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Abstract: HIV infection remains a serious global public health problem. Although current drug treat-
ment is effective and can reduce plasma viral loads below the level of detection, it cannot eradicate the
virus. The reasons for the low virus persistence despite long-term therapy have not been fully eluci-
dated. In addition, multiple HIV infection, i.e., infection of a cell by multiple viruses, is common and
can facilitate viral recombination and mutations, evading the immune system and conferring resistance
to drug treatment. The mechanisms for multiple HIV infection formation and their respective contri-
butions remain unclear. To answer these questions, we developed a mathematical modeling framework
that encompasses cell-free viral infection and cell-to-cell spread. We fit sub-models that only have one
transmission route and the full model containing both to the multi-infection data from HIV-infected pa-
tients, and show that the multi-infection data can only be reproduced if these two transmission routes
are both considered. Computer simulations with the best-fitting parameter values indicate that cell-
to-cell spread leads to the majority of multiple infection and also accounts for the majority of overall
infection. Sensitivity analysis shows that cell-to-cell spread has reduced susceptibility to treatment and
may explain low HIV persistence. Taken together, this work indicates that cell-to-cell spread plays
a crucial role in the development of HIV multi-infection and low HIV persistence despite long-term
therapy, and therefore has important implications for understanding HIV pathogenesis and developing
more effective treatment strategies to control or even eliminate the disease.
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1. Introduction

As the causative agent of acquired immunodeficiency syndrome (AIDS), human immunodeficiency
virus (HIV) infection remains a serious health problem in the world. At the end of 2021, there were
approximately 38.4 million people living with HIV, about two-thirds of whom lived in Sub-Saharan
Africa [1]. Since its discovery in 1981, the death toll of AIDS and the rapid spread of HIV have moti-
vated a significant body of scientific and medical research. Over twenty antiretroviral drugs have been
approved by the US Food and Drug Administration [2]. Currently, highly active antiretroviral therapy
(HAART) containing three to five antiretroviral drugs has been successful in prolonging patients’ sur-
vival and controlling viral replication. After 3–6 months of treatment, the viral load can be reduced
below the limit of detection (i.e., 50 RNA copies per ml by standard assays), but supersensitive assays
can reveal continual low-level viremia in patients under suppressive HAART [3, 4].

The mechanisms underlying low-level viral persistence are not yet fully understood. Earlier
work [5, 6] suggested that viral persistence could be explained by the reactivation of cells from long-
lived and stable latent reservoirs. Residual ongoing viral replication is also considered as a possible
cause of viral persistence due to physiological sites or cellular compartments that have poor drug
penetration [7, 8]. Zhang and Perelson [9] showed that the kinetics of leakage of virus from follicular
dendritic cells (FDC) is consistent with some clinical data, suggesting that FDC might also contribute
to low-level viral persistence.

HIV can spread through the population of target cells by two basic routes [10, 11]: (i) in cell-free
virus infection, infected cells can produce free viruses, which infect susceptible target cells; (ii) in
cell-to-cell spread, the virus can spread directly from an infected donor cell to a susceptible target
cell, possibly through the formation of virological synapses [10–12]. There is experimental evidence
that cell-to-cell spread is more effective than infection with free-floating viruses [13, 14], and it could
play an important role in HIV dynamics. During cell-to-cell viral transmission, the probability that at
least one of the virions escapes from antiretroviral inhibition increases as the number of transmitted
virions increases [15]. Therefore, we will explore if cell-to-cell viral spread can explain the low HIV
persistence during long-term therapy in this paper.

Cell-to-cell transmission can lead to the transfer of tens to hundreds of virus particles in a single
synapse, a certain fraction of which successfully integrates into the target cell genome [12, 16],
resulting in the multiple infection of cells. Multiply infected cells are frequently observed in experi-
ments [17–19]. For example, Jung et al. [17] found that the HIV-infected splenocytes of two patients
harbored between one and eight proviruses (a provirus is referred to as the HIV DNA integrated into
the host cell’s DNA), with an average of three to four proviruses per cell. During acute infection of
macaques by simian immunodeficiency virus (SIV), infected CD4+ memory T cells carried an average
of 1.5 viruses per cell [18]. Rebecca et al. [19] showed, using fluorescence in-situ hybridization, that
an average of 3.4 proviral copies occurred per cell as a result of cell-to-cell viral transmission.

Mathematical models have been used to gain an understanding of HIV multiple infection [20–23].
Dixit and Perelson [20] first proposed probabilistic models of multiple infection and calculated the rate
of infection when including only cell-free virus infection or both cell-free virus infection and cell-to-
cell transmission. In a subsequent paper [21], they showed that the number of cells infected with i
viruses correlates with the ith power of the number of singly infected cells under certain conditions.
Ito et al. [22] developed an ordinary differential equation (ODE) model with the heterogeneity of the
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target cell population, aimed at analyzing the HIV co-infection dynamics in the context of cell-free
virus infection. They found that two different susceptible sub-populations were enough to reproduce
the experimental data and around 98% of co-infected cells emerged from the more susceptible target
cells. In a recent mathematical model of multiple infection [23], various numbers of virions were
assumed to be spread with distinct probabilities.

Here we develop and examine a mathematical modeling framework incorporating multiple infected
cell groups and two routes of viral spread. In order to investigate how multiple infection is formed, we
compare the models with various scenarios of multiple infection to the HIV proviral copy data [17].
Simulating the model with the best-fit parameter estimates, we study the dynamics of infected cell
populations, and evaluate the respective contributions of the two transmission routes to the singly and
multiply infected cells. To determine if cell-to-cell viral spread can account for low HIV persistence in
infected individuals receiving effective treatment, we also assess the sensitivity of the basic reproduc-
tion number and the level of HIV to the effectiveness of the drug.

2. Models and mathematical results

2.1. A model with two transmission routes

Based on basic models of within-host virus dynamics [24, 25], we formulate the following model
incorporating cell-to-cell viral spread alongside cell-free viral infection.

dT
dt

= s − dT (t) − (1 − ε)βT (t)V(t) −
n∑

i=1

fi(1 − εi)kT (t)

T ∗(t) +

n∑
i=1

Ii(t)

 ,
dT ∗

dt
= (1 − ε)βT (t)V(t) − δT ∗(t),

dIi

dt
= fi(1 − εi)kT (t)

T ∗(t) +

n∑
j=1

I j(t)

 − δiIi(t), i = 1, 2, . . . , n,

dV
dt

= N

δT ∗(t) +

n∑
i=1

δiIi(t)

 − cV(t).

(2.1)

In the model, T and V denote the concentrations of uninfected CD4+ T cells and free virus, respec-
tively. T ∗ denotes the concentration of CD4+ T cells infected by free virions, and Ii (i = 1, 2, . . . , n)
represents cells infected through cell-to-cell spread with i viruses transmitted. Uninfected cells are
generated at rate s, and die at rate d. β and k represent the infection rates of uninfected cells via direct
cell-free viral infection and cell-to-cell spread, respectively. The parameter fi (i = 1, 2, . . . , n) denotes
the chance that cell-to-cell spread transmits i viral genomes. Because the sum of all the possibilities is
equal to 1, we have that

∑n
i=1 fi = 1. Infected cells die at the rate δ or δi, corresponding to their respec-

tive class. It is assumed that virions are generated at a rate Nδ from the cells infected by the cell-free
virus, and at rate Nδi from cells infected by cell-to-cell spread, where N is the viral burst size, that is
the total amount of virions created by one infected cell during its lifetime (i.e., 1/δ for T ∗ and 1/δi for
Ii). Free virions are assumed to be removed from circulation at the rate c. The parameter ε represents
the drug’s effectiveness in inhibiting cell-free virus infection, and εi (i = 1, 2, . . . , n) is the effectiveness
of antiretroviral treatment in inhibiting the infection by i virions via cell-to-cell transmission. Sigal et
al. [15] suggested that when more virions are spread in each cell-to-cell transmission, the therapy is
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less likely to inhibit the infection induced by all the transmitted virions. Therefore, it is assumed that
ε1 > ε2 > · · · > εn. The schematic diagram of the model (2.1) is shown in Figure 1, and all parameters
and their values are summarized in Table 1.

Figure 1. Schematic illustration of Eq (2.1) incorporating two routes of viral spread. Vari-
ables T,T ∗, Ii and V denote uninfected CD4+ T cells, cells infected by the free virus, cells
infected via cell-to-cell spread that transmits i virions, and free virus, respectively. The pa-
rameter definitions and values are listed in Table 1.

Table 1. Parameters and values used in the mathematical model (2.1).

Parameter Description Value Source
s Generation rate of uninfected CD4+ T cells 104 ml−1day−1 [23]
d Death rate of uninfected CD4+ T cells 0.01 day−1 [23, 26]
β Infection rate of cells by cell-free virus Data fitting See text
k Cell-to-cell viral transmission rate Data fitting See text
fi Probability of cell-to-cell transmission that sends the cell to class Ii Data fitting See text
ε Drug’s effect of inhibiting cell-free virus infection See text See text
εi Drug’s effect of inhibiting cell-to-cell viral spread See text See text
δ Death rate of infected cells T ∗ 1 day−1 [23, 27, 28]
δi Death rate of infected cells Ii See text See text
N Viral burst size Data fitting See text
c Viral clearance rate 23 day−1 [29]

2.2. Model analysis

We will use model (2.1) to analyze the HIV multiple infection distribution data in two patients
who did not take any antiretroviral therapy [17]. Thus, we first let all the drug efficacies be 0, i.e.,
ε = εi = 0, for i = 1, 2, . . . , n. The model with drug treatment will be discussed later. The model
without antiretroviral therapy is given by
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

dT
dt

= s − dT (t) − βT (t)V(t) − kT (t)

T ∗(t) +

n∑
i=1

Ii(t)

 ,
dT ∗

dt
= βT (t)V(t) − δT ∗(t),

dIi

dt
= fikT (t)T ∗(t) + fikT (t)

n∑
j=1

I j(t) − δiIi(t), i = 1, 2, . . . , n,

dV
dt

= N

δT ∗(t) +

n∑
i=1

δiIi(t)

 − cV(t).

(2.2)

Any steady state of model (2.2) must satisfy the following equalities

s − dT − βTV − kT

T ∗ +

n∑
i=1

Ii

 = 0,

βTV − δT ∗ = 0,

fikTT ∗ + fikT
n∑

j=1

I j − δiIi = 0, i = 1, 2, · · · , n,

N

δT ∗ +

n∑
i=1

δiIi

 − cV = 0.

(2.3)

It is clear that model (2.2) always admits an infection-free equilibrium E0 = (T0, 0, 0, · · · , 0) with
T0 = s/d, where there is no infection.

Using the next-generation method [30], we derive the basic reproduction number, given by (see
Appendix A).

R0 =
1
2

Nβ
c

+ k
n∑

i=1

fi

δi
+

√√√Nβ
c

+ k
n∑

i=1

fi

δi

2

+ 4
Nβ
c

n∑
i=1

k
(

fi

δ
−

fi

δi

) T0. (2.4)

The basic reproduction number is a key measure in estimating the ability of a disease to spread in
epidemiological research. It is defined as the average number of secondary transmissions from one
infected person in a wholly susceptible environment. When it is greater than 1, the epidemic is growing;
when it is less than 1, the disease is predicted to die out. In the context of the within-host viral
dynamic model (2.2), R0 represents the average number of newly infected cells (or virions) generated
by one infected cell (or one virion) introduced into an environment where all cells are susceptible.
The complexity of the expression, in particular the square root, makes it hard to explain the biological
meaning. However, with straightforward algebraic computation, we find that the following R′0 is an
equivalent measure but it is easy to explain the biological meaning.

R′0 =
Nβ
c

T0 + kT0

n∑
i=1

fi

δi
+

NβT0

c

n∑
i=1

k
(

fi

δ
−

fi

δi

)
T0 (2.5)

It can be easily shown that R0 > 1, R0 = 1, and R0 < 1 are equivalent to R′0 > 1, R′0 = 1, and R′0 < 1,
respectively. R′0 consists of three parts, each representing the contribution of infection by free virus,
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by cell-to-cell transmission from the infected cell populations Ii, and by cell-to-cell spread from the
infected cell population T ∗.

In addition to the infection-free equilibrium E0, model (2.2) has an infected equilibrium E1 =

(T̂ , T̂ ∗, Î1, Î2, . . . , În, V̂), where

T̂ =
c

Nβ

(
Nβs
cδ −

(
Nβ
c + k

n∑
i=1

fi
δi

)
T̂ ∗

)
d
δ

+ k
n∑

i=1

(
fi
δ
−

fi
δi

)
T̂ ∗

Î j =
T̂ T̂ ∗

1 − T̂ k
n∑

i=1

fi
δi

k
f j

δ j
, j = 1, 2, . . . , n

V̂ =
Nδ
c

1 +
T̂
δ

k

1 − T̂ k
n∑

i=1

fi
δi

 T̂ ∗

(2.6)

and T̂ ∗ is the unique positive solution of the following equation

k(Nsβ − q2T̂ ∗)2

cNβδ(d + δq1T̂ ∗)2(1 − k
n∑

i=1

fi
δi

Nsβ−q2T̂ ∗

Nβ(d+δq1T̂ ∗)
)

= 1 −
Nsβ − q2T̂ ∗

c(d + δq1T̂ ∗)
,

with

q1 = k
n∑

i=1

(
fi

δ
−

fi

δi

)
, q2 =

Nβ
c

+ k
n∑

i=1

fi

δi
.

To study the local stability of the infection-free equilibrium E0 of model (2.2), we linearize model
(2.2) and obtain the following Jacobian matrix evaluated at E0

J(E0) =



−d −kT0 −kT0 −kT0 . . . −kT0 −kT0 −βT0

0 −δ 0 0 . . . 0 0 βT0

0 k f1T0 k f1T0 − δ1 k f1T0 . . . k f1T0 k f1T0 0
0 k f2T0 k f2T0 k f2T0 − δ2 . . . k f2T0 k f2T0 0
...

...
...

...
. . .

...
...

...

0 k fn−1T0 k fn−1T0 k fn−1T0 . . . k fn−1T0 − δn−1 k fn−1T0 0
0 k fnT0 k fnT0 k fnT0 . . . k fnT0 k fnT0 − δn 0
0 Nδ Nδ1 Nδ2 . . . Nδn−1 Nδn −c


. (2.7)

Similarly, we can obtain the corresponding Jacobian matrix of model (2.2) at the infected equilib-
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rium E1, given by

J(E1) =



−
(βV̂+d)

(
T̂ k

n∑
i=1

fi
δi
−1

)
−T̂ ∗k

T̂k
n∑

i=1

fi
δi
−1

−kT̂ −kT̂ −kT̂ . . . −kT̂ −βT̂

βV̂ −δ 0 0 . . . 0 βT̂
−

f1kT̂ ∗

kT̂
n∑

i=1

fi
δi
−1

k f1T̂ k f1T̂ − δ1 k f1T̂ . . . k f1T̂ 0

−
f2kT̂ ∗

kT̂
n∑

i=1

fi
δi
−1

k f2T̂ k f2T̂ k f2T̂ − δ2 . . . k f2T̂ 0

...
...

...
...

. . .
...

...

−
fnkT̂ ∗

kT̂
n∑

i=1

fi
δi
−1

k fnT̂ k fnT̂ k fnT̂ . . . k fnT̂ − δn 0

0 Nδ Nδ1 Nδ2 . . . Nδn −c



. (2.8)

With distinct death rates of infected cells, the analysis of the model for local stability is challeng-
ing. However, with the assumption of equal death rates (i.e., δ = δ1 = · · · = δn), the infection-free
equilibrium E0 and new infection matrix Fn+2 remain unchanged, and the basic reproduction number
becomes R0 =

Nβ
c T0 + k

δ
T0 (Appendix A). In this case, when R0 > 1, there exists an infected equilibrium

E1 = (T̂ , T̂ ∗, Î1, Î2, . . . , În, V̂), where

T̂ =
cδ

Nδβ + kc
, T̂ ∗ =

cδβNd(R0 − 1)
(Nδβ + kc)2 ,

V̂ =
δNd(R0 − 1)

Nδβ + kc
, Îi =

c2dk fi(R0 − 1)
(Nδβ + kc)2 , i = 1, 2, . . . , n.

(2.9)

It is clear that the infected equilibrium exists if and only if R0 > 1. For the local stability of the
infection-free equilibrium E0 and the infected equilibrium E1, we have the following results, with the
proof given in Appendixes B and C, respectively.

Theorem 2.1. The infection-free equilibrium E0 is locally asymptotically stable if R0 < 1 and
unstable if R0 > 1.

Theorem 2.2. The infected equilibrium E1 is locally asymptotically stable whenever it exists, i.e.,
when R0 > 1.

3. Data analysis and computer simulations

3.1. Multiple infection data analysis

Model (2.2) will be used to analyze the multiple HIV infection data in Jung et al. [17]. The data
showed a bimodal frequency distribution for the number of HIV-1 proviral copies per infected cell in
two patients who were not on antiretroviral therapy. The proviral copy number was between one and
eight per cell, with a mean of about 3.2. Thus, we have n = 8 in our model. We calculate the fraction of
cells containing i proviruses in the overall infection when the system is at equilibrium (because the two
patients were in the chronic stage of infection), and the proportion is denoted by ψi (i = 1, 2, · · · , n).
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We also reorganize the data by dividing the number of cells containing a given number of proviruses
by the total number of cells collected from each patient [17]. In this way, we obtain the frequency of
multiple infection and compare it with our model prediction.

Because of the limited frequency data in these two patients, we keep the assumption that all the
infected cells have the same death rate. We also set some parameter values based on existing re-
search [23,26–29,31]. In the absence of infection, CD4+ T cell levels are approximately 106 ml−1 [31].
The death rate of uninfected cells d is 0.01 day−1 [23,26]. Thus, the generation rate of uninfected cells
s is 106 × 0.01 = 104 ml−1day−1. The death rate of infected cells δ is fixed to 1 day−1, which is the
same as in [23,27]. The clearance rate of virus c is chosen to be 23 day−1 [28,29]. We fit the calculated
frequency ψi (which will be derived later for each sub-model) to the proviral distribution data of each
patient using the nonlinear least square method and provide estimates for the other parameters.

Multi-infection may be formed by cell-to-cell transmission originating from the directly virus-
infected cells T ∗, cell-to-cell transmission from the cells Ii, or a combination of both. In order to
discriminate the potential mechanism of multiple infection formation and determine the respective
contribution from each transmission route, we consider the following two sub-models and the full
model.

Sub-model A: Only virus-directly-infected cells transmit viruses
If only the virus-directly-infected cells T ∗ transit viruses, then the sub-model is given by

dT
dt

= s − dT (t) − βT (t)V(t) − kT (t)T ∗(t),

dT ∗

dt
= βT (t)V(t) − δT ∗(t),

dIi

dt
= fikT (t)T ∗(t) − δIi(t), i = 1, 2, . . . , n,

dV
dt

= Nδ

T ∗(t) +

n∑
i=1

Ii(t)

 − cV(t).

(3.1)

This simplified sub-model A has an infected equilibrium EA = (TA,T ∗A, I1A, I2A, . . . , InA,VA), where

TA = −
δ

k
+

√
(
δ

k
)2 +

4cδ
Nβ

, VA =
Ns
c
−

Nd
c

TA,

T ∗A =
β

δ
TAVA, IiA =

k fi

δ
TAT ∗A, i = 1, 2, . . . , n.

(3.2)

According to this equilibrium, we compute the fraction of infected cells containing i proviruses, given
by

ψ1 =
I1A + T ∗A∑n
i=1 IiA + T ∗A

, ψ2 =
I2A∑n

i=1 IiA + T ∗A
, · · ·, ψ8 =

I8A∑n
i=1 IiA + T ∗A

The chance of spreading i virions during cell-to-cell transmission ( fi, i = 1, 2, · · · , 8) remains un-
known. Inspired by the work of Dixit and Perelson [20], we first assume that fi takes the Poisson
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distribution fi = e−θθi

i! , where θ is the mean value of viral genomes spread in each cell-to-cell transmis-
sion. Thus,

∑∞
i=0

e−θθi

i! = 1, which leads to
∑∞

i=1
e−θθi

i! = 1 − e−θ, i.e.,
∑∞

i=1
e−θ

1−e−θ
θi

i! = 1. We modify the
Poisson distribution to fi = e−θ

1−e−θ
θi

i! to rule out the event that cell-to-cell transmission does not transmit
any virus. The data (blue circles) and the best fit are displayed in Figure 2 upper panels. For both
patients, the model fitting is similar in the distribution of proviral copy numbers. Only singly infected
cells exist (Figure 2 upper panels). This is not consistent with the data that one cell has a mean of
3.2 proviruses [17]. Thus, model (3.1) with a modified Poisson distribution of fi fails to reproduce the
multiple infection data [17].
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Figure 2. Model fitting to the multiple infection data (blue circle). Here we assume there is
only cell-to-cell spread originating from virus-directly-infected cells T ∗. Upper panels: the
chance fi of spreading i virions follows a Poisson probability distribution. Low panels: the
probability follows the binomial distribution. The model including only viral spread from T ∗

cannot explain the multiple infection data.

We also use other distributions of the probability fi in the data fitting. In Figure 2 lower panels, we
use a binomial distribution, which was also used in some other models [16, 32, 33]. We assume the
chance of spreading i genomes is

fi =

(
n
i

)
γi(1 − γ)n−i,
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where γ is the probability of having a successful infection from one virus. Using the binomial
distribution, we have the same fitting (Figure 2 lower panels). Therefore, model (3.1) cannot explain
the patient multiple infection data using either a Poisson distribution or binomial distribution. We
also try some other distributions such as Gaussian and log-normal distributions and get similar fitting
results.

Sub-model B: Only cell-to-cell spread transmits viruses
In this sub-model, we assume there is no direct cell-free virus infection and there is only cell-to-cell

transmission. The sub-model is given by

dT
dt

= s − dT (t) − kT (t)
n∑

i=1

Ii(t),

dIi

dt
= fikT (t)

n∑
j=1

I j(t) − δIi(t), i = 1, 2, . . . , n,

dV
dt

= Nδ
n∑

i=1

Ii(t) − cV(t).

(3.3)

The steady state of infected cells with i proviruses is IiB = fi( s
δ
− d

k ) and its frequency in the total
infected cell population is given by

ψi =
IiB∑n

j=1 I jB
, i = 1, 2, . . . , n.

We compare the frequency with the same data set [17], as shown in Figure 3 upper panels. It was found
that model (3.3) with the Poisson distribution of fi provides a reasonable data fitting, except for missing
the first peak (i.e., infected cells with one proviral copy). Using a binomial distribution, the model also
provides a reasonable fit to the data (see Figure 3 lower panels). Therefore, we conclude that model
(3.3) assuming only cell-to-cell spread without direct cell-free virus infection provides a good fit to the
patient data. Next, we investigate which distribution is better for reproducing the multiple infection
data. For the comparison of the fitting using the two distributions, we calculate SSR (see below), the
sum of squared residuals, which measures the error between model prediction and experimental data.
We also compute AIC, the Akaike information criterion, which also evaluates the relative quality of
different mathematical models in fitting a given set of data.

SSR =

n∑
i=1

(ψi − ψ̂i)2, AIC = n ln(SSR/n) + 2σ, (3.4)

where n is the number of data points from each patient, σ is the number of parameters used in data
fitting, ψi is the predicted frequency of infected cells containing i proviral copies calculated from our
model and ψ̂i is the corresponding patient data. Based on the best-fitting results, we present the SSR
and AIC values in Table 2. It turns out that model (3.3) with the Poisson distribution of fi (modelim

of Table 2) has smaller SSR and AIC than the binomial distribution (i.e., modelib of Table 2). This
indicates that the model with Poisson distribution is better at fitting the data.
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Table 2. Model comparison∗.

SSR AIC
Patient Modelim Modelib Modelbm Modelbb Modelim Modelib Modelbm Modelbb

R 0.021 0.028 0.018 0.007 -43.54 -41.24 -40.77 -48.33
B 0.009 0.014 0.008 0.003 -50.32 -46.79 -47.26 -55.11

∗ Models are compared by SSR and AIC, which are calculated in Eq (3.4).
Modelim is Eq (3.3) with Poisson distribution;
Modelib is Eq (3.3) with binomial distribution;
Modelbm is Eq (3.5) with Poisson distribution;
Modelbb is Eq (3.5) with binomial distribution.
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Figure 3. Model fitting to experimental data. Here we assume that there is no direct cell-free
virus infection (i.e., model (3.3)). The model prediction agrees with the patient data. The
upper panels use Poisson distribution and the lower panels use binomial distribution.

Although the model prediction with only cell-to-cell spread (Eq (3.3)) agrees with the patient
data, the fitting did not capture the bimodal proviral peaks at one and three proviral copies. We
tried some other distributions, e.g., Gaussian distribution and log-normal distribution, but found that
they cannot explain the two peaks either. The best fitting always shows a peak for infected cells
containing three proviruses (similar to the fitting shown in Figure 3). Because the model assuming
only virus-directly-infected cells can transmit viruses (i.e., Eq (3.1)) always exhibits a single peak
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for singly infected cells in the best fitting (Figure 2), we speculate that both transmission routes are
required to capture the two-peak distribution of multi-infection. In the following, we use the full
model to fit the same data set and further evaluate the relative contributions from each transmission
mode.

Full model C: Both transmission routes can transmit viruses
To study if both the two transmission routes are required to capture the two-peak distribution of

proviruses, we use the following full model

dT
dt

= s − dT (t) − βT (t)V(t) − kT (t)

T ∗(t) +

n∑
i=1

Ii(t)

 ,
dT ∗

dt
= βT (t)V(t) − δT ∗(t),

dIi

dt
= fikT (t)T ∗(t) + fikT (t)

n∑
j=1

I j(t) − δIi(t), i = 1, 2, . . . , n,

dV
dt

= Nδ

T ∗(t) +

n∑
i=1

Ii(t)

 − cV(t).

(3.5)

For the full model, the infected steady state E1 is given in Eq (2.9). The frequency of infected cells
containing i proviruses is calculated from this steady state as follow:

ψ1 =
I1 + T ∗∑n
i=1 Ii + T ∗

, ψ2 =
I2∑n

i=1 Ii + T ∗
, · · · , ψ8 =

I8∑n
i=1 Ii + T ∗

.

Table 3. Best-fitting parameter estimates.

Patient β k γ N
(ml/day) (ml/day) (no unit) (virus/cell)

R 1.65 × 10−8 5.63 × 10−6 0.42 1447
B 1.2 × 10−8 4.73 × 10−6 0.41 1170

Mean 1.425 × 10−8 5.18 × 10−6 0.415 1308.5
SD 2.25 × 10−9 4.5 × 10−7 0.005 138.5

Figure 4 shows the model fitting of the calculated frequency to the multiple infection distribution
data. The upper panels use the modified Poisson distribution and the lower panels use the binomial
distribution for the probability fi. We find that both can capture the bimodal distribution at one and
three proviral copies. Therefore, model (3.5) improves the fitting to the proviral distribution data. For
a further comparison of the data fitting using the full model, SSR and AIC values were calculated for
each distribution (see Table 2). The full model with the binomial distribution, denoted by modelbb, has
smaller SSR and AIC values than modelbm, the model (3.5) with the Poisson distribution.

In conclusion, we find that the two routes of viral spread are both required to capture the two-peak
data of multiple infection shown in experiment [17]. Model comparison from Table 2 suggests that
the full model (3.5) with a binomial distribution for cell-to-cell transmission yields the smallest SSR
and AIC values. The best-fitting parameter values using the full model and binomial distribution are
provided in Table 3.
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Figure 4. Data fitting using the full model incorporating cell-to-cell viral spread from both
T ∗ and all of Ii. The fitting can reproduce the bimodal multiple-cell distribution at one and
three proviral copies.

3.2. Respective contributions to multiple infection

Data fitting to the multiple infection data in the last section suggests that the two transmission routes
are both required to explain the two-peak proviral distribution. In this section, we evaluate the relative
contribution of these two transmission routes to the multiple infection and total infection. Using the
best-fitting parameter values of the full model, we simulate the dynamics of all of the infected cell
populations. Figure 5(a) shows that all the infected cells containing a different number of proviruses
have similar dynamics despite different magnitudes. For each class of Ii, the cell population increases
rapidly, then decreases, oscillates, and eventually converges to a steady state. Using a different model,
Dixit and Perelson [21] found that the abundance of the infected cell subpopulation at equilibrium
scales with the number of proviruses present in cells, i.e., singly infected cells are most abundant,
followed by cells containing two, three, or four viruses, etc. However, in our prediction, the cells
containing three proviruses are most abundant, followed by cells infected with four, one, two, five, six
proviruses, etc (see the zoom-in figure in Figure 5(a)). Cell-to-cell transmission that is included in our
model may explain the difference.
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Figure 5. Simulation of the full model with best-fitting parameter values from Table 3. (a)
Predicted time evolution of cells containing different amounts of proviral copies. (b) The
respective contribution to the overall infection. They include single and multiple infection,
as well as cell-free virus infection and cell-to-cell transmission.

To elaborate on the contribution to the total infection from single infection and multiple infection,
we separate infected cells into two categories, single infection T ∗(t) + I1(t) and multiple infection
8∑

i=2
Ii(t). The infection can be established either from cell-free virus infection or cell-to-cell spread. The

relative contributions from these two transmission routes are given by

φ1 =
βT (t)V(t)

βT (t)V(t) + kT (t)
(
T ∗(t) +

8∑
i=1

Ii(t)
) and φ2 =

kT (t)
(
T ∗(t) +

8∑
i=1

Ii(t)
)

βT (t)V(t) + kT (t)
(
T ∗(t) +

8∑
i=1

Ii(t)
) .

Therefore, the contribution to the total infection from single infection and from cell-free virus infection,
from single infection and from cell-to-cell spread, from multiple infection and from cell-free virus
infection, and from multiple infection and from cell-to-cell spread is respectively given by

φ1 ·
T ∗(t) + I1(t)

T ∗(t) +
8∑

i=1
Ii(t)

, φ2 ·
T ∗(t) + I1(t)

T ∗(t) +
8∑

i=1
Ii(t)

, φ1 ·

8∑
i=2

Ii(t)

T ∗(t) +
8∑

i=1
Ii(t)

, φ2 ·

8∑
i=2

Ii(t)

T ∗(t) +
8∑

i=1
Ii(t)

.

Using the same best-fitting parameter values as in Figure 5(a), we plot the above relative contribu-
tions in Figure 5(b). We observe that at the beginning of infection, cells infected with a single virus
from cell-free virus infection are the most common (zoomed-in figure in Figure 5(b)). As the infec-
tion continues, the contributions to the total infection from multi-infection and from cell-to-cell spread
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increase rapidly. All curves have some minor fluctuation before converging to the respective steady
states. Multiple infection from cell-to-cell transmission accounts for the majority of the total infected
cells (about 70%). The contribution from multiple infection initially via cell-free virus infection ac-
counts for approximately 10% of the total infection. The remaining infection is singly infected cells, in
which cell-to-cell spread and direct viral infection account for 18 and 2%, respectively. This shows that
cell-to-cell viral spread plays a crucial role in developing multi-infection and also accounts for most
cell infection. The percentages may be slightly different due to the potential variation in parameter
estimates. However, this should not affect the major conclusion in view of their relative magnitude.

3.3. Influence of cell-to-cell spread on HIV persistence during therapy

To determine if cell-to-cell spread can explain the low HIV persistence despite long-term effective
antiretroviral treatment, we study the viral change when drug efficacy increases. We start with the
sensitivity of the basic reproduction number during treatment, denoted by RT

0 , with respect to the drug
effectiveness against direct viral infection ε and the drug effectiveness against cell-to-cell spread εi

(i = 1, 2, . . . , 8).
In the presence of therapy, the basic reproduction number given in (2.4) becomes

RT
0 =

1
2

(√√(N(1 − ε)β
c

+ k
n∑

i=1

(1 − εi)
fi

δi

)2

+ 4
N(1 − ε)β

c

n∑
i=1

k(1 − εi)
( fi

δ
−

fi

δi

)

+
N(1 − ε)β

c
+ k

n∑
i=1

(1 − εi)
fi

δi

)
T0.

For each drug efficacy, we calcualte the normalized forward sensitivity index of RT
0 as

∂RT
0

∂ε
/

RT
0

ε
= −

Nβε
c

1
p1 +

√
p2

(
1 +

1
√

p2

(
p1 + 2

n∑
i=1

k(1 − εi)(
fi

δ
−

fi

δi
)
))
,

∂RT
0

∂εi
/

RT
0

εi
= −

kεi

p1 +
√

p2

( fi

δi
+

1
√

p2

( p1 fi

δi
+

2(1 − ε)Nβ
c

(
fi

δ
−

fi

δi
)
))
, i = 1, 2, . . . , 8,

(3.6)

where

p1 =
Nβ(1 − ε)

c
+

n∑
i=1

k(1 − εi) fi

δi
,

p2 = p2
1 + 4

Nβ(1 − ε)
c

n∑
i=1

k(1 − εi)(
fi

δ
−

fi

δi
).

Using the best-fitting parameter estimates in Table 3, we plot the sensitivity index in Figure 6(a). All
the indices are less than zero, indicating a negative correlation between the basic reproduction number
and drug efficacy. The basic reproduction number is relatively sensitive to the drug effectiveness against
cell-free virus infection (i.e., ε). However, the basic reproduction number is not sensitive to some drug
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effectiveness against cell-to-cell spread, such as ε6, ε7, and ε8. This shows that cell-to-cell viral spread
may explain the low viral load persistence during therapy, particularly when the drug effectiveness
against cell-free virus infection is fixed.
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Figure 6. Sensitivity tests of (a) the basic reproduction number RT
0 and (b) the final viral load

to drug’s effectiveness ε and εi (i = 1, 2, . . . , 8). The values of the parameters except that used
for the sensitivity test are from Figure 5.

We further study how the steady-state viral load changes as the drug efficacy increases. Like the
sensitivity of the basic reproduction number, the viral load is relatively responsive to the alteration
in the drug effectiveness against cell-free virus infection. However, it is not sensitive to the drug’s
effectiveness against cell-to-cell spread. (see Figure 6(b)). Taken together, these analyses show that the
viral load is not sensitive to some drug efficacies against cell-to-cell transmission. This suggests that
cell-to-cell viral spread can explain low HIV persistence despite long-term combination treatment.

4. Conclusions and discussion

Increasing evidence from in vivo and in vitro studies suggests the high prevalence of HIV multi-
infection [17–19,34,35]. However, the biological factors responsible for HIV multiple infection remain
unclear, especially the two-peak distribution data in [17]. In this study, we construct a mathematical
modeling framework including both infection from cell-free viral infection and cell-to-cell viral spread
to explain HIV multiple infection. By fitting mathematical models to the distribution data of multiple
infection, we discover that there are only single infected cells if the model only includes cell-to-cell
spread from T ∗ (Figure 2). Including cell-to-cell transmission alone without cell-free viral infection
can generate the peak for cells containing three proviruses (see Figure 3). The results in Figure 4
show that both the infected cells T ∗ and Ii are required in our model to explain the two-peak proviral
distribution. This suggests that the two modes of transmission both contribute to the formation of HIV
multi-infection.
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We did not include sequential cell-free virus infection in the model because the cell can down-
regulate its surface CD4 molecules following the initial infection, rendering further infections diffi-
cult [36, 37]. However, the CD4 down-modulation takes about one day, during which infected cells
still remain susceptible to further infections [38]. In this case, a certain amount of co-infection takes
place and may lead to multiple infection. The exact shape of the provirus distribution and which cell
population is most abundant may depend on the choice of the rate of receptor down-modulation [39].
When the rate is relatively slow, two peaks occur in the distribution: one for cells infected with a sin-
gle virus, and one for cells infected with four viruses (see Figure 7c in [39]). The distribution can be
altered for different rates of receptor down-modulation, as demonstrated in [39]. The sequential virus
infection with a decreasing infection rate due to CD4 down-regulation was included in a model and it
was shown that the sequential virus infection alone cannot explain the multiple infection [40].

From some experiments and modeling work [15, 33], cell-to-cell viral transmission, e.g., via the
formation of virological synapses between cells, renders the infection less susceptible to antiretroviral
drugs. In our work, we assume that the effect of treatment in inhibiting cell-to-cell viral spread de-
creases as the number of transmitted virions during cell-to-cell spread increases. Sensitivity analyses
of the basic reproduction number and the viral load during therapy show that the model prediction is
less sensitive to the drug effectiveness of inhibiting cell-to-cell spread, although it is still sensitive to
the drug effectiveness of blocking cell-free viral infection (Figure 6). Therefore, cell-to-cell spread
may play a critical role in explaining the low HIV persistence during suppressive therapy.

Some studies showed that the number of single infected cells is higher than the total number of
multiply infected cells [21, 41]. However, in our work and also in the experiment [17], the population
of multiply infected cells is more frequent than the population of single infected cells. This difference
can be attributed to the spread of the virus from one cell to another. In in vitro experiments and their
modeling studies [21, 41], the number of virions is much greater than the number of cells by several
orders of magnitude. Therefore, cell-free viral infection dominates and cell-to-cell viral spread may be
neglected. However, in in vivo experiments such as Jung et al. [17] and this study, viral transmission
from cell to cell is highly possible. Model predictions based on the data on multiple cell infections
in [17] show that more than 80% of the total infection is due to cell-to-cell virus transmission. This viral
mode of transmission also leads to about 70% of multiple infections (Figure 5(b)), further suggesting
that cell-to-cell viral spread plays a critical role in the development of HIV multi-infection in vivo.

Another reason we introduce cell-to-cell viral transmission is that infected CD4 T cells are isolated
from the spleens of two individuals [17], where the cells are relatively densely packed and have a high
probability of synapsing. In contrast, the cells in the blood mix better and may inhibit the formation of
synaptic connections. This can lead to the frequent single infection of target cells [42]. The concentra-
tion of target cells is higher in the lymphatic tissues than in the blood, so cells may be infected several
times either through sequential viral infection [39] or cell-to-cell spread discussed here. In summary,
the routes of spread of the virus and thus the types of infected cells (single or multiply infected cells)
may also vary depending on the tissue site.

HIV recombination is a crucial consequence of multiple infection. Recombination between ge-
netically different viruses in the same infected cell has been observed in the spleens of HIV-infected
patients [17]. Although the effect of recombination on HIV evolution is complex, the integration of
different alleles into a single genome can confer drug resistance to antiretroviral drugs and facilitate
evasion of the host immune responses [43–47]. The differential equation system employed here to
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examine the dynamics of multiple HIV infections may not be suitable for investigating HIV recombi-
nation, as this typically involves the use of bioinformatics tools and phylogenetic methods to analyze
genetic sequence data and reconstruct the evolutionary relationships between different HIV lineages.

Elucidating the mechanisms underlying multiple infections and HIV persistence has important im-
plications for understanding HIV pathogenesis and developing more effective treatment strategies to
control infection. Our modeling study, combined with experimental data [17], shows that cell-to-cell
virus transmission can play an important role in the development of multiple infection and HIV persis-
tence despite long-term effective combination antiretroviral therapy. Therefore, all treatment strategies
that can effectively block cell-to-cell transmission, e.g., by blocking the establishment of viral synapses
that might be required for cell-to-cell transmission, would be crucial for the control or even elimination
of the disease. This work also provides a novel mathematical modeling framework that can examine
some other issues in HIV infection, such as HIV latent infection, which is considered another impor-
tant obstacle to viral elimination in current antiretroviral treatment. HIV can establish latent infection
very rapidly following initial infection, and the resulting reservoir of virus remains relatively stable
during therapy but can be activated to release new viral particles. If this latent reservoir accounts for
the majority of the persistent virus, it could explain the lack of viral evolution observed in patients
during suppressive therapy [48, 49].
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Appendix

A. Derivation of the basic reproduction number

Using the next-generation method [30], we define the new infection matrix Fn+2 and the transfer
matrix Vn+2, given by the following expressions. The infection matrix in an epidemiological model
is a matrix that describes the rates at which individuals in different compartments of the model (e.g.,
susceptible, infected, recovered) become infected when they come into contact with individuals in
other compartments. The transfer matrix, on the other hand, is a matrix that describes the rates at
which individuals move between compartments in the model.

Fn+2 =



0 0 0 · · · 0 0 βT0

f1kT0 f1kT0 f1kT0 · · · f1kT0 f1kT0 0

f2kT0 f2kT0 f2kT0 · · · f2kT0 f2kT0 0

...
...

...
. . .

...
...

...

fn−1kT0 fn−1kT0 fn−1kT0 · · · fn−1kT0 fn−1kT0 0

fnkT0 fnkT0 fnkT0 · · · fnkT0 fnkT0 0

0 0 0 · · · 0 0 0



,

Vn+2 =



δ 0 0 · · · 0 0 0

0 δ1 0 · · · 0 0 0

0 0 δ2 · · · 0 0 0

...
...

...
. . .

...
...

...

0 0 0 · · · δn−1 0 0

0 0 0 · · · 0 δn 0

−Nδ −Nδ1 −Nδ2 · · · −Nδn−1 −Nδn c



.
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It is clear that Fn+2 is non-negative andVn+2 is non-singular. Thus, the basic reproduction number can
be calculated by the spectral radius of the next generation matrixM = Fn+2V

−1
n+2, given by

M =


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. (A.1)

Therefore, the basic reproduction number is

R0 = ρ(M)
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(A.2)

B. Proof of Theorem 2.1

From the Jacobinan matrix (2.7), we obtain the characteristic equation for the infection-free steady
state E0 as follows:

|λI − J(E0)| =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

λ + d kT0 kT0 kT0 · · · kT0 βT0

0 λ + δ 0 0 · · · 0 −βT0

0 − f1kT0 λ − f1kT0 + δ − f1kT0 · · · − f1kT0 0

0 − f2kT0 − f2kT0 λ − f2kT0 + δ · · · − f2kT0 0
...

...
...

...
. . .

...
...

0 − fnkT0 − fnkT0 − fnkT0 · · · λ − fnkT0 + δ 0

0 −Nδ −Nδ −Nδ · · · −Nδ λ + c

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= 0,

(B.1)
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where λ is the eigenvalue and I is the identity matrix with the same dimension as J(E0). Expanding
(B.1), we obtain

(λ + d)(λ + δ)n
(
λ2 + (

Nβδs
cd

+ (1 − R0)δ + c)λ + cδ(1 − R0)
)

= 0. (B.2)

Equation (B.2) always has a negative root λ = −d and the negative root λ = −δ with multiplicity n.
Thus, the local stability of E0 is determined by the roots of following equation

λ2 +

(Nβδs
cd

+ (1 − R0)δ + c
)
λ + cδ(1 − R0) = 0. (B.3)

Let
F(λ) = λ2 +

(Nβδs
cd

+ (1 − R0)δ + c
)
λ + cδ(1 − R0).

When R0 > 1, F(λ) = 0 has at least one positive real root. When R0 < 1, all roots of F(λ) = 0
have negative real parts. Thus, the infection-free equilibrium E0 is locally asymptotically stable when
R0 < 1 and unstable when R0 > 1. This completes the proof.

C. Proof of Theorem 2.2

From the Jacobian matrix (2.8), we obtain the following characteristic equation at the infected
steady state E1

|λI − J(E1)| =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

λ + d + βV̂ + k(T̂ ∗ +
n∑

i=1
Îi) kT̂ kT̂ · · · kT̂ βT̂

−βV̂ λ + δ 0 · · · 0 −βT̂

− f1k(T̂ ∗ +
n∑

i=1
Îi) − f1kT̂ λ − f1kT̂ + δ · · · − f1kT̂ 0

...
...

...
. . .

...
...

− fnk(T̂ ∗ +
n∑

i=1
Îi) − fnkT̂ − fnkT̂ · · · λ − fnkT̂ + δ 0

0 −Nδ −Nδ · · · −Nδ λ + c

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= 0,

(C.1)
where λ is the eigenvalue, and T̂ , T̂ ∗, Îi and V̂ are given in Eq (2.9). Expanding the above determinant
and regrouping terms, we obtain the following characteristic equation

(λ + δ)n(λ3 + a1λ
2 + a2λ + a3) = 0, (C.2)

where

a1 = c + dR0 + (δ − kT̂ ) = c + dR0 +
Nδ2β

Nδβ + kc
> 0,

a2 = dcR0 + dδ(R0 − 1) + d(δ − kT̂ ) = dcR0 + dδ(R0 − 1) +
Nδ2β

Nδβ + kc
,

a3 = dcδ(R0 − 1).

(C.3)
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It’s clear that Eq (C.2) always has a negative root λ = −δ with multiplicity n. When R0 > 1, the
inequalities a2 > 0 and a3 > 0 hold. Moreover, we have

a1a2 − a3 =

(
c + dR0 + (δ − kT̂ )

)(
dcR0 + dδ(R0 − 1) + d(δ − kT̂ )

)
− dcδ(R0 − 1)

= c
(
dcR0 + d(δ − kT̂ )

)
+

(
dR0 + (δ − kT̂ )

)(
dcR0 + dδ(R0 − 1) + d(δ − kT̂ )

)
> 0.

It follows the Routh-Hurwitz criterion that all the roots of (C.2) have negative real parts. Thus, the in-
fected equilibrium E1 is locally asymptotically stable when it exists, i.e., when R0 > 1. This completes
the proof.
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