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Abstract: To address the problems of slow convergence speed and low accuracy of the chimp 
optimization algorithm (ChOA), and to prevent falling into the local optimum, a chaos somersault 
foraging ChOA (CSFChOA) is proposed. First, the cat chaotic sequence is introduced to generate the 
initial solutions, and then opposition-based learning is used to select better solutions to form the 
initial population, which can ensure the diversity of the algorithm at the beginning and improve the 
convergence speed and optimum searching accuracy. Considering that the algorithm is likely to fall 
into local optimum in the final stage, by taking the optimal solution as the pivot, chimps with better 
adaptation at the mirror image position replace chimps from the original population using the 
somersault foraging strategy, which can increase the population diversity and expand the search 
scope. The optimization search tests were performed on 23 standard test functions and CEC2019 test 
functions, and the Wilcoxon rank sum test was used for statistical analysis. The CSFChOA was 
compared with the ChOA and other improved intelligent optimization algorithms. The experimental 
results show that the CSFChOA outperforms most of the other algorithms in terms of mean and 
standard deviation, which indicates that the CSFChOA performs well in terms of the convergence 
accuracy, convergence speed and robustness of global optimization in both low-dimensional and 
high-dimensional experiments. Finally, through the test and analysis comparison of two complex 
engineering design problems, the CSFChOA was shown to outperform other algorithms in terms of 
optimal cost. For the design of the speed reducer, the performance of the CSFChOA is 100% better 
than other algorithms in terms of optimal cost; and, for the design of a three-bar truss, the 
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performance of the CSFChOA is 6.77% better than other algorithms in terms of optimal cost, which 
verifies the feasibility, applicability and superiority of the CSFChOA in practical engineering problems. 

Keywords: chimp optimization algorithm; cat chaotic sequence; opposition-based learning; 
somersault foraging; convergence; local optimum 
 

1. Introduction  

Optimization problems are prevalent in a wide range of disciplines and social life tasks, such as 
resource scheduling, task allocation, path planning, etc. The core idea is to choose the best possible 
solution from feasible solutions which satisfy the constraints to make the objective sought be as 
optimal as possible. Most of the engineering research fields need to solve optimization problems 
with multi-dimensional, complex and large computational loads. Optimization problems have been 
explored in the pursuit of optimal goals in the long term. To a certain extent, traditional optimization 
algorithms provide reliable solutions to optimization problems in various fields based on the precise 
mathematical characteristics of the optimization problem, and they are dedicated to using definite 
structures and parameters to give optimal solutions. However, for complex optimization problems 
with non-differential objective and constraint functions and multiple peaks, traditional optimization 
methods are often complicated to calculate or difficult to yield satisfactory solutions. Swarm 
intelligence (SI) is an intelligent computing technique, which has been very popular in recent years. 
The term “swarm intelligence” was introduced by Beni and Wang [1] in the context of cellular 
robotic systems; Brezočnik et al. [2] consider the advantages of SI to include 1) autonomy, where 
each agent of the swarm controls its own behavior autonomously, and 2) self-organization, where 
intelligence appears in the swarm itself, so SI is extremely flexible in solving problems. In actual 
situations, optimization problems are increasingly characterized by dynamic changes, nonlinearity, 
uncertainty and high latitude. To effectively solve complex optimization problems in reality, 
researchers have proposed SI-based optimization algorithms inspired by the behavior of animal 
groups, such as particle swarm optimization [3], the artificial bee colony algorithm [4], cuckoo 
search [5], ant colony optimization [6], etc. 

The chimp optimization algorithm (ChOA) was proposed by Khishe and Mosavi [7] in 2020; it 
is a heuristic intelligent optimization algorithm based on the social behavior of chimp populations, 
and it originates from the simulation of individual chimp intelligence, sexual motivation and 
predatory behavior in nature; it constructs an effective optimization solution through the processes of 
driving, chasing, blocking and attacking. For various intelligent optimization algorithms, many 
improvement strategies have been proposed by numerous scholars. Feng and Song [8] improved the 
performance of the whale optimization algorithm in the global exploration and local search phases by 
introducing nonlinear time-variant adaptive weights, introduced a differential mutation perturbation 
factor in the encircling prey phase of the whale optimization algorithm to avoid premature 
convergence and improved the logarithmic spiral curve search path for individual whales to improve 
the algorithm’s ability to traverse solutions. Shen et al. [9] adjusted the population diversity through 
an adaptive multi-scale control factor and designed an assisted swarm in implementing a local search 
to balance faster convergence and improved solution quality. Tang et al. [10] enhanced the 
population diversity through an elite ranking strategy, used a nonlinear energy factor adjustment 
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strategy to balance the exploration and exploitation of the algorithm, and used a Gaussian random 
walk strategy to apply perturbations to the optimal individuals to effectively jump out of the local 
optimum. Zhang et al. [11] let the gulls choose spiral flight paths in different directions so that the 
gull flight paths are no longer single, which increased the algorithm diversity and avoided premature 
convergence of the algorithm by conducting a small search around the target according to the 
convergence of the algorithm. Deng et al. [12] used the Faure sequence to generate quasi-random 
numbers to initialize the population to improve the ChOA, approximated the uniform distribution 
with higher quality, improved the population search speed and solved the Kullback-Leibler problem 
of stochastic neighbor embedding with better results than the commonly used gradient descent 
method and stochastic gradient descent method. Xiao et al. [13] used the sine map to initialize the 
population and modify chaotic vectors to overcome the early convergence problem and applied it to 
test systems of four cascade reservoirs and three thermal plants with the valve point effect to 
demonstrate the improvements. Khishe et al. [14] developed weight-based location weighting 
equations to speed up convergence and improve exploration and exploitation. Mansoor et al. [15] 
used sine and cosine functions to search for the global optimal solution around the population 
generated by the ChOA, which was used to train the Fuzzy Neural Network (FNN) model to predict 
wind power generation for smart grid applications in the short term. Jia et al. [16] used highly 
destructive polynomial variants to further explore the regions and boundaries of the initial space, used 
Spearman’s rank correlation coefficient to refine the candidate solutions in need of improvement and 
used the beetle antennae operator to avoid getting trapped in a local optimum to improve the ChOA, 
and they applied it to train a multilayer perceptron. Dhiman [17] used the sine and cosine functions 
and the attack strategy from the spotted hyena optimizer [18] to improve the ChOA and increase 
convergence efficiency. Chen et al. [19] introduced the bubble-net attacking method and the random 
search mechanism in the whale optimization algorithm [20] into the position updating process of the 
ChOA in order to improve the local search capability of the ChOA, and they demonstrated the 
effectiveness of this algorithm for structural damage detection through the validation of a two-story 
rigid frame model and a simply supported beam model. Kaur et al. [21] used the mathematical 
equations by a random walk in the cuckoo search algorithm [5] to update the position equations of 
the ChOA for the optimal design of digital infinite pulse filters. Zhang et al. [22] used Sobol 
sequences to initialize populations to improve search efficiency, and they used it to enhance the take-
off performance of a cruise aircraft. 

The motivation of this research is, compared with other intelligent optimization algorithms, to 
demonstrate that the ChOA has the advantages of no gradient mechanism, few control parameters, 
being a simple model, easy implementation and high stability, and that it has been successfully 
applied to various fields and achieved good effects. However, the ChOA is similar to other swarm 
intelligence optimization algorithms in that it suffers from low solution accuracy, slow convergence 
speed and the tendency to fall into the local optimum, which needs further improvement in order to 
achieve better results when applied to practical life. Although the above-mentioned scholars have 
achieved certain results in the improvement of the algorithm, there are still shortcomings in terms of 
knowing how to balance the convergence accuracy and convergence speed. Therefore, in order to 
improve the ChOA’s performance and applicability in the optimum search, we propose a chaos 
somersault foraging ChOA (CSFChOA) on the basis of the ChOA. Simulation experiments were 
conducted on 23 standard test functions, as well as CEC2019 test functions, to find the best; and, 
statistical analysis with the Wilcoxon rank sum test was used to verify the superiority of the 
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algorithm. Finally, the feasibility, applicability and superiority of the CSFChOA in practical 
engineering problems are demonstrated by comparing the test analysis on two complex engineering 
design problems. The following is a summary of this research’s significant contributions.  
a) To address the problems of low solution accuracy and slow convergence of the ChOA, the cat 

chaotic sequence is introduced to generate initial solutions, and opposition-based learning is 
used to select the better solutions to form the initial population, which can ensure diversity at 
the initial phase of the algorithm and improve the convergence speed and the accuracy of the 
algorithm to find the best solution. 

b) In order to solve the problem of the ChOA easily falling into a local optimum at the later phase, 
by taking the optimal solution as the pivot, chimps with better adaptation at the mirror image 
position replace chimps from the original population using the somersault foraging strategy, 
which increases the population diversity and expands the search range.  

c) The performance of the CSFChOA has been tested by using 23 standard test functions in 
low dimensions, 13 standard test functions in high dimensions and CEC2019 test functions 
to find the optimal solution; also, it is statistically analyzed using the Wilcoxon rank sum 
test and the optimization results are compared with the ChOA and other improved intelligent 
optimization algorithms. 

d) Application of the CSFChOA to two complex engineering designs: the speed reducer design 
and the three-bar truss design have been tested and analyzed, and the feasibility, applicability 
and superiority of CSFChOA in practical engineering are verified. 
The rest of the paper is organized as follows. After the introduction in Section 1, the CSFChOA 

is described in detail in Section 2, and a time complexity analysis is performed. Simulations and 
analysis are given in Section 3. The analysis of the engineering example applications of the 
CSFChOA is reported in Section 4. Finally, the full work is summarized and discussed in Section 5, 
which explains the direction of future work. 

2. Chaos somersault foraging chimp optimization algorithm 

2.1. Description of CSFChOA 

First, the CSFChOA uses cat mapping to generate uniformly distributed populations. Cat mapping 
features a simple structure, good traversal and is less likely to fall into small loops and unstable periodical 
points. It traverses all states in the search scope without repeating; a uniformly distributed population can 
be produced, which can guarantee the quality of the initial solutions and prevent some individuals from 
being far from the optimal solution due to the uneven distribution of the population; uneven distribution 
of the population may reduce the speed of the population search, the accuracy of the solution and the 
diversity of the algorithm. The cat mapping formula is defined as follows. 
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i i

i i

x x
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The rand function and cat mapping were used to generate 3000 numbers between [0, 1], as shown 
in Figure 1; Figure 1(a) shows the frequency histogram generated by the rand function. The cat 
mapping is a two-dimensional reversible chaotic mapping, and the two histograms in Figure 1(b),(c) 
are the frequency histograms of the x and y sequences. It can be seen that the cat mapping produces a 
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uniform distribution of chaotic values between [0, 1], and the results are excellent, with the 
frequency of each unit interval being around 300 for both the x and y sequences. In contrast, the 
frequency of the rand function per unit interval is uneven, particularly in [0.3, 0.4], where the chaos 
values is nearly 90 more than in [0.5, 0.6], which is quite different. This shows that the cat mapping 
is better than the rand function in generating a uniformly distributed population. 

 

Figure 1. Frequency histogram generated by using the rand function and cat chaos mapping. 

In order to increase the speed of convergence of the population and to find the optimal solution 
faster, opposition-based learning is introduced. If we consider the opposite solution of each 
individual at the same time with a uniform distribution of the population, the probability of the 
current individual and the opposite individual being closer to the optimal solution is 50%. Selecting 
the closer individual as the initial population, i.e., the individuals with higher fitness, means that each 
individual in the population is one step closer to the optimal individual, which greatly accelerates the 
algorithm search efficiency and convergence speed. 

The cat mapping and opposition-based learning strategy is viewed as a chaotic opposition-based 
learning strategy. Steps to initialize the population based on this strategy are as follows: first, 
generate N initial solutions xi using the cat chaotic sequence in the search space [ub, lb]; then, 
generate the corresponding opposite solutions for each initial solution in the following way. 

 maxminj
d d

ik  x x x x                                                             (2) 

where k is a random number between [0, 1]; xj is the opposite solution corresponding to each initial 
solution xi; 𝑥௠௜௡

ௗ  and 𝑥௠௔௫
ௗ  denote the minimum and maximum values of the dth dimension vector in 

all initial solutions, respectively. Finally, the initial solutions xi and the opposite solutions xj are 
combined and sorted in ascending order according to the fitness value, and the top N solutions with 
the best fitness value are selected as the initial population.  

Next, the chimp hunting phase is divided into the exploration phase and the exploitation phase. 
The exploration phase includes driving, blocking and chasing the prey, and the exploitation phase 
includes attacking the prey. The population divides chimps into four different roles to perform the 
division of duties during the hunt, namely, attacker, barrier, driver and chaser, which are the optimal, 
sub-optimal, third-optimal and fourth-optimal solutions of the chimp group, respectively, with the 
latter three types of individuals assisting the attacker in the search for prey and other chimps’ 
positions being guided by these four types of chimps for updates. The fitness value of each 

 

(a)                  (b)                         (c) 
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individual in the population is recalculated at each iteration and compared with the four best fitness 
values from the previous iteration; the four better individuals are selected as the leaders of the chimp 
population for this iteration. Each type of chimp has its own independent thinking capability and uses 
its own search strategy to explore and predict the location of the prey; meanwhile, they have their 
own individual tasks and will engage in chaotic individual hunting behavior in the final stages of the 
hunt because of the social motivation from the obtainable behavior and benefits. During the 
exploration phase, any chimp will change its position depending on the location of its prey, and the 
mathematical model for driving and chasing the prey is shown in Eqs (3)–(7). 

   prey chimpt t   c x m xd                                                            (3) 

   1chimp preyt t   a dx x                                                            (4) 

 12   a f r f                                                                        (5) 

2=2 c r                                                                             (6) 

m Chaotic_value                                                            (7) 

where d is the distance between the chimp and the prey and t is the current number of iterations; xprey 
is the prey position vector; xchimp is the current chimp position vector; r1 and r2 are random vectors 
between [0, 1]; f is the convergence factor whose value decreases nonlinearly from 2.5 to 0 with 
increasing number of iterations (including the exploration phase and the exploitation phase); a is a 
random vector that determines the distance between the chimp and the prey, and its value is a random 
number between [-2f, 2f]; when |a| < 1, the position of the chimp tends to approach that of the prey 
xprey; when |a| > 1, it means that the chimp is forced to be away from the prey position and search for 
the prey in a wider scope; c is a coefficient that controls the chimp driving and chasing the prey, and 
it is a random vector in the range of [0, 2]; when c < 1, the impact of the prey position on the chimp 
position diminishes; otherwise, it increases. m is a chaotic vector calculated from various chaotic 
mappings, representing the impact of individual motivation on the chimp position during the 
hunting process. 

The mathematical model of chimps attacking the prey during the exploitation phase is 
shown in Eqs (8)–(16). 

1 1Attacker Attacker=   d c x m x                                                        (8) 

2 2Barrier Barrier   d c x m x                                                        (9) 

3 3Chaser Chaser   d c x m x                                                      (10) 

4 4Driver Driver   d c x m x                                                     (11) 

1 1Attacker Attacker- x x a d                                                    (12) 

2 2Barrier Barrier- x x a d                                                     (13) 
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3 3Chaser Chaser- x x a d                                                     (14) 

4 4Driver D river- x x a d                                                     (15) 

1 2 3 4

( 1)
4

t
  

 
x x x x

x                                                    (16) 

where x denotes the position vector of the current chimp, xAttacker denotes the position vector of the 
attacker, xBarrier denotes the position vector of the barrier, xChaser denotes the position vector of the 
chaser, xDriver denotes the position vector of the driver, x(t + 1) denotes the updated position vector of 
the current chimp and c1, c2, c3 and c4 are all random vectors in the range of [0, 1]. It is assumed that 
the attacker, the driver, the barrier and the chaser have a better knowledge of the location of the 
potential prey. Thus, the four best solutions obtained so far are stored and other chimps update their 
position according to the best chimps’ positions. 

When individuals in the final phase are satisfied with food, the subsequent social motivation 
will make chimps unleash their natural instincts; individual chimps will attempt to get food in the 
forced chaotic situation. The chaotic behavior of chimps in the final phase helps to further alleviate 
the twin problems of local optimum traps and slow convergence when solving high-dimensional 
problems. The ChOA uses six chaotic mappings [7] of deterministic processes with random behavior. 
In order to simulate this social behavior, assuming a 50% probability of choosing either the normal 
update position mechanism or the chaotic model to update the chimps’ position, the social stimulus 
behavior is mathematically modeled as shown in Eq (17). 
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t if
t

if




  
   

x a d
x

Chaotic value                                          (17) 

where μ is a random number taking the value [0, 1] and Chaotic_value is a chaotic mapping used to 
update the position of the solution. 

To avoid falling into the local optimum, inspired by the manta ray foraging optimization 
algorithm [23], which suddenly flips over to catch plankton, a somersault foraging strategy has been 
introduced to improve the ability of the ChOA to jump out of the local optimum. In this behavior, the 
position of the current optimal individual is considered as a pivot. Chimps other than the optimal 
individual tend to turn around the pivot and then somersault to the mirror image position of their 
current position. Thus, they always update their position around the best position they have found. 
The mathematical model is as follows. 

1 2( 1) ( ) ( ( ) ( ))chimp chimp Attacker chimpt t S r t r t     x x x x         (18) 

where S represents the somersault factor, which determines the somersault range, taken as S = 2; 
xAttacker(t) is the position of the optimal individual; r1, r2 are two random numbers in the range of [0, 1]. 

Within the defined somersault range, each chimp has the possibility to move to any position in 
the new search domain located between the current position and the symmetric position around 
xAttacker(t). As the distance between a single location and the best location found so far decreases, all 
individuals gradually approach the optimal solution in the search space. Thus, as the number of 
iterations increases, the somersault search range adaptively decreases. In each iteration, the current 
chimp xchimp(t) is compared for fitness with the chimp in the mirror image position, and it is replaced 
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by the chimp in the mirror image position if it has fallen into local optimum. At the same time, it also 
increases the population diversity for the next iteration and expands the search range. When the 
iteration is completed, the population has the optimal solution xAttacker in xchimp, which is the final result.  

2.2. Implementation of CSFChOA  

First, initialize the population through the chaotic opposition-based learning strategy, and then 
divide the chimps into four different roles to perform the division of duties during the hunt, namely, 
attacker, barrier, driver and chaser; the positions of other chimps are updated by these four chimp 
species for guidance. Individuals in the final stages of the hunt are satisfied with food, and 
subsequent social motivation leads chimps to unleash their natural instincts. Next, the ability of the 
ChOA to jump out of a local optimum is improved by the somersault foraging strategy. The steps of 
the CSFChOA implementation proposed in this paper are shown in Figure 2, with rand being a 
random number of [0, 1]. 

2.3. Time complexity analysis of CSFChOA 

Time complexity is a key indicator to test the operational efficiency and convergence 
performance of the algorithm. To the ChOA, assuming that the population size is N, the dimension of 
the search space is d, the time required to initialize the parameters is t1 and the time to generate 
random numbers is t2, the time complexity of the population initialization phase is 

 1 2( ( )) ( ( ))O t N dt O d f d                                      (19) 

In the iterative phase of the algorithm, the time to calculate the individual fitness value of the 
population is designed to be f(d), the time to compare the individual fitness values of the population 
and select the four optimal individual positions is t3, the time to update the convergence factor is t4 
and the time to update the position of other chimps in the population to follow the four optimal 
individual positions is t5; then, the time complexity of this phase is 

 3 4 5( ( ( ) )) ( ( ))O N f d t t t O d f d                                    (20) 

So, the total time complexity of the ChOA when finding the best solution is 

 ( ) ( ( )) ( ( )) ( ( ))T d O d f d O d f d O d f d                                    (21) 

The CSFChOA is derived from the ChOA, so the time to initialize parameters remains the same 
as the time required by the ChOA. Let the population initialization time to execute the chaotic 
opposition-based learning strategy be t6 and the time to execute the somersault foraging strategy be 
t7; then, the time complexity of the CSFChOA is  

 1 6 7'( ) ( ( ( ))) ( ( ))T d O t N dt dt f d O d f d                                  (22) 

In summary, the time complexity of the CSFChOA is the same as that of the ChOA, and the 
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improvement strategies proposed in this paper to address the shortcomings of the ChOA do not 
increase the time complexity. 

 

Figure 2. Flowchart of CSFChOA implementation steps. 
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3. Simulation experiments and analysis results 

3.1. Experimental design and test functions 

The simulation environment was set to a 64-bit Windows 10 operating system; the CPU was an 
Intel(R) Core(TM) i7-10700 with a basic frequency of 2.90 GHz and memory of 16.0 GB; the 
programming software was MATLAB R2021b. To test the CSFChOA’s search performance, 23 
reference test functions were taken from the literature [7] to carry out simulation experiments. The 
expressions, search dimensions, variable boundaries and theoretical optimal values of the reference 
test functions are given in Table 1. Function denotes the function expression, D denotes the 
dimension of the problem, fmin is the theoretical optimal value of the function and Range denotes the 
boundary of the problem search space. F1–F7 are unimodal functions with relatively flat images and only 
a single extreme value point, mainly used to test the search accuracy and convergence speed of the 
algorithm. F5 is a Rosenbrock function, which is a single-module function when the dimension is 2 or 3. 
It has many local extreme value points in the high-dimensional case and belongs to the canyon-type 
function, which has a narrow and gently changing valley, and its global minimum value appears at 
the bottom of the valley. This test function is used to test the efficiency of the function search. F8–F13 
are multimodal functions; F9 has a number of widely existing minima, and it is regularly distributed 
and has high requirements for the function to jump out of a local optimum. F14–F23 are fixed-
dimension multimodal functions, which are used to test the algorithm’s global search ability, local 
optimum avoidance ability and convergence speed. 

Table 1. Introduction to benchmark functions. 

Function D Range fmin 

 
3 × 101, 
1 × 103 

[-100, 100] 0 

 

3 × 101, 
1 × 103 

[-10, 10] 0 

 

3 × 101, 
1 × 103 

[-100, 100] 0 

 3 × 101, 
1 × 103 

[-100, 100] 0 

 

3 × 101, 
1 × 103 

[-30, 30] 0 

 

3 × 101, 
1 × 103 

[-100, 100] 0 

 

3 × 101, 
1 × 103 

[-1.28, 1.28] 0 

 

3 × 101, 
1 × 103 

[-500, 500] -418.9829 × Dim 

 
3 × 101, 
1 × 103 

[-5.12, 5.12] 0 

3 × 101, 
1 × 103 

[-32, 32] 0 

Continued on next page 
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Function D Range fmin 

 

3 × 101, 
1 × 103 

[-600, 600] 0 

 

 

 

3 × 101, 
1 × 103 

[-50, 50] 0 

 

3 × 101, 
1 × 103 

[-50, 50] 0 

 
2 × 100 [-65, 65] 1 

4 × 100 [-5, 5] 0.00030 

 
2 × 100 [-5, 5] -1.0316 

 
2 × 100 [-5, 5] 0.398 

2 × 100 [-2, 2] 3 

 
3 × 100 [1, 3] -3.86 

 
6 × 100 [0, 1] -3.32 

 
4 × 100 [0, 10] -10.1532 

 
4 × 100 [0, 10] -10.4028 

 
4 × 100 [0, 10] -10.5363 

3.2. Analysis of the impact of different improved strategies on algorithm performance in low dimensions 

To fully validate the effectiveness and superiority of the CSFChOA, the ChOA [7], the ChOA 
using only the chaotic opposition-based learning strategy for population initialization (CChOA), the 
ChOA applying only the somersault foraging strategy (SFChOA), the enhanced whale optimization 
algorithm (EWOA) [8], the multi-scale sine cosine algorithm (MSCA) [9], the multi-directional 
exploring seagull optimization algorithm based on a chaotic map (MESOA) [11], the multi-strategy 
ChOA (EOSMICOA) [24] and the CSFChOA were compared through simulation experiments on 23 
reference test functions with different optimum finding characteristics. In this research, the parameter 
values of these algorithms were selected according to the corresponding literature. The general 
conditions of algorithms were set to be the same: the population size N = 30, the spatial dimension d 
= 30, the maximum times of iterations tmax = 1000, and each algorithm was run 30 times 
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independently. The performance of each algorithm was evaluated in terms of four performance 
metrics: the best value, the worst value, the mean value and the standard deviation. The simulation 
results of the eight algorithms for the 23 reference test functions are shown in Table 2. 

Table 2. Comparison of the search results for different improved algorithms at d = 30. 

Function Algorithm Worst Best Mean Std 

F1 

ChOA 6.02 × 10-16 1.27 × 10-24 2.86 × 10-17 1.10 × 10-16 

CChOA 5.18 × 10-17 1.23 × 10-22 3.92 × 10-18 1.15 × 10-17 

SFChOA 0.00 × 100 0.00 × 100 0.00 × 100 0.00 × 100 

EWOA 8.98 × 10-298 7.91 × 10-323 3.01 × 10-299 0.00 × 100 

MSCA 2.14 × 10-6 9.85 × 10-27 7.29 × 10-8 3.91 × 10-7 

MESOA 1.57 × 10-118 9.85 × 10-159 5.24 × 10-120 2.86 × 10-119 

EOSMICOA 3.20 × 10-24 3.69 × 10-29 3.44 × 10-25 7.01 × 10-25 

CSFChOA 0.00 × 100 0.00 × 100 0.00 × 100 0.00 × 100 

F2 

ChOA 2.92 × 1011 1.04 × 10-16 9.72 × 109 5.32 × 1010 

CChOA 1.31 × 10-11 5.50 × 10-22 1.54 × 10-12 2.79 × 10-12 

SFChOA 0.00 × 100 0.00 × 100 0.00 × 100 0.00 × 100 

EWOA 6.24 × 10-162 5.25 × 10-183 2.08 × 10-163 0.00 × 100 

MSCA 2.35 × 10-10 1.55 × 10-18 9.85 × 10-12 4.39 × 10-11 

MESOA 2.43 × 10-89 5.56 × 10-117 1.54 × 10-90 5.81 × 10-90 

EOSMICOA 3.77 × 10-16 2.88 × 10-18 6.29 × 10-17 7.89 × 10-17 

CSFChOA 0.00 × 100 0.00 × 100 0.00 × 100 0.00 × 100 

F3 

ChOA 2.58 × 100 4.01 × 10-7 2.26 × 10-1 5.85 × 10-1 

CChOA 1.02 × 100 7.38 × 10-8 7.14 × 10-2 2.11 × 10-1 

SFChOA 0.00 × 100 0.00 × 100 0.00 × 100 0.00 × 100 

EWOA 7.08 × 10-15 6.32 × 10-95 2.36 × 10-16 1.29 × 10-15 

MSCA 2.95 × 103 3.23 × 10-3 5.78 × 102 8.16 × 102 

MESOA 1.34 × 10-60 9.00 × 10-108 4.46 × 10-62 2.44 × 10-61 

EOSMICOA 1.83 × 10-5 3.44 × 10-11 7.66 × 10-7 3.34 × 10-6 

CSFChOA 0.00 × 100 0.00 × 100 0.00 × 100 0.00 × 100 

F4 

ChOA 9.63 × 10-2 2.97 × 10-5 6.70 × 10-3 2.23 × 10-2 

CChOA 1.49 × 10-2 5.93 × 10-7 7.25 × 10-4 2.71 × 10-3 

SFChOA 0.00 × 100 0.00 × 100 0.00 × 100 0.00 × 100 

EWOA 3.90 × 10-100 2.76 × 10-123 1.31 × 10-101 7.12 × 10-101 

MSCA 3.04 × 101 4.31 × 10-2 1.13 × 101 8.12 × 100 

MESOA 9.65 × 10-48 2.68 × 10-67 3.22 × 10-49 1.76 × 10-48 

EOSMICOA 8.88 × 10-2 8.19 × 10-8 2.98 × 10-3 1.62 × 10-2 

CSFChOA 0.00 × 100 0.00 × 100 0.00 × 100 0.00 × 100 

F5 

ChOA 2.90 × 101 2.81 × 101 2.89 × 101 1.68 × 10-1 

CChOA 2.90 × 101 2.73 × 101 2.88 × 101 3.61 × 10-1 

SFChOA 2.88 × 101 2.58 × 101 2.75 × 101 8.94 × 10-1 

EWOA 2.87 × 101 2.61 × 101 2.73 × 101 7.74 × 10-1 

MSCA 2.91 × 101 2.67 × 101 2.75 × 101 6.65 × 10-1 

MESOA 2.90 × 101 2.72 × 101 2.80 × 101 7.81 × 10-1 

EOSMICOA 2.88 × 101 2.63 × 101 2.77 × 101 7.58 × 10-1 

CSFChOA 2.88 × 101 2.61 × 101 2.74 × 101 7.29 × 10-1 

Continued on next page 
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F6 

ChOA 4.15 × 100 2.22 × 100 3.39 × 100 4.27 × 10-1 

CChOA 3.93 × 100 2.53 × 100 3.28 × 100 3.51 × 10-1 

SFChOA 1.92 × 100 2.59 × 10-1 8.74 × 10-1 4.10 × 10-1 

EWOA 1.03 × 100 2.77 × 10-3 4.25 × 10-1 3.35 × 10-1 

MSCA 9.77 × 10-1 2.98 × 10-3 2.66 × 10-1 2.03 × 10-1 

MESOA 4.75 × 100 3.71 × 100 4.29 × 100 2.24 × 10-1 

EOSMICOA 2.93 × 100 1.37 × 100 2.18 × 100 3.50 × 10-1 

CSFChOA 1.75 × 100 1.90 × 10-1 8.44 × 10-1 4.06 × 10-1 

F7 

ChOA 6.41 × 10-3 9.59 × 10-5 1.22 × 10-3 1.40 × 10-3 

CChOA 2.75 × 10-3 1.36 × 10-4 6.50 × 10-4 6.11 × 10-4 

SFChOA 5.69 × 10-4 2.79 × 10-5 1.67 × 10-4 1.33 × 10-4 

EWOA 6.32 × 10-3 1.97 × 10-5 1.49 × 10-3 1.56 × 10-3 

MSCA 4.96 × 10-2 6.12 × 10-4 1.51 × 10-2 1.20 × 10-2 

MESOA 5.05 × 10-4 1.46 × 10-5 1.71 × 10-4 1.42 × 10-4 

EOSMICOA 2.55 × 10-3 3.92 × 10-5 7.97 × 10-4 6.40 × 10-4 

CSFChOA 4.82 × 10-4 5.22 × 10-6 1.37 × 10-4 1.22 × 10-4 

F8 

ChOA -5.64 × 103 -5.99 × 103 -5.75 × 103 7.36 × 101 

CChOA -5.66 × 103 -5.92 × 103 -5.76 × 103 6.01 × 101 

SFChOA -6.34 × 103 -8.69 × 103 -7.46 × 103 6.19 × 102 

EWOA -5.17 × 103 -9.85 × 103 -8.03 × 103 9.96 × 102 

MSCA -5.63 × 103 -7.03 × 103 -6.28 × 103 4.03 × 102 

MESOA -3.85 × 103 -4.95 × 103 -4.33 × 103 2.68 × 102 

EOSMICOA -5.65 × 103 -5.92 × 103 -5.76 × 103 6.05 × 101 

CSFChOA -6.74 × 103 -8.64 × 103 -7.66 × 103 4.50 × 102 

F9 

ChOA 4.90 × 101 0.00 × 100 3.32 × 100 9.31 × 100 

CChOA 7.77 × 100 0.00 × 100 9.45 × 10-1 1.89 × 100 

SFChOA 0.00 × 100 0.00 × 100 0.00 × 100 0.00 × 100 

EWOA 0.00 × 100 0.00 × 100 0.00 × 100 0.00 × 100 

MSCA 4.32 × 101 0.00 × 100 6.47 × 100 1.31 × 101 

MESOA 0.00 × 100 0.00 × 100 0.00 × 100 0.00 × 100 

EOSMICOA 2.27 × 10-13 0.00 × 100 9.47 × 10-15 4.24 × 10-14 

CSFChOA 0.00 × 100 0.00 × 100 0.00 × 100 0.00 × 100 

F10 

ChOA 2.00 × 101 2.00 × 101 2.00 × 101 1.21 × 10-3 

CChOA 2.00 × 101 3.30 × 10-11 1.86 × 101 5.06 × 100 

SFChOA 8.88 × 10-16 8.88 × 10-16 8.88 × 10-16 0.00 × 100 

EWOA 4.44 × 10-15 8.88 × 10-16 2.90 × 10-15 1.79 × 10-15 

MSCA 2.00 × 101 2.70 × 100 1.94 × 101 3.15 × 100 

MESOA 8.88 × 10-16 8.88 × 10-16 8.88 × 10-16 0.00 × 100 

EOSMICOA 2.00 × 101 2.00 × 101 2.00 × 101 1.60 × 10-3 

CSFChOA 8.88 × 10-16 8.88 × 10-16 8.88 × 10-16 0.00 × 100 

F11 

ChOA 8.15 × 10-2 0.00 × 100 1.45 × 10-2 2.43 × 10-2 

CChOA 6.61 × 10-2 0.00 × 100 1.37 × 10-2 2.02 × 10-2 

SFChOA 0.00 × 100 0.00 × 100 0.00 × 100 0.00 × 100 

EWOA 0.00 × 100 0.00 × 100 0.00 × 100 0.00 × 100 

MSCA 1.09 × 10-1 0.00 × 100 1.92 × 10-2 3.35 × 10-2 

MESOA 0.00 × 100 0.00 × 100 0.00 × 100 0.00 × 100 

EOSMICOA 5.50 × 10-2 0.00 × 100 1.83 × 10-3 1.00 × 10-2 

CSFChOA 0.00 × 100 0.00 × 100 0.00 × 100 0.00 × 100 

Continued on next page 
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F12 

ChOA 8.69 × 10-1 2.29 × 10-1 4.12 × 10-1 1.89 × 10-1 

CChOA 9.49 × 10-1 2.00 × 10-1 3.83 × 10-1 1.86 × 10-1 

SFChOA 5.69 × 10-1 2.20 × 10-2 7.13 × 10-2 9.67 × 10-2 

EWOA 1.19 × 10-1 6.11 × 10-4 2.82 × 10-2 3.01 × 10-2 

MSCA 1.65 × 100 2.30 × 10-3 2.59 × 10-1 4.60 × 10-1 

MESOA 1.12 × 100 3.25 × 10-1 6.34 × 10-1 2.25 × 10-1 

EOSMICOA 7.10 × 10-1 1.09 × 10-1 2.08 × 10-1 1.32 × 10-1 

CSFChOA 1.51 × 10-1 2.47 × 10-2 5.96 × 10-2 2.92 × 10-2 

F13 

ChOA 2.99 × 100 2.57 × 100 2.85 × 100 1.20 × 10-1 

CChOA 2.99 × 100 2.48 × 100 2.80 × 100 1.36 × 10-1 

SFChOA 1.31 × 100 3.20 × 10-1 8.04 × 10-1 2.52 × 10-1 

EWOA 1.63 × 100 1.94 × 10-1 8.89 × 10-1 3.74 × 10-1 

MSCA 3.16 × 100 3.63 × 10-1 1.21 × 100 6.05 × 10-1 

MESOA 2.87 × 100 1.99 × 100 2.37 × 100 2.28 × 10-1 

EOSMICOA 2.10 × 100 1.38 × 100 1.75 × 100 1.78 × 10-1 

CSFChOA 1.20 × 100 2.87 × 10-1 6.96 × 10-1 3.08 × 10-1 

F14 

ChOA 1.08 × 101 9.98 × 10-1 1.32 × 100 1.78 × 100 

CChOA 2.04 × 100 9.98 × 10-1 1.03 × 100 1.90 × 10-1 

SFChOA 1.08 × 101 9.98 × 10-1 2.70 × 100 3.31 × 100 

EWOA 1.27 × 101 9.98 × 10-1 5.20 × 100 4.79 × 100 

MSCA 2.98 × 100 9.98 × 10-1 1.20 × 100 5.47 × 10-1 

MESOA 2.98 × 100 9.98 × 10-1 1.34 × 100 5.20 × 10-1 

EOSMICOA 1.08 × 101 9.98 × 10-1 1.46 × 100 1.83 × 100 

CSFChOA 1.08 × 101 9.98 × 10-1 2.24 × 100 2.97 × 100 

F15 

ChOA 2.09 × 10-2 1.23 × 10-3 1.93 × 10-3 3.59 × 10-3 

CChOA 1.43 × 10-3 1.23 × 10-3 1.28 × 10-3 4.18 × 10-5 

SFChOA 1.25 × 10-3 3.08 × 10-4 4.78 × 10-4 2.56 × 10-4 

EWOA 1.23 × 10-3 3.10 × 10-4 6.38 × 10-4 2.76 × 10-4 

MSCA 1.22 × 10-3 4.06 × 10-4 8.18 × 10-4 2.76 × 10-4 

MESOA 7.68 × 10-4 3.10 × 10-4 4.25 × 10-4 9.37 × 10-5 

EOSMICOA 1.31 × 10-3 1.23 × 10-3 1.27 × 10-3 2.01 × 10-5 

CSFChOA 7.65 × 10-4 3.11 × 10-4 4.55 × 10-4 1.49 × 10-4 

F16 

ChOA -1.03 × 100 -1.03 × 100 -1.03 × 100 7.79 × 10-6 

CChOA -1.03 × 100 -1.03 × 100 -1.03 × 100 7.34 × 10-6 

SFChOA -1.03 × 100 -1.03 × 100 -1.03 × 100 6.94 × 10-6 

EWOA -1.03 × 100 -1.03 × 100 -1.03 × 100 1.12 × 10-11 

MSCA -1.03 × 100 -1.03 × 100 -1.03 × 100 1.44 × 10-9 

MESOA -1.03 × 100 -1.03 × 100 -1.03 × 100 6.82 × 10-7 

EOSMICOA -1.03 × 100 -1.03 × 100 -1.03 × 100 3.44 × 10-5 

CSFChOA -1.03 × 100 -1.03 × 100 -1.03 × 100 1.10 × 10-11 

F17 

ChOA 3.994 × 10-1 3.979 × 10-1 3.982 × 10-1 3.24 × 10-4 

CChOA 3.993 × 10-1 3.979 × 10-1 3.982 × 10-1 3.06 × 10-5 

SFChOA 3.984 × 10-1 3.979 × 10-1 3.980 × 10-1 1.35 × 10-7 

EWOA 3.979 × 10-1 3.979 × 10-1 3.979 × 10-1 9.86 × 10-9 

MSCA 3.979 × 10-1 3.979 × 10-1 3.979 × 10-1 2.19 × 10-9 

MESOA 3.979 × 10-1 3.979 × 10-1 3.979 × 10-1 2.79 × 10-6 

EOSMICOA 3.982 × 10-1 3.979 × 10-1 3.979 × 10-1 6.23 × 10-5 

CSFChOA 3.980 × 10-1 3.980 × 10-1 3.980 × 10-1 1.41 × 10-9 

Continued on next page 
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F18 

ChOA 3.00 × 100 3.00 × 100 3.00 × 100 8.51 × 10-5 

CChOA 3.00 × 100 3.00 × 100 3.00 × 100 5.08 × 10-5 

SFChOA 3.00 × 100 3.00 × 100 3.00 × 100 1.77 × 10-5 

EWOA 3.01 × 100 3.00 × 100 3.00 × 100 2.47 × 10-3 

MSCA 3.00 × 100 3.00 × 100 3.00 × 100 7.43 × 10-6 

MESOA 3.00 × 100 3.00 × 100 3.00 × 100 2.56 × 10-7 

EOSMICOA 3.00 × 100 3.00 × 100 3.00 × 100 9.26 × 10-6 

CSFChOA 3.00 × 100 3.00 × 100 3.00 × 100 1.55 × 10-8 

F19 

ChOA -3.85 × 100 -3.86 × 100 -3.85 × 100 1.49 × 10-3 

CChOA -3.85 × 100 -3.85 × 100 -3.85 × 100 3.98 × 10-4 

SFChOA -3.85 × 100 -3.86 × 100 -3.86 × 100 3.49 × 10-3 

EWOA -3.86 × 100 -3.86 × 100 -3.86 × 100 1.66 × 10-3 

MSCA -3.85 × 100 -3.85 × 100 -3.86 × 100 3.64 × 10-3 

MESOA -3.30 × 100 -3.86 × 100 -3.81 × 100 1.20 × 10-1 

EOSMICOA -3.85 × 100 -3.86 × 100 -3.86 × 100 1.95 × 10-3 

CSFChOA -3.86 × 100 -3.86 × 100 -3.86 × 100 3.08 × 10-4 

F20 

ChOA -1.06 × 100 -3.04 × 100 -2.48 × 100 6.07 × 10-1 

CChOA -1.70 × 100 -3.30 × 100 -2.71 × 100 4.51 × 10-1 

SFChOA -2.27 × 100 -3.32 × 100 -3.10 × 100 1.80 × 10-1 

EWOA -2.84 × 100 -3.32 × 100 -3.23 × 100 1.35 × 10-1 

MSCA -3.02 × 100 -3.32 × 100 -3.19 × 100 7.70 × 10-2 

MESOA -1.53 × 100 -3.03 × 100 -2.17 × 100 3.93 × 10-1 

EOSMICOA -1.46 × 100 -3.08 × 100 -2.65 × 100 5.17 × 10-1 

CSFChOA -2.86 × 100 -3.32 × 100 -3.22 × 100 1.32 × 10-1 

F21 

ChOA -4.97 × 10-1 -5.04 × 100 -3.03 × 100 2.10 × 100 

CChOA -3.51 × 10-1 -5.04 × 100 -1.25 × 100 1.51 × 100 

SFChOA -5.03 × 100 -9.81 × 100 -5.36 × 100 1.19 × 100 

EWOA -8.82 × 10-1 -1.02 × 101 -6.20 × 100 2.81 × 100 

MSCA -4.98 × 10-1 -1.02 × 101 -7.85 × 100 3.29 × 100 

MESOA -1.62 × 100 -9.27 × 100 -3.93 × 100 2.06 × 100 

EOSMICOA -8.81 × 10-1 -5.05 × 100 -3.51 × 100 2.03 × 100 

CSFChOA -8.82 × 10-1 -5.05 × 100 -4.76 × 100 1.05 × 100 

F22 

ChOA -5.21 × 10-1 -5.08 × 100 -4.04 × 100 1.79 × 100 

CChOA -5.21 × 10-1 -4.99 × 100 -8.53 × 10-1 8.04 × 10-1 

SFChOA -5.05 × 100 -5.09 × 100 -5.07 × 100 1.09 × 10-2 

EWOA -2.77 × 100 -1.04 × 101 -6.63 × 100 3.01 × 100 

MSCA -5.09 × 100 -1.04 × 101 -8.81 × 100 2.48 × 100 

MESOA -1.97 × 100 -6.02 × 100 -3.80 × 100 1.05 × 100 

EOSMICOA -5.24 × 10-1 -5.08 × 100 -3.80 × 100 1.95 × 100 

CSFChOA -9.12 × 10-1 -5.09 × 100 -4.93 × 100 7.60 × 10-1 

F23 

ChOA -5.57 × 10-1 -9.03 × 100 -4.21 × 100 2.00 × 100 

CChOA -5.54 × 10-1 -9.49 × 10-1 -8.29 × 10-1 1.81 × 10-1 

SFChOA -5.09 × 100 -5.13 × 100 -5.11 × 100 1.08 × 10-2 

EWOA -2.42 × 100 -1.05 × 101 -6.21 × 100 3.26 × 100 

MSCA -5.13 × 100 -1.05 × 101 -1.00 × 101 1.65 × 100 

MESOA -2.15 × 100 -5.17 × 100 -3.48 × 100 9.40 × 10-1 

EOSMICOA -5.54 × 10-1 -5.13 × 100 -3.29 × 100 2.11 × 100 

CSFChOA -5.10 × 100 -5.13 × 100 -5.11 × 100 7.00 × 10-3 

As shown in Table 2, the CSFChOA can obtain theoretical optimum convergence when solving 
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the unimodal functions F1–F4, multimodal functions F9, F11 and fixed-dimensional multimodal 
functions F16, F17, F18 with the standard deviation of 0 on F1–F4, F9, F10, F11. Regarding the mean 
value, for F1–F13, F15, F17, F18, F19 and F20, the CChOA and SFChOA yielded values smaller than 
that for the ChOA, which shows the effectiveness of using the chaotic opposition-based learning 
strategy and the somersault foraging strategy, respectively, both of which can improve the 
convergence accuracy of the ChOA to some extent. For F16, although the ChOA, CChOA and 
SFChOA can all converge to the theoretical optimum, the standard deviations of both the CChOA 
and SFChOA were smaller than the ChOA, which has better robustness. For F1–F4, F7, F9–F11, F13 
and F19, the CSFChOA had the highest convergence accuracy compared with the other seven 
algorithms. For F16 and F18, although other algorithms could find the theoretical optimal solution, the 
CSFChOA had the smallest standard deviation and demonstrated better robustness. For F5, F8, F12 

and F20, the convergence accuracy of the CSFChOA was stronger than that of the other six 
algorithms, except the EWOA. Although it is weaker than the EWOA, it is more stable. For F15, the 
CSFChOA was stronger than the other six algorithms, except MESOA. In terms of standard 
deviation, for F1–F4, F7, F9–F12, F16, F19, F21, F23, the CSFChOA had the smallest standard deviation 
and the highest stability compared with the other seven algorithms. 

3.3. Convergence analysis 

To more intuitively reflect the convergence performance of the CSFChOA, the average 
convergence curve graphs are used to describe the convergence characteristics of the eight 
algorithms used in Section 3.2 under the conditions of the population size N = 30, the spatial 
dimension d = 30, the maximum number of iterations tmax = 1000 and 30 times of independent runs 
of each algorithm. The average convergence curve comparison diagrams of solving the 23 reference 
test functions F1–F23 of all algorithms are given in Figure 3. In addition, the data for each algorithm 
run 30 times on each function is plotted as a box plot, which gives a direct indication of how well the 
different algorithms perform on each function in terms of search performance, as shown in Figure 4. 
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Figure 3. Average convergence curves of different strategy algorithms on 23 benchmark functions. 

As can be seen in Figure 3, for F1–F5, F7–F11, F13, F15 and F19, the average convergence curves 
of the CSFChOA are all located below the ChOA, CChOA, EWOA, MSCA, MESOA and 
EOSMICOA; it indicates that the CSFChOA has obvious superiority in terms of exploration 
performance in the early iteration and exploitation performance in the late iteration, both of which 
are better than the other algorithms, with higher solution accuracy and faster convergence speed for 
the same times of iterations; it verifies that the CSFChOA can fully guarantee the exploration 
capability and exploration capability without losing the population diversity and the stability of the 
search for superiority. In particular, on F1–F4, F9, F11, F16–F18, the CSFChOA can effectively jump 
out of the local optimum and converge to the theoretical optimum quickly. For functions F5, F8, F10, 
F13, F18 and F19, although the CSFChOA falls into the local optimum like other algorithms, the 
optimization-seeking accuracy and the convergence speed of the CSFChOA are much better than 
those of other algorithms. 

The CChOA is below the ChOA for the same times of iterations, which means that the CChOA 
converges faster than the ChOA. The initialization of the population with the chaotic opposition-
based learning strategy can improve the initial population diversity and helps to improve the 
convergence speed and accuracy of the algorithm. Although this advantage is not obvious, it is more 
helpful for the introduction of other strategies to find the optimum later. The SFChOA converges 
significantly faster than the ChOA; it also has a significant improvement in convergence accuracy, 
and does not stall significantly throughout the iterations. This indicates that the somersault foraging 
strategy can effectively optimize the globally optimal chimp position, help the population to jump 
out of the local optimum and make the algorithm less likely to fall into the local optimum so that the 
theoretical optimal solution can be explored effectively. It can be seen that different improvement 
strategies have different degrees of improvement on the algorithm’s optimality-seeking performance, 
and that the CSFChOA, which combines the two strategies, shows certain advantages. 
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Figure 4. Box plot graphs of different strategy algorithms on 23 benchmark functions. 

As can be seen in Figure 4, for F1–F4, F7, F9–F11, the solution results of the CSFChOA were all 
around the theoretical optimum, which is both outlier-free and stable compared with the other seven 
algorithms. For F5, F12, F16, F18, F19, F21 and F23, the boxes of the CSFChOA are close to a line, 
which indicates high stability. It is very obvious in the figure that, for F5–F13, F15–F20, the 
convergence accuracies of the CChOA and SFChOA are higher than that of the ChOA, which further 
proves that using a chaotic opposition-based learning strategy and the somersault foraging strategy 
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both have different degrees of improvement on the convergence ability of the ChOA. The mean 
value represented by the hollow square inside the box in the figure shows that, compared with the 
other seven algorithms, the convergence accuracy of the CSFChOA is higher for F5, and that, for F8, 
the convergence ability of the CSFChOA is only lower than that of the EWOA, but its box is flatter 
and more stable. For F12, F15, the CSFChOA outperforms the other seven algorithms in terms of box 
width, outliers and mean value. 

The experimental results in Table 2, the average convergence curves in Figure 3 and box plot graphs 
in Figure 4 verify the effectiveness of the algorithm proposed in this research; its convergence speed is 
much faster than that of other algorithms, although the convergence accuracy gap is not obvious for some 
functions. The CSFChOA’s solving accuracy is higher and more stable than other algorithms. 

3.4. Analysis of the impact of different improvement strategies on algorithm performance in high 
dimensions 

For analysis in this section, the population size N = 30, the spatial dimension d = 1000, the 
maximum number of iterations tmax = 1000 and each algorithm was run 30 times independently. The 
performance of each algorithm described in Section 3.2 were evaluated in terms of the best value, the 
worst value, the mean value and the standard deviation of the four performance metrics. The results 
of the eight algorithms for solving the F1–F13 functions from the 23 reference test functions are 
shown in Table 3. 

Table 3. Comparison of the results for different improved algorithms at d = 1000. 

Function Algorithm Worst Best Mean Std 

F1 

ChOA 1.72 × 102 3.48 × 101 8.41 × 101 4.29 × 101 

CChOA 1.39 × 102 1.70 × 101 6.98 × 101 3.26 × 101 

SFChOA 0.00 × 100 0.00 × 100 0.00 × 100 0.00 × 100 

EWOA 7.64 × 10-282 5.97 × 10-318 2.55 × 10-283 0.00 × 100 

MSCA 1.00 × 105 3.37 × 10-6 2.66 × 104 3.45 × 104 

MESOA 2.43 × 10-61 7.68 × 10-90 1.01 × 10-62 4.50 × 10-62 

EOSMICOA 1.02 × 104 1.68 × 103 3.95 × 103 2.04 × 103 

CSFChOA 0.00 × 100 0.00 × 100 0.00 × 100 0.00 × 100 

F2 

ChOA 1.78 × 10263 3.23 × 102 1.78 × 10262 Inf 

CChOA 2.75 × 102 2.45 × 100 5.36 × 101 1.07 × 102 

SFChOA 0.00 × 100 0.00 × 100 0.00 × 100 0.00 × 100 

EWOA 9.74 × 10-162 2.09 × 10-176 1.17 × 10-162 3.14 × 10-162 

MSCA  Inf  Inf  Inf NaN 

MESOA 6.97 × 10-37 7.09 × 10-50 7.36 × 10-38 2.19 × 10-37 

EOSMICOA 1.29 × 103 2.73 × 101 2.69 × 102 4.67 × 102 

CSFChOA 0.00 × 100 0.00 × 100 0.00 × 100 0.00 × 100 

F3 

ChOA 6.70 × 107 5.11 × 106 2.06 × 107 1.34 × 107 

CChOA 2.26 × 107 5.55 × 106 1.15 × 107 3.71 × 106 

SFChOA 0.00 × 100 0.00 × 100 0.00 × 100 0.00 × 100 

EWOA 6.02 × 106 2.88 × 101 7.43 × 105 1.50 × 106 

MSCA 1.20 × 107 2.99 × 106 7.56 × 106 2.55 × 106 

MESOA 1.05 × 102 1.78 × 10-22 9.22 × 100 2.52 × 101 

EOSMICOA 8.02 × 106 3.08 × 106 5.60 × 106 1.21 × 106 

CSFChOA 0.00 × 100 0.00 × 100 0.00 × 100 0.00 × 100 

Continued on next page 
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Function Algorithm Worst Best Mean Std 

F4 

ChOA 9.94 × 101 9.57 × 101 9.80 × 101 1.05 × 100 

CChOA 9.10 × 101 5.12 × 101 7.40 × 101 1.11 × 101 

SFChOA 0.00 × 100 0.00 × 100 0.00 × 100 0.00 × 100 

EWOA 1.11 × 10-79 5.13 × 10-110 3.69 × 10-81 2.02 × 10-80 

MSCA 9.94 × 101 9.81 × 101 9.89 × 101 3.27 × 10-1 

MESOA 2.76 × 10-35 7.16 × 10-230 1.09 × 10-36 5.08 × 10-36 

EOSMICOA 8.98 × 101 6.33 × 101 7.45 × 101 6.74 × 100 

CSFChOA 0.00 × 100 0.00 × 100 0.00 × 100 0.00 × 100 

F5 

ChOA 5.22 × 108 1.27 × 105 4.90 × 107 1.27 × 108 

CChOA 2.25 × 105 6.35 × 103 4.51 × 104 6.44 × 104 

SFChOA 9.96 × 102 9.94 × 102 9.95 × 102 4.52 × 10-1 

EWOA 9.97 × 102 9.93 × 102 9.95 × 102 1.18 × 100 

MSCA 5.76 × 109 2.89 × 108 1.88 × 109 1.78 × 109 

MESOA 9.99 × 102 9.99 × 102 9.99 × 102 3.95 × 10-2 

EOSMICOA 2.35 × 107 7.31 × 105 5.97 × 106 5.42 × 106 

CSFChOA 9.96 × 102 9.94 × 102 9.95 × 102 4.62 × 10-1 

F6 

ChOA 5.66 × 102 2.89 × 102 3.79 × 102 8.94 × 101 

CChOA 4.87 × 102 2.95 × 102 3.73 × 102 7.36 × 101 

SFChOA 1.65 × 102 8.58 × 101 1.41 × 102 2.14 × 101 

EWOA 1.61 × 102 6.11 × 101 1.22 × 102 3.37 × 101 

MSCA 9.08 × 104 2.28 × 102 3.17 × 104 3.67 × 104 

MESOA 2.45 × 102 2.44 × 102 2.45 × 102 3.27 × 10-1 

EOSMICOA 6.99 × 103 1.68 × 103 3.66 × 103 1.59 × 103 

CSFChOA 1.51 × 102 1.04 × 102 1.32 × 102 1.52 × 101 

F7 

ChOA 1.59 × 102 1.16 × 100 4.48 × 101 5.33 × 101 

CChOA 8.77 × 10-1 5.42 × 10-1 7.20 × 10-1 1.16 × 10-1 

SFChOA 7.52 × 10-4 2.02 × 10-5 2.80 × 10-4 2.11 × 10-4 

EWOA 1.05 × 10-2 2.20 × 10-5 2.19 × 10-3 3.14 × 10-3 

MSCA 7.66 × 104 8.05 × 100 2.26 × 104 2.63 × 104 

MESOA 1.01 × 10-3 4.90 × 10-5 3.83 × 10-4 3.16 × 10-4 

EOSMICOA 2.84 × 102 1.85 × 101 9.02 × 101 9.56 × 101 

CSFChOA 1.03 × 10-3 1.05 × 10-5 2.38 × 10-4 2.89 × 10-4 

F8 

ChOA -1.66 × 105 -1.69 × 105 -1.68 × 105 8.65 × 102 

CChOA -1.66 × 105 -1.69 × 105 -1.68 × 105 8.53 × 102 

SFChOA -1.87 × 105 -2.97 × 105 -2.43 × 105 3.47 × 104 

EWOA -1.32 × 105 -3.00 × 105 -2.65 × 105 3.21 × 104 

MSCA -3.74 × 104 -5.36 × 104 -4.28 × 104 4.10 × 103 

MESOA -2.18 × 104 -2.94 × 104 -2.50 × 104 1.69 × 103 

EOSMICOA -1.73 × 105 -1.77 × 105 -1.75 × 105 8.52 × 102 

CSFChOA -1.92 × 105 -2.91 × 105 -2.44 × 105 2.90 × 104 

F9 

ChOA 1.71 × 102 1.57 × 101 5.98 × 101 3.25 × 101 

CChOA 1.37 × 102 1.23 × 101 6.71 × 101 3.38 × 101 

SFChOA 0.00 × 100 0.00 × 100 0.00 × 100 0.00 × 100 

EWOA 0.00 × 100 0.00 × 100 0.00 × 100 0.00 × 100 

MSCA 3.06 × 103 1.09 × 10-8 6.28 × 102 8.49 × 102 

MESOA 0.00 × 100 0.00 × 100 0.00 × 100 0.00 × 100 

EOSMICOA 9.64 × 102 2.85 × 102 6.24 × 102 1.56 × 102 

CSFChOA 0.00 × 100 0.00 × 100 0.00 × 100 0.00 × 100 

Continued on next page 
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Function Algorithm Worst Best Mean Std 

F10 

ChOA 2.01 × 101 2.01 × 101 2.01 × 101 9.15 × 10-3 

CChOA 1.12 × 100 2.28 × 10-1 4.93 × 10-1 1.97 × 10-1 

SFChOA 8.88 × 10-16 8.88 × 10-16 8.88 × 10-16 0.00 × 100 

EWOA 4.44 × 10-15 8.88 × 10-16 3.02 × 10-15 1.77 × 10-15 

MSCA 2.00 × 101 2.00 × 101 2.00 × 101 1.67 × 10-5 

MESOA 8.88 × 10-16 8.88 × 10-16 8.88 × 10-16 0.00 × 100 

EOSMICOA 2.00 × 101 2.00 × 101 2.00 × 101 7.20 × 10-3 

CSFChOA 8.88 × 10-16 8.88 × 10-16 8.88 × 10-16 0.00 × 100 

F11 

ChOA 2.40 × 100 1.17 × 100 1.66 × 100 2.96 × 10-1 

CChOA 4.25 × 100 1.21 × 100 1.80 × 100 6.01 × 10-1 

SFChOA 0.00 × 100 0.00 × 100 0.00 × 100 0.00 × 100 

EWOA 0.00 × 100 0.00 × 100 0.00 × 100 0.00 × 100 

MSCA 1.02 × 103 2.94 × 10-6 3.69 × 102 3.71 × 102 

MESOA 0.00 × 100 0.00 × 100 0.00 × 100 0.00 × 100 

EOSMICOA 6.28 × 101 1.63 × 101 3.46 × 101 1.22 × 101 

CSFChOA 0.00 × 100 0.00 × 100 0.00 × 100 0.00 × 100 

F12 

ChOA 9.72 × 109 4.24 × 106 1.06 × 109 2.07 × 109 

CChOA 9.06 × 104 1.55 × 100 3.20 × 103 1.65 × 104 

SFChOA 5.37 × 10-1 2.18 × 10-1 3.59 × 10-1 7.98 × 10-2 

EWOA 4.29 × 10-1 6.76 × 10-2 2.25 × 10-1 7.82 × 10-2 

MSCA 1.90 × 1010 4.42 × 108 8.89 × 109 5.86 × 109 

MESOA 1.17 × 100 1.15 × 100 1.16 × 100 6.72 × 10-3 

EOSMICOA 1.54 × 108 3.58 × 105 2.12 × 107 3.30 × 107 

CSFChOA 4.61 × 10-1 2.28 × 10-1 3.51 × 10-1 6.34 × 10-2 

F13 

ChOA 1.93 × 109 4.28 × 105 3.08 × 108 4.80 × 108 

CChOA 4.96 × 104 1.04 × 102 5.70 × 103 1.22 × 104 

SFChOA 8.72 × 101 5.29 × 101 6.95 × 101 9.27 × 100 

EWOA 8.92 × 101 2.96 × 101 6.04 × 101 1.55 × 101 

MSCA 3.73 × 1010 1.09 × 109 1.68 × 1010 1.27 × 1010 

MESOA 1.00 × 102 9.93 × 101 9.98 × 101 2.30 × 10-1 

EOSMICOA 1.98 × 108 2.58 × 106 2.29 × 107 3.64 × 107 

CSFChOA 8.56 × 101 4.91 × 101 6.79 × 101 9.13 × 100 

Table 3 shows that the CSFChOA can find convergence to the theoretical optimum with the 
standard deviation of 0 for F1–F4 and multi-peak functions F9 and F11. Regarding the mean value, for 
F1–F8, F10, F12 and F13, the CChOA and SFChOA values were smaller than that from the ChOA, 
which proves that the improvement of the ChOA using chaotic opposition-based learning strategy 
and the somersault foraging strategy is still effective in high dimensions. For F1–F4, F7, F9 and F11, 
the CSFChOA had the highest convergence accuracy compared with the other seven algorithms. For 
the remaining functions, F5, F6, F8, F12 and F13, the CSFChOA had higher convergence accuracy 
than the other six algorithms, except EWOA. Although weaker than the EWOA, the standard 
deviation of the CSFChOA was smaller than the EWOA for all five functions, which is more stable 
than the EWOA. In terms of standard deviation, for F1–F4, F9–F11, the CSFChOA had the smallest 
standard deviation compared with the other seven algorithms. For F6, F12 and F13, the stability of the 
CSFChOA was only lower than the MESOA, but its convergence accuracy was higher than the 
MESOA. For F5, the stability of the CSFChOA was only weaker than the SFChOA and MESOA, but 
its convergence accuracy was higher than the SFChOA and MESOA. For F7, the stability of the 
CSFChOA was only weaker than the SFChOA, but its convergence accuracy was higher than that of 
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the SFChOA. 
In summary, the improved strategy proposed in this paper has strong performance and 

robustness in finding the best solution for low-dimensional and high-dimensional problems. 

3.5. Wilcoxon rank-sum test 

Table 4. Wilcoxon rank-sum test p-value results. 

Function ChOA AOA CEHHO EWOA MSCA MESOA EOSMICOA 

F1 1.21 × 10-12 1.21 × 10-12 1.21 × 10-12 1.21 × 10-12 1.21 × 10-12 1.21 × 10-12 1.21 × 10-12 

F2 3.02 × 10-11 1.21 × 10-12 1.21 × 10-12 3.02 × 10-11 3.02 × 10-11 3.02 × 10-11 3.02 × 10-11 

F3 1.21 × 10-12 1.21 × 10-12 1.21 × 10-12 1.21 × 10-12 1.21 × 10-12 1.21 × 10-12 1.21 × 10-12 

F4 3.02 × 10-11 3.02 × 10-11 1.21 × 10-12 3.02 × 10-11 3.02 × 10-11 3.02 × 10-11 3.02 × 10-11 

F5 3.96 × 10-8 7.70 × 10-4 3.02 × 10-11 2.92 × 10-2 1.45 × 10-1 5.27 × 10-5 3.15 × 10-2 

F6 3.02 × 10-11 3.02 × 10-11 3.02 × 10-11 1.25 × 10-7 9.83 × 10-8 3.02 × 10-11 3.02 × 10-11 

F7 1.39 × 10-6 1.85 × 10-8 5.09 × 10-6 2.28 × 10-5 3.02 × 10-11 3.95 × 10-2 1.39 × 10-6 

F8 3.02 × 10-11 4.50 × 10-11 3.02 × 10-11 1.33 × 10-2 3.16 × 10-10 3.02 × 10-11 3.02 × 10-11 

F9 4.55 × 10-12 NaN NaN NaN 1.70 × 10-8 NaN 8.14 × 10-2 

F10 1.21 × 10-12 NaN NaN 1.79 × 10-7 1.21 × 10-12 NaN 1.21 × 10-12 

F11 4.77 × 10-8 1.21 × 10-12 1.21 × 10-12 NaN 4.79 × 10-8 NaN 3.34 × 10-1 

F12 3.02 × 10-11 3.02 × 10-11 3.02 × 10-11 3.32 × 10-6 3.33 × 10-1 3.02 × 10-11 3.02 × 10-11 

F13 3.02 × 10-11 3.02 × 10-11 3.02 × 10-11 4.36 × 10-2 1.03 × 10-2 3.02 × 10-11 6.07 × 10-11 

F14 3.79 × 10-1 5.19 × 10-7 1.69 × 10-9 6.55 × 10-4 1.43 × 10-8 5.57 × 10-3 1.87 × 10-7 

F15 3.02 × 10-11 2.00 × 10-5 1.75 × 10-5 4.08 × 10-5 1.33 × 10-10 7.24 × 10-2 3.02 × 10-11 

F16 3.11 × 10-1 2.37 × 10-10 3.02 × 10-11 3.02 × 10-11 3.02 × 10-11 7.74 × 10-6 1.30 × 10-3 

F17 3.02 × 10-11 4.98 × 10-11 1.33 × 10-10 3.02 × 10-11 3.02 × 10-11 8.10 × 10-10 1.53 × 10-5 

F18 6.36 × 10-5 6.77 × 10-5 2.49 × 10-6 1.24 × 10-3 3.39 × 10-2 5.49 × 10-11 3.63 × 10-1 

F19 3.34 × 10-3 4.71 × 10-4 6.20 × 10-4 7.77 × 10-9 1.70 × 10-8 4.71 × 10-4 1.45 × 10-1 

F20 3.16 × 10-10 2.50 × 10-2 2.64 × 10-1 1.78 × 10-4 3.16 × 10-5 3.69 × 10-11 2.38 × 10-7 

F21 2.68 × 10-6 2.15 × 10-2 3.02 × 10-11 2.44 × 10-9 5.60 × 10-7 2.24 × 10-2 1.25 × 10-4 

F22 6.52 × 10-9 4.23 × 10-3 3.02 × 10-11 7.60 × 10-7 5.57 × 10-10 6.28 × 10-6 6.74 × 10-6 

F22 7.70 × 10-8 2.84 × 10-4 3.02 × 10-11 8.35 × 10-8 8.48 × 10-9 1.85 × 10-8 1.86 × 10-6 

F23 1.55 × 10-9 2.84 × 10-4 3.34 × 10-11 4.64 × 10-5 5.57 × 10-10 7.77 × 10-9 1.25 × 10-7 

+/=/- 22/0/1 21/2/0 21/2/0 21/2/0 21/0/2 19/3/1 19/0/4 

The Wilcoxon rank-sum test is a non-parametric statistical test to fully validate the 
effectiveness of the improved algorithm; it tested whether the CSFChOA is statistically different 
from the ChOA [7], arithmetic optimization algorithm (AOA) [25], the chaotic elite Harris hawks 
optimization algorithm (CEHHO) [10], the EWOA [8], the MSCA [9], the MESOA [11] and the 
EOSMICOA [24] based on 23 reference test functions at a significance level of p = 5%, 30 
dimensions and 30 times of independent runs for each algorithm. In this research, the parameter 
values of these algorithms were selected according to the corresponding literature. When the p-value 
is less than 5%, if the H0 hypothesis is rejected, it indicates that there is a significant difference 
between the two compared algorithms; if the H0 hypothesis is accepted, it indicates that the two 
algorithms are about identical in terms of their performance in terms of finding the optimum. The p-
values of the rank-sum test between the CSFChOA and the seven algorithms on the 23 reference test 
functions are shown in Table 4. A value marked “NaN” means that it is not applicable, i.e., no 
significance judgment can be made. The symbols “+”, “-” and “=” indicate that the CSFChOA is 
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better, worse or equal compared with the other algorithms, respectively. Most of the p-values were 
much less than 5%, which indicates that there is a statistical significant difference between the 
CSFChOA and the other seven algorithms in terms of the effectiveness of the search for the 
optimum; it verifies that the CSFChOA is significantly superior. 

3.6. Experimental analysis of CEC2019 test functions 

In order to verify the effectiveness and robustness of the CSFChOA, CEC2019 test functions 
were used to further verify the performance of the improved algorithm. There are 10 single-objective 
test functions in CEC2019, each with a theoretical optimum value of 1. These functions are 
challenging and can test the performance of the algorithm effectively. The introduction of CEC2019 
test functions is shown in Table 5. The ChOA [7], AOA [25], CEHHO [10], EWOA [8], MSCA [9], 
MESOA [11] and EOSMICOA [24] have been compared. In this research, the parameter values of 
these algorithms were selected according to the corresponding literature. The experimental 
parameters were taken as the population size N = 30, the maximum times of iterations tmax = 1000, 
and each algorithm was run 30 times independently to take the worst value, the best value, mean 
value and standard deviation, as shown in Table 6. 

Table 5. CEC2019 test functions. 

No. Functions Fi* = Fi(x*) D Search Range 

1 Storn’s Chebyshev Polynomial Fitting Problem 1 × 100 9 × 100 [-8192,8192] 

2 Inverse Hilbert Matrix Problem 1 × 100 16 × 100 [-16384,16384] 

3 Lennard-Jones Minimum Energy Cluster 1 × 100 18 × 100 [-4,4] 

4 Rastrigin’s Function 1 × 100 10 × 100 [-100,100] 

5 Griewangk10’s Function 1 × 100 10 × 100 [-100,100] 

6 Weierstrass Function 1 × 100 10 × 100 [-100,100] 

7 Modified Schwefel’s Function 1 × 100 10 × 100 [-100,100] 

8 Expanded Schaffer’s F6 Function 1 × 100 10 × 100 [-100,100] 

9 Happy Cat Function 1 × 100 10 × 100 [-100,100] 

10 Ackley Function 1 × 100 10 × 100 [-100,100] 

Table 6. Comparison of CEC2019 test function optimization results. 

Function Algorithm Worst Best Mean Std 

F1 

ChOA 3.80 × 106 1.00 × 100 3.26 × 105 8.00 × 105 

AOA 1.06 × 106 1.00 × 100 3.86 × 104 1.94 × 105 

CEHHO 1.00 × 100 1.00 × 100 1.00 × 100 2.30 × 10-9 

EWOA 1.30 × 103 1.00 × 100 1.11 × 102 2.70 × 102 

MSCA 5.24 × 106 1.00 × 100 6.37 × 105 1.06 × 106 

MESOA 1.14 × 105 1.00 × 100 4.40 × 103 2.10 × 104 

EOSMICOA 1.09 × 107 1.00 × 100 1.25 × 106 2.73 × 106 

CSFChOA 1.00 × 100 1.00 × 100 1.00 × 100 1.50 × 10-9 

F2 

ChOA 1.48 × 103 3.90 × 100 3.39 × 102 3.86 × 102 

AOA 3.47 × 103 3.90 × 100 1.63 × 102 6.30 × 102 

CEHHO 3.66 × 100 3.14 × 100 3.35 × 100 1.28 × 10-1 

Continued on next page 
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Function Algorithm Worst Best Mean Std 

F2 

EWOA 3.01  ×  102 3.17  ×  100 1.37 × 101 5.42 × 101 

MSCA 7.08 × 102 1.58 × 101 3.81 × 102 2.07 × 102 

MESOA 1.29 × 101 3.06 × 100 4.01 × 100 1.76 × 100 

EOSMICOA 1.30 × 103 3.26 × 100 2.94 × 102 3.08 × 102 

CSFChOA 4.00 × 100 3.15 × 100 3.26 × 100 2.04 × 10-1 

F3 

ChOA 7.34 × 100 3.54 × 100 5.59 × 100 1.01 × 100 

AOA 1.16 × 101 8.29 × 100 9.88 × 100 8.46 × 10-1 

CEHHO 6.77 × 100 1.71 × 100 4.07 × 100 9.39 × 10-1 

EWOA 9.71 × 100 1.61 × 100 5.05 × 100 2.28 × 100 

MSCA 1.04 × 101 5.31 × 100 7.68 × 100 1.21 × 100 

MESOA 6.96 × 100 1.00 × 100 4.52 × 100 1.92 × 100 

EOSMICOA 6.75 × 100 1.85 × 100 4.11 × 100 1.24 × 100 

CSFChOA 5.79 × 100 2.05 × 100 3.72 × 100 9.38 × 10-1 

F4 

ChOA 9.73 × 101 4.26 × 101 6.23 × 101 1.43 × 101 

AOA 8.27 × 101 2.01 × 101 4.98 × 101 1.53 × 101 

CEHHO 9.06 × 101 2.06 × 101 4.98 × 101 1.73 × 101 

EWOA 8.96 × 101 1.16 × 101 5.37 × 101 2.00 × 101 

MSCA 8.68 × 101 2.15 × 101 4.17 × 101 1.48 × 101 

MESOA 6.22 × 101 3.98 × 101 5.20 × 101 4.77 × 100 

EOSMICOA 6.38 × 101 2.32 × 101 4.12 × 101 1.03 × 101 

CSFChOA 1.75 × 101 7.25 × 100 1.22 × 101 2.96 × 100 

F5 

ChOA 1.52 × 102 1.21 × 101 5.36 × 101 3.47 × 101 

AOA 1.11 × 102 1.71 × 101 5.82 × 101 2.26 × 101 

CEHHO 6.85 × 100 1.94 × 100 2.79 × 100 1.04 × 100 

EWOA 2.67 × 101 1.55 × 100 3.45 × 100 4.52 × 100 

MSCA 1.56 × 100 1.14 × 100 1.39 × 100 8.83 × 10-2 

MESOA 1.44 × 101 3.28 × 100 5.42 × 100 2.88 × 100 

EOSMICOA 3.41 × 101 2.41 × 100 6.28 × 100 6.29 × 100 

CSFChOA 5.17 × 101 2.61 × 100 1.27 × 101 1.25 × 101 

F6 

ChOA 1.16 × 101 5.04 × 100 7.41 × 100 1.49 × 100 

AOA 1.29 × 101 7.85 × 100 1.07 × 101 1.19 × 100 

CEHHO 1.15 × 101 6.22 × 100 9.27 × 100 1.28 × 100 

EWOA 1.28 × 101 4.68 × 100 8.50 × 100 1.81 × 100 

MSCA 6.46 × 100 2.28 × 100 4.10 × 100 9.99 × 10-1 

MESOA 9.00 × 100 4.82 × 100 6.39 × 100 9.33 × 10-1 

EOSMICOA 8.94 × 100 4.35 × 100 6.90 × 100 1.14 × 100 

CSFChOA 7.83 × 100 4.98 × 100 6.02 × 100 6.79 × 10-1 

F7 

ChOA 2.10 × 103 1.33 × 103 1.75 × 103 2.40 × 102 

AOA 1.79 × 103 8.15 × 102 1.27 × 103 2.40 × 102 

CEHHO 1.93 × 103 7.75 × 102 1.31 × 103 2.76 × 102 

EWOA 1.99 × 103 8.23 × 102 1.38 × 103 3.31 × 102 

MSCA 1.70 × 103 8.73 × 102 1.25 × 103 2.03 × 102 

MESOA 1.72 × 103 9.99 × 102 1.36 × 103 1.71 × 102 

EOSMICOA 2.12 × 103 1.04 × 103 1.66 × 103 2.77 × 102 

CSFChOA 1.09 × 103 2.50 × 102 6.77 × 102 1.88 × 102 

F8 

ChOA 5.06 × 100 4.58 × 100 4.81 × 100 1.66 × 10-1 

AOA 5.41 × 100 3.77 × 100 4.72 × 100 3.30 × 10-1 

CEHHO 5.09 × 100 3.89 × 100 4.76 × 100 3.30 × 10-1 

EWOA 5.42 × 100 3.77 × 100 4.67 × 100 3.74 × 10-1 

Continued on next page 
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Function Algorithm Worst Best Mean Std 

F8 

MSCA 4.50 × 100 3.03 × 100 4.03 × 100 2.98 × 10-1 

MESOA 5.59 × 100 4.86 × 100 5.35 × 100 1.43 × 10-1 

EOSMICOA 5.04 × 100 4.13 × 100 4.71 × 100 2.44 × 10-1 

CSFChOA 4.66 × 100 3.56 × 100 4.14 × 100 2.86 × 10-1 

F9 

ChOA 1.60 × 100 1.32 × 100 1.50 × 100 7.33 × 10-2 

AOA 3.44 × 100 1.29 × 100 2.52 × 100 6.95 × 10-1 

CEHHO 1.60 × 100 1.15 × 100 1.37 × 100 1.26 × 10-1 

EWOA 1.93 × 100 1.14 × 100 1.43 × 100 1.85 × 10-1 

MSCA 1.27 × 100 1.09 × 100 1.17 × 100 4.17 × 10-2 

MESOA 1.52 × 100 1.19 × 100 1.40 × 100 8.33 × 10-2 

EOSMICOA 1.52 × 100 1.20 × 100 1.32 × 100 6.84 × 10-2 

CSFChOA 1.60 × 100 1.20 × 100 1.41 × 100 1.07 × 10-1 

F10 

ChOA 2.16 × 101 2.12 × 101 2.15 × 101 1.11 × 10-1 

AOA 2.12 × 101 2.10 × 101 2.11 × 101 2.86 × 10-2 

CEHHO 2.14 × 101 2.10 × 101 2.12 × 101 1.23 × 10-1 

EWOA 2.16 × 101 2.10 × 101 2.11 × 101 1.20 × 10-1 

MSCA 2.14 × 101 2.10 × 101 2.12 × 101 8.18 × 10-2 

MESOA 2.20 × 101 2.15 × 101 2.18 × 101 1.25 × 10-1 

EOSMICOA 2.16 × 101 2.13 × 101 2.15 × 101 8.10 × 10-2 

CSFChOA 2.16 × 101 7.74 × 100 2.07 × 101 2.83 × 100 

From Table 6, we can see that, for F1, the CSFChOA is the algorithm which can find the 
theoretical optimum and has the best stability among all of the algorithms. For F2–F10, although the 
CSFChOA could not find the theoretical optimum like the other algorithms, the convergence 
accuracy is better than the standard ChOA. For F2–F4, F7, F10, F16–F18, the optimum value obtained 
by the CSFChOA is much closer to the theoretical optimum than the other seven algorithms. For F6, 
F8, the convergence ability of the CSFChOA was only worse than the MSCA, but more stable than 
the MSCA. For F4, F6, the standard deviation of the CSFChOA was lower than those of the other 
seven algorithms. For F1, F2, F3, F7, the stability of the CSFChOA was in the second place among all 
of the algorithms. In summary, the CSFChOA has good convergence accuracy and robustness when 
applied to the challenging CEC2019 test functions. 

4. Application analysis of CSFChOA on engineering examples 

To further explore the superiority of the CSFChOA when handling practical engineering 
application cases, two types of nonlinear constrained optimization problems in engineering were 
selected: the speed reducer design and the three-bar truss design. The ChOA [7], AOA [25], 
CEHHO [10], EWOA [8], MSCA [9], MESOA [11] and EOSMICOA [24] were used to solve these 
two problems respectively. The parameter values of these algorithms were selected according to the 
corresponding literature. The experimental parameters were taken as the population size N = 30, the 
maximum times of iterations tmax = 1000, and each algorithm was run 30 times independently. 

4.1. Speed reducer design 

To a mechanical system, the speed reducer is one of the important components of the gear case, 
and it can be used for a variety of applications. Design of the speed reducer is optimized to minimize 
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the weight of the speed reducer, which is associated with seven variables, i.e., the tooth width b, 
modulus of gear m, number of teeth on the pinion z, length of the first shaft between bearings l1, 
length of the second shaft between bearings l2, diameter of the first shaft d1 and diameter of the 
second shaft d2. The structure of the speed reducer is schematically shown in Figure 5. The specific 
mathematical model of the speed reducer is as follows. 

Objective function: 

X = [x1  x2  x3  x4  x5  x6  x7] = [b  m  z  l1  l2  d1  d2] 

2 2
1 2 3 3

2 2 3 3 2 2
1 6 7 6 7 4 6 5 7

( ) 0.7854 (3.3333 14.9334 43.0934)

1.508 ( ) 7.4777( ) 0.7854( )

f X x x x x

x x x x x x x x x

  
     

         (23) 

Constraint conditions: 

1
2

1 2 3

27
( ) 1 0g X

x x x
                                                (24) 

 2
2 2

1 2 3

397.5
( ) 1 0g X

x x x
                                                (25) 

  
3

4

3
4

2 6 3

1.93
( ) 1 0

x
g X

x x x
                                               (26) 

 
3

5

4
4

2 7 3

1.93
( ) 1 0

x
g X

x x x
                                                (27) 

2 6
4 2 3

5
3

6

(745 / ) 16.9 10
( ) 1 0

110

x x x
g X

x

 
                               (28)
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5 2 3

6
3

7
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x x x
g X
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 2 3

7( ) 1 0
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 2

8

1

5
( ) 1 0

x
g X

x
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 1

9

2

( ) 1 0
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x
g X

x
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4

1.5 1.9
( ) 1 0

x
g X

x


                                                           (33) 
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11

5

1.1 1.9
( ) 1 0

x
g X

x


                                                           (34) 

Variable range: 

 12.6 3.6x                                                                    (35) 
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 20.7 0.8x                                                                     (36) 

  3 17,18,19,...,28x                                                               (37) 

 47.3 x                                                                      (38) 

 5 8.3x                                                                     (39) 

 62.9 3.9x                                                                 (40) 

 75 5.5x                                                                 (41) 

The solution results of the eight algorithms are shown in Table 7. 
The comparison results in Table 7 show that the CSFChOA performs the best in terms of 

solving the complex optimization problem of the speed reducer design and can achieve the lowest 
weight; and, the overall optimization effect was much better than the other seven algorithms. The 
optimal cost was 64.03 lower than the ChOA, 93.31 lower than the AOA, 2636.45 lower than the 
CEHHO, 107.67 lower than the EWOA, 20.18 lower than the MSCA, 99,999,394.17 lower than the 
MESOA and 80.28 lower than the EOSMICOA. The performance of the CSFChOA was 100% better 
than that of the other algorithms. The comparison results verify the superior performance of the 
CSFChOA in terms of solving the speed reducer design. 

 

Figure 5. Principle diagram of the speed reducer. 
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Table 7. Comparison results of eight algorithms in solving the speed reducer design problem. 

Algorithm 

Optimum variables 

Optimal cost b m p l1 l2 d1 d2 

ChOA 3.6000  0.7000  17.0000  7.3000 7.8000 3.4020 5.2942  3081.3530  

AOA 3.6000  0.7000  17.0000  7.3000 7.8000 3.3672 5.2883  3110.6266  

CEHHO 3.5002  0.7000  17.0000  7.5651 7.8000 3.7735 5.2867  5653.7677  

EWOA 3.5015  0.7000  17.0000  7.3000 7.8000 3.3504 5.2867  3124.9913  

MSCA 3.5356  0.7000  17.0000  7.3000 7.8000 3.3925 5.2982  3037.5032  

MESOA 2.6154  0.7001  17.0132  7.8088 8.0721 2.9132 5.0074  100,002,411.4893  

EOSMICOA 3.6000  0.7000  17.0000  7.3000 7.8000 3.3930 5.2943  3097.5938  

CSFChOA 3.5040  0.7000  17.0000  7.3303 7.8617 3.3652 5.2869  3017.3183  

4.2. Three-bar truss design  

The three-bar truss design is a structural problem in the field of civil engineering; the objective 
is to minimize the volume of the truss under hydrostatic pressure while satisfying the stress (σ) 
constraint on each truss member. A schematic model of a three-bar truss is shown in Figure 6, where 
H is the height of the truss and P is the concentrated force. The variables for this problem are the 
optimum cross-sectional areas A1, A2, which is mathematically modeled as follows. 

Objective function: 

X = [A1  A2] = [x1  x2] 

 1 2( ) (2 2 )f X x x l                                                          (42) 

Constraint conditions: 

1 2
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2

1 1 2

2
( ) 0

2 2

x x
g X P

x x x


  


                                         (43) 
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2
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1 1 2

( ) 0
2 2
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                                       (44) 
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2 1
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g X P

x x
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 32 /P kN cm                                                             (47) 

 32 /kN cm                                                              (48) 

Variable range: 

                                                                       (49) 

                                                                        (50) 

10 x

2 1x 
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Figure 6. Schematic model of a three-bar truss. 

The solution results of the eight algorithms are shown in Table 8. 

Table 8. Comparison of the results of eight algorithms for solving the three-bar truss design problem. 

Algorithm 
Optimum variables 

Optimal cost 
A1 A2 

ChOA 0.7857  0.4081  263.4646  

AOA 0.7890  0.3995  263.9554  

CEHHO 0.7861  0.4068  263.4635  

EWOA 0.7863  0.4063  263.4639  

MSCA 0.7858  0.4077  263.4638  

MESOA 0.7862  0.4067  263.4648  

EOSMICOA 0.7865  0.4057  282.5938  

CSFChOA 0.7861  0.4069  263.4634  

The comparison results in Table 8 show that the CSFChOA performs the best in terms of 
solving the complex optimization problem of the three-bar truss design, and that it can achieve the 
minimum truss volume and the overall optimization effect much better than the other seven algorithms. 
The optimal cost was 0.0012 lower than the ChOA, 0.4920 lower than the AOA, 0.0001 lower than the 
CEHHO, 0.0005 lower than the EWOA, 0.0005 lower than the MSCA, 0.0004 lower than the MESOA 
and 19.1304 lower than the EOSMICOA. The performance of the CSFChOA was 6.77% better than 
that of the other algorithms. The comparison results verify the superior performance of the 
CSFChOA in terms of solving the three-bar truss design problem. 

In summary, the testing of the above two well-known engineering constraint problems with 
different levels of complexity fully demonstrates the strong potential and superiority of the 
CSFChOA on handling different types of engineering optimization problems, and it demonstrates 
the robustness of the CSFChOA. 

5. Conclusions 

To address the problems of slow convergence speed, low accuracy and susceptibility to local 
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optimum traps of the ChOA, a hybrid improvement strategy, i.e., the CSFChOA has been proposed. 
By combining a chaos initialization method and opposition-based learning initialization strategy, the 
initial population is generated, which can ensure the diversity of the algorithm at the beginning, as 
well as improve the convergence speed and optimum searching accuracy. The somersault foraging 
strategy is used to maintain the population diversity and prevent homogeneity, which can improve 
ability of the algorithm to jump out of the local optimum. Regarding simulation, the optimization 
search tests were performed on 23 standard test functions and CEC2019 test functions, and the 
Wilcoxon rank-sum test was used for statistical analysis. The CSFChOA has been compared with the 
ChOA and other improved intelligent optimization algorithms. The experimental results show that 
the CSFChOA was demonstrated to be better than most of the other algorithms in terms of optimum 
search accuracy, convergence speed and robustness of global optimization in both low-dimensional 
and high-dimensional experiments. Good results were obtained from the application of the 
CSFChOA to two complex engineering problems, that is, the design of a three-bar truss and speed 
reducer; this verifies the feasibility, applicability and superiority of the CSFChOA in practical 
engineering applications, as well as provides a new idea for solving complex practical engineering 
problems. However, the CSFChOA has its limitations, like other optimization algorithms, and needs 
further improvement. It was found during experimental runs that the CSFChOA runs for a long time 
in high dimensions; we think that this can be solved by introducing a parallel strategy. The research 
on the human brain has become a hot spot in recent years, and numerous research results have been 
widely used in clinical diagnosis, artificial intelligence, brain computer interface, etc. After the 
collection of Electroencephalogram (EEG) signals, frequency components should be extracted, 
unnecessary components should be removed or noise should be eliminated; therefore, the filtering of 
EEG signals is very important. The design of the filters can be treated as an optimization problem; 
we need to find the optimal filter with the most proper specifications, and we are planning to apply 
the CSFChOA for the optimization of EEG filtering. 
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