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Abstract: High quality medical images play an important role in intelligent medical analyses. 

However, the difficulty of acquiring medical images with professional annotation makes the required 

medical image datasets, very expensive and time-consuming. In this paper, we propose a semi-

supervised method, CAU , which is a consensus model of augmented unlabeled data for cardiac image 

segmentation. First, the whole is divided into two parts: the segmentation network and the 

discriminator network. The segmentation network is based on the teacher student model. A labeled 

image is sent to the student model, while an unlabeled image is processed by CTAugment. The strongly 

augmented samples are sent to the student model and the weakly augmented samples are sent to the 

teacher model. Second, CAU   adopts a hybrid loss function, which mixes the supervised loss for 

labeled data with the unsupervised loss for unlabeled data. Third, an adversarial learning is introduced 

to facilitate the semi-supervised learning of unlabeled images by using the confidence map generated 

by the discriminator as a supervised signal. After evaluating on an automated cardiac diagnosis 

challenge (ACDC), our proposed method CAU  has good effectiveness and generality and CAU  is 

confirmed to have a improves dice coefficient (DSC) by up to 18.01, Jaccard coefficient (JC) by up to 

16.72, relative absolute volume difference (RAVD) by up to 0.8, average surface distance (ASD) and  

95% Hausdorff distance (𝐻𝐷 ) reduced by over 50% than the latest semi-supervised learning methods. 

Keywords: semi-supervised learning; adversarial learning; medical image segmentation; data 
augmentation; convolutional neural networks 
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1. Introduction 

According to the World Health Organization (WHO), cardiovascular diseases (CVDs) are the 
leading cause of death worldwide. 17.9 million people died from CVDs in 2016, and heart disease and 
strokes are classified as the leading CVDs. This number is increasing every year. Significant advances 
in cardiovascular research and practices have been made in recent decades, aimed at improving the 
diagnosis and treatment of heart diseases, as well as reducing CVD mortality. Modern medical imaging 
techniques, such as magnetic resonance imaging (MRI), computed tomography (CT), and ultrasound 
are widely used, they allow the non-invasive qualitative and quantitative assessment of cardiac 
anatomy and function for diagnosis, disease monitoring, treatment planning, and prognosis [1]. 

It is worth noting that cardiac image segmentation is an important first step in many applications. 
It segments the image into a number of semantically (i.e., anatomically) meaningful regions, on the 
basis of which quantitative metrics such as myocardial mass, wall thickness, left ventricle (LV) and 
right ventricle (RV) volumes, and ejection fraction (EF) can be extracted. Typically, the anatomical 
structures of interest for cardiac image segmentation includes the left ventricle, right ventricle, left 
atrium, right atrium, and coronary arteries. 

Cardiac MRI (constructed from a series of parallel short-axis slices) is considered the gold 
standard for the functional analysis of the heart because of its well-known ability to differentiate 
between different types of tissue [2]. However, there are some difficulties in cardiac MRI segmentation. 
For example, this includes inherent noise caused by motion artefacts and cardiac dynamics, as well as 
variations in the shape and intensity of cardiac structures from patient to patient and from condition to 
condition [3]. 

Current fully supervised segmentation methods in the field of cardiac image segmentation are 
mainly based on convolutional neural networks using fully convolutional networks (FCN) [4–7] or U-
Net [8–10] architectures. However, one of the major challenges for deep learning methods is the 
scarcity of annotated data, especially in the field of medical imaging, where data is scarce. Most studies 
have used a fully supervised approach to train their networks, but this requires many annotated images. 
In fact, annotating cardiac images is time consuming and requires a lot of expertise. 

Based on this, many semi-supervised algorithms have been applied to the field of medical image 
segmentation. In a semi-supervised learning task, only a small fraction of the training images is 
assumed to have full pixel-level annotations, while a large number of unlabeled images are available 
to improve accuracy and generalization. Since unlabeled data does not require labor-intensive 
annotation, any performance gains from using unlabeled data are low-cost. The challenge in this 
learning scenario is to use the large amount of unlabeled data effectively and thoroughly.  

In this paper, we propose a semi-supervised based method, CAU  , for cardiac image 
segmentation. This method is based on our original proposed method CAU [11]. Two mechanisms are 
used for upgrading from CAU  to CAU  . First, inspired by ReMixMatch, we replaced the data 
augmentation of CAU with CTAugment so that the model can dynamically learn the augmentation 
strategy during the training process. Second, inspired by AdvSemiSeg [12], adversarial learning is 
introduced by replacing the generator with a segmentation network (i.e., the teacher-student model in 
CAU), and a confidence map generated by the discriminator is made to guide the loss function as a 
supervised signal. 

The contributions of this paper include the following: 
(1) We propose a semi-supervised algorithm for cardiac image segmentation, namely “an 
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adversarially consensus model of augmented unlabeled data (CAU )”, which enables low-cost and the 
high-precision segmentation of cardiac images. 

(2) Our method combines a teacher-student model, and the overall framework is based on a 
weighted combination of supervised and unsupervised losses from this model. In this way, false 
identification is avoided and the regularization effect is improved. 

(3) We extend the strong and weak augmentation of the data into CTAugment, which using the 
idea of control theory to dynamically learn the magnitude of each transformation during the training 
process. 

(4) We propose a combination of unsupervised loss to make full use of unlabeled data, i.e., 
minimizing the difference between network predictions under different data augmentation treatments 
and using minimized entropy for the output of both networks. Based on this, adversarial learning is 
introduced to add adversarial loss to unsupervised loss and train discriminators to facilitate semi-
supervised learning of unlabeled images by using the confidence map generated by the discriminators 
as a supervised signal. 

(5) We validate CAU  on the ACDC dataset, experimentally demonstrating the effectiveness of 
our method. Experiments shows that CAU   has improved over the original CAU  in almost all 
experiments with the same amount of data (up to 1.17 higher DSC, up to 5.64 lower ASD, up to 1.94 
lower 𝐻𝐷 , up to 3.24 improvement in JC and up to 0.06 improvement in RAVD). CAU  improves 
DSC by up to 18.01, JC by up to 16.72, RAVD by up to 0.8 and reduces ASD and 𝐻𝐷  reduced by 
more than 50% than the latest semi-supervised learning methods. It also outperforms a fully supervised 
algorithm using all labeled data in the ACDC dataset with 35% and 50% labeled data. 

2. Related works 

2.1. Semi-supervised learning 

Many semi-supervised learning methods provide better generalization of the model by adding a 
loss term to the unlabeled data. The loss term usually consists of the following: 

1) Entropy minimization, which encourages the model to output high confidence predictions on 
unlabeled data. 

2) Consistency regularization, which encourages the model to output the same probability 
distribution after perturbing the data. 

3) Generic regularization, which encourages better generalization and reduces overfitting. 
MixMatch [15] achieves good results by combining these methods into one loss. ReMixMatch [16] 

improves on MixMatch with two components: Distribution Alignment, which distribute the predictions 
of unlabeled data aligned to labeled data, and Augmentation Anchor, which uses the predictions of the 
weakly augmented samples as the training target for the strongly augmented version. To generate a 
strong augmentation, ReMixMatch proposes a variant of AutoAugment, also known as CTAugment, 
which can learn the augmentation strategy simultaneously during training. FixMatch [17] simplifies 
MixMatch and ReMixMatch by using the weak enhancement method to obtain a pseudo-label for 
unlabeled data, and then uses the pseudo-label to monitor the output values of the strong enhancement. 
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2.2. Automated data augmentation based on control theory 

Data augmentation is an effective technique to improve the accuracy of modern image classifiers. 
AutoAugment [18] is a method for learning data augmentation strategies to improve the accuracy of 
validation sets. The augmentation strategy consists of a set of transformation parameter magnitude 
tuples to be applied to each image. Crucially, however, AutoAugment is learned under supervision (i.e., 
the magnitude and order of the transformations are determined by training many models on an agent 
task). This makes the application of the AutoAugment method problematic for semi-supervised 
learning on low-labeled semi-supervised learning, especially for medical images with sparsely labeled 
images. To compensate for the need to train the strategy on labeled data, RandAugment [19] uses 
uniform random sampling transformations, though this requires tuning the hyperparameters of random 
sampling on the validation set; however, this is also methodologically difficult when very little labeled 
data is available. 

ReMixMatch introduces a control-theory-based variant of AutoAugment, called CTAugment, 
which uses ideas from control theory to eliminate the need for augmentation learning in AutoAugment. 
Unlike AutoAugment, CTAugment learns the augmentation strategy while the model is being trained, 
making it particularly convenient to set up in semi-supervised learning.  

In CTAugment, there is a set of 18 possible transformations and the magnitude values of the 
transformations are divided into bins, witheach bin assigned a different weight. Initially, all bins have 
a weight of 1. Now two transformations are randomly selected from this set with equal probability to 
form a sequence of transformations, similar to RandAugment. For each transformation, a magnitude 
bin is randomly selected based on the normalized bin weights; labeled samples are augmented by these 
two transformations and fed to the model to predict how close the model predictions are to the actual 
labels. Then, the bin weights of these transformations are updated. In this way, CTAugment learns to 
select models that have a higher chance of predicting the correct label and thus augment within the 
network tolerance. 

2.3. Adversarial learning for image segmentation 

In a game-theoretic sense, generative adversarial networks are based on a game between two 
machine learning models. The game between two machine learning models in the game theoretic sense 
is usually implemented using neural networks. 

We can think of generative adversarial learning as being a bit like counterfeiters and policeman: 
counterfeiters create counterfeit currency, while policeman try to arrest counterfeiters and keep 
legitimate currency in circulation. The competition between the counterfeiters and the police leads to 
increasingly realistic counterfeits, until the counterfeiters create prefect counterfeits and the police are 
unable to tell the difference. A complication of this analogy is that the generator learns from the 
gradient of the discriminator, as if the counterfeiter had planted a mole among the police to report the 
specific methods the police use to detect counterfeit currency. 

Since the framework of generative adversarial network (GAN) and its theoretical foundations 
were proposed, it has provided ideas for research in many directions in the field of images. In the area 
of the semi-supervised semantic segmentation of images, several studies have used adversarial 
methods to make the segmentation of unlabeled images to be more like the segmentation of labeled 
images [20–23]. Considering the spatial resolution, Hung [12]. proposed a method for semi-supervised 
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semantic segmentation using adversarial networks to design a discriminator in a fully convolutional 
manner to distinguish the predicted probability map from the true value segmentation distribution. In 
the field of medical image segmentation, Xu [25] proposed an adversarial model that allowed for a 
boundary mining model to learn from additional unlabeled data by evaluating segmentation 
performance and by providing pseudo-supervision. Zhang [21]. introduced adversarial learning to 
encourage the segmentation output of unlabeled data to be similar to the annotation of labeled data. 
Chen [20]. added a discriminator after the segmentation network to distinguish whether the input 
signed distance map is from either a labeled or an unlabeled image. These methods always include a 
discriminator to distinguish whether the input image is an annotation from either a labeled image or a 
prediction from un unlabeled image. 

3. Proposed method 𝐂𝐀𝐔  

3.1. Overview of our method 𝐶𝐴𝑈  

 

Figure 1. General framework of our proposed CAU  model. The whole model is divided 
into two parts: the segmentation network and the discriminator network. The segmentation 
network, like CAU , is based on the teacher-student model. The unlabeled samples are 
augmented by CTAugment. Strongly augmented samples are fed into the student model 
and weakly augmented samples are fed into the teacher model. The labeled samples are 
trained using 𝐿 , and the unlabeled samples are trained by 𝐿 , 𝐿  and 𝐿 . The 
discriminator network contains the discriminator, 𝐿  trains the discriminator, and 𝐿  
is for adversarial training. 

Figure 1 shows the improved CAU  model. The whole is divided into two parts: the segmentation 
network, and the discriminator network. The segmentation network, like CAU, is based on the teacher-
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student model: therefore the teacher model and the student model share the same architecture, and in 
this paper, we use U-Net. The labeled image is sent to the student model, and the unlabeled image is 
processed by CTAugment. The strongly augmented samples are sent to the student model and the 
weakly augmented samples are sent to the teacher model. Meanwhile, the similarity measures of the 
two models’ outputs are calculated and the entropy of the two models’ outputs is minimized. In the 
discriminator network, we add the adversarial loss 𝐿 , which is used to compute the confidence map 
through the discriminator network, and in turn, the confidence map is used as a supervised signal to 
guide the segmentation network (i.e., the teacher-student model). We use all prediction data to train 
the discriminator network and the loss function 𝐿  is used to train the discriminator network. 

3.2. Adversarial learning in 𝐶𝐴𝑈  

Similar to AdvSemiSeg, the model consists of two parts: a segmentation network and a 
discriminator network. The former can be any network designed for semantic segmentation; in this 
paper, we use U-Net [26],( i.e., given an input image of size 𝐻 𝑊 3); the segmentation network 
outputs a class probability map of size 𝐻 𝑊 𝐶 , where C is the number of semantic classes. The 
framework of the segmentation network is based on the same teacher-student model as the CAU. The 
discriminator network takes the class probability map as the input, and the class probability map is a 
spatial probability map of size 𝐻 𝑊 1 obtained from either the segmentation network or from 
the ground truth label after one-hot encoding, and the discriminator outputs each pixel 𝑃 of the map, 
with a pixel value 𝑃 1 indicating from the ground truth label, and a pixel value 𝑃 0 indicating 
from the segmentation network. When using labeled data, the segmentation network is supervised by 
𝐿  , and for unlabeled data, the loss function adds the adversarial loss 𝐿   to the CAU . After 
obtaining the initial segmentation prediction of unlabeled data from the segmentation network, we 
compute the confidence map by the discriminator network, and in turn use this confidence map as a 
supervisory signal to guide the segmentation network. AdvSemiSeg trains the discriminator using only 
labeled data, but due to the sparsity of medical image data, we use the full data to train the discriminator. 

3.3. Augmentation in 𝐶𝐴𝑈  

CAU  extends the strong augmentation and weak augmentation processing of data in CAU to 
CTAugment. CTAugment not only compensates for the disadvantage that AutoAugment [18] must be 
trained on an agent task before it can be used, but also compensates for the disadvantage that 
RandAugment cannot be trained on the rare cases where there are labeled images. It uses uniform 
random sampling transforms and is able to perform dynamic inference of the magnitude of each 
transform during training. Intuitively, CTAugment learns the likelihood that it will produce an image 
that is classified as correctly labeled. Using these possibilities, CTAugment samples only those 
enhancements that fall within the tolerance of the network. First, as in AutoAugment, CTAugment 
divides each parameter of each transform into different deformation magnitudes. Let 𝑚 be a vector 
of bin weights for a certain deformation parameter amplitude. At the beginning of training, all 
magnitude bins are set with a set of weights initialized to 1. 

These weights are used to determine which magnitude bin is applicable to a given image. In each 
training step, two transforms are sampled uniformly and randomly for each image. To enhance the 
images for training, CTAugment generates a set of modified bin weights 𝑚 for each parameter of 
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these transforms. If 𝑚 0.8, 𝑚 𝑚 , otherwise 𝑚 0, and the magnitude bins are drawn from 
categorical (normalize (𝑚)) [15]. To update the weights of the sampled transforms, CTAugment first 
samples one magnitude bin m  uniformly and randomly for each transform parameter. The resulting 
transforms will then be applied to the image x with label 𝑝, resulting in an enhanced version of the 

image x . Then, according to 𝑤 1 𝛴|𝑝 𝑦|𝑥; 𝜃 𝑝| , which measures how well the 

model’s predictions match the labels. The weight of the magnitude bin of each sample is subsequently 
updated to 𝑚 𝜌𝑚 1 𝜌 𝑤 , where 𝜌 0.99 is a fixed exponential decay hyperparameter. 
In this paper, CTAugment is also divided into strong Aug and weak Aug. As mentioned in ReMixMatch, 
the exponential decay hyperparameter 𝜌  does not significantly affect the results, but depth and 
threshold have significant effects on the results, and according to the experiments in ReMixmatch, 
depth = 2, threshold = 0.8 gives the best results. In this paper, according to the parameter values of 
depth and threshold provided by ReMixmatch, the value of the threshold has no significant effect on 
the results, but the value of the depth has a significant effect on the results, and depth = 2 and depth = 
1 can produce better results. 

3.4. Mean teacher based semi-supervised framework 

Our segmentation network is based on the mean teacher architecture, which is structured by two 
identical models, the student model, and the teacher model. The weights of both models are randomly 
initialized at the beginning of training. The weights of the teacher model are set using an exponentially 
weighted moving average (EMA) of successive student weights: 𝑓  : 𝜃 𝛼𝜃 1 𝛼 𝜃  , 
where 𝜃  is the parameter of the student model and 𝜃  is the parameter of the teacher model. 𝛼 is 
a hyperparameter of the smoothing factor to control the coverage of the EMA in the training history. 
According to the experience of [14], the set 𝛼 0.999 achieves a great performance. Therefore, 𝛼 
is also set to 0.999 in this paper. Each prediction sample of the teacher model can be considered as 
an ensemble of the current and previous versions of the student model. 

3.5. Loss function 

CAU  consists of a segmentation network and a discriminator network. 
The segmentation network is trained by the following loss function: 

𝐿 𝐿 𝜆 𝐿 𝜆 𝐿 𝜆 𝐿                     (1) 

where 𝐿  is the loss of training labeled data, and 𝐿 , 𝐿  , and 𝐿  are the loss of training 
unlabeled data. 𝜆 is a hyperparameter, 𝜆  and 𝜆  are weight factors, which are defined by a 

time-dependent Gaussian warming up function: 𝜆 𝑡 0.1 𝑒  [27]. Where 𝑡  
represents the current training iteration and 𝑡  is the total number of iterations. 

𝐿  is defined as: 

𝐿 𝐿 𝑝 , 𝑦 𝐿 𝑝 , 𝑦 m                            (2) 

𝐿  is the focal loss and 𝐿  is the dice loss. 𝑝  represents the prediction and 𝑦  represents 
the label of image 𝑥 . 

𝐿  is defined as: 
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𝐿 𝐻 𝑝 𝑥 𝑝 𝑥 𝐻 𝑝 𝑥 𝐻 𝑝 𝑥             (3) 

where 𝐻 𝑃  is the entropy of 𝑃. Define the student network as 𝑝 𝑥 𝑓 𝑣 𝑥 , and the teacher 
network as 𝑝 𝑥 𝑓 𝑣 𝑥  . 𝑣 𝑥   denotes the strongly augmented data of the input student 
network, and 𝑣 𝑥  denotes the weakly augmented data of the input teacher network. We calculate 
the Jensen-Shannon divergence of the student network and the teacher network, which is used to make 
their predictions for the unlabeled data close. 

Derived from Shannon entropy [28], 𝐿  is defined as: 

𝐿 𝑥 ∑ 𝐸 ,                                 (4) 

where 𝑥  represents the input image, and 𝐸  is an entropy map consisting of independent pixel-

level entropies in the normalized range [0,1]. We can encourage the model to make more confident 
predictions on unlabeled data by entropy minimization [29]. 

𝐿  is defined as: 

𝐿 ∑ 𝑙𝑜𝑔, 𝐷 𝑆 𝑋 ,                        (5) 

𝐷 ∙  indicates the discriminator network. With this loss, we train the segmentation network to 
deceive the discriminator by maximizing the probability of the prediction results that are generated 
from the ground truth distribution. 

The discriminator network is trained by cross entropy loss, it is defined as: 

𝐿 ∑ 𝑝 ∗ log 𝑞                          (6) 

where 𝑝  is the expectation of the prediction value and 𝑞  is the expectation of the true value. The 
purpose of 𝐿  is to train a discriminator network for adversarial training. The goal of the discriminator 
network is to distinguish whether the input is either a ground truth labeled image or a probabilistic map 
generated by a segmentation network. 

4. Experiment and analysis 

We experimented CAU and CAU  on an ACDC dataset. Our methods are compared with five 
existing semi-supervised algorithms in the cases of 10, 15, 20, 35, 50% and 1–5% of the labeled data, 
respectively. 

The loss function used in the fully supervised algorithm is the same as those used in semi-
supervised algorithms for the labeled data, and the labeled images are randomly selected from the 
dataset. The base model used in all our experiments is a classical and effective model in the field of 
medical image segmentation, U-Net. We use the cosine learning rate strategy 𝑙𝑟 0.05 1.0
cos 𝑖𝑡𝑒𝑟 1  . The optimizer uses stochastic gradient descent (SGD) with a 

learning rate of 0.03. The batch size is 8, and the total number of iterations is 30,000. The training 
process slices the 3D images (total number of slices is 1562) for 2D segmentation and the predictions 
are generated slice by slice and stacked into a 3D volume. 

The number of slices with labeled data used for different percentages of the experiments is shown 
in Table 1. 
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Table 1. Percentage of labeled/unlabeled data. 

Selected slices/Unselected slices Percentage 

16/1546 1% 

34/1528 2% 

47/1515 3% 

66/1496 4% 

88/1474 5% 

162/1400 10% 

276/1286 15% 

312/1250 20% 

543/1019 35% 

781/781 50% 

4.1. Dataset 

In this paper, all experiments and comparisons are based on the public benchmark dataset ACDC. 
The ACDC dataset was created from real clinical examinations obtained at the University 

Hospital of Dijon and it has a larger scope than previous cardiac datasets because it includes expert 
manual segmentation results for the right and left ventricles and myocardial epicardial contours. The 
200 MR images with annotated short-axis cardiac images from 100 patients make the ACDC dataset a 
study material for clinical and algorithmic studies, and the dataset contains the left ventricle (LV), 
myocardium (Myo), and right ventricle (RV) and their corresponding segmentation masks. Given the 
large intervals between short-axis slices and the potential for interslice shifts due to respiratory motion, 
the ACDC dataset is more suitable for 2D segmentation than conventional cardiac images that must be 
segmented in 3D [30]. 

We selected 20% of the total dataset as the test set, 10% of the remaining data as the validation 
set and 90% as the training set. We crop all training images to the same size 256  256, normalize 
their intensities to the range [0,1], and randomly disrupt them before feeding them into the network for 
training. 

4.2. Metric 

We use five standard metrics to evaluate the performance of CAU ,including DSC, ASD, 𝐻𝐷 , 
JC and RAVD. 

DSC 
DSC is an ensemble similarity measure function, usually used to calculate the similarity of two 

samples, and takes the value of [0,1]. The closer it is to 1, the better the result is. It is defined as: 

𝐷𝑖𝑐𝑒                                      (7) 

Where 𝑇𝑃 is true positive, 𝐹𝑃 is false positive, and 𝐹𝑁 is false negative. 
ASD 
ASD is a measure of the distance between two surfaces. It is defined as the average of a list of 

distances between each point on one surface and the nearest point on the other surface. It is defined as: 
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𝐴𝑆𝐷
| |

∑ 𝑚𝑖𝑛 |𝑎 𝑏| ∑ 𝑚𝑖𝑛||𝑏 𝑎||  (8) 

Where 𝑆 𝐴  and𝑆 𝐵  represents the set of surface voxels of 𝐴 and 𝐵. ∑ min || ∙ || represents 
the Euclidean distance of any voxel to 𝑆 ∙ . 

HD95 
The Hausdorff distance is a measure of the distance between two sets of points. It is defined as 

the maximum distance from one set to the nearest point in another set. 95% Hausdorff is the 95  
percentile of the ordered distance measure and is more stable for smaller outliers. It is defined as: 

ℎ 𝐴, 𝐵 𝑚𝑎𝑥 𝑚𝑖𝑛 𝑑 𝑎, 𝑏                            (9) 

where 𝑎  is the point of set 𝐴 , 𝑏  is the point of set 𝐵  , and 𝑑 𝑎, 𝑏   is the Euclidian distance 
between 𝑎 and 𝑏. 

JC 
JC is used to measure the similarity between finite sample sets and is defined as the size of the 

intersection set divided by the size of the union set. It is in the range of [0%,100%]. The higher the 
percentage, the more similar the two sample sets are. It is defined as: 

𝐽 𝐴, 𝐵  ∩

∪
                               (10) 

where 𝐴 ∩ 𝐵 represents the intersection of set 𝐴 and set 𝐵, and 𝐴 ∪ 𝐵 represents the union of set 
𝐴 and set 𝐵. 

RAVD 
RAVD is a metric used in medical imaging to evaluate the accuracy of segmentation algorithms. 

There is no fixed upper or lower limit for its value range. The closer the value is to 0, the closer the 
segmentation result is to the reference standard. It is defined as: 

𝑅𝐴𝑉𝐷                                (11) 

where 𝑉  represents the number of voxels in the reference standard and 𝑉  represents the number of 
voxels in the segmentation result. 

4.3. 𝐶𝐴𝑈  

Because the segmentation network is based on the teacher-student model, the input of the 
segmentation prediction data in the discriminator is different from that of AdvSemiSeg, except for the 
input of the ground truth label. We found that the segmentation prediction with labeled data trained 
only with the adversarial loss function 𝐿  is poor, which is certain because the amount of data is 
inherently small. Additionally, we found that it is not good to include both labeled and unlabeled data 
in the adversarial loss training; therefore, the adversarial loss function 𝐿  training only trains the 
segmentation prediction of unlabeled data. 
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Table 2. 10% data volume case of ACDC. 

Method Mean 

DSC ASD 𝐻𝐷  

𝐶𝑇𝐴_𝑂𝑁𝐿𝑌 88.40 5.53 1.60 

𝐷𝐴𝑁_𝑂𝑁𝐿𝑌 88.08 6.52 1.92 

𝐶𝐴𝑈 _01 88.95 4.90 1.40 

𝐶𝐴𝑈 _02 88.49 5.16 1.58 

𝐶𝐴𝑈 _03 86.89 6.03 1.85 

𝐶𝐴𝑈 _04 86.55 5.63 1.81 

𝐶𝐴𝑈 _05 87.25 7.99 2.34 

𝐶𝐴𝑈 _06 83.70 18.00 4.85 

𝐶𝐴𝑈 88.05 5.61 1.63 

Table 2 is an experiment for the 10% data volume case of the ACDC dataset and serves two 
purposes: 

1) To prove the validity of CAU ; and 
2) Find the effective combination of training CAU . 
𝐶𝑇𝐴_𝑂𝑁𝐿𝑌  and 𝐷𝐴𝑁_𝑂𝑁𝐿𝑌  represent experiments with only CTAugment and adversarial 

training added on top of 𝐶𝐴𝑈, respectively.  
The rest of the 𝐶𝐴𝑈 _0𝑋(𝑋 1,2,3,4,5,6) experiments are the experiments with CTAugment 

and adversarial training, and the parameters of CTAugment are set to a depth = 2 and a threshold = 
0.85. The detail design of 𝐶𝐴𝑈 _0𝑋 experiments is shown in Table 3. 

Table 3. The detail design of 𝐶𝐴𝑈 _0𝑋. 

Method 𝐿  trains 
weakly 
augmented 
data 

𝐿  trains all 
unlabeled data 

Discriminator 
trains all data 

Unlabeled 
loss in CAU 
retains 𝐿  

Unlabeled 
loss in CAU 
retains 𝐿  

Unlabeled 
loss in CAU 
retains 𝐿
𝐿  

𝐶𝐴𝑈 _01 ✔  ✔ ✔   
𝐶𝐴𝑈 _02 ✔  ✔   ✔ 

𝐶𝐴𝑈 _03 ✔  ✔  ✔  
𝐶𝐴𝑈 _04  ✔ ✔ ✔   
𝐶𝐴𝑈 _05  ✔ ✔   ✔ 

𝐶𝐴𝑈 _06  ✔ ✔  ✔  

Those marked in red in Table 2 indicate the best value in a metric, and those marked in green 
indicate the second-best value in a metric. 

CAU  with CTAugment and adversarial training is better than CAU alone with CTAugment or 
adversarial training and is better than the original CAU. 

According to the table, we can know that adversarial loss 𝐿  only trains weakly augmented 
data better than training all unlabeled data. The reason may be because the segmentation network uses 
the teacher-student model, and the strongly augmented data is into the student model, while the weakly 
augmented data is into the teacher model. The teacher model is an average of the continuous student 
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model, in which it theoretically learns more useful and correct semantic information and training the 
strongly augmented data may mislead the model. 

We found little difference between the effects of 𝐶𝐴𝑈 _01  and 𝐶𝐴𝑈 _02 , so the following 
experiments were conducted for both combinations. 

Table 4 shows the experiments for 𝐶𝐴𝑈 _01 and 𝐶𝐴𝑈 _02 at 10, 15, 20, 35, and 50% and at 
the extremes of 1–5% with labeled data volume. 

𝐶𝐴𝑈 _0𝑋~ X 1,2  indicates the experiments with the parameter depth = 1, threshold = 0.85 
for CTAugment. The ones marked in red in the table indicates the best value in a metric among the 
four experiments for a certain amount of data. 

According to the table, it can be seen that: 
1) depth = 1 is better for the case of 10–50% of data volume, i.e., the case with relatively more 

labeled data. While depth = 2 is better for the extreme case of 1–5% of data volume; and 
2) 𝐿 𝐿 𝐿   performs better for the extreme case of 1–5% data volume and 𝐿

𝐿  performs better for the case of 10–50% data volume. 

Table 4. Experiment for 𝐶𝐴𝑈 _01 and 𝐶𝐴𝑈 _02. 

 Method 𝐶𝐴𝑈 _01 𝐶𝐴𝑈 _01~ 𝐶𝐴𝑈 _02 𝐶𝐴𝑈 _02~ 

1% label DSC 74.11 71.00  75.45 68.24 

ASD 22.19 26.34 15.02 41.1 

𝐻𝐷  6.21 6.69 4.53 10.98 

RAVD 0.27 –0.82 0.26 –2.41 

JC 60.91 58.77 62.43 55.64 

2% label DSC 83.11 74.52 82.79 78.39 

ASD 7.93 15.34 8.46 13.74 

𝐻𝐷  2.06 3.14 2.18 3.36 

RAVD 0.06 –5.84 0.04 –2.49 

JC 72.41 64.73 72.06 67.59 

3% label DSC 85.80  84.85 85.56 85.81 

ASD 8.92 7.71 9.58 6.25 

𝐻𝐷  2.62 2.11 2.50  1.72 

RAVD 0.11 0.10 0.11 0.09 

JC 76.11 74.75 75.68 76.06 

4% label DSC 86.89 86.12 86.93 86.33 

ASD 6.39 7.17 6.14 6.61 

𝐻𝐷  1.68 1.96 1.55 1.73 

RAVD 0.04 0.06 0.03 0.05 

JC 77.53 76.45 77.64 76.77 

5% label DSC 88.15 88.13 88.62 87.75 

ASD 5.49 5.73 4.90  5.46 

𝐻𝐷  1.60 1.59 1.41 1.61 

RAVD 0.09 0.09 0.08 0.09 

JC 79.66 79.58 80.36 79.05 

Continued on next page
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 Method 𝐶𝐴𝑈 _01 𝐶𝐴𝑈 _01~ 𝐶𝐴𝑈 _02 𝐶𝐴𝑈 _02~ 

10% label DSC 88.95 89.15 88.49 89.03 

ASD 4.90 4.78 5.16 4.98 

𝐻𝐷  1.40 1.25 1.58 1.38 

RAVD 0.07 0.05 0.08 0.05 

JC 80.77 81.09 80.12 80.90 

15% label DSC 89.54 88.64 88.85 88.70 

ASD 4.42 4.75 4.87 4.83 

𝐻𝐷  1.29 1.60 1.45 1.46 

RAVD 0.08 0.10 0.10 0.08 

JC 81.83 80.52 80.79 80.64 

20% label DSC 89.78 90.15 89.41 90.09 

ASD 4.43 3.96 4.30 4.09 

𝐻𝐷  1.01 0.85 1.01 1.16 

RAVD 0.01 0.04 0.02 0.04 

JC 82.00 83.01 81.45 82.59 

35% label DSC 90.00 91.07 90.45 91.14 

ASD 4.48 4.73 3.96 3.34 

𝐻𝐷  1.04 1.18 0.88 0.83 

RAVD 0.05 0.04 0.03 0.04 

JC 82.44 84.20 83.13 84.21 

50% label DSC 90.14 90.76 90.43 91.13 

ASD 4.25 3.90 4.00 3.42 

𝐻𝐷  1.16 1.19 0.91 0.97 

RAVD 0.08 0.03 0.03 0.04 

JC 82.77 83.08 83.08 84.29 

5. Results 

In Table 5, we recorded the total training time and the average time per epoch for each  CAU, 
CAU , and other semi-supervised methods for 50% of the data. These are compared with the total time 
and average epoch time of the fully supervised method using all data. 

Due to the time required for CTAugment to learn the augmentation strategy, the total time for 
CAU  is relatively longer. 

Our methods take slightly more time than the other semi-supervised and fully supervised 
algorithms in terms of total time and average epoch time, but because the trained models are offline, 
they are ready to use after training. Therefore, the small increase in time is worth the increase in 
accuracy. 

The results of our method CAU  on the ACDC dataset with 1–5%, 10, 15, 20, 35 and 50% data 
volumes are listed in Table 6. The ones marked in red indicate the best value of a metric in a certain 
data volume, and the ones marked in green indicate the second-best value. CAU   has some 
improvements compared to CAU for most different data volumes, and performs much better than fully 
supervised and other semi-supervised algorithms with the same volume of data for extreme data 
amounts from 1–5%. Moreover, Dice, ASD, 𝐻𝐷 , JC, and RAVD indices perform better than fully 
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supervised algorithm using all data for 35% and 50% of data amounts. 

Table 5. Total training time and the average time per epoch. 

Method Total Time Average time per epoch 

100% Fully 245 m 41 s 87.42 
CAU 267 m 20 s 81.47 
CAU  312 m 3 s 56.71 
Pseudo 234 m 59 s 82.85 
EM 239 m 40 s 47.87 
MT 240 m 14 s 46.48 
DAN 267 m 42 s 50.50 
FixMatch 276 m 29 s 55.10 

Table 6. Result of CAU  on ACDC. 

 Method Pseudo EM MT DAN FixMatch Fully CAU CAU  100%Fully

1% label DSC 68.93 66.57 69.11 62.48 65.18 70.05 75.71 75.45 90.73 

ASD 30.83 35.91 40.53 56.65 39.36 42.17 15.68 15.02 3.55  

𝐻𝐷  8.52 10.83 11.48 15.96 12.44 12.39 3.81 4.53 0.97 

RAVD –0.08 –0.88 0.49 0.32 –0.07 0.16 –0.04 0.26 0.06 

JC 55.66 53.27 49.31 47.21 50.99 56.58 63.00 62.43 83.55 

2% label DSC 73.25 73.60 65.10 66.52 70.87 74.30 83.21 83.11 90.73 

ASD 16.66 21.32 43.46 39.46 20.54 16.11 11.60 7.93 3.55 
𝐻𝐷  5.16 5.60 12.20 12.17 6.40 3.92 3.31 2.06 0.97 

RAVD –0.02 –0.03 0.23 0.16 –0.03 –0.10 0.13 0.06 0.06 

JC 61.09 61.00 63.99 61.88 58.20 61.83 72.31 72.41 83.55 

3% label DSC 75.38 76.26 76.76 77.72 74.30 77.48 84.64 85.81 90.73 

ASD 21.27 20.75 27.46 24.65 18.69 19.63 8.59 6.25 3.55 

𝐻𝐷  5.75 5.97 7.59 5.85 5.80 5.58 2.31 1.72 0.97 

RAVD –0.17 0.03 0.07 0.13 0.07 –0.13 0.11 0.09 0.06 

JC 59.34 64.43 64.36 65.53 61.94 63.49 74.32 76.06 83.55 

4% label DSC 80.44 79.96 79.11 77.83 76.47 78.23 86.92 86.93 90.73 

ASD 12.45 16.71 19.76 19.84 13.18 19.00 6.95 6.14 3.55 

𝐻𝐷  3.45 3.89 6.32 5.37 3.53 5.25 2.11 1.55 0.97 

RAVD –0.05 –0.04 0.05 –0.08 –0.05 –0.83 0.03 0.03 0.06 

JC 67.64 68.92 65.00 62.98 64.88 66.65 77.45 77.64 83.55 

5% label DSC 83.37 84.51 82.49 81.42 83.70 84.57 86.44 88.62 90.73 

ASD 13.96 11.32 13.92 16.45 14.77 11.54 10.54 4.90 3.55 

𝐻𝐷  3.51 2.68 3.89 4.76 4.11 3.30 3.29 1.41 0.97 

RAVD 0.11 0.06 0.07 0.09 0.10 0.04 0.13 0.08 0.06 

JC 72.77 74.21 71.52 70.81 73.15 74.34 77.12 80.36 83.55 

10% label DSC 84.26 85.13 84.61 79.87 83.90 85.11 88.05 89.15 90.73 

ASD 8.55 9.38 7.56 14.69 11.67 7.00 5.61 4.78 3.55 

Continued on next page
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 Method Pseudo EM MT DAN FixMatch Fully CAU CAU  100%Fully
 𝐻𝐷  2.74 2.35 2.24 4.00 3.54 2.17 1.63 1.25 0.97 

RAVD 0.07 0.05 0.06 0.02 0.12 0.07 0.11 0.05 0.06 

JC 73.91 75.27 74.60 68.36 73.27 75.28 79.34 81.09 83.55 

15% label DSC 87.00 88.11 87.02 86.26 87.64 87.29 88.43 89.54 90.73 

ASD 9.29 7.10 9.37 10.40 8.80 7.62 6.36 4.42 3.55 

𝐻𝐷  2.60 1.81 2.97 3.20 2.36 2.15 2.10 1.29 0.97 

RAVD 0.10 0.06 0.12 0.09 0.06 0.07 0.11 0.08 0.06 

JC 77.89 79.41 78.05 76.76 78.73 78.30 80.21 81.83 83.55 

20% label DSC 87.34 87.72 87.87 86.60 87.45 88.10 91.53 90.15 90.73 

ASD 5.81 4.20 5.54 6.24 6.91 5.48 2.99 3.96 3.55 

𝐻𝐷  1.68 1.25 1.60 1.85 2.10 1.58 0.87 0.85 0.97 

RAVD 0.07 0.01 0.09 0.08 0.07 0.06 0.01 0.04 0.06 

JC 78.29 79.01 79.16 77.18 78.50 79.48 84.68 83.01 83.55 

35% label DSC 88.52 88.97 88.73 87.15 89.14 89.24 91.27 91.14 90.73 

ASD 7.34 6.54 6.65 10.79 7.79 5.97 3.30 3.34 3.55 

𝐻𝐷  2.21 1.76 2.01 2.70 2.28 1.61 0.85 0.83 0.97 

RAVD 0.10 0.05 0.08 0.08 0.06 0.06 0.05 0.04 0.06 

JC 80.23 80.79 80.38 77.99 81.09 81.23 84.33 84.21 83.55 

50% label DSC 89.70 89.55 89.82 88.95 90.00 90.26 90.45 91.13 90.73 

ASD 3.79 4.20 4.76 4.03 4.75 3.48 5.00 3.42 3.55 

𝐻𝐷  0.99 1.25 1.22 1.28 1.37 0.98 1.35 0.97 0.97 

RAVD 0.04 0.11 0.07 0.09 0.06 0.06 0.06 0.04 0.06 

JC 81.87 81.75 82.08 80.76 82.38 82.83 83.11 84.29 83.55 

As shown in Figure 2, the bar chart demonstrates the Dice metrics for different algorithms with a 
different number of labeled images on the ACDC dataset. The blue color is the original CAU and the 
brown color is the CAU  with the improvements to it proposed in this paper. As can be seen, our 
method CAU   performs particularly well at the extremes of data volume (i.e., 1–5%). CAU  
improves compared to CAU in almost all cases with different data volumes. Moreover, the adversarial 
learning method DAN has lower indices than others in almost all cases. This indicates that adversarial 
learning alone does not work well in cardiac image segmentation, demonstrating the effectiveness of 
CAU  in introducing adversarial learning into the original CAU. 

As Figure 3 shows, the bar chart presents the ASD metrics for different algorithms on the ACDC 
dataset with different numbers of labeled images. The blue color is the original CAU and the brown 
color is the CAU  with its improvement proposed in this paper. It can be seen that CAU  has lower 
indices than the fully supervised algorithm and other semi-supervised algorithms that use the same 
volume of data for all different data sizes; the indices are improved compared to CAU for almost all 
different data sizes, in particular, CAU   improves the problem that the original CAU  has higher 
indices than the fully supervised algorithm that use the same volume of data for 50% of the time. 
Moreover, the adversarial learning method DAN and mean teacher outperform the fully supervised 
algorithm with the same volume of data in almost all cases, demonstrating that neither outperform the 
fully supervised algorithm with the same volume of data in almost all cases, demonstrating that neither 
method alone works well for cardiac image segmentation and validating the effectiveness of CAU . 
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Figure 2. Dice on ACDC. 

 

Figure 3. ASD on ACDC. 

As is shown in Figure 4, the bar chart presents the 𝐻𝐷  metrics for different algorithms on the 
ACDC dataset with a different number of labeled images. The blue color is the original 𝐶𝐴𝑈 and the 
brown color is the 𝐶𝐴𝑈  with its improvement proposed in this paper. It can be seen that 𝐶𝐴𝑈  has 
a lower index than the fully supervised algorithm and other existing semi-supervised algorithms that 
use the same volume of data for all different data volumes; this has a larger improvement compared to 
𝐶𝐴𝑈 for 2–15% of the data volume, especially 𝐶𝐴𝑈  improves the problem that 𝐶𝐴𝑈 exceeds the 
fully supervised algorithm with the same volume of data in 50% of the cases. Moreover, in the extreme 
case (i.e.,1–5%), almost all other existing semi-supervised algorithms outperform the fully supervised 
algorithm using the same volume of data, while 𝐶𝐴𝑈  performs better than all algorithms, verifying 
the effectiveness of 𝐶𝐴𝑈  for cardiac image segmentation in the case of extremely small amount of 
data. 
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Figure 4. 𝐻𝐷  on ACDC. 

 

Figure 5. Comparison of the segmentation effect on ACDC. 

As shown in Figure 5, the segmentation results generated by different methods on the ACDC 
dataset are plotted. The first column is the ground truth, the second column is fully supervised that use 
all labeled images, the third column is fully supervised with various data volumes, and the fourth 
column is our improved algorithm for 𝐶𝐴𝑈 (i.e., 𝐶𝐴𝑈 , the fifth, sixth, seventh, eighth, ninth and 
tenth columns are 𝐶𝐴𝑈 , FixMatch, adversarial learning, entropy minimization, mean teacher and 
pseudo label [13], respectively). The segmented areas, colored blue, green and red in the Figure 5, are 
the left ventricle, myocardium, and right ventricle. It can be seen that 𝐶𝐴𝑈  and 𝐶𝐴𝑈 are closer to 
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the ground truth in the extreme case of data volume (1–4%) than fully supervised and other semi-
supervised methods with the same data volume, and the observations also show the effectiveness of 
our method compared to fully supervised methods using all fully labeled images. 

In fact, our method can also be used to segment images from other imaging techniques, such as 
optical coherence tomography (OCT) [31–34]. OCT is a non-invasive imaging technique that provides 
structural and functional imaging of retina with high spatial and temporal resolution. In the future, we 
will try to apply our methods to the segmentation of images from other imaging techniques, which we 
believe will lead to further advances in medical image segmentation. 

6. Conclusions 

In this paper, we propose a semi-supervised training method CAU  which is suitable for cardiac 
image segmentation. The whole is divided into two parts:the segmentation networkand the discriminator 
network. The segmentation network is based on the teacher student model. Labeled image is sent to the 
student model. Unlabeled image is processed by CTAugment. Then, the strongly augmented samples are 
sent to the student model and the weakly augmented samples are sent to the teacher model. The loss 
function adopts a hybrid loss function, which mixes the supervised loss for labeled data with 
unsupervised loss for unlabeled data. Adversarial learning is also introduced to facilitate semi-supervised 
learning of unlabeled data through confidence maps generated by discriminators. We validate CAU and 
CAU  on the ACDC dataset. Experiments show that CAU  has improved over the original CAU in 
most experiments with the same amount of data (up to 1.17 higher DSC, up to 5.64 lower ASD, up to 
1.94 lower 𝐻𝐷 , up to 3.24 improvement in JC and up to 0.06 improvement in RAVD). And CAU  
improves DSC by up to 18.01, JC by up to 16.72, RAVD by up to 0.8, ASD and 𝐻𝐷  reduced by more 
than 50% than the latest semi-supervised learning methods. It also outperforms fully supervised 
algorithm using all labeled data with 35% and 50% labeled data. 
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