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Abstract: The density peak clustering algorithm (DPC) requires manual determination of cluster 
centers, and poor performance on complex datasets with varying densities or non-convexity. Hence, a 
novel density peak clustering algorithm is proposed for the automatic selection of clustering centers 
based on K-nearest neighbors (AKDPC). First, the AKDPC classifies samples according to their 
mutual K-nearest neighbor values into core and non-core points. Second, the AKDPC uses the average 
distance of K nearest neighbors of a sample as its density. The smaller the average distance is, the 
higher the density. Subsequently, it selects the highest density sample among all unclassified core 
points as a center of the new cluster, and the core points that satisfy the merging condition are added 
to the cluster until no core points satisfy the condition. Afterwards, the above steps are repeated to 
complete the clustering of all core points. Lastly, the AKDPC labels the unclassified non-core points 
similar to the nearest points that have been classified. In addition, to prove the validity of AKDPC, 
experiments on manual and real datasets are conducted. By comparing the AKDPC with classical 
clustering algorithms and excellent DPC-variants, this paper demonstrates that AKDPC presents 
higher accuracy. 
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1. Introduction 

Clustering is a powerful technique for data analysis, with an irreplaceable role in data mining. It 
essentially exploits the similarities between samples to divide them into several different clusters. Its 
application is found in numerous popular areas, including image processing [1,2], medicine [3,4], text 
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segmentation [5], community network analysis [6], bioinformatics [7,8], etc. So far, researchers have 
developed multiple algorithms with satisfactory performance, including the division-based method K-
means [9], the layer structure-based method BIRCH [10], the density-based method DBSCAN [11], 
the grid-based method WaveCluster [12] and the graph theory-based spectral clustering [13]. Among 
them, DBSCAN is a well-performing density-based clustering algorithm that determines clusters based 
on density connectivity relationships. It has the advantage of being able to cluster arbitrarily shaped 
datasets and presents a high resistance to noise. However, the presence of the two parameters ϵ and 
MinPts in the algorithm significantly impacts the final clustering results, and it shows poor 
performance on datasets with varying densities. 

In 2014, Alex Rodriguez et al. [14] published the DPC (density peak clustering algorithm). Due 
to its high efficiency, robustness and simplicity of understanding, an increasing number of researchers 
are emphasizing the aforementioned algorithm. DPC uses two criteria when selecting cluster centers. 
First, the centers of the different clusters are far from each other, and secondly, the clustering center 
will be enclosed by some low densities of points. Considering the rest of the points, the DPC employs 
a one-step strategy to assign each point in a cluster to the nearest high-density cluster. While it presents 
multiple obvious advantages over other classical algorithms, the DPC suffers from a few problems: 1) 
It requires manual involvement when selecting cluster centers, and this is extremely difficult in datasets 
where the boundaries between clusters are not clear. 2) The DPC tends to fail to find peaks in sparse 
areas; consequently, it does not achieve satisfactory clustering results when large differences in data 
density between different clusters are present. 3) The assignment of non-peak points by the DPC tends 
to ignore the real situation in the area where the sample is located. Hence, when a misclassification of 
one point occurs during the assignment process, a domino effect is triggered. In light of the 
aforementioned problems, scholars have suggested various improved clustering algorithms on the 
basis of DPC to address its drawbacks. 

In this context, ADPC-KNN [15] used K-nearest neighbors to determine the cut-off distance, with 
a novel method proposed for automatically selecting cluster centers, but it still underperformed on 
datasets with varying densities. The NDPC [16] reduced the density gap between samples from sparse 
areas and those from dense areas through a new method that calculated local densities so that peaks 
could also be found in sparse regions. Unfortunately, the NDPC was unable to discover all peaks in 
datasets with large density differences. The AmDPC [17] employed density deviation to replace the 
original local density, and the authors proposed a density deviation multi-peak auto-clustering 
approach that overcame the poor performance of the original DPC on non-convex datasets with low-
density peaks. Nevertheless, its parameter selection process was complex. The FKNN-DPC [18] 
solved the sample assignment error problem in the DPC assignment strategy using the fuzzy weighted 
K-nearest neighbor technique. Although it was more robust than the DPC, the FKNN-DPC still 
required manual intervention for the selection of clustering centers. Meanwhile, the SNN-DPC [19] 
adopted a two-step distribution method of necessary and possible subordination to overcome the 
consequences of the domino effect caused by the shortcomings of the DPC allocation rules. However, 
it required human involvement and was more complex compared to the DPC. 3W-DPET [20] 
suggested a three-way density peak clustering approach on the basis of evidence theory, which solved 
the problem of mislabel propagation in the DPC. However, the 3W-DPET could not automatically 
determine the number of clusters. On the other hand, the DPC-KNN [21] joined the notion of K-nearest 
neighbors for distance calculation and sample assignment to improve the clustering effect in non-
spherical datasets. However, the algorithm still required a manual selection of clustering centers. 
Through the analysis of multiple algorithms that have improved the DPC in recent years, it is clear that 
the above algorithms generally still do not address the problem that the DPC performs poorly on 
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datasets with varying density differences or non-convexity; and despite the aforementioned 
improvement of individual algorithms to tackle this issue, manual involvement is still required when 
selecting clustering centers. 

The primary contribution of this study is the proposal of a novel density-peak clustering algorithm 
(AKDPC) that automatically selects clustering centers and adaptively completes the corresponding 
clusters. The suggested method divides the samples into core and non-core points by mutual K-nearest 
neighbor values, where non-core points are placed in the second assignment, reducing the impact on 
the final clustering. Simultaneously, only the average distance between the K-nearest neighbors of a 
sample is used as an indicator to select the cluster center. Specifically, the one with the lowest average 
distance among the K-nearest neighbors in remaining core points will be selected as a cluster center. 
Afterwards, the AKDPC adds core points that satisfy the merging condition to the corresponding 
clusters. Finally, the non-core points are clustered. The clustering of the AKDPC is fully automatic 
and is better suited to complex datasets with large density differences or non-convexity. 

2. DPC 

The DPC is an extremely efficient density clustering algorithm. It considers that the locations 
surrounded by some low local density data samples should be the cluster centers; furthermore, the 
clustering centers of different clusters should not be too close to each other. The DPC constructs 
decision diagrams to select centers from the sample local densities ρ and relative distances δ. 

The original DPC uses both cut-off distance and kernel distance to compute the densities of the 
samples, and these two methods might apply to different datasets. The local density of sample i is 
defined as Eq (1). 
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where 𝑑௜௝ is the distance between two different samples, and 𝑑௖ is the cut-off distance. 
δ  denotes the distance from a sample to the nearest sample with a density bigger than it, and the 

formula is defined as follows: 
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The relative distance for the sample with the highest density is specified to be the highest value 
among all samples, and it is defined as Eq (4). 
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After getting the ρ and 𝛿  values for all samples, the DPC considers the points with 
simultaneously larger ρ and 𝛿 to be the clustering centers. Finally, the DPC makes the labels for the 
leftover points consistent with the labels of the closest high-density points. 



11878 

Mathematical Biosciences and Engineering  Volume 20, Issue 7, 11875–11894. 

3. AKDPC 

To overcome the issue that the DPC requires manual intervention to choose clustering centers and 
poor performance on complex datasets with varying densities or non-convexity, we propose AKDPC. 
The AKDPC consists of three main parts: 1) classifying samples into core and non-core points based 
on the sizes of their mutual K-nearest neighbor values; 2) Clustering the core points; 3) Allocation of 
remaining non-core points. 

3.1. Classification of core and non-core points 

The classification method determines whether to classify each sample point as core or non-core 
by its mutual K-nearest neighbor value. 

The mutual K-nearest neighbor value 𝑀𝐾௜ of sample 𝑥௜ is the sum of points in the sample 𝑥௜ 's 
K-nearest neighbor collection that incorporates sample 𝑥௜ into its K-nearest neighbor collection, and 
𝑀𝐾௜ is defined as Eq (5). 
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where 𝐾𝑁𝑁௜ is a collection of K nearest neighbors of sample i, defined as Eq (6), and where K is the 
first parameter to be specified in our algorithm. 

{ | min ( ),   , , }i j K ij i jKNN x d x x X i j  
  (6)

The MK values of samples have the following characteristics: 
1) The MK value of a point represents its spatial relationship with its neighbors. If the value is 

large, the sample point is closely distributed with its neighbors or is in the same distribution area, so it 
is treated as a core point. If the value is smaller, the sample point is isolated from the surrounding 
points and treated as a non-core point. 

2) The MK value of a sample point is not affected by the fact that the sample is located in a 
different density area because the MK value reflects the proximity of the sample to its neighbors. 

We classify all points into core and non-core points by defining a classification threshold MKT, 
which is defined by Eq (7). 
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where N is the sum of samples. 
Definition 1 (Core point). If the mutual K-nearest neighbor value 𝑀𝐾௜ of sample i is larger than 

or equal to MKT, then it is a core point. 
Definition 2 (Non-core point). If the mutual K-nearest neighbor value 𝑀𝐾௜ of sample i is less 

than the MKT, then it is a non-core point. 
With our proposed method above some non-core points can be accurately identified to prevent 

the possibility of a large impact on the final clustering, and Algorithm 1 explains in detail the 
classification of the sample points. 
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Algorithm 1: Classification of core and non-core points 

Input: Dataset D = {𝑥ଵ,𝑥ଶ,...,𝑥௡}, K 

Output: core points CG = {𝑔ଵ ,𝑔ଶ ,...,𝑔௠ }, non_corepoints NG = {𝑛ଵ ,𝑛ଶ ,...,𝑛௝ }，distance matrix 

ሼ𝑑௜௝ሽ௡ൈ௡，Sorting Matrix 𝑆𝐷௡ൈ௡ 

1:  Calculate distance matrix 𝐷௡ൈ௡ = ሼ𝑑௜௝ሽ௡ൈ௡ 
2:  Sort the distance matrix 𝐷௡ൈ௡ in ascending order and record it as the 𝑆𝐷௡ൈ௡ 
3:  Calculate the MK value for all samples based on Eq (5) 
4:  Calculate the MKT based on Eq (7) 
5:  Create set CG = ∅, NG = ∅ 
6:  For each sample 𝑥 in Data Do 
7:     If MK𝑥 >= MKT Then 
8:       CG = CG ∪ 𝑥 
9:     If MK𝑥 < MKT Then  
10:      NG = NG ∪ 𝑥 
11:    End if 
12: End for   

3.2. Clustering of core points 

         

(a)  (b) 

Figure 1. The selection of clustering centers. (a) Original DPC; (b) AKDPC. 

To prevent the old DPC algorithm from requiring manual intervention to select centers of all 
clusters and the problem of easily ignoring clustering centers that exist in low-density areas, we 
redefine the local density of a sample based on the distance relationship from sample points to their 
nearest neighbors and suggest a new approach for merging core points. Our method does not need 
human involvement in the selection of clustering centers, and the whole clustering process is fully 
automatic. Figure 1 displays the clustering results of the original DPC algorithm and our algorithm for 
clustering on the classical dataset Jain [22]. As shown in the figure, the original DPC selected 
clustering centers located in the lower branches with higher density, no matter how the distance is 
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chosen up to the end. The correct classification is not completed in the end, while our method 
accurately identifies the clustering centers in two different density regions. 

First, we define the 𝐷௜
௞ of core sample point i as the average distance from core sample i to its 

K-nearest neighbor set of points, and 𝐷௞ is defined as Eq (8). 
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where 𝑁௜
௞ denotes the collection of k nearest neighbors of the core point i, defined as Eq (9), and 

where k is the second parameter to be specified in our algorithm. 
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The nearest neighbor mean 𝐷௞ of a sample point has the following properties:  
1) If the 𝐷௞ of the core point is particularly small, it is a good indication that the core point is in 

a very dense area, and its surrounding neighbors are all very close to it. Conversely, if the 𝐷௞ value 
is very large, it means that the core is far away from its neighbors. 

2) There is no doubt that the smaller the 𝐷௞ value of a core point is, the greater the indicated 
density and the more qualified it is to be a cluster center. However, some clusters have a low overall 
density, which results in their overall 𝐷௞  values being larger. It would be unwise for us to select 
cluster centers directly based on their 𝐷௞  values. Therefore, we adopted a sequential clustering 
process. We first selected the point with the smallest 𝐷௞ value among all core points as the center of 
a new cluster, and then after completing the clustering of the new cluster, we selected the core point 
with the smallest 𝐷௞ value from the remaining core points for the center of another new cluster and 
then completed the clustering of the corresponding cluster. The above procedure was repeated until 
each core point has been allocated to different clusters. By using this method, we can correctly select 
the cluster centers even in data sets with uneven density distributions. 

To better understand the process of clustering, we propose a definition of connectivity. 
Definition 3 (Connectivity). A core point i is joinable to cluster Cj by connectivity if the distance from 
the core point i to the cluster Cj is smaller than the maximum value of 𝐷௞ for core point i and any core 
point in cluster Cj. The connectivity of core point i to cluster Cj satisfies Eq (10). 

 max , ,   k k
i j i t jX C D D t C    (10)

where ‖𝑋௜ െ 𝐶௝‖ denotes the minimum distance between core point i and any core point in cluster Cj, 
and 𝑚𝑎𝑥൫𝐷 ௜

௞, 𝐷௧
௞൯ denotes the maximum 𝐷௞ value in core point 𝑖 and cluster Cj. 

As in Figure 2, the nearest distance between core point 5 and cluster 1 is 𝑑ସହ = 0.32. Also, 
according to Table 1, the largest nearest neighbor mean 𝐷௞ in core point 5 and the core points in 
cluster 1 is 𝐷ହ

௞ = 0.38. Under this condition, 𝑑ସହ is less than 𝐷ହ
௞ satisfies connectivity, therefore core 

point 5 is added to cluster 1. The closest distance between core point 6 and cluster 1 is 𝑑ହ଺ = 0.33, and 
the maximum 𝐷௞ value in core point 6 and the core points in cluster 1 is 𝐷଺

௞ = 0.41. dହ଺ is less than 
𝐷଺

௞, satisfying the Connectivity, and thus core point 6 can join cluster 1. For the core point 7, the closest 
distance between it and cluster 1 is 𝑑଺଻ = 0.38, and the maximum 𝐷௞ value in core point 7 and the 
core points in cluster 1 is 𝐷଻

௞ = 0.43. d଺଻ is less than 𝐷଻
௞, and thus core point 7 can join cluster 1. In 

contrast, the closest distance between core point 9 and cluster 1 is 𝑑଺ଽ = 0.73, and the maximum 𝐷௞ 
value in core point 9 and the core points in the cluster is 𝐷ଽ

௞ = 0.67, because 𝑑଺ଽ is greater than 𝐷ଽ
௞. 
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The Connectivity cannot be satisfied, so core point 9 cannot be joined to cluster 1. Likewise, core 
point 8 cannot be joined to cluster 1. 

Algorithm 2 shows the whole procedure of clustering the core points, where 𝑆𝐷௡ൈ௡  is the 
distance matrix after sorting in ascending order, and ‖𝑔 െ 𝐶௜‖ is the smallest distance from the core 
point g to cluster 𝐶௜. First, we create a new cluster and select the cluster center with the smallest 𝐷௞ 
value among all core points. Second, depending on the distance of the remaining core points from the 
center of that cluster, we traverse from near to far and add the core points that satisfy the connectivity 
condition to that cluster (note that the merging of cores with clusters is an adaptive process, as each 
traversal adds cores to the cluster that satisfy the condition, so the maximum 𝐷௞ value of the core 
points in the cluster will change, i.e., in the process of clustering Eq (6), the value on the right-hand 
side changes continuously), until no more cores can be added to the cluster. We repeat the above 
procedure until all core points have been grouped into clusters. 

Algorithm 2: Clustering of core points 
Input: core points CG = {𝑔ଵ,𝑔ଶ,...,𝑔௠}, 𝑆𝐷௡ൈ௡, ሼ𝑑௜௝ሽ௡ൈ௡, k 
Output: cluster set C = {𝑐ଵ,𝑐ଶ,...,𝑐௢}, Center set T = ሼ𝑡ଵ,𝑡ଶ,...,𝑡௢ሽ 

1: Calculate the 𝐷௜
௞ based on Eq (8). 

2: Sorting the core points array CG in descending order according to 𝐷௜
௞ 

3: Create set C = ∅,T = ∅ 
4: Create a new cluster 𝑐ଵ, 𝑐ଵ = 𝑐ଵ ∪ CG[0],T = T ∪ CG[0], i = 1  /* Create the first new cluster 
and set the point with the smallest 𝐷௜

௞ value to be the center of the cluster */ 
5: while existing 𝑔 in CG Do   /* Start Clustering */ 
6:        FLAG == 0  /* Used to judge whether a cluster has joined a new core point */ 
7:        For each core point g in SD[T[i]]  /* Traversing the core points in order from near to 
far from the center of the ith cluster */ 

8:          If ‖𝑔 െ 𝐶௜‖ ൏ 𝑚𝑎𝑥൫𝐷 ௚
௞ , 𝐷௖௜

௞ ൯ Then  /* Connectivity judgment */ 

9:                FLAG == 1 
10:            𝐶௜=𝐶௜ ∪ 𝑔, CG = CG \ 𝑔 
11:         End if 
12:      End for 
13:    If FLAG == 0 Then  /* If the current cluster is no longer changing, a new cluster is created
and the point with the smallest 𝐷௜

௞ value among the remaining core points is used to be the center
of clustering */ 
14:       Creating a new cluster(c), c = c ∪ CG[0], CG = CG \ CG[0], T = T ∪ CG[0] 
15:    i = i + 1  /* The clustering of the ith+1st new cluster is started */ 
16:    End if 
17: End While 
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Figure 2. Example of merging between core samples and clusters. 

Table 1. The 𝐷௞ value of core points in the example in Figure 2. 

3.3. Allocation of remaining non-core points 

Once we had finished clustering the core points, to determine the labels of the non-core samples, 
we first sorted the non-core samples in ascending order based on their 𝐷௞ value. Empirically, we 
found that most of the neighboring samples were in the same cluster, so we label the unclassified non-
core points with the same labels as the nearest points that have been classified. The above method is 
explained in detail in Algorithm 3. 

Algorithm 3: Allocation of remaining non-core points 

Input: cluster set C = {𝑐ଵ,𝑐ଶ,...,𝑐௢}, non_corepoints, NG = {𝑛ଵ,𝑛ଶ,...,𝑛௝} Sorting Matrix 𝑆𝐷௡ൈ௡ 
Output: cluster set C = {𝑐ଵ,𝑐ଶ,...,𝑐௢} 

1: For each 𝑛 in NG do 
2: For 𝑥 in SD[n] do   
3:    If 𝑥 ∈ cj ( j = 1, 2, …, o) Then  
4:       cj = cj ∪ x 
5:       Break 
6:    End if 
7:  End for 
8: End for 

3.4. Example 

To understand our algorithm more intuitively, we show the whole process of our algorithm using 
the manual dataset Aggregation [23] as an example. Aggregation has a total of 788 samples, and there 

Sample 1 2 3 4 5 6 7 8 9 
𝐷௜

௞(cm) 0.35 0.34 0.31 0.33 0.38 0.41 0.43 0.68 0.67 
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were 7 correctly classified clusters. The results of each step in the clustering procedure are clearly 
shown in Figure 3 (algorithm parameters K = 11, k = 11). 

         

(a) (b) 

  

(c) (d) 

Figure 3. Clustering process on the aggregation dataset. (a) Original distribution of data; 
(b) Core and sample points; (c) Clustering results on core points; (d) Final results of 
clustering on AKDPC. 

3.5. Time complexity analysis of AKDPC 

Assume that there are n samples in the dataset, and then the n samples are divided into a core and 
b non-core points. The complexity of our method depends mainly on the following six aspects. 

1) The complexity of computing MK values for each sample is O(kn); 
2) The complexity of classifying samples based on MKT values is O(n); 
3) The complexity of the calculation of the 𝐷௞ value for each sample is O(n); 
4) The complexity of defining clustering centers and clustering the core points is O(aଶ); 
5) The complexity of distributing non-core points is O(ab); 
6) The AKDPC has an overall time complexity of O(nଶ) based on the analysis above, which is 

the same as the original DPC. 

4. Experiments 

To prove the feasibility and validity of our suggested AKDPC algorithm, we used DPC and its 
improved algorithm DPC-KNN and DBSCAN for comparison. Since DBSCAN is a classical density-
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based clustering algorithm, and DPC-KNN is similar to this paper in that it is based on KNN to improve 
the original DPC, using them as a comparison can demonstrate the superiority of the AKDPC 
algorithm. Experiments were performed on eight classical manual datasets and eight real datasets 
obtained from [24,25]. To verify the performance of the algorithms for different density distributions 
and shapes, we used seven datasets that can represent different situations such as Aggregation, Jain, 
Flame [26], ThreeCircles, Pathbased [27], D9 [28], T4, etc., while the number of clusters and features 
of the samples are also different for each of the eight real datasets, for which experiments can be 
conducted to verify the generalizability of AKDPC. The detailed attribute tables for the data are given 
in Table 2. The source code and datasets used in this section are available at 
https://github.com/wanghuani/AKDPC. 

Table 2. Details of the manual dataset and real dataset. 

Dataset Instances Dimensions Clusters 

Manual 

Aggregation 788 2 7 

Jain 373 2 2 

Flame 240 2 2 

ThreeCircles 299 2 3 

Pathbased 300 2 3 

D9 1400 2 4 

T4 8000 2 6 

Real 

Zoo 101 16 7 

Thyroid 215 6 3 

Wine 178 13 3 

Wdbc 569 30 2 

Vote 299 2 2 

Pima 768 9 2 

Diabetes 768 8 2 

Ecoli 336 8 8 

We uniformly used adjusted rand index (ARI [29]), normalized mutual information (NMI [30]), 
and clustering accuracy (ACC) as performance evaluation metrics throughout the experiments, with 
an upper limit of 1 for the metrics and higher values indicating better performance. Among them, ACC 
is one of the most commonly used clustering performance evaluation metrics, defined as Eq (11). 

1

N

i i
iACC

N



（y ,map(z )）

 (11)
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where yi is the true label, zi is the label after clustering, and map(.) represents the reassignment of 
clustering labels, which is generally implemented using the Hungarian algorithm. 

ARI is an adjusted RI. ARI measures the degree of agreement between two data distributions, and 
Eqs (12) and (13) show the calculation process of RI and ARI: 

2
n

a b
RI

C


  (12)

( )

max( ) ( )

RI E RI
ARI

RI E RI





 (13)

where Y represents the actual label, Z represents the clustering result, 𝐶ଶ
௡  represents the total number 

of element pairs that can be composed in the data set, a represents the number of elements in both Y 
and Z that are of the same category, and b represents the number of elements that are not of the same 
category, while E represents the expectation. 

NMI is also a commonly used measure of the similarity between the clustering results and the 
true results, as defined by Eq (14). 

( , ) 2 ( , ) / ( ( ) ( )NMI Y Z I Y Z H Y H Z    (14)

where Y represents the true category, Z represents the result after clustering, H represents the cross 
entropy, and I(Y,Z) represents the mutual information. 

To ensure the fairness of the experiment, all datasets used before starting the experiment were 
mapped linearly to the range [0,1] by pre-processing. 

In this paper, all parameters of the four algorithms are tuned to make sure that the overall 
experiment demonstrates the best possible clustering for each algorithm. AKDPC requires two 
parameters, K and k, taking values between 1 and 100. In addition, according to experience, for some 
simple low-dimensional datasets, the parameters K and k are generally chosen around 10–20, and the 
same values can be taken in most cases. Meanwhile, for data sets with more samples, the performance 
of AKDPC is generally better by choosing larger values of K and k. At the same time, we both need to 
choose a cut-off distance dc for the DPC and DPC-KNN, and empirically we choose a dc that is 1–2% 
after we sort the data points in ascending order by distance from each other. Furthermore, DPC-KNN 
requires manual determination of the number of the nearest neighbor K, which we choose from 4 to 15. 
As for the two parameters of DBSCAN, we choose ε between 0.01 and 2, and minpts between 1 and 50. 
Finally, for both DPC-KNN and DPC algorithms, we manually set the number of clusters. 

4.1. Experiments with artificial datasets 

In this part, we have selected the classical manual datasets which were used to test various 
clustering algorithms. The final clustering outcomes of the manual dataset are given in Table 3. Just 
as Table 3 shows, AKDPC shows near-perfect results for all types of datasets, while other algorithms 
are not as generalizable as AKDPC. For example, DPC is unable to handle large density differences 
and some complex non-convex datasets, while DPC-KNN generally does better than DPC on these 
datasets overall but also has the problem of being unable to handle some complex non-convex datasets. 
DBSCAN shows good results in processing each dataset though, but it tends to misidentify some 
samples as noise points. The overall effect is not as good as AKDPC. 
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Table 3. Clustering outcomes on manual datasets. 

Dataset Algorithm ACC ARI NMI Arg 

Aggregation 

AKDPC 0.9975 0.9956 0.9924 11/11 
DPC 0.9975 0.9956 0.9924 0.062 
DBSCAN 0.9797 0.975 0.9707 0.05/10 
DPC-KNN 0.9975 0.9956 0.9924 7/0.062 

Jain 
 

AKDPC 1 1 1 17/17 
DPC 0.8954 0.6183 0.577 0.0424 
DBSCAN 9732 0.9731 0.9178 0.08/5 
DPC-KNN 1 1 1 7/1.08 

Flame 
 

AKDPC 1 1 1 11/11 
DPC 1 1 1 0.09 
DBSCAN 0.9208 0.8607 0.7923 0.07/6 
DPC-KNN 1 1 1 7/0.1 

ThreeCircles 
 

AKDPC 1 1 1 11/11 
DPC 0.408 -0.001 0.1123 0.0266 
DBSCAN 1 1 1 0.09/4 
DPC-KNN 0.4916 0.1089 0.2019 8/0.0266 

Pathbased 
 

AKDPC 0.9933 0.9798 0.9659 12/17 
DPC 0.7333 0.453 0.539 0.0545 
DBSCAN 0.6533 0.5319 0.675 0.08/10 
DPC-KNN 0.74 0.4572 0.5425 8/0.0545 

D9 
 

AKDPC 0.9971 0.99 0.9772 35/55 
DPC 0.3836 0.0236 0.2701 0.0375 
DBSCAN 0.9593 0.9108 0.8844 0.05/6 
DPC-KNN 0.4871 0.2128 0.4678 6/0.0375 

T4 

AKDPC 0.993 0.9849 0.9747 70/20 
DPC 0.7013 0.6027 0.7337 0.0653 
DBSCAN 0.9156 0.8808 0.8828 0.02/15 
DPC-KNN 0.6721 0.5651 0.709 8/0.0653 

We have visualized the final clustering results in Figures 4–10, and we have used asterisks to 
indicate the cluster centers obtained by other algorithms, except for the DBSCAN algorithm. In 
Figure 4, DPC, DPC-KNN and AKDPC can identify the structure of aggregated datasets consisting of 
arbitrarily distributed non-spherical clusters, and for DBSCAN the general shape of each cluster is 
correct although some points are labeled as noise. 

The result of the clustering of the classic dataset Jain is shown in Figure 5. Since DPC always 
prefers to select clustering centers in high-density areas, it cannot detect clustering centers in sparse 
areas above the dataset Jain, which leads to wrong results in the end. At the same time, DBSCAN 
incorrectly classifies the left side of the top sparse region as a new cluster, while identifying some 
points on the right end as noise. In contrast, both AKDPC and DPC-KNN identified density peaks 
distributed over different density regions. 
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(a)                                       (b) 

                   
(c)                                       (d) 

Figure 4. The clustering results over the Aggregation dataset. (a) DBSCAN; (b) DPC; (c) 
DPC-KNN; (d) AKDPC. 

                   

(a)                                      (b) 

                   
(c)                                       (d) 

Figure 5. The clustering results over the Jain dataset. (a) DBSCAN; (b) DPC; (c) DPC-
KNN; (d) AKDPC. 
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(a)                                      (b) 

                 
(c)                                       (d) 

Figure 6. The clustering results over the Flame dataset. (a) DBSCAN; (b) DPC; (c) DPC-
KNN; (d) AKDPC. 

                   

(a)                                      (b) 

                   
(c)                                       (d) 

Figure 7. The clustering results over the ThreeCircles dataset. (a) DBSCAN; (b) DPC; (c) 
DPC-KNN; (d) AKDPC. 
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The results of the Flame dataset are presented in Figure 6, where DPC, DPC-KNN and AKDPC 
all effectively aggregate the two clusters, while DBSCAN correctly detects both clusters, but it 
incorrectly identifies some edge points as noise, which affects the outcome of the clustering. 

The clustering results of the clustering of the ThreeCircles dataset are presented in Figure 7. As 
the graph shows, DPC and DPC-KNN select three clustering centers in the middle two rings, making 
the final outer ring without a center, resulting in the final incorrect clustering result, but DBSCAN 
correctly identifies three clusters, while our algorithm AKDPC not only identifies the clustering 
centers of the three rings. The final clustering result is also completely correct. 

Figure 8 displays the clustering results for the Pathbased dataset. For this typical non-convex 
dataset, DPC and DPC-KNN are not performing well. DPC and DPC-KNN correctly identify the three 
clustering centers, but they wrongly assign the left and right sides of the dataset to the two clusters in 
the middle, while DBSCAN correctly identifies only two clusters, leaving the remaining samples in 
the outer sparse region as noise. On this dataset, only AKDPC not only succeeded in identifying three 
clustering centers, but the final clustering result was also relatively perfect. 

As shown in Figure 9, dataset D6 has many discrete points, which often have a significant impact 
on algorithm performance. Not surprisingly, DPC and DPC-KNN were not up to the task of processing 
such a large curvature dataset, and only DBSCAN and AKDPC succeeded in identifying the four 
clusters, with DBSCAN having the slight flaw of identifying almost all of the discrete points as noise. 

                   

(a)                                      (b) 

                   
(c)                                       (d) 

Figure 8. The clustering results over the Pathbased dataset. (a) DBSCAN; (b) DPC; (c) 
DPC-KNN; (d) AKDPC. 

The results of the T4 dataset for all algorithms are shown in Figure 10, which contains six clusters, 
most of which are cross-tangled, and many discrete points at the edges of each cluster, testing the ability 
of the algorithms to handle complex datasets. While DBSCAN and AKDPC showed their performance 
in adapting to various complex situations and successfully identified six clusters of different shapes, DPC 
and DPC-KNN showed less satisfactory results on this complex dataset with large cross-tangles. 
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(a)                                      (b) 

                   
(c)                                       (d) 

Figure 9. The clustering results over the D9 dataset. (a) DBSCAN; (b) DPC; (c) DPC-
KNN; (d) AKDPC. 

                   

(a)                                      (b) 

                   
(c)                                       (d) 

Figure 10. The clustering results over the T4 dataset. (a) DBSCAN; (b) DPC; (c) DPC-
KNN; (d) AKDPC. 
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Table 4. Clustering outcomes on real datasets. 

Dataset Algorithm ACC ARI NMI Arg 

Zoo 

AKDPC 0.8614 0.9249 0.8885 11/15 
DPC 0.6337 0.4972 0.7219 1 
DBSCAN 0.8812 0.9007 0.8584 1.1/5 
DPC-KNN 0.6733 0.6043 0.7815 9/1 

Thyroid 

AKDPC 0.8884 0.7679 0.6688 20/12 
DPC 0.5535 0.144 0.2819 0.676 
DBSCAN 0.8372 0.7932 0.6405 0.13/32 
DPC-KNN 0.5674 0.1388 0.3035 2/0.676 

Wine 

AKDPC 0.8652 0.7096 0.7014 18/10 
DPC 0.882 0.6723 0.7104 0.4165 
DBSCAN 0.8146 0.5292 0.5905 0.5/21 
DPC-KNN 0.8876 0.6855 0.7181 5/0.4165 

Wdbc 

AKDPC 0.9244 0.7529 0.6361 58/8 
DPC 0.6203 -0.0056 0.0094 0.3528 
DBSCAN 0.8383 0.4501 0.3376 0.46/38 
DPC-KNN 0.8559 0.5047 0.3932 4/0.3528 

Vote 

AKDPC 0.9034 0.6502 0.5706 39/26 
DPC 0.8759 0.5641 0.5059 0.7071 
DBSCAN 0.8 0.465 0.387 1.0/24 
DPC-KNN 0.8989 0.6354 0.5534 6/0.7071 

Pima 

AKDPC 0.638 0.0486 0.0501 16/8 
DPC 0.6185 0.0146 0.002 0.2243 
DBSCAN 0.651 0 0 1.4/4 
DPC-KNN 0.6875 0.1226 0.0611 2/0.2243 

Diabate 

AKDPC 0.6263 0.0642 0.0639 17/7 
DPC 0.6185 0.0146 0.002 0.2243 
DBSCAN 0.6901 0.1184 0.0584 0.3/31 
DPC-KNN 0.6615 0.0495 0.0201 7/0.2243 

Ecoli 

AKDPC 0.7649 0.6958 0.6663 23/7 
DPC 0.497 0.3086 0.4973 0.1568 
DBSCAN 0.6458 0.5255 0.5055 0.2/22 
DPC-KNN 0.5417 0.4323 0.59 2/0.1568 

4.2. Experiments with real datasets 

We further demonstrate the excellent capability of the AKDPC clustering algorithm using eight 
real datasets. Table 4 displays the clustering performance for the ACC, ARI and NMI metrics on the 
real datasets. Bold text within the table denotes the optimum results of the same dataset. As we can 
see from Table 4, no algorithm can always outperform the other algorithms due to the diversity of real 
datasets with different data, but we can also observe from Table 4 that in most situations, AKDPC 
does better, indicating that the AKDPC algorithm is more generalizable and can handle datasets with 
different situations. 
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5. Discussion 

To address the weaknesses of the original DPC, we propose a density peak clustering algorithm 
for the automatic selection of clustering centers based on K-nearest neighbors. We use relationships 
between samples and their surrounding neighbors to classify the sample into core and non-core 
samples while eliminating any possible adverse effects of non-core samples on the final clustering 
results by batch clustering. At the same time, we use the information on the distance of the sample 
from its surrounding neighbors to replace the density of samples in the original DPC. Through a novel 
sequential clustering method, we solve the problem of the former DPC requiring human intervention 
to determine the clustering centers and can also achieve better performance on complex datasets with 
large differences in density or non-convexity. Of course, our algorithm AKDPC has some drawbacks. 
First, we need to manually determine two parameters K and k. Second, we assign non-core points by 
labeling them as the same as the nearest points that have been classified and do not consider the effect 
of cluster shape, which may lead to incorrect assignments. 

In future research we will try to reduce the number of parameters while maintaining the current 
accuracy, and for unassigned non-core points, we will propose a new method to reduce incorrect 
assignments. Finally, we will try to combine it with some supervised algorithms to test it with some 
excellent variants of the KNN algorithm used in this paper, such as CDNN [31,32] and ECDNN [33], 
and explore them with respect to their application in some related research [34]. 
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