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Abstract: In this paper, we propose a two-group SIR epidemic model to simulate the outcome of the
stay-at-home policy and the imposed face mask policy during the first COVID-19 epidemic wave in
the United States. Then, we use a dynamic optimal control approach (with the objective of minimizing
total deaths) to find the optimal dynamical distribution of face masks between healthcare workers and
the general public. It is not surprising that all face masks should be solely reserved for healthcare
workers if the supply is short. However, when the supply is indeed sufficient, our numerical study
indicates that the general public should share a large portion of face masks at the beginning of the
epidemic wave to dramatically reduce the death toll. This interesting result partially contradicts the
guideline advised by the US Surgeon General and the Centers for Disease Control and Prevention
(CDC) in March 2020. The optimality of this sounding CDC guideline highly depends on the supply
level of face masks, which changes frequently; hence, it should be adjusted according to the supply of
face masks.
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1. Introduction

At the beginning of a pandemic, the policymakers have to decide how to allocate limited medical
resources among the general public and some special groups such as healthcare workers and vulner-
able people. Together, mathematical models alongside a dynamic optimal control analysis will pro-
vide insights into finding the optimal allocation of medical resources. In this paper, we will use the
COVID-19 pandemic [1] as an illustrative example to show how to solve the dynamic optimal alloca-
tion of face masks among healthcare workers and the general public.
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During the first two months of 2020, the pandemic was mainly restricted to China [2,3]. The United
States did not take very serious or effective actions until March 2020 [4], even though the first case was
reported on January 22, 2020 [5]. Due to different cultures and medical systems, the control strategies
varied from one country to another. For instance, wearing face masks in public areas is ubiquitous and
even enforced by compulsory policies in China, Japan, and South Korea for everyone [6]. On the other
hand, in March 2020, the US Surgeon General advised the general public not to buy face masks [7],
and the Centers for Disease Control and Prevention (CDC) commented that face masks won’t protect
healthy people from getting the SARS-CoV-2 [8]. Nevertheless, according to the studies in [9,10], the
aerosol transmission of SARS-CoV-2 is possible because the virus can last in aerosols for hours and
remain viable and infectious. Moreover, there is plenty of scientific evidence showing that even though
a person does not develop any symptom, they may still be infectious [11]. Thus, wearing face masks
in public is an effective way to reduce the spreading of COVID-19, and more importantly, to prevent
asymptomatic carriers [12] from infecting others.

Some dedicated compartmental models were developed in [13–15] to assess the community-wide
impact of massively using face masks by the general public, which shows a high efficacy in curtailing
community transmission and reduces the burden of the pandemic. In this paper, we will investigate
how to optimize the allocation of face masks between healthcare workers (HCW) and the general
public during the early stage of the COVID-19 outbreak. In April 2020, the CDC started to recommend
wearing cloth face coverings for the general public (GP). Due to the initial supply shortage, the CDC
advised saving face masks for healthcare workers [16]. It poses a natural question to ask whether one
should distribute either a portion or none of the face masks to the general public during the epidemic
outbreak. In other words, should the general public continue to reserve all the face masks solely for
the HCW? We are particularly interested in the group of HCW since higher nurse-to-patient staffing
ratios can result in healthier patients; hence, protecting the health of the limited number of HCW is
paramount [17, 18]. In general, it may take several years to train a qualified HCW to do a professional
job. The objective of this work is to design an epidemic model with face masks and stay-at-home
factors to find the optimal dynamical distribution of face masks among healthcare workers and the
general public and to minimize the total number of deaths.

This paper is organized as follows. In Section 2, an optimal control model based on a new two-
group SIR model is introduced, where the effects of wearing face masks and the stay-at-home policy
are considered. The justification and estimation of the relevant parameters of our proposed model
are discussed in Section 3. Section 4 presents the numerical results of the dynamic optimal control,
where three different scenarios are demonstrated. Finally, some conclusions and discussion are given
in Section 5.

2. A two-group SIR model

Our model is based on the standard SIR (susceptible-infected-recovered) model proposed in [19].
To distinguish between two groups (i.e., the general public (GP) and healthcare workers (HCW)), we
introduce six compartments S 1, I1, R1, S 2, I2, and R2 for the SIR classifications in the two groups. The
subscripts 1 and 2 refer to the GP and the HCW, respectively. We do not include the asymptomatic
(or latent) compartment because we assume that all infected individuals are infectious, even though
they do not develop any symptoms [11]. Let K1(t) ≥ 0 and K2(t) ≥ 0 be the numbers of face masks
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distributed in the two groups over the given period [0,T ]. The average number of available face masks
for these two groups are

ρ1 = K1/(S 1 + I1 + I2), ρ2 = K2/(S 2 + R2). (2.1)

Here, we assume that the recovered GP (R1) does not need face masks, but the recovered HCW (R2)
will return to their job and still need to wear face masks. Moreover, the infected HCW (I2) are released
from their duty of healthcare and thus considered as a part of the GP. Now, we can set the transmission
rates for the GP and the HCW to be β f1(ρ1) and β f2(ρ2), where β > 0 is the intrinsic transmission rate
of SARS-CoV-2, and f1 and f2 are positive and decreasing functions. For simplicity, we choose

f1(ρ1) =
1 + αρ1

1 + ρ1
, f2(ρ2) =

r + αρ2

1 + ρ2
, (2.2)

where 1 − α ∈ (0, 1) stands for the maximum efficacy of wearing face masks, and r > 1 indicates
the higher risk of infection for the HCW compared to the GP. Next, we introduce the ratio of infected
individuals over the number of HCW:

ρ = (I1 + I2)/(S 2 + R2) (2.3)

and assume that the recovery and death rates depend on ρ according to the two given functions γ(ρ)
and δ(ρ), respectively. It is reasonable to assume that the higher ρ is, the smaller γ(ρ) and the larger
δ(ρ) will be. In our simulations, we will choose

γ(ρ) =
γ0 + γ∞ρ

1 + ρ
, δ(ρ) =

δ0 + δ∞ρ

1 + ρ
, (2.4)

where γ0 > 0 and δ0 > 0 are the recovery and death rates of an infected individual with sufficient
healthcare (ρ → 0), respectively, and γ∞ > 0 and δ∞ are the rates when the healthcare system is
overwhelmed (ρ→ ∞). Obviously, γ0 > γ∞ and δ0 < δ∞. To estimate the efficacy of the stay-at-home
policy, we introduce another parameter q > 0 to account for the portion of susceptible individuals who
limit their activity in an isolated region (staying at home for example) away from the infected group.
Finally, we are ready to state our two-group SIR model which consists of six ordinary differential
equations

S ′1 = −β f1(ρ1)S 1[ f1(ρ1)I1 + f1(ρ1)I2] − qS 1, (2.5)
S ′2 = −β f2(ρ2)S 2[ f1(ρ1)I1 + f1(ρ1)I2], (2.6)
I′1 = β f1(ρ1)S 1[ f1(ρ1)I1 + f1(ρ1)I2] − [γ(ρ) + δ(ρ)]I1, (2.7)
I′2 = β f2(ρ2)S 2[ f1(ρ1)I1 + f1(ρ1)I2] − [γ(ρ) + δ(ρ)]I2, (2.8)

R′1 = γ(ρ)I1, (2.9)
R′2 = γ(ρ)I2, (2.10)

where ρ1, ρ2, and ρ are defined in (2.1) and (2.3), respectively, the functions f1 and f2 are given in (2.2),
and the functions γ and δ are defined in (2.4). The prime symbol on the left-hand side of the equations
denotes the ordinary derivative in time t. Such two-group SIR epidemic models were widely known in
the literature, see e.g., [20] and references therein. Note that fi(ρ) (with i = 1 or i = 2) appears twice
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in the incidence rates. This is because face masks are more effective in reducing disease transmission
if both susceptible and infected individuals are wearing them.

Let T be the considered duration of an outbreak and Kmax be the maximum capacity of the daily
production number of face masks. The objective is to minimize the total number of deaths

min
K1,K2

J(K1,K2) :=
∫ T

0
δ(ρ)I1dt︸         ︷︷         ︸
=:J1

+

∫ T

0
δ(ρ)I2dt︸         ︷︷         ︸
=:J2

, (2.11)

subject to the point-wise control constraints describing the production capacity limits

0 ≤ K1(t), 0 ≤ K2(t), K1(t) + K2(t) ≤ Kmax. (2.12)

The above optimization model gives a nonlinear constrained optimal control problem, whose opti-
mal control (may not be unique) can be mathematically characterized via Pontryagin’s minimum prin-
ciple [21]. Due to its high non-linearity, we will numerically solve the above optimal control problem
using a direct transcription method [22, 23] based on Legendre-Gauss-Radau pseudo-spectral colloca-
tion [24,25] and nonlinear programming (NLP) solvers (e.g., IPOPT [26] and SNOPT [27]). Different
from indirect methods that require to derive necessary optimality conditions, such direct transcription
methods are more flexible in treating extra constraints and are widely supported by well-developed
general optimal control software packages that are ready to be used. In particular, our following nu-
merical simulations were performed with the free and open-source Imperial College London Optimal
Control Software (ICLOCS2) [28] within MATLAB, where the derivatives were numerically computed
by the algorithmic differentiation toolbox Adigator [29].

3. Parameter estimation

There have been plenty of works dedicated to the estimation of key epidemic parameters such as the
basic reproduction number and the serial interval during the early outbreak [30–32]. To estimate the
values of the parameters in our proposed model, we shall fit the reported data on cumulative confirmed
case numbers, denoted by C(t). The change rate of C(t) is the same as the newly infected case number,
which according to our model is

C′ = β[ f1(ρ1)S 1 + f2(ρ2)S 2][ f1(ρ1)I1 + f1(ρ1)I2]. (3.1)

The initial numbers of the susceptible population and healthcare workers are estimated as S 1(0) =

310, 000, 000 [33] and S 2(0) = 16, 000, 000 [34]. Throughout this paper, the time unit is in days. We
chose March 13, 2020 as the initial time t = 0 since an emergency declaration was warranted for the
COVID-19 pandemic on that date [4]. Accordingly, we set I1(0) = 1896 [5]. Since the epidemic wave
started and stay-at-home policy was adopted following the declaration, we let I2(0) = R1(0) = R2(0) =

0. Based on the cumulative case numbers reported from February 28, 2020 to March 13, 2020 [5], we
can estimate the intrinsic growth rate as βS 1(0)− γ0 − δ0 = 0.35 by fitting a simple exponential growth
model

C(t) = C(0)e[βS 1(0)−γ0−δ0]t, (3.2)
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which can be obtained by approximating our model under the assumptions that, before March 13, 2020,
the stay-at-home policy was not adopted (q = 0), few people wore face masks (K1 + K2 � S 2 � S 1),
and the infected population was small (I2 � I1 � S 2). Consequently, we have S 1(t) ≈ S 1(0) and
ρ1, ρ2, ρ, I2 ≈ 0. The equation (2.7) is approximated by a linear equation I′1 = [βS 1(0) − γ0 − δ0]I1,
with the solution I1(t) = I1(0)e[βS 1(0)−γ0−δ0]t. The equation for the cumulative case numbers C(t) in (3.1)
can be approximated as C′(t) = βS 1(0)I1(t) = βS 1(0)I1(0)e[βS 1(0)−γ0−δ0]t. This, together with the initial
condition C(−∞) = 0, gives (3.2).

The basic reproduction number R0 = βS 1(0)/(γ0 +δ0) for SARS-CoV-2 was estimated to be approx-
imately 2.2 [35]. In view of βS 1(0) − γ0 − δ0 = 0.35, we obtain γ0 + δ0 = 0.29 and βS 1(0) = 0.64 from
a simple calculation. To estimate γ0 and δ0, we need to use the death rate, which varies from 4% to
7.5% [36]. Here, we chose δ0/(γ0 + δ0) = 7%. Consequently, we have δ0 = 0.02 and γ0 = 0.27. There
is no data available for the case when the healthcare system is overwhelmed by too many infected
patients, and we simply assume that with an overwhelmed healthcare system, the death rate will reach
δ∞ = 0.1 and the recovery rate reduces to γ∞ = 0.1.

The values for α and r cannot be found in the literature. Here, we set α = 0.9 (face masks can
at most reduce the transmission rate by 10%) and r = 3 (the healthcare workers are three times more
likely to be infected than the general public). We have used some other values for these parameters,
and the results do not vary much. Especially, we numerically find that the optimal distributions of face
masks have very similar patterns for other reasonable choices of α and r.

Table 1. Selection and estimation of model parameters.

Parameter Symbol Value Reference
initial susceptible GP S 1(0) 310,000,000 [33]
initial susceptible HCW S 2(0) 16,000,000 [34]
initial infected GP I1(0) 1,896 [5]
initial infected HCW I2(0) 0 assumed
initial recovered GP R1(0) 0 assumed
initial recovered HCW R2(0) 0 assumed
basic reproduction number R0 2.2 [35]
transmission rate β 0.64/S(0) fitted
death rate δ0/(γ0 + δ0) 7% [36]
recovery rate γ0 0.27 fitted
per capita death rate δ0 0.02 fitted
minimal recovery rate γ∞ 0.1 assumed
maximal death rate δ∞ 0.1 assumed
face mask efficacy α 0.9 assumed
HCW risk factor r 3 assumed
stay-at-home rate q 0.03 fitted

To estimate the efficacy of stay-at-home parameter q, we assume ρ ≈ 0 and ignore the population
of healthcare workers (S 2 << S 1 and I2 << I1). For simplicity, we also assume that the majority do
not wear face masks (ρ1 ≈ 0) and then fit the confirmed cumulative case numbers reported from March
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13, 2020 to April 30, 2020 [5] by the following simplified SIR model:

S ′ = −βS I − qS , (3.3)
I′ = βS I − (γ0 + δ0)I, (3.4)
R′ = γ0I, (3.5)
C′ = βS I, (3.6)

where S (0) = 310, 000, 000, C(0) = 1896, β = 0.64/S (0), γ0 = 0.27, and δ0 = 0.02. The equation
for R can be decoupled from the system. The two unknown parameters q and I(0) are estimated via
MATLAB’s nonlinear least-squares curve fitting solver lsqnonlin. With a random initial guess, the
lsqnonlin solver converges to the (local) optimally estimated parameters: q = 0.03 and I(0) = 1070.
Numerically, we observe the fitted parameters q and I(0) are insensitive to the chosen initial guess,
as well as the different possible choices of R(0). It is tempted to treat R(0) as an additional unknown
parameter, but in this way, its fitted value is not uniquely determined by the given data. Hence, we
reasonably set R(0) = 0 by assuming nobody recovered at the beginning. Figure 1 illustrates the close
match between the reported C(t) data and the simulated C(t) based on the fitted parameters. We point
out that the stay-at-home term qS is crucial for achieving such a satisfactory fitting while fixing the
other model parameters. The assumed and estimated parameter values are listed in Table 1.
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Figure 1. The system dynamics based on the fitted parameters: q = 0.03, I(0) = 1070.

4. Dynamic optimal control

In this section, we report some inspiring simulation results based on our proposed optimal control
model for optimizing the allocation of face masks among HCW and the GP with our estimated param-
eters. We highlight that in the application of our model to different countries/areas, one may need to
re-estimate some of the parameters based on the reported data and the population scale. Our tested
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choices of the maximum daily production capacity of the face masks are only for demonstrating our
proposed model, which does not reflect real-life situations. Moreover, our current model does not take
those homemade cloth face masks and the effects of mandatory quarantine into account. Therefore,
our model outcomes are mainly for a qualitative comparative analysis.

We set T = 100 and consider 3 scenarios of the maximum daily production capacity of face masks:

(i) Kmax = 16, 000, 000 (each HCW can have at most one face mask every day);
(ii) Kmax = 80, 000, 000 (each HCW can have at most five face masks every day);

(iii) Kmax = 160, 000, 000 (each HCW can have at most ten face masks every day).
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Figure 2. Scenario (i): optimal allocation of face masks between the GP and HCW.

For scenario (i) with a very limited supply, our optimal control results are reported in Figure 2. It
shows that the face masks should be distributed to the HCW only, which agrees with the guideline from
the CDC. With this policy control, the total death numbers of the GP and the HCW are J1 = 386, 017
and J2 = 104, 707, respectively. With more investments from the government and industries, the
supply of face masks have been quickly boosted to a higher level. In this context, we would want to
ask whether this CDC guideline continues to be optimal with an increased supply of face masks. The
simple answer is no, as clearly shown in the next two scenarios.

For scenario (ii) with moderate supply, our optimal control results are reported in Figure 3. Quite
different from scenario (i), it shows that the face masks should be approximately equally distributed
at the beginning, and then gradually shifted to the HCW, though not all face masks are given to the
HCW across the whole pandemic outbreak. The total death numbers of the GP and the HCW are
J1 = 144, 818 and J2 = 27, 145, respectively. As a comparison, Figure 4 shows the corresponding
outcomes if strictly following the CDC guidelines to allocate all face masks to HCW, where the total
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death numbers of the GP and the HCW become J1 = 182, 409 (with a 26% increase) and J2 = 29, 890
(with a 10% increase), respectively. The significant increase (about 23%) in the total death toll is
somewhat surprising but reasonable, since an increased number of infected GP due to not wearing face
masks would further infect more HCW, and ultimately lead to higher death rates and more deaths in
both groups.
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Figure 3. Scenario (ii)-Optimal: optimal allocation of face masks between the GP and HCW.

For scenario (iii) with very sufficient supply, our optimal control results are reported in Figure 5.
Different from both scenarios (i) and (ii), it shows that the majority of face masks should be distributed
to the GP at the beginning of the epidemic outbreak, and then gradually shifted to the HCW during the
outbreak. The total death numbers of the GP and the HCW are J1 = 80, 897 and J2 = 12, 208, respec-
tively. For comparison, Figure 6 shows the corresponding outcomes if following the CDC guideline
to allocate all face masks to HCW, where the total death numbers of the GP and the HCW become
J1 = 155, 540 (with a 92% increase) and J2 = 21, 871 (with a 80% increase), respectively. As-
tonishingly, the total death numbers almost doubled if strictly following the reasonably sound CDC
guidelines, where, based on our model setting, the protective effect of wearing too many face masks
for HCW is essentially saturated. It is also worthwhile to notice that the optimal allocation of masks
has greatly flatted the infectious peak curves and hence lead to much fewer deaths.

As an alternative illustration, the relevant functions f1, f2, γ, δ with respect to time are compared
in Figure 7, where we indeed observe slightly higher death rates and lower recovering rates if all face
masks are reserved solely for HCW (as advised by CDC). Scenario (iii) indicates that an appropriately
balanced allocation of face masks between the GP and the HCW plays a significant role in saving more
lives. In summary, the three different scenarios manifest that the allocation of face masks needs to be
carefully optimized, especially when the supply becomes gradually more sufficient.
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Figure 4. Scenario (ii)-CDC: all face masks are reserved for HCW only.
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Figure 5. Scenario (iii)-Optimal: optimal allocation of face masks between the GP and
HCW.

Mathematical Biosciences and Engineering Volume 20, Issue 7, 12472–12485.



12481

0 20 40 60 80 100
0

0.5

1

1.5

2

2.5

3

3.5
10 8

0 20 40 60 80 100
0

0.5

1

1.5

2

2.5

3
10 5

0 20 40 60 80 100
0

0.5

1

1.5

2
10 6

0 20 40 60 80 100
0

5

10

15
10 4

0 20 40 60 80 100
0

0.002

0.004

0.006

0.008

0.01

0.012

0 20 40 60 80 100
0

1

1

2

2
10 8

Figure 6. Scenario (iii)-CDC: all face masks are reserved for HCW only.
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5. Conclusions and discussion

In this paper, we constructed a two-group SIR model to optimize the distribution of face masks
among healthcare workers (HCW) and the general public (GP). When the supply of face masks is
short, our results indicate that all face masks should be reserved for the HCW. This coincides with the
advice from the CDC in April 2020 [16]. However, when there is a sufficient supply of face masks, the
general public should share a large portion of face masks at the beginning of an epidemic outbreak. This
result somewhat contradicts the recommendations given in March 2020 by the US Surgeon General [7]
and the CDC [8]. The optimality of this reasonable and sound CDC guideline highly depends on the
supply level of face masks, which changes frequently and varies by location, and hence this guideline
should be modified according to the supply of face masks. Based on our choices and estimations of
parameter values, assuming that the supply of face masks is sufficient, and the stay-at-home policy
remains effective, our model indicates that the first epidemic wave would have ended in May 2020,
with a cumulative total 93,105 deaths (80,897 deaths from the GP and 13,208 deaths from the HCW).
Note that the stay-at-home policy was released before the end of the first epidemic wave, and an even
stronger second epidemic wave arose afterward. Unlike physical phenomena which can be observed
from repeated experiments, epidemic outbreaks cannot be tested multiple times. Thus, it is important
to explore the effects of hypothetical control measures on epidemic waves [37]. Our model analysis
and numerical simulation provides theoretical experiments on what would have occurred if the general
public were advised to wear face masks at the beginning of the first epidemic wave and the stay-at-
home policy was enforced until the end of the epidemic wave.

There are some limitations to our studies. For instance, the values for parameters δ∞, γ∞, α, and r
are arbitrarily chosen. More real-life data collections are required to obtain more reliable estimations
on the death and recovery rates of SARS-CoV-2 in the case of the overwhelmed healthcare system, the
efficacy of wearing face masks, and the risk to healthcare workers. With these limitations being said,
our model predictions may vary a lot whenever the involved parameters are changed. In particular, the
reopening of the country will significantly diminish the stay-at-home efficacy and generate multiple
epidemic waves.

Our proposed model can be extended in several different ways. For example, it is interesting to
alternatively enforce an integral constraint

∫ t

0
K1(τ) + K2(τ)dτ ≤ (K0 + Kmaxt), which is more practical

since it allows for the flexible usage of face masks according to the epidemic dynamics and possible
initially stocked face masks (denoted by K0). Our developed model can be generalized to optimize
the allocations of other personal protective equipment (PPE) among various groups of populations
(e.g., public workers vs the general public). It is also possible to further differentiate the protection
effects between different types of face masks. In addition, the objective function may also include
some economic considerations, such as the production and transportation costs of face masks. The
generalization of our model to optimally allocate the limited vaccination is also interesting.
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