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Abstract: The monitoring of urban land categories is crucial for effective land resource management 
and urban planning. To address challenges such as uneven parcel distribution, difficulty in feature 
extraction and loss of image information in urban remote sensing images, this study proposes a mul-
ti-scale feature shuffle urban scene segmentation model. The model utilizes a deep convolutional 
encoder-decoder network with BlurPool instead of MaxPool to compensate for missing translation 
invariance. GSSConv and SE module are introduced to enhance information interaction and filter 
redundant information, minimizing category misclassification caused by similar feature distributions. 
To address unclear boundary information during feature extraction, the model applies multi-scale 
attention to aggregate context information for better integration of boundary and global information. 
Experiments conducted on the BDCI2017 public dataset show that the proposed model outperforms 
several established segmentation networks in OA, mIoU, mRecall, P and Dice with scores of 83.1%, 
71.0%, 82.7%, 82.7% and 82.5%, respectively. By effectively improving the completeness and accuracy 
of urban scene segmentation, this study provides a better understanding of urban development and 
offers suggestions for future planning. 
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1. Introduction  

Remotely-sensed image maps have been widely utilized in various fields such as urban planning 
due to their real-time characteristics and rich spectral and location information. Semantic segmentation, 
which involves the recognition and classification of features, has now become an important method 
for remote-sensing image analysis, providing invaluable data support for regulating urban development, 
preserving state-owned land and coordinating urban spatial layout. Unfortunately, remotely-sensed 
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images commonly possess distinct target scales, an irregular number of targets and obscured targets, 
posing tremendous challenges to their interpretation. Therefore, the quality of remote sensing image 
segmentation is crucial to the further development of this discipline [1–4]. 

Image segmentation refers to the process of categorizing each pixel and segmenting it into re-
gions that indicate differences between regions and similarities within regions, rendering the image 
more comprehensible and analyzable [5]. Threshold segmentation is done by thresholding the image 
grayscale values and dividing the image into regions according to the threshold value [6]. Region 
segmentation is to select seed points based on certain similar properties and cluster them according to 
that property [7]. Also, edge segmentation is to find out the image edge pixel points and join the 
found pixel points together to form the desired region boundary [8]. These methods are the traditional 
methods of image segmentation that are commonly applied. 

Presently, thresholding techniques using meta-heuristic equalization algorithms are easily used 
for image segmentation [9]. Region segmentation can be achieved by using a combination of 
Multiresolution Segmentation (MRS) and Simple Linear Iterative Clustering (SLIC) superpixel algorithms [10], 
and from mathematical and geometric perspectives [11], among other approaches to achieve target 
regions. Edge segmentation is more widely used in medical and remote sensing images. By perform-
ing recursive iterations on pre-defined categories based on regions, it enables regions with un-
der-grown high-ranking memberships to be associated with predicted categories in time to improve 
the accuracy of remote sensing images [12]. Furthermore, the features of motion cracks are extracted 
from medical CT images by an edge extraction-based algorithm as a way to improve the segmenta-
tion accuracy after image enhancement [13]. Most of the above segmentation is based on features 
such as grey scale, color, texture and shape of the image, which is mainly based on expert cognition 
and understanding and manual design. However, this approach has limited generalizability for re-
motely-sensed images due to the high variability in image features and changing shots over time that 
make feature-based segmentation less effective [14]. 

In recent years, the use of convolutional neural networks (CNNs) has become prevalent in image 
segmentation due to the remarkable advancements in deep learning techniques [15–17]. Various 
CNN-based semantic segmentation networks have been proposed, including FCN [18], SegNet [19], 
PSPNet [20], UNet [21] and DeepLabV3 [22]. A large number of studies have been conducted to 
improve the network to achieve higher recognition accuracy for the object of study. Adding other 
modules to the above high-precision network or modifying the structure of the network itself can 
achieve better understanding and recognition of the model. For example, Xie et al. [23] introduced 
DUSegNet, a distinctive semantic segmentation model for open-pit mines at a pixel level. DUSegNet 
combines SegNet's pyramidal model and upsampling method of pooling indices with UNet's convolutional 
skip connection architecture and dilated convolution's intensifier. Wang et al. [24] introduced a 
PSPNet based semantic segmentation network for coal gangue images (SSNet_CG), which extracts 
feature information by embedding feature fusion channels, an attention mechanism and a three-layer 
pyramid pooling module, providing a new idea for fast coal gangue recognition. Su et al. [25] designed an 
improved UNet network model that combines the benefits of DenseNet, UNet, Dilated Convolution 
and DeconvNet to perform remote sensing image segmentation. Liu et al. [26] presented a Con-
text-Transfer-UNet (CT-UNet) network to solve the problem of blurred building map boundaries 
after segmentation and inconsistencies within classes caused by the similarity between buildings and 
backgrounds. Yang et al. [27] addressed the untimely acquisition of wheat inversion information and 
facilitated the identification of inversion losses in wheat seed selection through a DeepLabV3+ 
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wheat inversion detection model based on multi-headed self-attention. Lastly, Belhadi et al. [28] de-
veloped a medical segmentation model based on the UNet network to train complex medical data for 
Internet of Medical Things (IoMT) scenarios. 

Although the above deep learning methods show promising segmentation performance, their 
classification targets are relatively single, mostly scene-specific and of low generalization ability. To 
address the problems of uneven number of target distribution, difficulty in feature extraction and loss 
of image information in remote sensing images a network model of GSEPNet is proposed in this paper. 
The model is based on UNet for remote sensing image segmentation, and introduces shuffle feature 
extraction module (SF Block), which consists of BlurPool, GSSConv convolution and SE module. 
First, MaxPool in the routine UNet model is replaced with BlurPool to make up for the missing 
translation invariance due to data enhancement across blocks and improve segmentation accuracy. 
Second, in order to solve the problem of difficult feature extraction among multiple features with 
high similarity in urban remote sensing images, the GSSConv and SE module are introduced. They 
enhance the interaction of information between parcels, filter redundant information and improve 
network segmentation performance. Due to the lack of boundary information caused by the sliced 
image map, a multi-scale attention (MsCA) is constructed to improve the adaptive capture of global 
contextual information and further enrich the deep semantic information features. 

The organization of this paper is as follows: In Section 2, the process of building the GSEPNet 
network is described in detail and significance modules in remote sensing image segmentation is 
introduced. In Section 3, the process of making the image dataset is described and the feasibility of 
the model is verified through a large number of comparison experiments. Section 4 discusses the 
advantages and limitations of the algorithm. Section 5 concludes the study and provides an outlook 
for the future. 

2. The proposed Methods 

In this paper, the input remote sensing images are scaled to 512×512×3 and passed into the 
model based on the encoder-decoder UNet network model. The encoder part consists of 4 blocks, 
where each block consists of 1 BlurPool layer [29], GSSConv convolution and channel attention SE 
[30], to reconstruct the SF Block. The number of feature maps is doubled after each downsampling, 
and MsCA is inserted after block 4, and its output features are fused with the block 3 output feature 
channel splicing as the input features in the decoding stage, then decoding is performed with bilinear 
interpolation upsampling after completing two ordinary convolutions. The segmentation of remote 
sensing images is achieved by repeating the decoding four times and then going through ordinary 
convolution. The final network model GSEPNet is shown in Figure 1. 

In this paper, the segmentation model was proposed to solve the problems of uneven number of 
remote sensing image targets, difficulties in feature extraction and loss of image information. 

(1) In order to solve the problem of missing translation invariance caused by the input of 
data-enhanced remote sensing images into the network, the missing translation invariance of the Max-
Pool layer with a step size of 2 can be better mitigated by using the BlurPool layer in the Encoder stage 

(2) Due to the segmentation difficulties caused by the existence of highly similar features to 
parcels in urban remote sensing images, the interaction information between channels is preserved by 
GSSConv. Then, the SE module is introduced to differentiate the importance of different channel 
features and to locate and identify target areas more accurately. GSSConv and SE module introduce 
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spatial location relations for the decoder stage not only help the model to detect and extract the same 
image features, but also improve the model to obtain finer segmentation results. 

(3) The processing of remote sensing images in a slice leads to the destruction of the overall 
structure of the image and increases the difficulty of image category segmentation. The final stage of 
encoder uses MsCA to aggregate boundary information and various categories of contextual 
information, in this way, the feature information between different channels can be dynamically 
interconnected to achieve the ability of accurate feature positioning and improve the performance 
of network segmentation. 

 

Figure 1. GSEPNet network model. 

2.1. SF Block 

Because of the large variety and uneven distribution of land parcels in urban remote sensing im-
ages, and the high similarity of interlaced distribution between individual parcels, especially for 
roads and background, it is likely to confuse target feature areas with non-target feature areas during 
feature extraction, leading to category misclassification. In the encoder stage of the UNet model, the 
feature extraction network is stacked with two 3×3 Standard Convolution (SC). Although the feature 
extraction capability and fusion capability of SC are efficient, the lack of information flow between 
groups and the retention of redundant information will limit the network segmentation performance. 

In this paper, we reconstruct the feature extraction network of the model to alleviate the transla-
tion invariance of lost remote sensing images, enhance the information interaction between various 
types of parcels, and filter the redundant information to improve the classification accuracy of the 
network. The SF Block proposed in this paper consists of the following structures: First, the feature 
map is guaranteed to have translational invariance through BlurPool. Second, GSSConv is used to 
maintain the information interconnection between channels and space, which enhances the infor-
mation transfer between channels and improves the training performance of the network. Finally, the 
SE module is embedded to weight the importance of the feature extracted images and enhance the 
classification of parcels with differential information extraction.  
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2.1.1. BlurPool 

The original dataset was enhanced to solve the problem of uneven distribution of parcels across 
the remote sensing imagery, resulting in large differences among the accuracy of parcel segmentation. 
In most semantic segmentation networks, convolutional neural network and pooling are used to 
provide translation invariance. However, when the step size of the downsampling operation is greater 
than 2, the output will change drastically upon a small translation or transformation of the input. In 
this paper, BlurPool is used to alleviate the missing translation invariance of this downsampling and 
facilitate the system to produce identical responses. 

MaxPool is most widely used because it can effectively reduce the amount of data in neural 
networks, simplify data and speed up data processing. Selecting the maximum value of the original 
data covered by the convolutional kernel to compress the feature map helps the network to remove 
redundant information, reduce the number of network parameters, enhance local information acquisition 
and retain texture information. As shown in formula (1) and formula (2). 

 in
out

2 padding[0] [0] ( _ [0] 1) 1 1
[0]

H D K SH
S

+ × − × − −
= +  (1) 

 in
out

2 padding[1] [1] ( _ [1] 1) 1 1
[1]

W D K SW
S

+ × − × − −
= +  (2) 

Where Hin and Hout represent the input and output lengths respectively. Wout and Win are input and 
output widths respectively. padding represents the feature image completion operation, K_S is the 
window size for MaxPool, D is the element step size in the control window and S is the step length. 

The paper introduces BlurPool to proposed module, which combines low-pass filtering with 
anti-aliasing to retrieve to a certain extent the translation invariance lost by the convolution 
operation of MaxPool(stride > 1), as shown in Figure 2, where the difference in MaxPool's results is 
huge for just one pixel translation. 

 

 

Figure 2. MaxPool operation. 
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The MaxPool (stride = 2) can be decomposed into two parts, MaxPool with stride = 1 and 
BlurPool with stride = 2. First, the shift isotropy is maintained by the Max operation being evaluated  
intensively in a sliding window. Second, an anti-aliasing filter with a kernel of m×m is added in 
combination with atomic sampling as a better representation of the intermediate signal, as shown in 
Figure 3. 

 

 

Figure 3. BlurPool operation. 

2.1.2. GSSConv 

The high degree of similarity between parcels inevitably leads to the accuracy of image segmen-
tation, and most segmentation networks focus on contextual information linking of various categories 
of channel or spatial information, neglecting the fusion of information between categories in space or 
between channels, resulting in information lag between categories. This paper mainly uses GSSConv 
in the feature extraction network to make the information of each type of channel or space intermingled. 
First, the convolution compresses the input feature information to generate dense channel information. 
Then, the information is infiltrated into the feature information proposed by Depth-wise Separable 
Convolution (DSC) to achieve complete mixing of SC information into the output of DSC. Next, the 
channel shuffle is used to achieve dense mixed information of each category. Finally, the dense 
mixed information is compressed by 3×3 SC to expand the perceptual field and improve the 
generalization ability of the model, as shown in Figure 4. 

 

 

Figure 4. GSSConv structure. 
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The specific steps are as follows, input the feature map RW×H×C1 from the original image or the 
output of the pooling layer into GSSConv, where W×H is the spatial dimensional size of the feature 
map and C1 represents the feature map tensor. 

First, the input feature map tensor C1 is halved to C_, and the dense feature information 
OW×H×C_ is extracted by taking the feature map RW×H×C_ and passing it into the SC with a convolution 
kernel size of 1. Second, the output feature information is input into the DSC to obtain the output 
feature information PW×H×C_. Then, the feature information PW×H×C_ and RW×H×C_ are stitched in di-
mension, so that the DSC and SC information are intermingled, achieving the output information 
MW×H×C2. Next, the features of each group are dispersed to different groups by channel shuffle, which 
enables the output features to contain features from each group. Finally, the feature information is 
compressed by a 3×3 SC to extract more semantic information and enhance the network segmenta-
tion performance. The main formula for its GSSConv is shown below. 

 
2 2

1 2
2

2 3 2

_ _ 2 _[( ) ]/ 1 _/F C K H W C K C g H W C g g
C K H W C
× × × × × + × × + × × × ×

× × × × ×

= -1

-1

（2 ）

+(2 ）
 (3) 

where Kn represents the size of the convolution kernel for each convolution and g represents the 
number of input feature map subgroups. 

2.1.3. SE Block 

When using deep learning methods for semantic segmentation of images, the loss of space or 
channel information in the feature layer can limit the network segmentation performance. Channel 
attention SE is introduced in this model, which can assign the importance of information on the 
channel, focus on the information that is more critical to the current task among the numerous input 
information, suppress useless information, and improve the representation ability of the network 
model. 

The SE module structure is shown in Figure 5, with the following steps. 
 

. 

Figure 5. SE block structure. 

The SE module includes three parts: Squeeze, Excitation and Reweight. The feature map of the 
input module is Q, whose dimension is W×H×C1. W×H is the spatial dimension of the feature map, 
and C1 represents the feature map tensor. The SE module is implemented through the following. 
First, through the convolution operation L1, the feature tensor of the input Q is converted from C1 to 
C2. Then, through the Squeeze operation Lsq, by global average pooling and the feature map QW×H×C2 
is compressed into X1×1×C2. Next, the Excitation operation Lex is performed, using the fitted correla-
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tion between the channels of the two fully connected layers. Finally, the Reweight operation multi-
plies the weight value of each channel calculated by the SE module with the two-dimensional matrix 
of the corresponding channel of the original feature map, and the result is outputted. The mapping 
relationship is shown in formula (4) to formula (6). 

 q 1 1

1( ) ( , )H W
sq c ci j

s L u i j
H W

β
= =

= =
× ∑ ∑  (4) 

 x q q 2 1 q( , ) ( ( , )) ( ( ))exe L s W g s W W W sη η δ= = =  (5) 

 ( , )c scale c c c ck L u e e u= = =  (6) 

βc represents each feature channel. δ is the Relu function. W1 and W2 are the parameters of 
full-connections operation. The sigmoid activation function represented by η. 

2.2. MsCA Module 

Slicing of remote sensing images can cause loss of contextual semantics and boundary 
information of the sliced images. Most of the semantic segmentation networks obtain contextual 
semantic information by fusing multi-scale feature information, but they can’t extract features 
adaptively to link contextual information. This paper embeds the MsCA module to associate 
network context through the attention to assign weights to different scales of information. The 
MsCA module is shown in Figure. 6. First, the feature map m output from Block4 is subjected to 
convolution operation to generate feature map q. Then the output feature q is subjected to multi-scale 
feature extraction, i.e. the feature map q is pooled according to 3 different convolutional kernel sizes. 
By this method, three different scale feature maps are obtained. Finally, the multi-scale feature map 
is implemented through an attention mechanism to aggregate boundary information and contextual 
information between spaces and channels. 

 

 

Figure 6. MsCA structure. 

The specific steps are as follows. First, the feature map mW×H×C output from Block4 is halved in 
dimension to C_ and the 3×3 convolution operation is used to output the feature information as 
m1

W×H×C_. Different scale pooling operations are used on the output feature map to obtain feature 
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maps of different scales. The pooling module is 3 layers, each of size 5×5, 7×7 and 9×9, respectively, 
and MaxPool is applied to the feature maps to obtain P1, P2 and P3, 3 pooled feature maps of differ-
ent sizes with the same dimension size as C_. Then, pooled feature maps are stacked with m1

W×H×C_ 
on the channel to output the feature m2

W×H×C1. Next, m2
W×H×C1is sequentially subjected to a Squeeze 

operation with global pooling and an Excitation operation consisting of two full joins, and the chan-
nel attention weights are extracted using the Sigmoid function for the output features, then the 
weights are mapped to the feature information m2

W×H×C1 to obtain the output feature information. Fi-
nally, the spatial information of all channels is blended by 3×3 SC compression of the feature in-
formation. The MsCA module relationship is as following Eq(7). 

 1 1
2 22 1 qs [ ( ) ( ))( ) (] fW H C W H CM Sigmoi md Avgpool W W s mδϕ ϕ× × × ×× ×=  (7) 

where ()ϕ  denotes a one-dimensional convolutional channel interaction, Avgpool represents the 

global average pooling operation, δ is the Relu function, W1 and W2 are the parameters of 
full-connections operation. 

3. Experimental Analysis and Discussion 

3.1.  Experimental platform construction 

The model was trained on an 16G RAM, AMD R5-3600 CPU and NVIDIA GeForce RTX 
2080Ti 12GB GPU provided by Ubuntu 18.04 OS. The deep learning framework is Pytorch 1.6.0, 
using CUDA Toolkit 10.0 and CUDNN V 7.6.5 as the model training acceleration toolkit.  

3.2. Dataset 

The dataset utilized in this paper was obtained from the AI Classification and Recognition of 
Satellite Images competition held during the 2017 CCF Big Data and Computational Intelligence 
Conference (BDCI 2017). The dataset consists of land cover samples visually interpreted from 
high-resolution remote sensing imagery depicting a southern Chinese region, captured using 
sub-meter resolution and visible spectral bands (R, G, B). 

3.2.1. Data acquisition 

The BDCI2017 dataset comprises of three remote sensing images that have been annotated. The 
dimensions of the images are 4011×2470 pixels, 5664×5142 pixels and 3357×6116 pixels, respec-
tively. The training samples are categorized into five classes: vegetation (marker 1), buildings 
(marker 2), water bodies (marker 3), roads (marker 4) and others (marker 0). Cropland, forest land 
and grassland are classified as vegetation. The labels were given pseudo-colors to help visualize 
subsequent experiments. Figure 7 illustrates a part of the schematic diagram. 

The dataset labeling follows a color scheme where red areas represent vegetation, green areas 
reflect buildings, yellow areas denote water bodies, blue areas indicate roads and black areas serve as 
the background. Refer to Figure 8 for illustration. 
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(a) (b) 

    
(c) (d) 

Figure 7. Some example images from BDCI2017 dataset. (a) Vegetation; (b) Buildings; 
(c) Water bodies; (d) Roads. 

  

(a) (b)  

Figure 8. Partially labelled datasets. (a) Indicates the original image of the urban remote 
sensing image; (b) Denotes the urban remote sensing label map corresponding to the 
original image. 

3.2.2. Data pre-processing 

The dataset has many challenges related to image extraction. For instance, direct processing of 
remote sensing images can cause memory shortages, direct cutting of images can lead to loss of con-
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textual semantics. Additionally, the clipped image samples have the disadvantage of insufficient data 
volume. Consequently, the samples need to be processed for sliding segmentation and data enhance-
ment. The image samples are pre-processed as follows. 

(1) Sliding segmentation: the original image is sliced to save internal storage and enhance con-
textual semantic information. Select a sliding window of 512×512 and cut one piece per 
sliding 128 pixels, where the image size is 512×512. The sliding spacing of 128 pixels can 
effectively eliminate the loss of semantic information between features due to image seg-
mentation. Total 874 remote sensing images were segmented and stored in the format of 
"jpg". The segmentation effect is shown in Figure 9. 
 

 
Figure 9. Sliding segmentation process. 

(2) Data enhancement: at the beginning of the model training, image data are enhanced by ro-
tating, panning and mirroring the data set to prevent underfitting of the model while ex-
panding the sample size of remote sensing, so that the model has high detection capability 
of the target and generalization of the model. The enhanced sample size reaches 3104. 
These enhanced urban remote sensing images were divided into training and validation 
sets (at 9:1 ratio), and datasets were produced in PASCAL VOC format to facilitate 
subsequent experiments. 

3.3. Evaluation indicators 

The segmentation report of the proposed model is generated through the evaluation of several 
measures, including Overall Accuracy (OA), Mean IoU (mIoU), Mean Recall (mRecall), Mean Pre-
cision (P) and Dice coefficient (Dice).  

OA measures the overall classification accuracy of all samples. On the other hand, mIoU com-
putes the average ratio of the intersection of the predicted and true values of all classes to their con-
current sets. mRecall, on the other hand, represents the probability that the prediction is positive 
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among all positive samples. Furthermore, mPrecision captures the probability that the true class is 
positive among all samples with positive predictions. Finally, Dice measures the similarity between 
the sets of predicted positive classes and true positive classes. Meanwhile, the memory (GPU) used 
by the training model is counted. In summary, these metrics are described as follows: 

 correctSOA
S

=  (8) 

 1 1 1 1 2 2 2 2[( ) / ( ) ( ) / ( )... ( ) / ( )]S S S S S S S S Sn Sn Sn SnC P C P C P C P C P C PmIoU
N

+ +
=

       (9) 

 TPmRecall
TP TN

=
+

 (10) 

 TPP
TP FP

=
+

 (11) 

 2 TPDice
FN TP TP FP

×
=

+ + +
 (12) 

 
where Scorrect represents all correctly classified samples and S represents the total number of 

samples. Moreover, CSn, PSn and N represent the true sample of a class, the sample predicted to be 
that class and all classes, respectively. TN, TP, FN and FP as shown in Table 1. 

Table 1. Relationship between TN, TP, FN and FP. 

The Real Deal Predicted results 
Positive examples Counter examples 

Positive examples TP FN 
Counter examples FP TN 

3.4. Experimental parameter setting 

In this paper, UNet was chosen as the base model and the network was trained for 100 epochs. 
We train the model from scratch in the urban image segmentation phase. In order for the network to 
train the dataset correctly, the images were resized to 512×512 and normalized uniformly before be-
ing fed in the model. To ensure the validity of the experimental results, the training and validation 
sets were randomly shuffled while multiple cross-validations were performed before entering the 
network. An iterative reduction algorithm was applied to the gradient of this network to decrease the 
learning rate and improve segmentation performance. 

The stochastic gradient descent (SGD) optimizer was used to update the model parameters, with 
an initial learning rate of 0.00001. This learning rate was adjusted for each step using the "Warmup" 
method, with a weight decay of 1e-4, momentum of 0.9 and dampening of 0. Due to computer hard-
ware limitations and graphics card memory, the batch size was set to 4. Moreover, we used the dice 
loss function to mitigate the negative impact of foreground-background imbalance in the sample. 
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3.5. Analysis of experimental results 

3.5.1. Ablation experiments 

To demonstrate that the GSEPNet model designed in this paper improves translation invariance 
of feature images, interactivity of feature information and dynamic capture of spatial location infor-
mation in remote sensing segmentation of urban images, the SF Block feature extraction module and 
MsCA module were used for ablation experiments under the framework of the network, respectively. 
To ensure the validity of the experimental results, we conducted all experiments on the same dataset 
and experimental environment built in Section 3.1 of this paper. The experimental results are shown 
in Table 2, and a comparison of the loss rate and OA for each model is shown in Figure 10. 

Table 2. Results of ablation experiments with different modules. 

Number UNet SF 
Block MsCA OA/% mIoU/% mRecall/% P/% Dice/% 

①    79.0 65.3 77.4 79.1 78.2 
②    81.6 69.2 80.7 81.9 81.1 
③    81.3 68.7 80.4 81.3 80.8 
④    83.1 71.0 82.7 82.7 82.5 

 

  

(a) (b)  

Figure 10. Comparison of loss rate and OA for each model. (a) Comparison of loss rates 
between models; (b) Comparison of the overall accuracy between models. 

 
Table 2 shows the performance improvement when replacing the feature extraction module of 

the original UNet network with the SF Block module. The SF Block module effectively addresses 
segmentation challenges arising from the lack of translation invariance and highly similar features of 
remote sensing images. The improved OA, mIoU, mRecall, P and Dice are 81.6%, 69.2%, 80.7%, 
81.9% and 81.1%, respectively. To further address the original network's bias towards local infor-
mation extraction, MsCA is introduced to enhance contextual information fusion. The refined net-
work improves OA, mIoU, mRecall, P and Dice by 2.3%, 3.4%, 3.3%, 2.2% and 2.6%, respectively, 
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over the UNet model. Figure 10 shows that the GSEPNet network has a better segmentation perfor-
mance than the UNet network. Both the SF Block and MsCA modules positively impact the segmen-
tation effect. In summary, compared to the original network model, GSEPNet improves OA, mIoU, 
mRecall, P and Dice by 4.1%, 5.7%, 5.3%, 3.6% and 4.3%, respectively. 

3.5.2. Shuffle feature extraction Block experiment 

To validate the effect of different positions and numbers of SF Block features on network seg-
mentation accuracy, this paper investigates how the position of the shuffle feature extraction module 
in the network can affect segmentation performance. The feature extraction Blocks of the original 
UNet network were replaced with various numbers and positions of SF Blocks to conduct the ex-
periments, and the results are presented in Table 3. The positions of SF Blocks in Table 3 are indi-
cated with 0 and 1, representing whether the respective four positions in the network were replaced 
with SF Blocks. The value of 0 indicates no replacement, while the value of 1 indicates replacement. 

Table 3. Comparative experiments on the performance of using SF block. 

SF Block Location OA/% mIoU/% mRecall/% P/% Dice/% 
(0,0,0,0) 79.0 65.3 77.4 79.1 78.2 
(1,0,0,0) 79.7 66.3 79.0 79.4 78.9 
(1,1,0,0) 80.6 67.7 80.0 80.3 80.1 
(1,1,1,0) 81.0 68.0 80.4 80.6 80.3 
(1,1,1,1) 81.6 69.2 80.7 81.9 81.1 

 
The findings presented in Table 3 demonstrate that the stacked replacement feature extraction 

network has a positive impact on network segmentation, particularly when deploying a higher num-
ber of SF Blocks. Adopting a fully SF Block-constructed feature extraction network yields signifi-
cant improvements, with OA increasing to 81.2% and mIoU to 68.3%, alongside mRecall, P and 
Dice enhancements of 3.3%, 2.8% and 2.9%, respectively. Our experiments confirm that the SF 
Block-reconstructed feature extraction network employed in the paper not only addresses the missing 
translational invariance of data expansion, but also boosts information intermingling and differ-
ential information extraction between different locations. Therefore, employing SF Block as the 
feature extraction module enables optimal feature information acquisition, leading to improved 
network accuracy. 

3.5.3. Experimental analysis of multiscale channel attention mechanisms 

In this study, we evaluate the performance of two models, GS-SPPNet and GSEPNet, which in-
corporate the SPP [31] and MsCA modules, respectively, at the end of the SF Block feature extrac-
tion network in a typical encode-decode structural framework for network segmentation. Our ex-
perimental comparison, detailed in Table 4, shows that incorporating the multiscale structure has a 
positive impact on segmentation performance. Specifically, the GSEPNet model outperforms the 
GS-SPPNet model in terms of OA, mIoU, mRecall, P and Dice by 0.5%, 0.6%, 0.3%, 0.8% and 0.4%, 
respectively. These results confirm that the MsCA module used in this paper effectively extracts fea-
ture-linked contextual information, fuses local features with global information and enhances the 
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aggregation of local object-to-boundary information. Ultimately, our findings suggest that mul-
tiscale image fusion using the MsCA module can significantly improve the model's accuracy for 
network segmentation. 

Table 4. Comparison of experimental performance of different multi-scale modules. 

Network Model OA/% mIoU/% mRecall/% P/% Dice/% 
GS-SPPNet 82.5 70.4 82.4 81.9 82.1 
GSEPNet 83.1 71.0 82.7 82.7 82.5 

3.5.4. Comparison tests of different models 

To evaluate the effectiveness of our proposed GSEPNet model for segmentation on the 
BDCI2017 dataset, we compared it against several other models, including FCN [18], PSPNet [20] , 
DeepLabV3 [22], DeepLabV3+ [32], LR-ASPP [33], MobileNetV2-DeepLabV3+ [34] and UNet [21]. 
All experimental comparisons were conducted on the experimental environment built in Section 3.1 
of this paper to ensure the validity of the results. The experimental outcomes are reported in Table 5. 

Table 5. Comparison of different segmentation network models. 

Network 
Model 

OA/
% 

mIo
U/% 

mRe
call/
% 

P/
% 

Dice/
% 

Othe
r 
IoU/
% 

Vege-
tation 
IoU/% 

Ar-
chitect
ure 
IoU/% 

Water 
bodies 
IoU/% 

Roads 
IoU/% 

GPU/G 

FCN 65.1 43.3 55.3 68.3 57.9 43.9 69.7 31.3 56.9 14.8 6.7 
PSPNet 81.2 68.5 81.2 80.4 80.7 59.0 84.0 53.0 81.0 66.0 2.6 

DeepLabV3 65.1 43.1 57.6 60.6 58.0 42.8 70.2 32.2 52.6 17.5 6.5 
DeepLabV3+ 81.0 65.0 81.0 76.7 77.9 49.0 82.0 53.0 82.0 59.0 9.2 

Iraspp 62.2 37.3 49.7 64.2 50.5 42.8 67.1 27.3 46.4 3.0 2.6 
Mo-

bileNetV2- 
DeepLabV3+ 

82.8 65.7  82.7 77.2 78.3 48.0 83.0 56.0 83.0 58.0 4.8  

UNet 79.0 65.1 77.4 79.1 78.2 55.8 81.6 49.0 79.1 60.1 9.6 
GSEPNet 83.1 71.0 82.7 82.7 82.5 63.0 84.9 56.1 82.3 68.5 10.4 

 
As can be seen from Table 5, with the same sample pool for model training, the GSEPNet mod-

el proposed in this paper achieves an overall classification accuracy of 83.1%, an mIoU of 71.0%, an 
mRecall of 82.7%, an P of 82.7% and an Dice of 82.5%, which are higher than other encode-decode 
segmentation networks, indicating that the GSEPNet model designed in this paper can be effectively 
used for urban parcel classification and recognition scenarios.  

GSSNet occupies the best index scores in more categories, especially in the vegetation category, 
where it has the highest segmentation IoU of more than 80% compared with the other six models; for 
the water body category, the proposed model in this paper has only 0.7% lower IoU than the Mo-
bileNetV2-DeepLabV3+ model, and also achieves higher segmentation results compared with the 
remaining models. Analysis of the reasons for this shows that the dataset has a concentrated distribu-
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tion of vegetation and water bodies, with more samples collected. Roads have a low IoU among all 
parcel segmentation due to their scattered distribution and high similarity to other targets, where 
GSEPNet reduces the classification error by introducing the SF Block feature extraction module, 
which increases the IoU of road segmentation to 68.5%. The building plots have the lowest segmen-
tation IoU because they contain more scattered small targets and the lack of edge information makes 
it difficult to identify the targets. 

As shown in Figure. 11, the urban remote sensing image segmentation m odels of FCN, PSPNet, 
DeepLabV3, DeepLabV3+, LR-ASPP, MobileNetV2-DeepLabV3+, UNet and GSEPNet were ob-
tained based on the training models, and 4 different urban remote sensing image object block seg-
mentations were selected for analysis, where scenes 1 to 4 are shown from left to right respectively. 
Comparing the overall segmentation results, the former six networks are less effective than the 
GSEPNet model and show misclassification in different cases, while the boundary information is 
handled more ambiguously. GSEPNet uses the SF Block feature extraction module to enhance dif-
ferential feature extraction and reduce feature errors, and the MsCA module can effectively aggregate 
multi-scale feature information and capture boundary information. 

In scenes 1 and 2, the vegetation and water targets are more widely distributed, GSEPNet han-
dles the target outline and other target boundary information more clearly. In scenes 3 and 4, there 
are too many small targets in the building category and the targets are not evenly distributed. GSEP-
Net effectively retains the detail information of small-scale targets compared with other networks. In 
Scene 4, the road plots is scattered, which makes it difficult to identify each target and the boundary 
contours are difficult to be segmented, while GSEPNet performs well and is capable of handling 
complex segmentation scenes. 

 scenes 1 scenes 2 scenes 3 scenes 4 
 

Original im-
age 

 
 

Label 

 
 

FCN 
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PSPNet 

 
 

DeepLabV3 

 
 

DeepLabV3+ 

 
 

LR-ASPP 

 
 

MobileNetV2- 
DeepLabV3+ 

 
 

UNet 

 
 

GSEPNet 

 

Figure 11. Comparison of different scenarios of segmentation without using network models. 
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3.5.5. Comparison tests of models in other urban remote sensing datasets 

To verify the segmentation performance and model generalization ability of GSEPNet on other 
urban remote sensing images, the HD-Maps dataset is selected for model validation [35]. The dataset 
contains a total of 15 labeled images, including parking (marker 0), road (marker 1), building (mark-
er 2), sidewalk (marker 3) and background (marker 4). In this experiment, the original and labeled 
maps of the dataset are cut into 512×512 size for training and validation using the sliding segmenta-
tion in Section 3.2.2, and the training and validation sets are divided in the ratio of 9:1. The GSEP-
Net model is compared with PSPNet, DeepLabV3+, ResUNet and UNet segmentation models. To 
ensure the validity of the experimental results, these experiments were conducted in the experimental 
environment constructed in Section 3.1 of this paper, and the experimental results are shown in Table 
6. The segmentation effect of GSEPNet model is shown in Figure 12. Due to the uneven distribution 
of the number of categories in the HD-Maps dataset and the sporadic distribution of some categories, 
it is difficult to segment the tiny targets. The training results show that the GSEPNet model can seg-
ment better than the other four segmentation models without any processing of the dataset categories, so 
the GSEPNet model has higher generalization in the segmentation of urban remote sensing images. 

 
Original image Label GSEPNet  

 

 

 

Figure 12. Segmentation results on HD-Maps dataset. 

Table 6. Training results of HD-Maps dataset. 

Network Model OA/% mIoU/% mRecall/% P/% Dice/% GPU/G 
PSPNet 59.9 48.7 59.9 67.5 61.4 2.7 

DeepLabV3+ 66.2 53.8 66.2 67.4 66.4 9.4 
MobileNetV2- 
DeepLabV3+ 75.7 57.5 75.7 67.8 70.9 4.8 

UNet 84.5 49.9 60.1 68.8 62.4 9.7 
GSEPNet 86.2 53.8 64.0 72.2 66.6 10.5 
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4. Discussion 

In semantic segmentation, the effectiveness of segmentation is related to the selection of net-
works, the optimization of parameters and the construction of models. This study is focused on the 
recognition and segmentation of urban features. The recognition of features in remote sensing images 
relies on spatial location relationships and textures, and requires a combined shallow and deeper 
network layer for feature extraction, so UNet is chosen as the basis of the segmentation model. 

The advantages and disadvantages of the method are discussed. The advantages of this study's 
approach to urban feature segmentation are as follows. 

(1) The image dataset is more informative as it uses publicly available datasets. 
(2) The algorithm is also computationally inexpensive as the equipment used to train it is simple, 

and most computer devices are capable of supporting the model. 
(3) GSEPNet has excellent performance in segmenting urban features. 
The proposed algorithm also has the following limitations: 
(1) The training set has only 2130 images, a small sample of the dataset. Expansion of the da-

taset can improve the network performance. 
(2) Due to the limitation of experimental equipment, the segmentation effect of the model will 

be improved if the network parameters, such as batch_size and epoch, are further optimized. 

5. Conclusion 

This paper proposes a deep learning-based urban remote sensing image segmentation network 
named GSEPNet. It addresses the challenge of uneven distribution of quantities, undifferentiability 
among parcels and loss of boundary information by incorporating a shuffle feature extraction module 
and a multi-scale attention mechanism into the UNet network. The GSEPNet model proposed in this 
paper, which yielded OA of 83.1%, mIoU of 71.0%, mRecall of 82.7%, P of 82.7% and Dice of 
82.5% achieves relatively high segmentation results on the BDCI2017 public dataset. Compared to 
other models such as FCN, PSPNet, DeepLabV3, DeepLabV3+, Iraspp, MobileNetV2-DeepLabV3+ 
and UNet, GSEPNet achieved the highest segmentation accuracy and average overlap among the 
eight networks. Further, it is proved experimentally that using shuffle feature extraction module and 
multi-scale attention in the GSEPNet model can improve the image segmentation effect of the net-
work. The segmentation model proposed in this paper can better segment the feature classes in re-
mote sensing images, and is highly feasible. The feature segmentation in urban remote sensing im-
ages mainly relies on spatial location information, and the image information is constantly increasing. 
Therefore, future research needs to consider how to further increase the depth of the network, reduce 
the amount of computation in the network and challenge more complex datasets. 
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