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Abstract: The semiconductor manufacturing industry relies heavily on wafer surface defect detection
for yield enhancement. Machine learning and digital image processing technologies have been used in
the development of various detection algorithms. However, most wafer surface inspection algorithms
are not be applied in industrial environments due to the difficulty in obtaining training samples, high
computational requirements, and poor generalization. In order to overcome these difficulties, this
paper introduces a full-flow inspection method based on machine vision to detect wafer surface defects.
Starting with the die image segmentation stage, where a die segmentation algorithm based on candidate
frame fitting and coordinate interpolation is proposed for die sample missing matching segmentation.
The method can segment all the dies in the wafer, avoiding the problem of missing dies splitting. After
that, in the defect detection stage, we propose a die defect anomaly detection method based on defect
feature clustering by region, which can reduce the impact of noise in other regions when extracting
defect features in a single region. The experiments show that the proposed inspection method can
precisely position and segment die images, and find defective dies with an accuracy of more than 97%.
The defect detection method proposed in this paper can be applied to inspect wafer manufacturing.

Keywords: machine vision; wafer surface defect detection; machine learning; image segmentation;
feature extraction

1. Introduction

Modern industry relies heavily on chips because they are the brains of contemporary electronics.
Chip manufacturing requires multiple processes such as film deposition, etching, polishing, scribing
and inversion [1]. As the main material for chip manufacturing, hundreds of chips will be
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lithographed on wafers, and any abnormality in the manufacturing process may lead to wafer
defects [2]. An individual chip in a wafer is called a die. Among the types of die surface defects are
scratches, dots, broken, missing corner, missed welding and dirt dies, as shown in Figure 1. These
wafer defects are costly for both electronic equipment suppliers and customers. Therefore, wafer
surface defect detection plays a critical role in wafer manufacturing. On the one hand, developing a
surface defect inspection process for wafer manufacturing can help avoid the unwanted cost caused by
defect dies. On the other hand, it can ensure yield quality, ramp up the manufacturing process and
boost enterprises’ competitiveness in the market.

(a)

(d)

(b)

(e)

(c)

(f)

Figure 1. Types of die defects. (a) Scratches die. (b) Dots die. (c) Broken die. (d) Missing
corner die. (e) Missed welding. (f) Dirt die.

Previously, wafer surface defect identification primarily relied on manual visual inspection, an
inefficient technique [3] due to its expensive cost, time consumption and ineffective for massive
production. At present, wafer detection mainly relies on probe detection. This method can only detect
the electrical performance of the die on the wafer, and the contact detection method may cause
mechanical damage. With the development of industrial cameras, automatic optical inspection (AOI)
technology is more and more widely used [4]. Wafer nondestructive inspection technology based on
machine vision has been widely used. AOI consists primarily of industrial cameras, light sources,
image acquisition cards and PCs. Its workflow can be divided into three steps: acquisition of the
target image, identifying the defect and analyzing the defect [5]. Usually, a typical AOI begins with
an industrial camera with an illumination system for acquiring the corresponding image. Then, the
area to be inspected is located in the acquired image. Finally, the corresponding algorithm is designed
to complete the detection of defects in product surface defects.

Although AOI has been studied in wafer surface defect detection, there are still some problems with
the existing methods. In the detection step, the existing method only detects whether there are defects
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on the wafer surface, and does not locate the defects at the specific die location. That is to say, the
existing methods do not focus on how to split the die from the wafer and segment each die one by
one, which is an important step and an urgent need [6]. Marking defective dies in the wafer map can
alert the factory to remove them in a timely manner. When defective dies are distributed at different
locations in the wafer map, they will appear as different defect patterns [7]. However, existing methods
do not mark the defective dies one by one in the wafer map.

To solve these problems, this paper proposes a full process detection method from wafer image
acquisition to die defect detection. First, wafer images are captured by industrial cameras; second, each
die image is segmented from the wafer image; and finally, each die is inspected for defects detection.
To the best of our knowledge, this work provides the first wafer surface defect detection method used
to locate the die defect location. The main contributions of this paper are as follows.

1) For the problem that the seriously damaged dies cannot be segmented from the wafer map, a die
segmentation method based on candidate frame fitting and coordinate interpolation was proposed.
This method can accurately segment all the dies from the wafer map and can be used to segment
many types of wafer.

2) Aiming at the difficulty of sample acquisition of defect-free dies, a defect detection method based
on regional defect feature clustering is proposed, which can complete the defect detection task
without relying on standard model dies.

3) A complete solution for the whole process of wafer image detection from acquisition to
defective wafer map generation. We designed algorithms for pose correction, image
segmentation, image enhancement and defect detection for the inspection process and integrated
the task of “acquisition-segmentation-inspection” of wafers.

The remainder of this paper is organized as follows. Section 2 reviews existing related methods.
Section 3 details the steps in the wafer surface defect detection process and the required methods.
Section 4 describes the construction of the experimental platform and the experimental validation of
the proposed detection method. Finally, the work summary and prospective conclusions are given.

2. Related works

For wafer surface defect detection methods, there are many relevant researches in recent years and
the existing methods can be divided into two main categories: methods based on image processing and
methods based on deep learning. Early wafer surface defect detection methods were mainly based on
image processing technology [8, 9]. This method relies on the calculation of the difference between
the image to be tested and the reference image, and is greatly affected by the reference image accuracy.
Shankar [10] proposes a template matching based method to inspect wafers. Yeh [11] applied wavelet
transform to detect wafer appearance defects. Threshold segmentation [12] and principal component
analysis [13] are used to detect surface defects of solar dies. Lin [14] and Zhang [15] studied the surface
defects of LED packages and the color defects of polysilicon by building a visual inspection system.
Saad [16] and Ko [17] used multilayer threshold segmentation and local binary mean segmentation
to separate defects such as contamination, splinters and cracks from the background. Although these
image-processing methods can detect defects on wafer surfaces, most are designed for specific defects.
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Such methods are poorly generalized and cannot be extended enough to detect surface defects in other
wafers. Because the wafers are not all the same, each wafer can be different.

In recent years, deep learning has been gradually applied to wafer surface defect detection by
virtue of its strong feature extraction capability [18]. Chen [19] combined an improved k-mean
clustering algorithm with morphological methods to enhance the robustness of the defect
segmentation extraction process against noise. Haddad et al. [20] proposed a three-stage method for
wafer surface defect detection, including candidate region generation, defect detection and refinement
stages. Yang et al. [21] proposed a quantum classical hybrid model for wafer defect detection
Chen [22] proposed a die image defect detection based on ResNet, and the die defect detection
accuracy of simple circuit structure could reach 98.57%. Jared [23] classified the chemical
composition of defect particles in semiconductor wafers. Classical target detection networks are also
used in wafer surface defect detection, such as Faster-RCNN [24] and YOLO v3 [25, 26]. Although
deep learning methods have improved the accuracy of detecting a defect, training the model still
requires high computing power resources and a long training time. Besides, it requires a substantial
amount of labeled data to train the model, and detecting other types of wafers requires the model to be
trained again with new labeled samples. In addition, adapting to new iterations of semiconductor
products is difficult because of heavy workloads. Unsupervised learning does not require labeled data
to perform the task of recognition and classification [27, 28]. Cluster analysis has been widely used as
a common unsupervised learning approach [29, 30]. For many types of wafer surface defect detection
problems, we try to use clustering methods to detect defective dies on the surface.

When the above methods detect defects on the wafer surface, they do not detect the dies one by one.
In other words, the above methods do not segment the dies to build a complete defect detection process.
Bourgeat et al. [31] proposed a segmentation algorithm for semiconductor wafer images generated by
optical inspection tools. Yang [32] proposed affine iterative closest approximation algorithm based
on spatial feature point guidance for wafer segmentation and inspect each die. The above method
completes the segmentation of the wafer by analysing the characteristics of the die surface. However,
the surface of a severely damaged die no longer has distinctive features. The above method does not
explain how to segment severely damaged dies. Our method segments each die and marks the defective
die in the wafer map. The analysis of defective wafer maps helps the factory to identify the cause of
defects in time [33].

3. Methodology

This section will elaborate on the inspection flow and corresponding implementation method
designed in this paper for wafer surface defect detection. The overall detection strategy is described as
follows. First, set up the wafer surface automatic optical inspection platform and complete the image
acquisition of the wafer surface. Then, for the original wafer images acquired by the platform, we use
the contents described in Sections 3.1–3.4 to complete pose correction, sample segmentation, image
enhancement and defect detection in turn. Finally, the detected defective dies are marked on the wafer
map to generate a defective wafer map. The specific detection process is shown in Figure 2.
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Figure 2. Wafer surface defect detection process.

3.1. Wafer image pose correction

In the production inspection process, the wafers on the conveyor belt cannot be placed at the same
angle, so the wafer image captured by the image acquisition system will have different deflection
angles. Therefore, it is necessary to perform positional correction on the acquired image and extract
the wafers from the corrected image.
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Figure 3. Determining the segmentation threshold. (a) Original wafer image. (b) Grayscale
histogram of image (a). (c) The wafer image is divided into three areas.

Image pose correction is also known as the geometric transformation of an image. It maps the
coordinate position of an image to a new coordinate position. The geometric transformation merely
rearranges the pixel information in the image which does not alter the pixel values. We use threshold
segmentation and morphological methods to process the outer contour part of the wafer. This is because
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the wafer outer profile section already contains information on the overall wafer size and deflection
angle. To obtain the outer contour of the wafer using threshold segmentation for the acquired image,
first, we need to determine the segmentation threshold. As shown in Figure 3(a),the outer contour part
of the wafer presents a small gray value and a certain amount of gray in the grayscale image. We can
determine the segmentation threshold by analyzing the image grayscale histogram. The wafer image
is shown in Figure 3(a), and its gray histogram is shown in Figure 3(b). Each color in Figure 3(b)
corresponds to the area in the wafer image, as shown in Figure 3(c). In order to segment the wafer
and the background, the value between the A and B parts can be selected as the optimal segmentation
threshold.

β

(X1,Y1) (X2,Y2)A B

（a） （b）

Figure 4. Determination of image rotation angle. (a) Wafer image after threshold
segmentation. (b) Local enlargement of image.

Threshold segmentation is performed on the wafer image, and the segmented image is shown in
Figure 4. The lowest part of the wafer outline image is a straight line, and the slope of the line can be
detected to determine whether the image needs to be rotated for correction and to calculate the rotation
angle. First, we search for the coordinates of the point with a gray value 0 from the last row upward
and record the point as (X1,Y1), as shown in Figure 4, point A. Then, we calculate the coordinates of
the middle column of the image and record it as Y2. After that, we search for the row with a gray value
of 0 from the bottom upward in column Y2 and record the point as (X2,Y2), as shown in Figure 3,
point B. Finally, the rotation angle β is calculated from (X2 − X1)/(Y2 − Y1). Rotation correction is
applied to the image based on the calculated rotation angle. The wafer image threshold segmentation
and rotation correction results are shown in Figure 5.

3.2. A die segmentation method based on candidate frame fitting and coordinate interpolation

Wafer segmentation is the process of splitting each die from the wafer map. We segment the wafer
map to obtain each die, which has the following advantages. 1) We can check each die more closely
for defects. 2) Defective dies can be marked in the wafer map, and the factory can remove the
defective dies in time. Existing segmentation methods can be divided into two categories: those based
on template matching and those based on feature analysis. Image matching is the most common
method used in wafer segmentation. It is the process of finding the region in an image most similar to
the template image. The feature-based methods segment the wafers by analyzing the features in the
die, such as right angles and straight lines. However, the above method does not enable the severely
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(a) (b) (c)

Figure 5. Wafer image pose correction results. (a) Original wafer image. (b) Wafer image
after threshold segmentation. (c) Image after positional correction.

damaged dies to be split off from the wafer map. This is because the surface of a badly damaged die
has lost its distinctive features. We propose a wafer segmentation method based on candidate frame
fitting and coordinate interpolation. First, We use a template matching-based method to complete the
segmentation of the majority of dies. Then, the severely damaged dies are identified by analyzing the
characteristic relationships of the coordinates of the already segmented dies.

1) Template matching and coordinate fitting. This paper uses the normalized squared difference
matching method to complete the template matching work. The principle is as follows: the template
image is denoted by T , the target image is denoted by I and the confidence result is denoted by R.
Before the image matching work, we also need to set the similarity threshold, τ. In the template
matching process, if the calculated R > τ, the die image is considered to exist in the region. The
matching confidence formula R(x, y) is calculated in Eq (3.1).

R(x, y) =
∑

x′ ,y′ T (x
′

, y
′

)I(x + x
′

, y + y
′

)√∑
x′ ,y′ T (x′ , y′)2∑

x′ ,y′ I(x + x′ , y + y′)2
(3.1)

In Eq (1), T (x
′

, y
′

)is the template image and I(x, y) is the image to be matched. In this paper, the
template similarity threshold is set to 0.6.

As shown in Figure 6, since duplicate redundancy detection boxes exist in the template matching
results, we need to filter those based on the initial matching results and complete the best match result
extraction. Currently, the above cases are often solved by non-maximum suppression (NMS) methods
in image processing. However the NMS method has some disadvantages. 1) Threshold values must be
set manually. 2) A missed detection may occur if the target sample is present in the overlapping area.

We collect the coordinates of the upper left corner of all candidate boxes, as shown in Figure 6, and
record them as, (x1, y1), (x1, y1), ..., (xn, yn). Use Eq (3.2) to calculate the geometric centre point (xc, yc)
as the most suitable coordinate point. The calculation of (xc, yc) is shown in Figure 6(b).
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Figure 6. Template matching based wafer segmentation. (a) Results of template matching.
(b) Calculation of (xc, yc).

(xc, yc) =
1
|n|

n∑
i=1

(xi, yi) (3.2)

2) Wafer segmentation method based on die coordinate relations. For normal dies, they can be
detected successfully when the τ is set to 0.6. However, for damaged dies, as shown in Figure 7, the
detection segmentation cannot be completed by the template matching method even when the τ is on a
very low setting.

(a)

(b)

Figure 7. Damaged dies. (a) Die with severe surface fragmentation, (b) Missing to weld.

We segment the damaged dies by analyzing the relationship between the co-ordinate points. As
shown in Figure 8(a), template-matching based methods have obtained the coordinates of some of the
dies. The upper left-hand coordinate point of the die is denoted pi = (xi, yi), as shown in Figure 8(b).
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Figure 8. Damaged die detection. (a) Wafer segmentation results based on template
matching. (b) Dies in the same column. (c) Possible grains in the wafer map. (d) The
final result of wafer segmentation. The red square represent damaged dies and green square
represent normal dies.

The set of coordinate points of the same column is calculated using Eq (3.3) and is denoted as P.{
P = {p1, p2, ..., pn}

X = (x1, x2, ..., xn)
(3.3)

where X represents all the X-coordinates of the same column of dies.
Ex

i is the difference between adjacent xi and is calculated using Eq (3.4).

Ex
i = xi+1 − xi i ∈ {0, 1, 2, ..., n − 1}. (3.4)

As shown in Figure 8(b), when there are damaged dies, E1 is significantly larger than E2 and E3.
We can set a threshold value for Ex

i to detect the presence of damaged dies. If Ex
i is greater than the

set threshold, there is a damage die. In order to reduce the human factor in the threshold setting and
improve the anti-interference of the detection algorithm, we use the mean and variance in statistics to
complete the threshold setting. We denote the mean of Ex

i as µ and the variance as σ. The 3-sigma
algorithm assumes that in a normal distribution, when the data lies in (µ − 3σ, µ + 3σ), then it is
considered normal data. When the data value is greater than µ + 3σ, the confidence level of the data
decreases and it is regarded as a discrete value. So, we calculate the mean and variance of Ex

i using Eq
(3.5).  µ =

1
n

∑n
i=1 Ex

i

σ =

√
1
n

∑n
i=1

(
Ex

i − µ
)2 (3.5)

where µ and σ are the mean and variance of Ex respectively.
Equation (3.6) holds indicating that there are damaged dies between xi+1 and xi. We can use Eq (3.7)

to calculate the number of damaged dies.
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∀Ex
i ∈ Ex, Ex

i > u + 3σ (3.6)

N j =
[
(xi+1 − xi)/Ex

min
]

(3.7)

where N j is the number of damaged dies. Ex
min is the minimum of Ex.

Equation (3.8) is used to calculate the x-coordinate x
′

j of the damaged dies.

x
′

j =

N j∑
j=0

xi + j ∗ Ex
min (3.8)

where xi is in Eq (3.7).
The least square method of Eq (3.9) can be used to fit the data and calculate the missing coordinates.

min f (x) =
n∑

i=0

[
yi − f (xi,wi)

]
n = 1 (3.9)

where f (x) = w0 + w1x.
The result of Eq (3.8) is carried over into Eq (3.10) to calculate the y-coordinate y

′

j of the damaged
dies.

y
′

j = f (x
′

j,w0,w1) (3.10)

As shown in Figure 8(b), we also need to calculate the coordinates of the damaged dies above point
P1 and below point Pn. Equations (3.11) and (3.12) are used to calculate the number of damaged dies
above point P1 and below Pn, respectively.

Nk = ⌊(x1)/Ex
min⌋ (3.11)

where Nk is the number of damaged dies above point P1.

Nl = ⌊(H − xn)/Ex
min⌋ − 1 (3.12)

where Nl is the number of damaged dies below point Pn. H is the height of the wafer image, as shown
in Figure 8(a).

Equations (3.13) and (3.14) are used to calculate the x-coordinate of the damaged dies above point
P1 and the x-coordinate below point Pn.

x
′

k =

Nk∑
k=0

x1 − k ∗ Ex
min (3.13)

where x
′

k is the x-coordinate of the damaged dies above point P1.

x
′

l =

Nl∑
l=0

xn + l ∗ Ex
min (3.14)

where x
′

l is the x-coordinate of the damaged dies below point Pn.
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Equations (3.15) and (3.16) calculate the Y-coordinate of the damaged dies.

y
′

k = f (x
′

k,w0,w1) (3.15)

where y
′

k is the y-coordinate of the damaged dies above point P1.

y
′

l = f (x
′

l,w0,w1) (3.16)

where y
′

l is the y-coordinate of the damaged dies below point Pn.
As shown in Figure 8(c), the set consisting of (xi, yi), (x

′

j, y
′

j), (x
′

k, y
′

k), (x
′

l, y
′

l) is denoted S (p
′

i).

S (p
′

i) =
{
(x1, y1), (x2, y2), ...(xn, yn), (x

′

1, y
′

1), ..., (x
′

Ddie
, y
′

Ddie
)
}

(3.17)

where S (p
′

i)) is the coordinates of all dies. p
′

i is a die.
The outer contour of the wafer can be obtained by threshold segmentation and contour detection.

The dies outside the wafer contour should be removed and the result is shown in Figure 8(d). The
method proposed in this paper is not affected by artificially set parameters and has higher segmentation
accuracy. It can be well applied to the task of multi-target sample segmentation in wafer images. The
results of template matching of dies by the proposed method are shown in Figure 9.

Figure 9. Results of wafer segmentation.

3.3. Die images enhancement

During the image acquisition process, there are shadow areas in the captured images because the
light does not radiate evenly on the wafer. We hope that the brightness of the die image can be kept
stable. Because too bright or too dark die image may be judged as a defect. Image enhancement can
effectively solve this problem. Image enhancement can not only improve the brightness of the image,
but also enhance its details, which is convenient for later defect detection.

First, all die images are converted to HSV space, and the H component of each die image is extracted
to generate a one-dimensional array. The data are sorted from smallest to largest, and the first 30% of
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the array is taken as the darker image, the middle 40–70% as the standard brightness image and the last
70–100% as the brighter image. Figure 10(a) shows the distribution of brightness values in the original
dies’ image. The data from the standard brightness images are summed and averaged and noted as
Vmean. The other individual image brightness values are recorded as Vsample. Enhancement of brighter
and darker images is done using Eq (3.18). The values of each parameter of the formula are shown
in Table 1, and the enhancement effect is shown in Figure 11. Figure 10(b) shows the distribution of
brightness values in the dies’ image after brightness enhancement.

out = in0 ∗ (1.0 − α) + in1 ∗ α (3.18)

where, out is the output image. in0 is the new image with the same image size and the same number
of channels as the image to be enhanced. in1 is the image to be enhanced, and α is the enhancement
factor.

(a) (b)

Figure 10. Image brightness enhancement. (a) Distribution of brightness values of
unenhanced images. (b) Distribution of brightness values of enhanced images.

Table 1. Image enhancement parameters.

Enhancement parameter in1 in0 α

Brightness Original image 0 Vmean/Vsample

Contrast Original image Average value of in1 1.5
Sharpening Original image Smooth filtering of in1 3.0

3.4. Die surface defect detection

The micro defect size of the dies on the wafer is small. Due to the high dimension of image data,
there is more redundant feature information, which inhibits the expression ability of useful features.
The existing wafer surface defect detection algorithms are supervised learning methods, which rely on
a large number of labeled samples to complete the detection task. Additionally, the existing methods
cannot locate the dies with specific defects. Therefore, we propose a defect detection method based
on regional defect feature clustering. This method first detects the maximum external contour of the
die image, and then divides the entire image into the area within the contour and the area outside the
contour, as shown in Figure 12.
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(a)

(b)

Figure 11. Image enhancement results. (a) Unenhanced images. (b) Enhanced image.

Figure 12. Contour detection. (a) Die images. (b) Dividing the die image into different
areas.

When we detect the area within the outline, we need to ignore the details beyond the outline.
Because of the irregular features of the gap between the dies on the wafer, it will affect the extraction
of the dies’ features, as shown in Figure 13. Then, we will extract geometric, projective and textural
features for the areas within the outline. Followed by extracting the area feature from the contour.
Finally, the extracted feature sets were clustered and classified to screen out the defect dies.

Figure 13. Gap between dies.

Mathematical Biosciences and Engineering Volume 20, Issue 7, 11821–11846.
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1) Internal feature extraction. In the extraction of internal features of die contours, the largest outer
contour of the die image is searched first. After several experiments, the outline image produced by
thresholding the initial image twice and adding filtering and morphological processing was the clearest.

(a) (b) (c) (d) (e) (f)

Figure 14. Internal feature extraction process. (a) The original grayscale image of the die.
(b) and (c) are the results after two threshold segmentations, respectively. (d) The result of
the outer contour search of the die boundary. (e) The area outside the largest contour in the
die image with grayscale value 255. (f) The result of image fusion.

The die image is noted as D(pi). pi is the pixel in the image. We use Eqs (3.19) and (3.20) to perform
image thresholding on die images. The image segmentation results are shown in Figure 14(b),(c).

Ds1(pi) = ϕ(M(D),D) (3.19)

Ds2(pi) = ϕ(M(Ds1),Ds1) (3.20)

where Ds1 is the result of thresholding the image D. Ds2 is the result of thresholding the image Ds1. ϕ
represents a function for image thresholding, the first parameter is the segmentation threshold and the
second parameter is the image. M(D) is the average of the pixels of image D.

Then, the contour search finds the maximum outer contour, as shown in Figure 14(d). Filling the
area outside the largest contour in the die image with grayscale value 25 5and the result is noted as
D f (pi), as shown in Figure 14(e). This allows ignoring the defective features in the area outside the
contour. Then, we use Eq (3.21) to fuse Figure 14(c),(e) to get the new Figure 14(f) .

D
′

(pi) = Ds2 + D f (3.21)

Extraction of geometric, textural and projection features of the processed die images.

(αi, βi, γi) = ψ1(D
′

(pi)) (3.22)

where αi, βi, γi for projection, geometric and textural features of image D
′

(pi). ψ1 is a function of the
feature extraction of image D

′

(pi).
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2) External feature extraction. As shown in Figure 15, die defects such as missing corner defect
and broken defect mainly damage the overall integrity of the die. The feature reflected in the image
where the largest outer contour of the wafer is damaged. The outer contour of the defective die no
longer has integrity and exhibits inward shrinkage. This feature can be used as a defect feature for
defect detection. We use Eq (3.23) to calculate the area in green of Figure 15(d) as the defect feature.

(a) (c)(b) (d)

Figure 15. Boundary feature extraction process. (a) the original grayscale image of the die.
(b) Image (a) after thresholding segmentation. (c) The outer contour of image (a). (d) Image
outer contour anomaly detection.

ζi = ψ2(D
′

(pi)) (3.23)

where ζi is the area feature of image D
′

(pi). ψ2 is a function that calculates the area outside the largest
contour of image D

′

(pi).
3) Defect detection method based on feature clustering. The features of defect-free dies and

defective dies are different. In 1) and 2), we extracted several features, including projection, geometry,
texture and the area out of contours. Clustering analysis is an unsupervised learning-based feature
analysis method that we can use to distinguish different features. There are hundreds of dies on a
wafer image, and most of them are defect-free dies. We set the clustering center to 2. The defective
features will be clustered together, and the number will be small. Defect-free features will be
clustered together and in larger numbers. We use Eq (3.24) to calculate the clustering results.

(C1,C2) = Fcluster(αi, βi, γi, ζi) (3.24)

where (C1,C2) is the result of feature clustering, representing two clusters. Fcluster is the clustering
function.

Based on actual production experience, damaged dies are in the minority in wafer images. We use
Eq (3.25) to calculate who has fewer grains in C1, C2. The result of the calculation is the defective
dies, noted as Cde f ect.

Mathematical Biosciences and Engineering Volume 20, Issue 7, 11821–11846.



11836

Cde f ect = arg min
Ci∈(C1,C2)

(Fn(Ci)) (3.25)

where Cde f ect is the defective dies. Fn(Ci) is the number of dies in Ci.
The area of the contours is one-dimensional data and can be visualized for presentation. We cluster

the area out of the contours and the results are shown in Figure 16.
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Figure 16. Cluster analysis to filter discrete samples. (a) Kmeans clustering. (b) Hierarchical
clustering. OK stands for defect-free characteristics. NG stands for defective characteristics.

4. Experimental results and analysis

4.1. Experiment preparation

The wafer image acquisition system consists of line array camera(LA-CM-16K05A), motion stage,
light sources and wafers, as shown in Figure 17. The methods in this paper are written in Python and
uses the Opencv library. All experiments were run on AMD Ryzen 7 5800H 3.2GHz CPU and 16GB
RAM. The used experimental data collected by the self-built wafer image acquisition system.

Table 2. SPECIFIC PARAMETERS FOR LA-CM-16K05A.

Parameters Value
Resolution(pixels) 16,384
Pixel Size (µm) 3.52 × 3.52
Pixel Fill Factor (%) 100
Line Rate(kHz) 48
Bit Depth(bit) 8
Sensor type CMOS
Camera size(mm) 76.0(W) × 76.0(H) × 36.7(D)

4.2. Die segmentation results based on candidate frame fitting and coordinate interpolation

1) Results of wafer image pose correction. We have quantified the results of the wafer positional
correction in Figure 5. The quantified results are shown in Table 3.
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Cameras

Wafer

Light sources

Motion platform

Figure 17. Wafer Image Acquisition Systems.

Table 3. Results of wafer image pose correction.

Angles R1 R2 R3

Actual angle 3.15◦ 10.02◦ 9.43◦

Ours 3.12◦ 10.04◦ 9.45◦

*Note: R1, R2 and R3 are the three types of wafers in Figure 5.

As the table shows, our calculated rotation angle is close to the actual angle. The calculation error
is less than 0.05◦.

2) Identification of dies with surface feature damage. In this experiment, we use the template
matching method to perform wafer segmentation on the wafer in Figure 3(a). Dies with severe damage
cannot be identified by template matching, as shown in Figure 18. When there are damaged dies, the
results of making differences between adjacent coordinate points are shown in Figure 19.

Damaged die

(110,200) (153,202) (190,198) (232,200) (271,200) (311,202) (354,202) (390,198) (431,202) (473,200) (512,198) (553,198) (592,199) (630,202)

X1E

X2E

Y

X

(110,159) (152,160) (190,160) (232,160) (273,159) (312,160) (352,161) (393,160) (431,159) (474,161) (553,161) (592,160) (633,160)

(513,159)

Figure 18. Local enlargement of a wafer with damaged dies.
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E   -no missing diesX1

E   -missing diesX2

2 2μ + 3σ = 41.08
1 1μ + 3σ = 40.07

Figure 19. Missing coordinates detection. µ1 and σ1 are the mean and variance of Ex1.
µ2 and σ2 are the mean and variance of Ex2. Ex1 and Ex2 represent the difference between
adjacent X coordinates.

As seen in Figure 19, there is a large peak in Ex2, which represents a missing coordinate found
between adjacent coordinate points. We calculated the coordinates of the damaged die using the
method proposed in Section 3.2, as shown in Figure 18. This result shows that our method can
identify in time the dies that have not been split off from the wafer map by analysing the relationship
between the die coordinates.

3) Comparison and analysis of wafer segmentation methods. In this experiment, We compared the
proposed method with Template Matching, LSD (Line Segment Detector) and AICP-FP methods [32].
We performed wafer segmentation experiments using three different types of wafers, and the number
of missing dies was used as an evaluation index. The three types of wafers are shown in Figure 20 and
we have used A,B,C to name the wafer types. The number of dies in the three types of wafers A,B,C
is 339, 692, 1528, respectively. The quantification results are shown in Table 4.

(a) (b) (c)

Type A Type B Type C

Figure 20. (a), (b) and (c) are the three types of wafers that are used for wafer segmentation.

As shown in Table 4, our method allows all dies to be segmented from different types of wafers.
The template matching-based method relies on the quality of the template. When the surface of the
die is dirty and broken, as shown in Figure 21, these dies will appear to differ significantly from the
standard template. Therefore, the template matching method is unable to segment these dies. LSD and
AICP-FP have similar drawbacks to template-based matching methods. They cannot identify dies that
have been severely damaged on the surface. AICP-FP is more capable of extracting features than LSD.
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Table 4. Wafer image segmentation miss detection results.

Methods The number of missing dies
Type A Type B Type C

Template Matching 13 10 10
LSD 15 8 9
AICP-FP* 10 2 3
Our Method 0 0 0

*Note: stands for state-of-the-art method.
A, B and C are the three types of wafers in Figure 20.

When the damaged surface area is small, the AICP-FP can segment the die by analyzing the lines and
corners of the die edges.

(a) (b) (c)

Figure 21. (a), (b) and (c) are dies with severe surface damage.

We have also analyzed the results of wafer segmentation methods when there are different degrees
of damage to die surface features. We use Gaussian noise to blur the features of the die image.

Iσ = I ∗Gσ (4.1)

where Iσ is the image with noise added. ∗ is for convolution. I is the raw image.
Gσ is the Gaussian convolution kernel, defined as:

Gσ =
1

2πσ2 e−(x2+y2)/2σ2
(4.2)

where σ is the standard deviation, x2 + y2 is the Gaussian fuzzy radius.
We randomly Gaussian blurred 100 dies in wafer A, wafer B and wafer C, respectively. When the

standard deviation in the Gaussian convolution kernel is changed, the die image results are shown in
Figure 22. Different wafer segmentation methods are then used to segment wafers A, B and C. The
different methods are evaluated using the evaluation metrics of Eq (4.3). The quantification results are
shown in Table 5.

ACS eg =
Tseg

ALLseg
(4.3)

where Tseg is the Gaussian blurred die that was identified. ALLseg is the total number of Gaussian
blurred dies.
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50s = 100s = 150s = 200s = 300s = 400s =0s =

Figure 22. Die images with different Gaussian noise added.

Table 5. Wafer segmentation results for different σ values.

Method ACS eg

σ = 50 σ = 100 σ = 150 σ = 200 σ = 300 σ = 400
Template Matching 1.00 0.98 0.83 0.62 0.21 0.00
LSD 1.00 1.00 0.91 0.73 0.32 0.00
AICP-FP* 1.00 1.00 0.98 0.81 0.52 0.00
Our Method 1.00 1.00 1.00 1.00 1.00 0.00

The larger the value of σ, the more blurred the features of the dies in Figure 22. When σ is bigger
than 150, Template Matching, LSD and AICP-FP cannot identify all the noisy dies in the wafer map.
This is because the features on the die surface have been largely lost. When σ is greater than 400, all
methods cannot identify the noisy dies. Our method first uses template matching to identify the dies on
the wafer surface. Then, the coordinates of the unidentified dies are calculated based on the coordinate
relationships of the identified dies. So our method can identify more noisy dies.

(a) (b) (c) (d) (e)

Figure 23. Die images with different defects. (a) Scratches die. (b) Dots die. (c) Broken die.
(d) Missing corner.(e) Dire die.

In addition, we used wafer segmentation methods to identify dies with different defects, as shown
in Figure 23. The results of the inspection are shown in Table 6. As shown in Table 6, only our method
can accomplish the segmentation of all defect types of dies. Template Matching, LSD and AICP-FP
are all based on analyzing features on the die surface to achieve wafer segmentation. These methods
cannot segment all dies when the surface features are damaged.
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Table 6. Results of the identification of dies with different defect types.
Methods Scratches dies Dots die Broken die Missing corner Missed welding Dirt die
Template Matching ✓ ✓ × × × ×

LSD ✓ ✓ × × × ×

AICP-FP* ✓ ✓ × × × ×

Our Method ✓ ✓ ✓ ✓ ✓ ✓

*Note: ✓means that all grains of this type can be identified. × means that this type of grain can be partially identified.
* stands for state-of-the-art method.

4.3. Analysis of die defect inspection results

1) Die defect detection results and analysis. We use the method proposed in Section 3.4 for defect
detection of dies. The dies in Figure 20 were used as experimental data. Accuracy, Recall and Precision
were used to evaluate the effectiveness of those methods. The detection results of our methods are
shown in Table 7.

Accuracy =
T P + T N

T P + T N + FP + FN
(4.4)

Recall =
T P

T P + FN
(4.5)

Precision =
T P

T P + FP
(4.6)

TP (True Positive): No defective sample and also judged as a defect-free sample. FN (False
Negative): No defective sample but judged as a defective sample. FP (False Positive): Defective
sample but judged as a defect-free sample. TN (True Negative): Defective sample and also judged as
a defective sample.

Table 7. Die defect detection results.
Wafer Type Total number of dies TP FN TN FP Accuracy Recall Precision
A 339 313 6 18 2 0.976 0.981 0.994
B 692 642 9 38 3 0.983 0.986 0.995
C 1528 1400 45 75 8 0.965 0.969 0.994

In order to verify the effectiveness of the proposed method, we performed defect detection on
different types of dies. The accuracy can reach more than 96%, which can meet the practical
requirements of wafer surface defect detection. However, the accuracy rate of C-type wafers in the
inspection experiment is lower. This is due to the manual determination of minor defects on the die
surface is a normal sample, while the algorithm determines minor defective dies as defective samples.

Image enhancement can enhance defective features in an image. We add experiments on the effect
of image enhancement of defect detection results.

Table 8. Die defect detection results.
Image enhancement A B C
Unenhanced 0.932 0.940 0.955
Enhanced 0.976 0.983 0.965
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As shown in Table 8, image enhancement will improve the accuracy of die defects. This is because
image enhancement will make defect features in the die image easier to detect.

Table 9. Detection process time (ms).
Wafer Type Single die pixels Minimum time Maximum time Average time Time spent on defect detection only
A 246 × 290 25.82 48.66 28.97 4.058
B 174 × 208 14.90 23.42 18.09 3.560
C 40 × 40 3.10 4.48 3.50 0.587

We also did experiments on the time spent on defect detection. The inspection was repeated 20
epochs for each type of wafer independently. The total time from acquisition to completion of the
inspection was recorded, and the time spent for individual die inspection was calculated. Minimum
time, Maximum time and Average time are the maximum, minimum and average values of the time
spent in the 20 epochs respectively. The inspection time statistics are shown in Table 9. Our method
takes about 18ms to complete wafer acquisition, die segmentation, image enhancement and defect
detection. The time consumed increases as the number of image pixels increases. For comparison
with other methods, we also tested the time-consuming time in the defect detection phase. Both the
time spent in the whole phase and the time spent in the defect detection phase can meet the industrial
inspection needs.

2) Comparison of defect detection methods. In the defect detection experiments, template
matching [4], Fourier transform [34] and Deep learning(SH-DNN) [35] are used for comparison with
our method. We compared the accuracy, F1-score and inspection time of the different methods for die
defect detection. The quantification results are shown in Table 10.

F1 =
2

1
Precision +

1
Recall

(4.7)

Table 10. Quantitative results of wafer defect detection by different methods.
Methods Accuracy F1-score Single die pixels Time-consuming(ms)
Template matching 0.925 0.94 - -
Fourier transform 0.908 0.95 - -
SH-DNN* 0.985 0.995 192×192 5.000
Our method 0.975 0.978 246×290 4.058

*Note: stands for state-of-the-art method.

Most of the defects in the image frequency domain are a high-frequency part, the Fourier
transform-based method can transform the image to the frequency domain for analysis. It can observe
the high-frequency part of the image and then completely detect large-area defects such as scratches
and broken. However, this method is not suitable for point defects and small soiled defects where the
high-frequency component is not obvious. The detection method based on template matching also has
some disadvantages. It is susceptible to factors such as the selected high-standard template and the
rotation and stretching of the image to be detected, which eventually affects the detection results. As
shown in Table 10, SH-DNN achieved the best accuracy and F1-score. Deep learning has better
feature extraction capability, and SH-DNN can extract more discriminative defect features in die
images. However, deep learning requires powerful computational resources and higher time
consumption for defect detection. Although the accuracy of SH-DNN is better than our method, the
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time consumption of our method is shorter. When detecting images with more pixels, we use 1 ms
less time than SH-DNN.

3) Marking defective dies in the wafer map. In contrast to other methods, we have designed a
complete wafer defect detection method. Our method can do everything from image acquisition to die
segmentation to defect detection. Especially, our method detects defective dies and relabels them in
the wafer map. Defective dies will show defective patterns in the wafer map. Analyzing the defect
pattern helps to complete the detection of the cause of the defect. Figure 24 shows the results of our
detection of defective dies.

(a) (b) (c)

Figure 24. Marking of defective dies. The green squares in the images of (a), (b) and (c)
represent defective dies.

5. Conclusions

For the problems of wafer surface defect detection, this paper proposes a full-flow inspection
method based on machine vision. The inspection process consists of four parts: wafer image pose
correction, wafer segmentation, image enhancement and defect detection. To be able to segment all
the dies from the wafer map, we propose a die segmentation algorithm based on candidate frame
fitting and coordinate interpolation. Unlike other methods, our method can still segment dies from the
wafer surface when the surface features are severely damaged. In addition, we propose a die defect
anomaly detection method based on defect feature clustering by region. More importantly, our
proposed method does not require an existing labeled sample, which greatly saves manual sample
marking time.

We provide a wealth of experiments on the proposed method. The results show that our method can
perform wafer segmentation and die-by-die defect detection. The defect detection accuracy is above
97%, which meets the actual production requirements. Especially we also mark the defective dies
individually in the wafer map and generate a defective wafer map. The defect wafer map represents
the defect pattern and can be used to analyze the specific cause of the defect. In the future, we expect
to improve the existing defect detection methods to achieve better accuracy rates.
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