

𝑃(𝑋 = 𝑥, 𝜏) 

             =
;1;𝜏:2𝑡𝜏:𝜏2;𝑡𝜏2

(;1:𝜏)(;1;𝜏:𝑡𝜏)2.                                                                (15) 

Table 1 displays some computational statistics of the PRL distribution for sundry parameter 

values. 

Table 1. Some computational statistics of PRL distribution. 

𝛕 𝐄(𝐗) 𝐕𝐚𝐫(𝐗) 𝐂𝐒(𝐗) 𝐂𝐊(𝐗) 𝐈𝐃(𝐗) 𝐂𝐕(𝐗) 

2 4.00000 12.0000 1.44338 6.08333 3.00000 0.86603 

3 4.50000 20.2500 1.67901 7.05761 4.50000 1.00000 

4 5.33333 30.2222 1.79405 7.66025 5.66667 1.03078 

5 6.25000 42.1875 1.85607 8.02222 6.75000 1.03923 

6 7.20000 56.1600 1.89348 8.25493 7.80000 1.04083 

7 8.16667 72.1389 1.91786 8.41326 8.83333 1.04002 

8 9.14286 90.1224 1.93468 8.52586 9.85714 1.03833 

9 10.1250 110.1094 1.94678 8.60883 10.87500 1.03638 

10 11.1111 132.0988 1.95579 8.67174 11.88889 1.03441 

15 16.0714 272.0663 1.97871 8.83698 16.92857 1.02632 

20 21.0526 462.0499 1.98750 8.90278 21.94737 1.02103 

4. Parameter estimation  

In this section, the parameter of PRL distribution is examined using some classical estimation 

approaches. The considered estimation approaches are maximum likelihood, Anderson-Darling, 

Cramer von Mises, least squares, and weighted least squares. 

4.1. Maximum likelihood estimation 

Let 𝑋1, 𝑋2, 𝑋3, … 𝑋𝑛  be a random sample of failure times from PRL distribution, and the 

likelihood function for the parameter 𝜏 can be written as  
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𝐿(𝜏|𝑥) = ∏
(1:

1

𝜏
)

−𝑥𝑖
(𝑥𝑖;1:𝜏(𝜏;1))

(𝜏;1)(1:𝜏)2
𝑛
𝑖<1 ,                                                  (16) 

and log-likelihood function is specified by  

𝑙(𝜏|𝑥) = ∑ log (1 +
1

𝜏
)

;𝑥𝑖𝑛
𝑖<1 + ∑ log(𝑥𝑖 − 1 + 𝜏(𝜏 − 1))𝑛

𝑖<1 − 𝑛 log(𝜏 − 1) − 𝑛 log(1 + 𝜏)2.   (17) 

We get the following equation by deriving Eq (17) with regard to parameter 𝜏: 

𝜕𝑙

𝜕𝜏
= ∑

𝑥𝑖

(1:
1

𝜏
)𝜏2

𝑛
𝑖<1 + ∑

2𝜏;1

𝑥𝑖:𝜏(𝜏;1);1

𝑛
𝑖<1 −

𝑛

(𝜏;1)
−

2𝑛

(𝜏:1)
.                                 (18) 

The ML estimate is obtained by equating the above equation to zero and solving it for parameter 

𝜏. However, the ensuing expression has not a closed-form result and the required results can be 

obtained using iterative procedures.  

4.2. Anderson darling estimation 

The Anderson-Darling (AD) estimator 𝜏̂ of parameter 𝜏 can be defined by minimizing the 

following expression 

AD(𝜏) = −𝑛 −
1

𝑛
∑(2𝑖 − 1) *log (𝐹(𝑥(𝑖:𝑛)|𝜏)) + log (1 − 𝐹(𝑥(𝑖:𝑛)|𝜏))+ ,

𝑛

𝑖<1

 

AD(𝜏)  = −𝑛 −
1

𝑛
∑ (2𝑖 − 1) *log (1 −

(1:
1

𝜏
)

−𝑥(𝑖:𝑛)
𝜏(𝑥(𝑖:𝑛):𝜏2)

(𝜏;1)(1:𝜏)2 ) + log (
(1:

1

𝜏
)

−𝑥(𝑖:𝑛)
𝜏(𝑥(𝑖:𝑛):𝜏2)

(𝜏;1)(1:𝜏)2 )+ ,𝑛
𝑖<1   

Alternatively, the estimator can also be obtained by solving the following nonlinear equation   

∑  

𝑛

𝑖<1

(2𝑖 − 1) *
ϕ(𝑥(𝑖:𝑛)|𝜏)

𝐹(𝑥(𝑖:𝑛)|𝜏)
−

ϕ(𝑥(𝑛:1;𝑖:𝑛)|𝜏)

1 − 𝐹(𝑥(𝑛:1;𝑖:𝑛)|𝜏)
+ = 0 

where ϕ(𝑥𝑖:𝑛|𝜏) =
𝑑

𝑑𝜏
𝐹(𝑥(𝑖:𝑛)|𝜏) and it reduces to 

ϕ(𝑥𝑖:𝑛|𝜏) =
(1:

1

𝜏
)

−𝑥(𝑖:𝑛)
(;𝑥(𝑖:𝑛)

2(𝜏;1);(𝜏;3)𝜏2;𝑥(𝑖:𝑛)(;1:𝜏;3𝜏2:𝜏3))

(𝜏;1)2(1:𝜏)3                (19) 

4.3. Ordinary least squares estimation 

The ordinary least-square (OLS) estimator of the PRL model parameter can be obtained by 

minimizing  

LSE(𝜏) = ∑ [𝐹(𝑥(𝑖:𝑛)|𝜏) −
𝑖

𝑛 + 1
]

2

,

𝑛

𝑖<1

 

with respect to the parameter 𝜏. Moreover, the LSE of 𝜏 is also obtained by solving  
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∑  

𝑚

𝑖<1

[1 −
𝑖

1 + 𝑛
−

(1 +
1
𝜏

)
;𝑥(𝑖:𝑛)

𝜏(𝑥(𝑖:𝑛) + 𝜏2)

(𝜏 − 1)(1 + 𝜏)2
] ϕ(𝑥𝑖:𝑛|𝜏) = 0, 

4.4. Weighted least-square estimation  

The WLS estimate (WLSE) of 𝜏, say 𝜏̂, can be determined by minimizing 

WLSE(𝜏) = ∑
(𝑛 + 1)2(𝑛 + 2)

𝑖(𝑛 − 𝑖 + 1)
[𝐹(𝑥(𝑖:𝑛)|𝜏) −

𝑖

𝑛 + 1
]

2

,

𝑛

𝑖<1

  

with respect to 𝜏. The WLSE of 𝜏 can also be obtained by solving  

∑  

𝑛

𝑖<1

(1 + 𝑛)2 (2 + 𝑛)

𝑖(𝑛 − 𝑖 + 1)
[1 −

𝑖

1 + 𝑛
−

(1 +
1
𝜏

)
;𝑥(𝑖:𝑛)

𝜏(𝑥(𝑖:𝑛) + 𝜏2)

(𝜏 − 1)(1 + 𝜏)2
] ϕ(𝑥𝑖:𝑛|𝜏) = 0, 

In which ϕ(𝑥𝑖:𝑛|𝜏) is presented in (19). 

4.5. Cramer Von-Misses estimator 

The Cramer von Mises (CVM) is a minimum distance-based estimator. The CVM of the PRL 

distribution can be obtained by minimizing  

CVM(𝜏) =
1

12𝑛
+ ∑ [log (𝐹(𝑥(𝑖:𝑛)|𝜏)) −

2𝑖 − 1

2𝑛
]

2

,

𝑛

𝑖<1

 

with respect to the parameter 𝜏. 

The CVME of 𝜏 is also obtained by solving  

∑  

𝑛

𝑖<1

[1 −
2𝑖 − 1

2 𝑛
−

(1 +
1
𝜏

)
;𝑥(𝑖:𝑛)

𝜏(𝑥(𝑖:𝑛) + 𝜏2)

(𝜏 − 1)(1 + 𝜏)2
] ϕ(𝑥𝑖:𝑛|𝜏) = 0. 

4.6. Simulation  

In this section, we performed a simulation study to evaluate the accuracy of all considered 

estimators. In the simulation run, we generate 10,000 samples of size n = 10, 25, 50, 100, 200, and 

300 from PRL distribution and then calculate the average estimates (AE), absolute bias (AB), mean 

relative error (MRE) and mean square error (MSE). For this purpose, we consider the six sets of 

values of parameter 𝜏. The simulation results are presented in Tables 2–7. 
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Table 2. Parameter Estimates based on simulated samples for the parameter 𝜏 = 2.1. 

Measures  𝒏 MLE OLSE WLSE ADE CVME 

AE 

10 2.4683 3.0734 2.7620 3.0486 2.7156 

25 2.3209 2.4309 2.1472 2.5131 2.3049 

50 2.2357 2.1799 2.1001 2.2501 2.1488 

100 2.1808 2.1098 2.1000 2.1307 2.1045 

200 2.1416 2.1002 2.1000 2.1013 2.1004 

300 2.1274 2.1000 2.1000 2.1002 2.1000 

AB 

10 0.3683 0.9734 0.6620 0.9486 0.6156 

25 0.2209 0.3309 0.0472 0.4131 0.2049 

50 0.1357 0.0799 0.0001 0.1501 0.0488 

100 0.0808 0.0098 0.0000 0.0307 0.0045 

200 0.0416 0.0002 0.0000 0.0013 0.0004 

300 0.0274 0.0000 0.0000 0.0002 0.0000 

MRE 

10 0.1754 0.4635 0.3152 0.4517 0.2931 

25 0.1052 0.1576 0.0225 0.1967 0.0976 

50 0.0646 0.0381 0.0001 0.0715 0.0233 

100 0.0385 0.0046 0.0000 0.0146 0.0021 

200 0.0198 0.0001 0.0000 0.0006 0.0002 

300 0.0130 0.0000 0.0000 0.0001 0.0000 

MSE 

10 0.7743 3.3333 2.0870 3.4064 2.3300 

25 0.2951 0.8431 0.0912 1.1611 0.5520 

50 0.1391 0.1614 0.0001 0.3712 0.0985 

100 0.0627 0.0157 0.0000 0.0651 0.0068 

200 0.0271 0.0003 0.0000 0.0025 0.0006 

300 0.0169 0.0000 0.0000 0.0006 0.0000 

Table 3. Parameter Estimates based on simulated samples for the parameter 𝜏 = 3.0. 

Measures  𝒏 MLE OLSE WLSE ADE CVME 

AE 

10 3.1396 4.3862 4.3030 4.1871 4.2023 

25 3.0268 4.0219 3.9440 3.8787 3.9351 

50 2.9950 3.9277 3.9411 3.7879 3.8614 

100 2.9948 3.9041 4.0457 3.7762 3.8804 

200 2.9964 3.9231 4.2116 3.8175 3.9187 

300 2.9970 3.9378 4.3245 3.8419 3.9348 

AB 

10 0.1396 1.3862 1.3030 1.1871 1.2023 

25 0.0268 1.0219 0.9440 0.8787 0.9351 

50 0.0050 0.9277 0.9411 0.7879 0.8614 

100 0.0052 0.9041 1.0457 0.7762 0.8804 

200 0.0036 0.9231 1.2116 0.8175 0.9187 

300 0.0030 0.9378 1.3245 0.8419 0.9348 

Continued on next page 
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Measures  𝒏 MLE OLSE WLSE ADE CVME 

MRE 

10 0.0465 0.5763 0.5672 0.5519 0.5599 

25 0.0089 0.4499 0.4713 0.4301 0.4473 

50 0.0017 0.3944 0.4427 0.3736 0.3907 

100 0.0017 0.3580 0.4347 0.3302 0.3570 

200 0.0012 0.3318 0.4495 0.3062 0.3321 

300 0.0010 0.3237 0.4659 0.2977 0.3217 

MSE 

10 1.5854 5.3423 4.9727 4.6497 4.8640 

25 0.7594 2.7425 2.7410 2.4596 2.6652 

50 0.4343 1.9387 2.1702 1.7096 1.8726 

100 0.2391 1.4819 1.9558 1.2643 1.4561 

200 0.1248 1.1972 1.9742 1.0271 1.1933 

300 0.0832 1.0952 2.0686 0.9387 1.0861 

Table 4. Parameter Estimates based on simulated samples for the parameter 𝜏 = 4.0. 

Measures  𝒏 MLE OLSE WLSE ADE CVME 

AE 

10 3.9375 5.2163 5.2168 5.1234 5.0765 

25 3.9262 4.9401 4.9726 4.8907 4.8748 

50 3.9620 4.9088 5.0659 4.8573 4.8859 

100 3.9713 4.8963 5.1787 4.8401 4.8697 

200 3.9834 4.8858 5.3031 4.8439 4.8789 

300 3.9988 4.8862 5.3711 4.8506 4.8756 

AB 

10 0.0625 1.2163 1.2168 1.1234 1.0765 

25 0.0738 0.9401 0.9726 0.8907 0.8748 

50 0.0380 0.9088 1.0659 0.8573 0.8859 

100 0.0287 0.8963 1.1787 0.8401 0.8697 

200 0.0166 0.8858 1.3031 0.8439 0.8789 

300 0.0012 0.8862 1.3711 0.8506 0.8756 

MRE 

10 0.0156 0.4834 0.4807 0.4714 0.4854 

25 0.0185 0.3538 0.3585 0.3405 0.3536 

50 0.0095 0.2878 0.3167 0.2742 0.2889 

100 0.0072 0.2466 0.3054 0.2321 0.2424 

200 0.0042 0.2264 0.3260 0.2157 0.2256 

300 0.0003 0.2229 0.3428 0.2138 0.2205 

MSE 

10 2.9043 6.2750 6.0663 5.8402 6.1414 

25 1.3856 3.1215 3.0986 2.8793 3.0677 

50 0.7547 1.9790 2.2677 1.8032 2.0032 

100 0.3717 1.3758 1.8782 1.2184 1.3353 

200 0.1822 1.0527 1.9039 0.9610 1.0504 

300 0.1202 0.9624 2.0149 0.8867 0.9453 
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Table 5. Parameter Estimates based on simulated samples for the parameter 𝜏 = 5.0. 

Measures  𝒏 MLE OLSE WLSE ADE CVME 

AE 

10 4.8793 6.2159 6.2417 6.1934 6.0518 

25 4.9283 5.9406 6.0539 5.9254 5.8979 

50 4.9480 5.9061 6.0826 5.8767 5.8738 

100 4.9839 5.8739 6.1814 5.8623 5.8668 

200 4.9940 5.8508 6.2729 5.8430 5.8573 

300 4.9858 5.8588 6.3355 5.8436 5.8443 

AB 

10 0.1207 1.2159 1.2417 1.1934 1.0518 

25 0.0717 0.9406 1.0539 0.9254 0.8979 

50 0.0520 0.9061 1.0826 0.8767 0.8738 

100 0.0161 0.8739 1.1814 0.8623 0.8668 

200 0.0060 0.8508 1.2729 0.8430 0.8573 

300 0.0142 0.8588 1.3355 0.8436 0.8443 

MRE 

10 0.0241 0.4372 0.4343 0.4289 0.4335 

25 0.0143 0.2971 0.3010 0.2896 0.2975 

50 0.0104 0.2376 0.2514 0.2249 0.2334 

100 0.0032 0.1979 0.2415 0.1921 0.1968 

200 0.0012 0.1769 0.2549 0.1739 0.1775 

300 0.0028 0.1737 0.2671 0.1705 0.1714 

MSE 

10 4.5278 8.0561 7.8298 7.6115 7.7488 

25 1.9727 3.5841 3.6415 3.3645 3.5746 

50 0.9619 2.1944 2.3526 1.9809 2.1332 

100 0.4770 1.4498 1.9140 1.3619 1.4272 

200 0.2355 1.0642 1.8717 1.0091 1.0642 

300 0.1600 0.9522 1.9495 0.9070 0.9279 

Table 6. Parameter Estimates based on simulated samples for the parameter 𝜏 = 7.0. 

Measures  𝒏 MLE OLSE WLSE ADE CVME 

AE 

10 6.8852 8.3751 8.3080 8.2719 8.0785 

25 6.9508 7.9654 8.0939 7.9661 7.9015 

50 6.9772 7.9105 8.0665 7.8996 7.8877 

100 6.9808 7.8671 8.1001 7.8491 7.8347 

200 6.9902 7.8377 8.2073 7.8376 7.8279 

300 6.9994 7.8330 8.2567 7.8323 7.8247 

AB 

10 0.1148 1.3751 1.3080 1.2719 1.0785 

25 0.0492 0.9654 1.0939 0.9661 0.9015 

50 0.0228 0.9105 1.0665 0.8996 0.8877 

100 0.0192 0.8671 1.1001 0.8491 0.8347 

200 0.0098 0.8377 1.2073 0.8376 0.8279 

300 0.0006 0.8330 1.2567 0.8323 0.8247 

Continued on next page 
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Measures  𝒏 MLE OLSE WLSE ADE CVME 

MRE 

10 0.0164 0.3971 0.3834 0.3728 0.3801 

25 0.0070 0.2536 0.2487 0.2396 0.2494 

50 0.0033 0.1922 0.1930 0.1835 0.1908 

100 0.0027 0.1539 0.1695 0.1468 0.1502 

200 0.0014 0.1307 0.1741 0.1286 0.1298 

300 0.0001 0.1240 0.1797 0.1228 0.1229 

MSE 

10 8.0853 13.221 12.275 11.590 11.818 

25 3.1995 5.2182 4.9697 4.6070 5.0214 

50 1.5333 2.9054 2.8651 2.6487 2.8488 

100 0.7477 1.7950 2.0349 1.6308 1.7225 

200 0.3819 1.2139 1.8654 1.1544 1.1984 

300 0.2538 1.0264 1.8495 0.9997 1.0176 

Table 7. Parameter Estimates based on simulated samples for the parameter 𝜏 = 15.0. 

Measures  𝒏 MLE OLSE WLSE ADE CVME 

AE 

10 14.870 16.725 16.755 16.639 16.487 

25 14.975 16.192 16.194 16.166 16.071 

50 15.003 15.979 16.045 16.015 15.948 

100 15.014 15.881 16.023 15.876 15.818 

200 14.992 15.818 16.066 15.853 15.801 

300 15.014 15.810 16.081 15.826 15.813 

AB 

10 0.1302 1.7254 1.7551 1.6394 1.4871 

25 0.0254 1.1917 1.1941 1.1658 1.0705 

50 0.0026 0.9791 1.0445 1.0145 0.9477 

100 0.0142 0.8806 1.0226 0.8755 0.8180 

200 0.0084 0.8184 1.0661 0.8532 0.8008 

300 0.0135 0.8103 1.0806 0.8263 0.8125 

MRE 

10 0.0087 0.3328 0.3258 0.3120 0.3262 

25 0.0017 0.2138 0.2007 0.1975 0.2060 

50 0.0002 0.1496 0.1444 0.1445 0.1491 

100 0.0009 0.1114 0.1076 0.1043 0.1085 

200 0.0006 0.0832 0.0879 0.0814 0.0824 

300 0.0009 0.0733 0.0817 0.0710 0.0729 

MSE 

10 27.483 42.816 40.605 37.786 40.567 

25 11.128 16.789 14.977 14.517 15.753 

50 5.4177 8.2091 7.5370 7.6602 8.2052 

100 2.7917 4.5139 4.1585 3.9290 4.2486 

200 1.3835 2.4799 2.6592 2.3612 2.4262 

300 0.8964 1.8851 2.2170 1.7610 1.8652 
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4.7. Bayesian analysis 

The Bayesian parameter estimation technique is an alternate to classical maximum likelihood 

estimation. In Bayesian estimation, a prior distribution must be defined for each unknown parameter. 

Consider a set of data 𝑥 = 𝑥1, 𝑥2, … , 𝑥𝑛 taken from discrete PRL distribution and the likelihood 

function is provided by 

𝐿(𝜏|𝑥) = ∏
(1:

1

𝜏
)

−𝑥𝑖
(𝑥𝑖;1:𝜏(𝜏;1))

(𝜏;1)(1:𝜏)2
𝑛
𝑖<1 .                                                    (20) 

The Bayesian model is constructed by stating the prior distribution for the model parameter and 

then multiplying it with the likelihood function for the provided data using the Bayes theorem to 

generate the posterior distribution function. The prior distribution of parameter 𝜏 is denoted as 𝑝(𝜏).  

𝑝(𝜏|𝑥) ∝ 𝐿(𝜏|𝑥)𝑝(𝜏). 

For the proposed distribution, the gamma distribution is considered a prior distribution with 

known hyperparameters such as 𝜏~𝐺𝑎𝑚𝑚𝑎(𝛼, 𝛽). The posterior expression, up to proportionality, 

may be found by multiplying the likelihood by the prior, and this can be represented as 

𝑝(𝜏|𝑥) ∝
𝛽𝛼

Γ(𝛼)
𝜏𝛼;1 exp(−𝜏𝛽) ∏

(1 +
1
𝜏

)
;𝑥𝑖

(𝑥𝑖 − 1 + 𝜏(𝜏 − 1))

(𝜏 − 1)(1 + 𝜏)2

𝑛

𝑖<1

 

The posterior density is not mathematically tractable; for inference purposes, we will utilize the 

Markov Chain Monte Carlo (MCMC) approach to mimic posterior samples, allowing for easy 

sample-based conclusions. 

In the present study, we explore the application of MCMC algorithms implemented in the 

package MCMCpack of the R program to simulate samples from the joint posterior distribution. For 

this purpose, we generated 1006000 samples of the joint posterior distribution of interest. The effects 

of the initial values in the iterative process are eliminated after a burn-in phase of 6000 simulated 

samples. To achieve approximately independent samples, a thinning interval of size 300 was utilized. 

The parameter Bayes estimates were gained by taking the expected value of generated samples. 

Traceplots and the Geweke diagnostic were used to monitor the convergence of the simulated 

sequences. The asymptotic standard error of the difference divided by the difference between the two 

means of non-overlapping parts of a simulated Markov chain is the basis of the Geweke convergence 

diagnostic. We may say that a chain has reached convergence if its corresponding absolute z score is 

smaller than 1.96 since this z score asymptotically follows a typical normal distribution. The 

construction of interesting posterior summaries was done using the R software package MCMCpack. 

5. Application  

This section is ardent to prove the usefulness of the discrete Poisson Ramos-Louzada distribution 

in the modeling of three datasets. We compare the fits of the proposed distribution with some renowned 

one-parameter discrete distributions, discrete Raleigh [12], Poisson, discrete Pareto [13] and discrete 

Burr-Hatke [14], discrete Inverted Topp-Leone [15]. The Kolmogorov-Smirnov (KS) test, Akaike 

Information Criteria (AIC) and Bayesian Information Criteria (BIC) are used to compare the fitted 

models. We also illustrate the estimation procedures based on censored samples proposed in the 
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previous section with three examples from the literature. 

5.1. Data I (Failure times of electronic components) 

A sample of the failure time of 15 electronic components in an acceleration life test [16]. The 

observations are 1, 5, 6, 11, 12, 19, 20, 22, 23, 31, 37, 46, 54, 60, and 66. The mean and variance of 

the first dataset are 27.533 and 431.94 respectively. The dispersion index value is 15.689 which 

indicates that the dataset is overdispersed. We determine the MLEs, standard errors (SE), and model 

selection measures (AIC, BIC, and KS) for the first dataset using the R software’s maxLik package. 

These results are shown in Table 8 along with the model selection measures. 

Table 8. ML Estimates and goodness-of-fit for the first dataset. 

Model MLEs (S.E.) -LogLik. AIC BIC K-S P-value 

PRL 26.455 (7.2429) 64.995 131.99 132.70 0.1770 0.6700 

DR 24.382 (3.1481) 66.394 134.79 135.50 0.2160 0.4300 

Poisson 27.533 (1.3548) 151.21 304.41 305.12 0.3810 0.0180 

DITL 0.4178 (0.1079) 74.491 150.98 151.69 0.3590 0.0310 

DPr 0.3284 (0.0848) 77.402 156.80 157.51 0.4060 0.0097 

DBH 0.9992 (0.0076) 91.368 184.74 185.44 0.7910 0.0000 

 

Figure 3. Plots of fitted CDFs versus empirical CDFs for the first dataset. 

For Bayesian data analysis, the parameter 𝜏 of the PRL distribution was assumed to have an 

approximate gamma as the prior distribution, that is, 𝜏~𝐺𝑎𝑚𝑚𝑎(0.001, 0.1). Figure 4 depicts 
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posterior samples for the parameter 𝜏. The evaluation of the MCMC draws across iterations is 

assessed using traceplot, posterior density, and ACF plot. From the traceplot, it is interesting to note 

that the samples produced attained acceptable convergence. The ACF plot indicates that the posterior 

samples are uncorrelated. Furthermore, the z-score of the Geweke test is –0.2498, indicating that the 

samples have sufficiently converged to a stable distribution. The posterior mean for τ is 𝜏𝐵𝑎𝑦𝑒𝑠 =

13.00418 with a standard deviation of 2.18641, and the corresponding 95% highest density interval 

is (9.008356, 17.3976). We observe that the ML and Bayesian estimates are quite similar. 

 

Figure 4. Traceplot, Posterior density, and ACF plot based on the first dataset. 

5.2. Data II (COVID-19 Deaths in China) 

A sample of 66 patients died due to COVID-19 in China from January 23, 2022, to March 28, 

2020. The data are: 8, 16, 15, 24, 26, 26, 38, 43, 46, 45, 57, 64, 65, 73, 73, 86, 89, 97, 108, 97, 146, 

121, 143, 142, 105, 98, 136, 114, 118, 109, 97, 150, 71, 52, 29, 44, 47, 35, 42, 31, 38, 31, 30, 28, 27, 

22, 17, 22, 11, 7, 13, 10, 14, 13, 11, 8, 3, 7, 6, 9, 7, 4, 6, 5, 3 and 5. Some descriptive measures (mean, 

variance, and dispersion index) for this dataset are 47.742, 1924.8, and 38.696. We acquire the ML 

estimates for the parameter, and model selection metrics (AIC, BIC, and KS) for the second dataset. 

These results are shown in Table 9. 

Table 9. ML Estimates and goodness-of-fit for the second dataset. 

Model MLEs (S.E.) -LogLik. AIC BIC K-S P-value 

PRL 48.711 (6.1847) 324.51 651.02 653.21 0.0851 0.7300 

DR 47.010 (2.8934) 347.23 696.45 698.64 0.2930 0.0000 

Poisson 49.743 (0.8682) 1409.8 2821.6 2823.8 0.4970 0.0000 

DITL 0.3539 (0.0436) 366.91 735.81 738.00 0.3290 0.0000 

DPr 0.2863 (0.0352) 379.07 760.14 762.33 0.3820 0.0000 

DBH 0.9997 (0.0019) 461.02 924.04 926.23 0.8120 0.0000 

For Bayesian data analysis, the parameter tau of the PRL distribution was assumed to have a 

gamma prior distribution. The associated Geweke z-score is –0.08203, which likewise indicates that 

the samples have sufficiently converged to a stable distribution. The posterior mean for τ is 

𝜏𝐵𝑎𝑦𝑒𝑠 = 32.0684 with a standard deviation of 2.89397, and a 95% HDI of (26.20931, 37.44432). 

The ML and Bayesian estimates are discernibly similar to one another. 
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Figure 5. Plots of fitted CDFs versus empirical CDFs for the second dataset. 

 

Figure 6. Traceplot, Posterior density, and ACF plot based on the second dataset. 

5.3. Data set III (Deaths due to COVID-19 in Pakistan) 

The third dataset is also about deaths due to COVID-19 in Pakistan from 18 March 2020 to 30 

June 2020. The data are: 1, 6, 6, 4 , 4, 4, 1, 20, 5, 2, 3, 15, 17, 7, 8, 25, 8, 25, 11, 25, 16, 16, 12, 11, 

20, 31, 42, 32, 23, 17, 19, 38, 50, 21, 14, 37, 23, 47, 31, 24, 9, 64, 39, 30, 36, 46, 32, 50, 34, 32, 34, 

30, 28, 35, 57, 78, 88, 60, 78, 67, 82, 68, 97, 67, 65, 105, 83 , 101, 107, 88, 178, 110, 136, 118, 136, 

153, 119, 89, 105, 60, 148, 59, 73, 83, 49, 137 and 91. Some computational measures, mean, 

variance and index of dispersion for the third dataset are; 50.057, 1758.8, and 35.135. The MLEs and 

goodness-of-fit measures for this dataset are given in Table 10.  
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Table 10. ML Estimates and goodness-of-fit for the third dataset. 

Model MLEs (S.E.) -LogLik. AIC BIC K-S P-value 

PRL 49.020 (5.4201) 428.30 858.61 861.07 0.0676 0.8210 

DR 46.339 (2.4841) 452.55 907.10 909.56 0.2473 0.0000 

Poisson 50.058 (0.9742) 1713.0 3428.1 3430.5 0.4954 0.0000 

DITL 0.3493 (0.0375) 488.14 978.28 980.75 0.3263 0.0000 

DPr   0.2835 (0.0304) 503.61 1009.2 1011.7 0.3558 0.0000 

DBH 0.9997 (0.0016) 613.80 1229.6 1232.1 0.7876 0.0000 

 

Figure 7. Plots of fitted CDFs versus empirical CDFs for the third dataset. 

For the third dataset, the gamma distribution is again considered as the prior distribution, and the 

posterior samples for the parameter are described in Figure 8. Furthermore, the Geweke z-score is 

used as a diagnostic measure and its value is –0.03794, suggesting convergence of the samples to a 

stable distribution. The posterior mean for the third dataset is 𝜏𝐵𝑎𝑦𝑒𝑠 = 46.96159 with a standard 

deviation of 4.92385. The corresponding 95% HDI (37.94273, 57.07319). The ML and Bayes 

estimate is quite similar to each other. 

 

Figure 8. Traceplot, Posterior density, and ACF plot based on the third dataset. 
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6. Conclusions 

In this paper, we introduce a one-parameter discrete distribution by compounding Poisson with 

the Ramos-Louzada distribution. The proposed distribution is showing unimodal and positively 

skewed behavior. The failure rate of new distribution is increasing pattern. Some statistical properties 

derived include the moment-generating function, probability-generating function, factorial moments, 

dispersion index, skewness and kurtosis. The model parameter is estimated using the maximum 

likelihood estimation approach and the behavior of the derived estimator is assessed via a simulation 

study. The usefulness of the proposed distribution is carried out using three real-life datasets. The 

proposed distribution provides more efficient results than all considered competitive distributions. 

The Bayesian analysis is also performed by taking the MCMC approximation approach. 
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