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Abstract: Despite being easy to implement and having fast convergence speed, balancing the 
convergence and diversity of multi-objective particle swarm optimization (MOPSO) needs to be 
further improved. A multi-objective particle swarm optimization with reverse multi-leaders 
(RMMOPSO) is proposed as a solution to the aforementioned issue. First, the convergence strategy 
of global ranking and the diversity strategy of mean angular distance are proposed, which are used to 
update the convergence archive and the diversity archive, respectively, to improve the convergence 
and diversity of solutions in the archives. Second, a reverse selection method is proposed to select 
two global leaders for the particles in the population. This is conducive to selecting appropriate 
learning samples for each particle and leading the particles to quickly fly to the true Pareto front. 
Third, an information fusion strategy is proposed to update the personal best, to improve 
convergence of the algorithm. At the same time, in order to achieve a better balance between 
convergence and diversity, a new particle velocity updating method is proposed. With this, two 
global leaders cooperate to guide the flight of particles in the population, which is conducive to 
promoting the exchange of social information. Finally, RMMOPSO is simulated with several 
state-of-the-art MOPSOs and multi-objective evolutionary algorithms (MOEAs) on 22 benchmark 
problems. The experimental results show that RMMOPSO has better comprehensive performance. 

Keywords: multi-objective particle swarm optimization; global ranking; mean angular distance; 
reverse selection; information fusion 
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1. Introduction 

In most practical application problems, there are widely multiple conflicting objectives that 
need to be optimized simultaneously, such as job shop scheduling, wastewater treatment, path 
planning, etc., which are often called multi-objective optimization problems (MOPs) [1]. Due to the 
conflict between the objectives, the improvement of one objective may cause the degradation of 
other objectives. Therefore, a set of compromise solutions are usually obtained in MOPs, which are 
called Pareto optimal solutions [2]. The set of all Pareto optimal solutions is called a Pareto optimal 
set (PS). Their mapping in the objective space is called a Pareto front (PF) [3]. When solving MOPs, 
it is critical to obtain a set of solutions that are as close to the true PF as possible and well distributed 
on it. 

In recent years, a variety of meta-heuristic algorithms inspired by natural and physical 
phenomena have vigorously developed, such as genetic algorithm (GA) [4], ant colony optimization 
(ACO) [5], differential evolution (DE) [6], firefly algorithm (FA) [7] and particle swarm 
optimization (PSO) [8]. Among them, PSO is a type of classical swarm intelligence algorithm, which 
was proposed by Kennedy and Eberhart in 1995. It is a bionic evolutionary swarm intelligence 
algorithm inspired by the foraging behavior of birds, and has been widely used to solve single 
objective optimization problems because of its simple mechanism and fast convergence speed. After 
some research, it was found that PSO had great potential to be extended to solve MOPs. Coello et 
al. [9] proposed a multi-objective particle swarm optimization (MOPSO) in 2002. In MOPSO, the 
optimal position of each particle during the historical search process is called the personal best 
(pbest), and the optimal position currently searched by the whole population is called the global 
best (gbest), which guide particles to fly towards the true PF. In addition, MOPSO introduced an 
external archive to store the non-dominated solutions found by the algorithm in the search process, 
which provided good candidate solutions for the selection of gbest. It can be seen that the 
maintenance of external archives and the selection of two optimal solutions are extremely important 
for the convergence and diversity of the algorithm. However, in the process of optimization, the 
global search ability of traditional MOPSO is still weak, which can easily lead to premature 
convergence of algorithm. Additionally, since different pbest and gbest will guide the particles to 
approach the true PF in different directions, it will have a certain impact on the balance between 
convergence and diversity.  

In order to effectively balance convergence and diversity, researchers put forward many 
improvement strategies to improve the performance of MOPSO. Primarily, choosing different 
leaders will guide particles to fly in different directions. If properly selected, the convergence and 
diversity of the algorithm can be effectively improved. For example, Cui et al. [10] introduced a 
two-archive mechanism in MOPSO, using crossover and mutation operators for particles in the two 
archives to improve the quality of global leaders, which can take convergence and diversity into 
account. Li et al. [11] proposed a newly defined virtual generational distance indicator to select the 
appropriate gbest and designed an adaptive pbest selection strategy based on different evolutionary 
states to enhance the exploitation and exploration abilities of particles. Sharma et al. [12] assigned 
solutions with minimum penalized bounded intersection fitness as global leaders in each baseline 
based cluster after updating the external archive by a reference line-based diversity preference 
method. Second, maintaining an external archive is one of the most commonly used techniques. Hu 
et al. [13] proposed fuzzy crowding distance to update elite archives, and this method successfully 
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extended traditional crowding distance to the fuzzy objective environment. Li et al. [14] used the 
method based on dominant difference and crowding density estimation to update external archives, 
and the experimental results showed that the algorithm had improved performance in terms of 
convergence and diversity. Yang et al. [15] designed a new external archive maintenance method 
based on vector angle, which effectively balanced the convergence and diversity of the algorithm, 
and the additional time cost was relatively low. Wu et al. [16] proposed an improved archive 
maintenance strategy based on predefined reference points, and in order to improve the diversity of 
solutions in the external archive, associated other solutions with some crowded reference points as a 
second criterion. In addition, many scholars also adjusted flight parameters to improve the overall 
performance of the algorithm. Han et al. [17] proposed an adaptive flight parameter adjustment 
mechanism, which used diversity information and population spacing information to obtain particle 
distribution with an appropriate diversity and convergence, so as to balance local exploitation ability 
and global exploration ability of the particles. The experimental results show that compared with 
some non-adaptive MOPSOs, the algorithm has certain improvements in balancing convergence and 
diversity. Huang et al. [18] also designed an adaptive strategy to adjust flight parameters, and used 
the increment of the ratio of dissipated energy to mass to detect evolution environment of the 
algorithm. The flight parameters could be dynamically adjusted according to the time-varying 
evolution environment, so as to effectively balance convergence and diversity. Generally speaking, 
the above-mentioned improved MOPSOs can improve convergence and diversity of the algorithm 
when solving most MOPs, but it still need to be further improved in terms of balancing convergence 
and diversity and improving overall performance of the algorithm. 

Based on the above review and analysis, in order to further balance convergence and diversity 
and to improve the overall performance of the algorithm, a multi-objective particle swarm 
optimization with reverse multi-leaders (RMMOPSO) is proposed. The main contributions of the 
proposed RMMOPSO are as follows: 

1) In RMMOPSO, the convergence strategy of global ranking and the diversity strategy of mean 
angular distance are proposed. It is used to update the convergence and diversity archives, 
respectively, to improve the convergence of solutions in the archive and select solutions with a better 
diversity. It improves the quality of candidate solutions of the global leader and enhances the 
convergence and diversity of the algorithm. 

2) A reverse selection method is proposed to select the global best with a good convergence 
(gbest_c) and the global best with a good diversity (gbest_d). This method is beneficial to select the 
appropriate learning samples for each particle and lead particles to quickly fly to the true PF. In 
addition, an information fusion strategy is proposed to update pbest, which enhances the information 
interaction between particles in the population and improves convergence of the algorithm.  

3) After redefining the selection of gbest_c and gbest_d in RMMOPSO, a new particle velocity 
updating method is proposed, in which the two global leaders selected are used to cooperatively 
guide the flight of particles in the population. In order to promote the exchange of social information, 
it is conducive to improving the quality of particles in the population and achieving a better balance 
between convergence and diversity. 

The remainder of this paper is organized as follows. Some related work is described in Section 2. 
Section 3 introduces the details of the proposed RMMOPSO. In Section 4, the performance of 
RMMOPSO is verified by simulation experiments with existing MOPSOs and multi-objective 
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evolutionary algorithms (MOEAs) on three suites of benchmark problems. Finally, the conclusion of 
the algorithm is given in Section 5. 

2. Related work  

2.1. Multi-objective optimization problem 

The general multi-objective optimization problem [19] can be formulated as follows: 

          xfxfxfxF m,,,min 21    

       qixgts i ,,2,1,0..                                   (1) 

  rjxh j ,,2,1,0      

where  Dxxxx ,,, 21  is a D-dimensional decision vector in decision space DRX  ,  xF  
represents the m-dimensional objective vector,  xfi represents the objective function of the i-th 

dimension,    qixgi ,,2,10  is an inequality constraint, and    rjxh j ,,2,10 
 
is an equality 

constraint. 
Because MOPs has multiple conflicting objectives, almost no absolute optimal solution can 

optimize them all at the same time. Therefore, the concept of Pareto dominance [20] can be used to 
evaluate the quality of solutions in MOPs. That is, a solution x dominates the other solution y, 
denoted as yx  , if and only if      yfxfmi ii  :,,2,1   and      yfxfmj jj  :,,2,1  . 

2.2. Particle swarm optimization 

PSO [8] is a traditional swarm intelligence algorithm. It is an optimization algorithm inspired by 
the foraging behavior of birds, which is easily implemented and has a fast convergence speed. In 
PSO, each particle updates its own velocity by learning the pbest and gbest. If the velocity vector of 
the i-th particle is  Diiii vvvV ,2,1, ,,,  , the position vector is  Diiii xxxX ,2,1, ,,,  , where Ni ,,2,1  , 

N is the population size, D is the dimension of the decision space. Then, the velocity and position of 
the i-th particle at the t+1-th iteration are updated as follows: 

                         tXtgbestrctXtpbestrctVtV iiiiii  22111                (2) 

                                 11  tVtXtX iii                                 (3) 

where t is the number of iterations,  is the inertia weight, 1c and 2c are learning factors, and 1r and

2r  are two random numbers uniformly generated in  1,0 . 

The formula of particle velocity update is mainly composed of three parts. The first part is 
called the memory term, which represents the influence of magnitude and direction of previous 
velocity on the current velocity and is the inheritance of the previous velocity of the particle. The 
second part is called the self-cognition term, which means the particles learn from their previous 
experience. The third part is called the group cognition term, which represents the ability of particles 
to learn from the whole population and reflects knowledge sharing and cooperation between 
particles. 
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3. The proposed RMMOPSO 

In order to better balance the convergence and diversity of the algorithm and to improve the 
comprehensive performance of the algorithm, this paper proposed a MOPSO with reverse 
multi-leaders. The proposed RMMOPSO will be described in detail in this section. The algorithm 
consists of five parts, as shown in Figure 1. First, in order to improve the quality and diversity of the 
initial population, the quasi-reflection-based learning (QRBL) mechanism [21] is adopted to 
initialize the population. Second, the RMMOPSO proposed a convergence strategy of the global 
ranking and the diversity strategy of the mean angular distance and the convergence archive (CA) 
and the diversity archive (DA) are updated, respectively. Third, global leaders gbest_c and gbest_d 
are selected for each particle from CA and DA, respectively, through the reverse selection method. In 
this way, the selected leaders can lead particles to quickly fly to the true PF, and can better play the 
role of each non-dominated solution than the roulette wheel selection method. Meanwhile, an 
information fusion strategy is proposed to update pbest to improve the convergence of the algorithm. 
Finally, global leaders gbest_c and gbest_d cooperate to guide particles flight, which achieves a 
balance between the convergence and diversity and improves the overall performance of the 
algorithm. 

RMMOPSO

Population P

Reverse selection

           Information
           fusionPbest

QRBL mechanism

   Initialization
Convergence archive

(CA)

Diversity archive
(DA)

Select the gbest_c

Select the gbest_d

Accurate and well distributed non-dominated solutions

Flight

         

Figure 1. Framework of the proposed RMMOPSO. 

3.1. Population initialization strategy 

At present, the initial population of most MOPSOs is generated by random distribution, which 
will lead to random errors in the optimization results, thus affecting the optimization accuracy and 
the speed of the algorithm to a certain extent. Ergezer et al. [21] proved that the quasi-reflected point 
is the candidate point that is most likely to approach optimal solutions, and some scholars have 
applied it to other algorithms and achieved good results.  

Therefore, this paper introduces the QRBL mechanism into the initial population of MOPSO to 
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generate a new quasi-reflected population. It not only ensures the randomness of the initial 
population of the algorithm, but also improves the operation efficiency and search speed of the 
algorithm. The specific details of the QRBL mechanism to initialize population are shown in 
Algorithm 1. After RMMOPSO randomly generates a population P in the decision space, it conducts 
the QRBL mechanism on population P to generate a new quasi-reflected population qrP . Then, each 
particle is compared with the new particle obtained after quasi-reflected learning. Here, the sums of 
fitness values  xfit and  qrxfit  on all objectives of particles before and after learning are compared, 

which can roughly reflect the convergence information of particles [22]. Finally, the optimal particles 
are retained as the final initial population P.  

Algorithm 1: Initialize the population by the QRBL mechanism  
Input: N (population size)  
Output: P (initial population ) 
1: Generate uniformly distributed population P of N particles;   
2: Generate a quasi-reflected population qrP  by conducting the QRBL mechanism on P;   
3: for Ni :1  
4:    if    iqr

i xfitxfit    % qr
ix is the quasi-reflected point of ix . 

5:      qr
ii xx  ;  

6:   end  
7: end   
8: return P. 

3.2. Update the archives 

The external archive is an important feature of MOPSO, which is used to store all 
non-dominated solutions found by the algorithm during the search process to provide good candidate 
solutions for the selection of gbest. Therefore, the quality of non-dominated solutions in the archive 
is particularly important. However, with the increase of the number of iterations, the number of 
non-dominated solutions substantially increases, which leads to a gradual increase in computational 
complexity. Therefore, it is increasingly necessary to evaluate non-dominated solutions in an 
appropriate way. Therefore, in this study, the convergence strategy of global ranking (GR) and the 
diversity strategy of mean angular distance (MAD) are proposed to update the convergence archive 
CA and the diversity archive DA of a predefined size, respectively. In addition, the archive sizes of 
CA and DA are similar to those set in literature [23]. The CA and DA play important roles in their 
respective fields, storing non-dominated solutions of different properties. Updating CA by GR can 
guide the population to quickly converge to the true PF, and updating DA by MAD can improve the 
distribution of the population in the objective space. The proposed two strategies effectively improve 
the convergence and diversity of the algorithm, and the specific analysis is as follows. 

GR can effectively select the non-dominated solutions with a good convergence, thus improving 
the convergence of the algorithm. The smaller the GR value, the better the convergence of the 
non-dominated solutions. The specific description is as follows: 

     iii xGDxMRxGR                                   (4) 
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where ix is the i-th non-dominated solution in the external archive, L is the number of non-dominated 

solutions in the external archive, M is the number of objectives,  mf is the fitness function of the 

m-th objective,  Rank is the rank function, and max,mf and min,mf are the maximum and minimum 

values on the m-th objective, respectively. Here, using the maximum ranking (MR) [24] is preferred 
to select the solution with the best performance for some objectives, while the global detriment 
(GD) [25] is a method to consider how significant the differences between solutions are. The 
solution selected by GD is easy to eliminate the extreme value. Therefore, GR integrates the 
characteristics of MR and GD to evaluate the solutions in the archive. Here, we adopt the 
normalization method for formulas (5) and (6) to ensure the additivity of MR and GD. 

MAD can better measure the similarity of solutions in the archive and effectively evaluate the 
diversity of non-dominated solutions, thereby increasing the diversity of the population. Additionally, 
the larger the value of MAD, the better the diversity of non-dominated solutions. Assuming that the 
two adjacent solutions of solution ix are 1ix and 1ix , respectively, MAD can be described as: 

            2,,2,, 1111   iiiiiiiii xxanglexxanglexxdxxdMAD                (7) 

      



M

m
jmimji xfxfxxd

1

,                                 (8) 

     
     ji

ji
ji xFnormxFnorm

xFxF
xxangle




 arccos,                          (9) 

where  ji xxd ,
 
is the Manhattan distance between non-dominated solutions ix and jx ,  ji xxangle , is 

the vector angle between the solutions ix and jx ,  ixF and  jxF
 
represent the fitness values of 

solutions ix and jx respectively,    ji xFxF 
 
is the inner product of  ixF and  jxF , and  norm  is the 

norm function. The Manhattan distance and vector angle [26] are combined to ensure the distribution 
and uniformity of the final solution set, so that the solutions with good diversity are retained in DA. 

3.3. Gbest selection based on reverse selection 

In most meta-heuristic algorithms, how to effectively balance convergence and diversity of 
algorithms is a crucial problem. In most MOPSOs, a particle chooses only one global leader in its 
social learning part. In this case, the particles cannot learn more useful experiences from various 
samples, thus reducing the diversity of the population. In fact, in human society, people always learn 
from multiple samples in the process of social learning. An individual will gain more experiences 
from multiple learning samples than from a single sample. 

In RMMOPSO, each particle balances its convergence and diversity by selecting two global 
leaders. The two global leaders are selected one by one through the reverse selection method from 
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archives CA and DA, respectively, denoted as gbest_c and gbest_d. In [27], researchers used a 
one-by-one selection strategy to select individuals, which can effectively improve the performance of 
the algorithm. In this paper, the reverse selection method proposed here can match the appropriate 
leader for each particle. The method guides particles to the nearest non-dominated solutions so that 
the particles can approach the PF in a few iterations. Additionally, every non-dominated solution is 
fully utilized to maximize the utilization of limited resources and to ensure a good distribution of the 
population. The method is specifically described as follows.  

Algorithm 2: Gbest selection based on reverse selection 
Input: CA (Convergence archive), P (population), N (population size), NCA (the number of 
non-dominated solutions in CA) 
Output: gbest_c (Global best with good convergence)  
1:The population is randomly divided into h = ceil(N/NCA) groups;   

%The ceil function represents the integer in the direction of positive infinity. 
2:for k =1 to h  
3:  temp_CA=CA;  
4:   while isempty(Pk)= =0 %Pk represents the k-th group of particles. 
5:      Compute distance 1,kD between non-dominated solution 1NS in temp_CA and all the 

  particles in Pk; 
6:      Find the shortest distance 1,kd in 1,kD and the corresponding particle ikx , ; 

7:      Compute distance 2,kD between ikx , and remaining non-dominated solutions in temp_CA;  

8:      Find the shortest distance 2,kd in 2,kD and the corresponding non-dominated solution jNS ; 

9:      if  2,1, kk dd   

10:        1,_ NScgbest ik  ;  %Select 1NS as the leader gbest_c of particle ikx , .   

11:     else   
12:        jik NScgbest ,_ ;  %Select jNS as the leader gbest_c of particle ikx , . 

13:     end 
14:   Empty the particle of the selected leader in the Pk and the corresponding selected 

non-dominated solution; 
15:  end 
16:end 
17:return gbest_c. 

Assuming that the population size is N and the number of non-dominated solutions in the 
archive is NA, the population is first randomly divided into h = ceil (N/NA) groups, where the ceil 
function represents the integer in the direction of positive infinity. Then, the leaders are selected for 
particles of each group in turn. Primarily, for example, taking the particles in the k-th, the distance

1,kD between the first non-dominated solution 1NS in the archive and all particles in this group is 

calculated in the objective space. Additionally, the shortest distance 1,kd in 1,kD and the corresponding 

particle ikx , are found. Then, the distance 2,kD between particle ikx , and the remaining non-dominated 

solutions in the archive is calculated, and the shortest distance 2,kd in 2,kD and the corresponding 

non-dominated solution jNS is found. Finally, the sizes of 1,kd and 2,kd are compared. If 2,1, kk dd  , 
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the non-dominated solution 1NS is selected as the gbest of particle ikx , . Otherwise, the non-dominated 

solution jNS is selected as the gbest of particle ikx , . Additionally, the particles that have chosen 

leaders and the corresponding non-dominated solutions are emptied. In particular, when all the 
non-dominated solutions have been matched, it is necessary to reuse these solutions as candidate 
leaders of particles that have not yet chosen leaders. Algorithm 2 is the pseudo-code of taking CA as 
an example to select gbest_c by using the reverse selection. The pseudo-code for selecting gbest_d 
from DA by the reverse selection is similar to Algorithm 2. 

Notably, the reverse selection method is similar to the matched pattern, in that the 
non-dominated solutions that have already been selected will not be used as candidate solutions 
when selecting leaders for the remaining particles in each group. In order to intuitively illustrate the 
process of selecting gbest by the reverse selection method, Figure 2 shows the process of selecting 
leaders for six particles from the six non-dominated solutions in a two-dimensional objective space. 

0

Particles in the population Non-dominated solutions 

(a) (b) (c)

2f

1f
0 0

1f

2f2f

1f

1NS

2NS

3NS

4NS

5NS 6NS

1NS

3NS 3NS

4NS 4NS

5NS 5NS6NS 6NS

2d

1d

1d
2d

2d

1d

 

Figure 2. (a) 12 dd  , 2NS is selected as the gbest of the green particle; (b) 21 dd  , 1NS is 

selected as the gbest of the green particle; (c) 12 dd  , 4NS is selected as the gbest of the 

green particle. 

3.4. Information fusion for pbest 

In RMMOPSO, in order to improve the convergence of the algorithm, an information fusion 
strategy is proposed to update pbest after selecting the global leaders for the particles, namely: 

                    d
i

dd
i

dd
i cgbestrpbestrpbest _1                           (10) 

where dr is a random number uniformly distributed in  1,0 , and d
icgbest _ is the d-th dimension of the 

global leader of particle i. 
Figure 3 shows the details of the pbest update. During pbest updates, if the previous position is 

dominated by the current position, then the current position will replace the previous position. 
Otherwise, pbest will be updated using the information fusion strategy. In order to increase the 
diversity of the population, a random number r is first generated when updating each dimension of 
pbest. If the random number r is larger than the predefined parameter p, the corresponding dimension 
is updated by using Eq (10). Otherwise, a random number in the search range  dd UL ,  is initialized. 
Here we simply set p to 1/N. This is because a relatively small p can protect the structure of pbest 
and gbest_c to a certain extent, and to make the particles learn more experiences from gbest_c and to 
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jump out of the local optimum more easily.  

ii pbestnewpbest ii newpbestpbest  Yes

No

YesNo

No

Yes

No

Yes

 ddd
i ULrandpbest ,

1 ii

1 dd

1i

1d

pr 

Dd 

Ni 

Start

End

  d
i

dd
i

dd
i cgbestrpbestrpbest _1 

 

Figure 3. The update process of pbest. 

3.5. New speed update method 

The RMMOPSO improves the updating method of particles, that is, when each particle in the 
population is updated, two global leaders gbest_c and gbest_d are selected for each particle from the 
archives CA and DA, respectively, by the reverse selection method, which are used to guide the 
particle flight in the population cooperatively, so as to promote the exchange of social information. 
This is beneficial to improve the quality of particles in the population and to better balance the 
convergence and diversity of the algorithm. The specific update method are as follows: 

                  tXtdgbesttcgbestrctXtpbestrctVtV iiiiiii  2__1 2211         (11) 

                                11  tVtXtX iii                                 (12) 

where t is the number of iterations,   is the inertia weight, 1c  and 2c  are learning factors, and 

1r  and 2r  are two random numbers uniformly generated in  1,0 . 

3.6. General framework of RMMOPSO 

The main components of RMMOPSO are introduced in detail above, namely initialization by 
the quasi-reflection-based learning mechanism, the archives update, gbest selection based on reverse 
selection, information fusion for pbest, and a new speed update method. The pseudo-code of 
RMMOPSO is shown in Algorithm 3, where G and maxG represent the current iteration number and 

the maximum iteration number, respectively. 
At first, RMMOPSO initializes the population in line 1 by introducing the QRBL mechanism, as 
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described in Algorithm 1. After that, RMMOPSO starts the loop of the population search process in 
lines 2–8. The archives CA and DA are updated by the global ranking and mean angular distance, 
respectively (in line 3). Additionally, the global leaders gbest_c and gbest_d are selected from the 
archives CA and DA, respectively, by the reverse selection of Algorithm 2 (in line 4). At the same 
time, an information fusion on pbest is performed, as described in Section 3.4. Finally, the velocity 
and position of the particles are updated using Eqs (11) and (12) (in lines 6 and 7). The above 
evolution process is repeated until the maximum number of iterations is reached, and the final 
external archive A is output. 

Algorithm 3: General framework of RMMOPSO  
Input: N (population size), CA (Convergence archive), DA (Diversity archive)  
Output: A (final external archive A ) 
1: Initialization P (Algorithm 1); 
2: while maxGG      

3:    Update CA and DA;  
4:    Select gbest_c and gbest_d by the reverse selection (Algorithm 2); 
5:    Update pbest;  
6:    Update the velocity by Eq (11);   
7:    Update the position by Eq (12);  
8: end 
9: return A. 

3.7. Computational complexity of RMMOPSO 

In order to analyze the computational complexity of RMMOPSO, the main components of the 
algorithm in a generation are considered. Algorithm 3 shows that the computational steps of 
RMMOPSO mainly include initialization by the quasi-reflection-based learning mechanism, an 
update of archives CA and DA, selection of gbest based on reverse selection, information fusion for 
pbest, and a new speed update method. Assuming that the population size is N, the sizes of CA and 
DA are both 2N , the number of objectives is M, and the dimension of the decision variables is D. 

Then, the complexity of initialization by the quasi-reflection-based learning mechanism in Algorithm 
1 is  NNDO  . The computational complexity of the update of archives CA and DA includes two 

cases, and when the archives are not full, the computational complexity is  1O . However, when CA 

and DA overflow, the particles in the archives need to first be sorted by non-dominated sorting. In the 
worst case, the computational complexity of non-dominated sorting is  2MNO . In addition, the 

worst-case complexity of updating CA with GR convergence strategy is  2NNO  , and the 

worst-case complexity of updating DA with MAD diversity strategy is  NO . Therefore, in the worst 

case, the update of CA and DA costs  2MNO . After that, the computational complexity of selecting 

gbest_c and gbest_d by reverse selection is  NO . Finally, in the update of pbest, the Pareto 

dominance relationship between the previous position and the current position should be judged first, 
and then pbest needs to be updated with an information fusion strategy. Therefore, in the worst case, 
updating pbest costs  NDO calculations. The computational complexity of the new speed update 
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method is  1O . Therefore, the total complexity of the proposed RMMOPSO in the worst case of a 

generation is  2MNO . 

4. Experimental studies 

4.1. Test problems 

In order to evaluate the performance of RMMOPSO more objectively, a total of 22 test 
problems from three different benchmark suites, ZDT [28], UF [29], and DTLZ [30], are used to 
evaluate the performance of the algorithms. Among them, there are five two-objective test problems 
in ZDT benchmark suite, seven two-objective test problems and three three-objective test problems 
in UF benchmark suite, and seven three-objective test problems in DTLZ benchmark suite. These 
test problems have different characteristics and complex PFs, such as concavity and convexity, 
multi-modal, disconnected, irregular PF shape, etc., which can effectively verify the reliability and 
efficiency of the algorithms. For the two-objective test problems, the number of decision variables of 
ZDT1-ZDT3 and UF1-UF7 is set to 30, and the number of decision variables of ZDT4 and ZDT6 is 
set to 10. For the three-objective test problems, the number of decision variables of UF8~UF10 is set 
to 30, that of DTLZ1 is set to 7, that of DTLZ2~DTLZ6 is set to 12, and that of DTLZ7 is set to 22. 
The parameter settings for each test problem are shown in Table 1, where FEs represents the 
maximum number of evaluations. 

Table 1. Parameter settings for the selected test problems. 

Problems N M D FEs 
ZDT1~ZDT3 200 2 30 10000 
ZDT4 and ZDT6 200 2 10 10000 
UF1~UF7 200 2 30 10000 
UF8~UF10 200 3 30 10000 
DTLZ1 200 3 7 10000 
DTLZ2~DTLZ6 200 3 12 10000 
DTLZ7 200 3 22 10000 

4.2. Performance indicators  

This paper uses inverted generational distance (IGD) [31] and hypervolume (HV) [32] as the 
performance evaluation indicators of the algorithm. These two indicators are used to evaluate the 
performance of RMMOPSO with the selected MOPSOs and MOEAs.  

The IGD indicator is a comprehensive performance indicator, which is used to measure the 
distance between the Pareto optimal solution set obtained by the algorithm and true PF. Additionally, 
it can effectively test the convergence and diversity of the algorithm; the smaller the IGD value of an 
algorithm, the better the convergence and diversity of the algorithm. The calculation formula of IGD 
is: 

                             





 
Px
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,                                 (13) 
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where S represents the Pareto optimal solution set obtained by the algorithm, P is the solution set 
uniformly distributed on PF,  Sxdist ,  is the shortest Euclidean distance between the solution x

and S, and min
if and max

if represent the minimum value and maximum value of the i-th objective 

value, respectively, ( ki ,,2,1  , k is the number of objectives), Sa j  and Sj ,,2,1  . 

The HV indicator is also a comprehensive performance indicator, which refers to the volume of 
the region in the objective space enclosed by the Pareto optimal solution set obtained by the 
algorithm and the reference points. This indicator can estimate the convergence and diversity of the 
solution set obtained by the algorithm; the larger the HV value of an algorithm, the better the overall 
performance of the algorithm. Assuming  r

m
rrr ZZZZ ,,, 21   is a reference point dominated by all 

Pareto optimal solutions in the objective space, then HV can be calculated as follows, where
denotes the Lebesgue measure. 

                              











r
mm

rr ZxfZxfZSHV
Sx

,,, 11                          (15) 

4.3. Experimental settings 

Table 2. Parameter settings of RMMOPSO and other comparison algorithms. 

Algorithms Parameter settings
NMPSO 20,1],5.2,5.1[,,],5.0,1.0[ 321  mm npccc   

MPSOD 20,20,5.0,5.0,1,9.0],5.2,5.1[,,],9.0,1.0[ 321  cmmc CRFnppccc 

MMOPSO 9.0,20,20,1,9.0],0.2,5.1[,],5.0,1.0[ 21   mcmc nppcc  

SMPSO 20,1],5.2,5.1[,],5.0,1.0[ 21  mm npcc   

DGEA 10R  
SPEAR 20,20,0.1,1  cmcm pnp 

NSGAIII 20,20,0.1,1  cmcm pnp 

MOEAD 20,20,0.1,1  cmcm pnp   

RMMOPSO     NpNDAsizeCAsizecc 1,2,2,4.0 21   

In this section, in order to better verify the performance of RMMOPSO, eight algorithms are 
selected for performance comparison, including four MOPSOs (NMPSO [33], MPSOD [34], 
MMOPSO [35] and SMPSO [36]) and four MOEAs (DGEA [37], SPEAR [38], NSGAIII [39] and 
MOEAD [40]). 

In order to ensure the fairness of the algorithm performance comparison, the relevant 
parameters set by all the comparison algorithms are consistent with the original references. The main 
parameter settings of each algorithm are shown in Table 2, where , 1c and 2c are the parameters used 

for the update velocity in MOPSOs, and cp and mp represent crossover probability and mutation 

probability, respectively. c and m are the distribution indexes of the simulated binary crossover 

(SBX) and the polynomial mutation (PM), respectively. In MPSOD, F and CR are set differential 
evolution parameters. In MMOPSO, is the probability that the controlling parent solutions are 
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selected from the neighborhood of T. R is the number of direction vectors in DGEA. In MOEAD, T 
represents the size of the neighborhood between the weight coefficients. In addition, the population 
size of all algorithms is set to 200, and the maximum number of function evaluations is set to 10000. 
Each algorithm is independently run for 30 times on each test problem, and then the mean and 
standard deviation of IGD and HV values are recorded. Additionally, all experimental results of the 
algorithms are implemented by MATLAB R2021b under the Intel(R) Core(TM) i7-6700 CPU @ 
3.40GHz 3.40GHz Windows 7 system. The source codes of all comparison algorithms are provided 
by PlatEMO [41]. 

4.4. Comparisons of performance indicators 

4.4.1. Comparisons with four existing MOPSOs 

Tables 3 and 4 show the mean and standard deviation of IGD and HV values of RMMOPSO 
and other four MOPSOs on 22 test problems, respectively, and the best IGD and HV values for each 
test problem are shown in bold. The Wilcoxon rank sum test [42] is adopted at the significance level 
of 05.0  to show significant differences between test results. The symbols ‘+’, ‘-’, and ‘≈’ in the 
tables indicate that the results of other algorithms are significantly better than, significantly worse 
than, and statistically similar to RMMOPSO, respectively. In addition, the two-tailed t-test [43] is 
carried out at the significance level of 05.0 , and the test results of the two-tailed t-test are also 
shown in the tables. The t values in the tables are presented in bold to indicate that RMMOPSO is 
significantly superior to other algorithms, and the symbol ‘*’ indicates that the performance of 
RMMOPSO is statistically similar to other algorithms. The ‘/’ in Table 4 indicates that the standard 
deviations of the two compared arrays are 0, and the t values cannot be calculated.  

It can be directly observed from Table 3 that the comprehensive performance of the proposed 
RMMOPSO is obviously better than the four compared MOPSOs among the 22 benchmark 
problems. According to the Wilcoxon rank sum test results, RMMOPSO and the comparison 
algorithms NMPSO, MPSOD, MMOPSO, and SMPSO perform significantly better in 14, 19, 9, and 
18 of the 22 comparisons, respectively. Additionally, similar results are obtained in 2, 0, 5, and 1 of 
the comparisons, respectively. It can be seen from the best IGD values in the table that RMMOPSO 
obtains 13 best IGD values on 22 test problems, while the number of the best IGD values obtained by 
NMPSO, MPSOD, MMOPSO and SMPSO are 1, 0, 6, and 2, respectively. In addition, according to 
the statistical results of the t-test in the penultimate row of Table 3, the algorithm proposed in the 
paper is significantly superior to the comparison algorithms on most test problems. Therefore, we 
can conclude that when the IGD indicator is used to measure the comprehensive performance of the 
algorithm, RMMOPSO outperforms the other four algorithms. MPSOD does not perform best on any 
of the test problems, because based on the decomposition of the objective space, the strategy of 
MPSOD does not improve the performance of the algorithm to a large extent, which is slightly worse 
than other algorithms. However, MMOPSO has the best performance on test problems DTLZ1 and 
DTLZ4, because it adopted simulated binary crossover and polynomial mutation operators in 
addition to the original MOPSO update strategy. However, the results on ZDT benchmark suite are 
not very satisfactory. Therefore, from the overall analysis of IGD indicator, it can be found that the 
comprehensive performance of RMMOPSO on the 22 test problems is better than the other four 
comparison algorithms. 
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Table 3. IGD values of RMMOPSO and four MOPSOs on the test problems. 

Problem IGD NMPSO MPSOD MMOPSO SMPSO RMMOPSO 

ZDT1 
Mean 
Std 

t-test 

3.3591 × 10-2 
(1.31 × 10-2)- 
-1.30 × 101 

9.6379 × 10-2

(4.32 × 10-2)- 
-1.19 × 101

2.4390 × 10-3

(8.27 × 10-5)≈ 
-1.06 × 10-1*

9.8784 × 10-2 
(1.04 × 10-1)- 
-5.07 × 100 

2.4244 × 10-3

(7.53 × 10-4) 

ZDT2 
Mean 
Std 

t-test 

1.7917 × 10-2 
(3.39 × 10-3)- 
-2.64 × 101 

1.4404 × 10-1

(8.48 × 10-2)- 
-9.21 × 100

2.1833 × 10-1

(2.88 × 10-1)-  
-4.12 × 100

7.9949 × 10-2 
(1.28 × 10-1)-  
-3.35 × 100 

1.3945 × 10-3

(5.22 × 10-4) 

ZDT3 
Mean 
Std 

t-test 

8.6953 × 10-2 
(2.86 × 10-2)- 
-1.58 × 101  

2.0887 × 10-1

(5.41 × 10-2)-  
-2.07 × 101

4.5620 × 10-3

(9.69 × 10-3)- 
-3.39 × 10-2*

1.7480 × 10-1 
(9.55 × 10-2)- 
-9.76 × 100  

4.5011 × 10-3

(1.63 × 10-3) 

ZDT4 
Mean 
Std 

t-test 

1.9242 × 101 
(1.23 × 101)- 
-6.09 × 100  

3.5596 × 101

(6.26 × 100)- 
-2.43 × 101

6.2828 × 100

(4.85 × 100)≈ 
-1.09 × 100*

9.7420 × 100 
(5.73 × 100)- 
-3.93 × 100  

5.1690 × 100

(2.79 × 100) 

ZDT6 
Mean 
Std 

t-test 

2.2711 × 10-3 
(2.63 × 10-4)-  
-3.28 × 101 

1.6691 × 10-2

(9.38 × 10-3)- 
-9.53 × 100

2.0860 × 10-3

(9.53 × 10-5)- 
-4.61 × 101

1.9447 × 10-3 
(9.42 × 10-5)- 
-4.25 × 101  

3.6063 × 10-4

(1.81 × 10-4) 

UF1 
Mean 
Std 

t-test 

1.3685 × 10-1 
(7.93 × 10-2)- 
-1.80 × 100*  

2.7455 × 10-1

(4.35 × 10-2)- 
-2.05 × 101

1.1464 × 10-1

(2.70 × 10-2)≈ 
-7.68 × 10-1*  

3.6676 × 10-1 
(1.01 × 10-1)- 
-1.39 × 101  

1.1080 × 10-1

(4.63 × 10-3) 

UF2 
Mean 
Std 

t-test 

8.3444 × 10-2 
(6.38 × 10-3)≈ 
-6.04 × 10-1* 

1.1330 × 10-1

(1.00 × 10-2)- 
-1.50 × 101

7.3582 × 10-2

(7.21 × 10-3)+ 
5.57 × 100

9.6679 × 10-2 
(9.31 × 10-3)- 
-7.30 × 100 

8.2546 × 10-2

(5.08 × 10-3) 

UF3 
Mean 
Std 

t-test 

3.7063 × 10-1 
(6.72 × 10-2)≈ 
-3.37 × 10-1* 

5.0375 × 10-1

(1.44 × 10-2)- 
-1.48 × 101

3.8315 × 10-1

(5.58 × 10-2)≈ 
-1.30 × 100*

4.6794 × 10-1 
(3.03 × 10-2)- 
-9.74 × 100  

3.6552 × 10-1

(4.90 × 10-2) 

UF4 
Mean 
Std 

t-test 

5.9966 × 10-2 
(6.68 × 10-3)+ 

1.07 × 101  

9.8052 × 10-2

(4.83 × 10-3)- 
-8.29 × 100

5.5683 × 10-2

(2.96 × 10-3)+ 
1.51 × 101

1.1020 × 10-1 
(9.17 × 10-3)- 
-1.18 × 101  

8.2298 × 10-2

(9.22 × 10-3) 

UF5 
Mean 
Std 

t-test 

1.6877 × 100 
(4.27 × 10-1)- 
-5.84 × 100  

2.7933 × 100

(2.29 × 10-1)- 
-2.53 × 101

1.6253 × 100

(3.88 × 10-1)- 
-5.52 × 100

2.8915 × 100 
(4.15 × 10-1)- 
-1.92 × 101  

1.1471 × 100

(2.73 × 10-1) 

UF6 
Mean 
Std 

t-test 

7.2466 × 10-1 
(1.79 × 10-1)- 
-7.89 × 100 

1.3691 × 100

(2.52 × 10-1)- 
-1.95 × 101

6.4049 × 10-1

(1.16 × 10-1)- 
-8.08 × 100

1.4338 × 100 
(6.30 × 10-1)-  
-8.43 × 100 

4.6209 × 10-1

(3.43 × 10-2) 

UF7 
Mean 
Std 

t-test 

2.6992 × 10-1 
(2.35 × 10-1)- 
-4.63 × 100 

2.3711 × 10-1

(6.19 × 10-2)- 
-1.45 × 101

1.5763 × 10-1

(1.28 × 10-1)- 
-3.69 × 100

3.6933 × 10-1 
(1.42 × 10-1)- 
-1.15 × 101 

7.1205 × 10-2

(9.59 × 10-3) 

UF8 
Mean 
Std 

t-test 

4.6017 × 10-1 
(6.37 × 10-2)- 
-9.78 × 100 

5.6522 × 10-1

(4.80 × 10-2)-  
-1.91 × 101

2.8496 × 10-1

(5.53 × 10-2)+ 
1.74 × 100*

3.9808 × 10-1 
(4.97 × 10-2)- 
-6.52 × 100 

3.0972 × 10-1

(5.52 × 10-2) 

UF9 
Mean 
Std 

t-test 

4.6686 × 10-1 
(6.03 × 10-2)- 
-3.02 × 101 

6.5739 × 10-1

(3.73 × 10-2)- 
-7.17 × 101

4.4293 × 10-1

(3.96 × 10-2)- 
-4.10 × 101

5.5952 × 10-1 
(5.45 × 10-2)- 
-4.20 × 101  

1.2163 × 10-1

(1.68 × 10-2) 

UF10 
Mean 
Std 

t-test 

1.4336 × 100 
(3.78 × 10-1)+ 

6.79 × 100  

4.1476 × 100

(3.20 × 10-1)- 
-1.70 × 101

1.2757 × 100

(2.93 × 10-1)+ 
8.73 × 100

2.8331 × 100 
(4.28 × 10-1)- 
-4.81 × 100 

2.2367 × 100

(5.26 × 10-1) 

DTLZ1 
Mean 
Std 

t-test 

5.7064 × 100 
(2.81 × 100)+ 

1.53 × 101  

1.1208 × 101

(2.18 × 100)+ 
1.00 × 101

3.4767 × 100

(2.50 × 100)+ 
1.82 × 101

3.8378 × 100 
(3.59 × 100)+ 

1.58 × 101 

1.9967 × 101

(4.27 × 100) 

DTLZ2 
Mean 
Std 

t-test 

5.7124 × 10-2 
(1.90 × 10-3)- 
-2.17 × 101  

4.5085 × 10-2

(1.34 × 10-3)- 
-8.75 × 100

5.2008 × 10-2

(1.35 × 10-3)- 
-1.66 × 101

6.0784 × 10-2 
(3.12 × 10-3)- 
-2.30 × 101  

3.7415 × 10-2

(4.61 × 10-3) 

DTLZ3 
Mean 
Std 

t-test 

1.1469 × 102 
(2.24 × 101)+ 

1.22 × 101  

1.4630 × 102

(2.01 × 101)+ 
6.91 × 100

9.7114 × 101

(2.39 × 101)+ 
1.48 × 101

5.6036 × 101 
(4.52 × 101)+ 

1.39 × 101  

1.8253 × 102

(2.05 × 101) 

DTLZ4 
Mean 
Std 

t-test 

9.0988 × 10-2 
(1.22 × 10-1)+ 

6.69 × 100  

1.3679 × 10-1

(4.34 × 10-2)+ 
6.71 × 100

5.2703 × 10-2

(1.00 × 10-2)+ 
1.01 × 101

3.6691 × 10-1 
(1.89 × 10-1)≈ 
-9.57 × 10-1*  

3.2503 × 10-1

(1.47 × 10-1) 

DTLZ5 
Mean 
Std 

t-test 

7.0519 × 10-3 
(6.95 × 10-4)- 
-1.25 × 101  

5.5580 × 10-2

(5.10 × 10-3)- 
-5.41 × 101

3.6334 × 10-3

(2.42 × 10-4)≈ 
2.24 × 100

3.5372 × 10-3 
(3.68 × 10-4)+ 

2.63 × 100 

4.0912 × 10-3

(1.09 × 10-3) 

DTLZ6 
Mean 
Std 

t-test 

1.3035 × 10-2 
(1.89 × 10-3)- 
-3.66 × 101  

1.0888 × 100

(3.83 × 10-1)- 
-1.56 × 101

3.2368 × 10-3

(3.56 × 10-4)- 
-4.20 × 101

1.3306 × 100 
(8.13 × 10-1)- 
-8.96 × 100  

3.3970 × 10-4

(1.28 × 10-4) 

DTLZ7 
Mean 
Std 

t-test 

4.7400 × 10-2 
(1.93 × 10-3)+ 

5.28 × 100  

5.1535 × 10-1

(1.19 × 10-1)- 
-5.78 × 100

1.5270 × 10-1

(2.06 × 10-1)+ 
1.89 × 100*

7.9429 × 10-1 
(4.73 × 10-1)- 
-5.68 × 100  

2.5548 × 10-1

(2.16 × 10-1) 

+/-/≈ 6/14/2 3/19/0 8/9/5 3/18/1 — 
w/l/t 13/6/3 19/3/0 8/7/7 18/3/1 — 

Best/all 1/22 0/22 6/22 2/22 13/22 
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Table 4. HV values of RMMOPSO and four MOPSOs on the test problems. 

Problem HV NMPSO MPSOD MMOPSO SMPSO RMMOPSO 

ZDT1 
Mean 
Std 

t-test 

6.8508 × 10-1 
(1.63 × 10-2)- 
-1.21 × 101  

5.8182 × 10-1

(5.97 × 10-2)- 
-1.28 × 101

7.2183 × 10-1

(1.52 × 10-4)+ 
3.41 × 100

5.9882 × 10-1 
(1.26 × 10-1)- 
-5.33 × 100  

7.2117 × 10-1

(1.05 × 10-3) 

ZDT2 
Mean 
Std 

t-test 

4.3612 × 10-1 
(2.64 × 10-3)- 
-2.25 × 101 

2.7297 × 10-1

(8.55 × 10-2)- 
-1.12 × 101

3.0589 × 10-1

(1.74 × 10-1)- 
-4.46 × 100

3.6635 × 10-1 
(1.23 × 10-1)- 
-3.61 × 100  

4.4726 × 10-1

(6.11 × 10-4) 

ZDT3 
Mean 
Std 

t-test 

5.7265 × 10-1 
(1.02 × 10-2)- 
-1.40 × 101  

4.5560 × 10-1

(5.13 × 10-2)- 
-1.54 × 101

5.9907 × 10-1

(6.17 × 10-3)≈ 
-5.39 × 10-1*

5.5056 × 10-1 
(8.24 × 10-2)- 
-3.27 × 100 

5.9974 × 10-1

(2.97 × 10-3) 

ZDT4 
Mean 
Std 

t-test 

0.0000 × 100 
(0.00 × 100)≈ 

/  

0.0000 × 100

(0.00 × 100)≈ 
/

0.0000 × 100

(0.00 × 100)≈ 
/

0.0000 × 100 
(0.00 × 100)≈ 

/  

0.0000 × 100

(0.00 × 100) 

ZDT6 
Mean 
Std 

t-test 

3.8979 × 10-1 
(2.33 × 10-4)- 
-3.43 × 101 

3.7542 × 10-1

(9.40 × 10-3)- 
-9.41 × 100

3.8986 × 10-1

(9.25 × 10-5)- 
-4.94 × 101

3.9001 × 10-1 
(1.07 × 10-4)- 
-4.35 × 101 

3.9158 × 10-1

(1.66 × 10-4) 

UF1 
Mean 
Std 

t-test 

5.2655 × 10-1 
(4.38 × 10-2)- 
-4.44 × 100  

3.5321 × 10-1

(4.50 × 10-2)- 
-2.52 × 101

5.5175 × 10-1

(3.40 × 10-2)≈ 
-1.70 × 100*

2.7736 × 10-1 
(8.21 × 10-2)- 
-1.89 × 101  

5.6253 × 10-1

(7.04 × 10-3) 

UF2 
Mean 
Std 

t-test 

6.1837 × 10-1 
(7.42 × 10-3)≈ 
-3.12 × 10-1*  

5.7837 × 10-1

(1.12 × 10-2)- 
-1.74 × 101

6.3616 × 10-1

(6.87 × 10-3)+ 
1.03 × 101

6.1107 × 10-1 
(9.82 × 10-3)- 
-3.72 × 100  

6.1891 × 10-1

(6.05 × 10-3) 

UF3 
Mean 
Std 

t-test 

2.7095 × 10-1 
(5.55 × 10-2)≈ 
-4.51 × 10-1* 

1.7113 × 10-1

(1.34 × 10-2)- 
-1.41 × 101

2.6481 × 10-1

(4.54 × 10-2)≈ 
-1.07 × 100*

1.9527 × 10-1 
(2.13 × 10-2)- 
-1.00 × 101  

2.7652 × 10-1

(3.88 × 10-2) 

UF4 
Mean 
Std 

t-test 

3.6495 × 10-1 
(9.22 × 10-3)+ 

1.20 × 101  

3.0921 × 10-1

(5.54 × 10-3)- 
-8.44 × 100

3.7150 × 10-1

(3.47 × 10-3)+ 
1.70 × 101

2.9454 × 10-1 
(1.18 × 10-2)- 
-1.14 × 101  

3.3056 × 10-1

(1.27 × 10-2) 

UF5 
Mean 
Std 

t-test 

0.0000 × 100 
(0.00 × 100)≈ 
-1.00 × 100* 

0.0000 × 100

(0.00 × 100)≈ 
-1.00 × 100*

0.0000 × 100

(0.00 × 100)≈ 
-1.00 × 100*

0.0000 × 100 
(0.00 × 100)≈ 
-1.00 × 100* 

2.8623 × 10-4

(1.57 × 10-3) 

UF6 
Mean 
Std 

t-test 

2.4249 × 10-2 
(3.12 × 10-2)- 
-4.43 × 100  

0.0000 × 100

(0.00 × 100)- 
-2.17 × 101

3.0408 × 10-2

(3.01 × 10-2)- 
-3.54 × 100

1.6359 × 10-3 
(8.83 × 10-3)- 
-1.74 × 101  

5.1605 × 10-2

(1.30 × 10-2) 

UF7 
Mean 
Std 

t-test 

3.3636 × 10-1 
(1.43 × 10-1)- 
-5.50 × 100  

2.7478 × 10-1

(6.08 × 10-2)- 
-1.80 × 101

4.0366 × 10-1

(1.01 × 10-1)- 
-4.14 × 100

1.8748 × 10-1 
(1.06 × 10-1)- 
-1.50 × 101  

4.8059 × 10-1

(1.52 × 10-2) 

UF8 
Mean 
Std 

t-test 

2.8260 × 10-1 
(5.51 × 10-2)≈ 
-7.70 × 10-1* 

5.1622 × 10-2

(2.34 × 10-2)- 
-3.53 × 101

2.8393 × 10-1

(4.08 × 10-2)≈ 
-8.14 × 10-1*

1.6404 × 10-1 
(4.21 × 10-2)- 
-1.36 × 101  

2.9136 × 10-1

(2.90 × 10-2) 

UF9 
Mean 
Std 

t-test 

3.0757 × 10-1 
(4.98 × 10-2)- 
-3.37 × 101 

1.1282 × 10-1

(2.52 × 10-2)- 
-8.58 × 101

3.2141 × 10-1

(3.71 × 10-2)- 
-4.06 × 101

2.0901 × 10-1 
(5.37 × 10-2)- 
-4.08 × 101  

6.4377 × 10-1

(2.27 × 10-2) 

UF10 
Mean 
Std 

t-test 

0.0000 × 100 
(0.00 × 100)≈ 

/  

0.0000 × 100

(0.00 × 100)≈ 
/ 

2.3422 × 10-4

(9.40 × 10-4)≈ 
1.37 × 100*

0.0000 × 100 
(0.00 × 100)≈ 

/  

0.0000 × 100

(0.00 × 100) 

DTLZ1 
Mean 
Std 

t-test 

1.5846 × 10-4 
(8.68 × 10-4)≈ 
1.00 × 100* 

0.0000 × 100

(0.00 × 100)≈ 
/

8.9887 × 10-4

(4.92 × 10-3)≈ 
1.00 × 100*

1.3484 × 10-1 
(2.04 × 10-1)+ 

3.62 × 100  

0.0000 × 100

(0.00 × 100) 

DTLZ2 
Mean 
Std 

t-test 

5.6877 × 10-1 
(1.05 × 10-3)+ 

4.90 × 100  

5.5004 × 10-1

(2.89 × 10-3)- 
-1.09 × 101

5.4348 × 10-1

(2.69 × 10-3)- 
-1.65 × 101

5.1228 × 10-1 
(7.82 × 10-3)- 
-2.83 × 101  

5.6332 × 10-1

(6.01 × 10-3) 

DTLZ3 
Mean 
Std 

t-test 

0.0000 × 100 
(0.00 × 100)≈ 

/  

0.0000 × 100

(0.00 × 100)≈ 
/ 

0.0000 × 100

(0.00 × 100)≈ 
/ 

1.7667 × 10-2 
(4.95 × 10-2)+ 
1.96 × 100*  

0.0000 × 100

(0.00 × 100) 

DTLZ4 
Mean 
Std 

t-test 

5.5401 × 10-1 
(5.63 × 10-2)+ 

9.30 × 100  

4.2614 × 10-1

(5.66 × 10-2)≈ 
9.54 × 10-1*

5.4794 × 10-1

(3.87 × 10-3)+ 
1.20 × 101

3.6001 × 10-1 
(1.04 × 10-1)- 
-2.33 × 100  

4.1147 × 10-1

(6.23 × 10-2) 

DTLZ5 
Mean 
Std 

t-test 

1.9806 × 10-1 
(5.51 × 10-4)- 
-5.04 × 100 

1.4015 × 10-1

(7.75 × 10-3)- 
-4.13 × 101

2.0001 × 10-1

(3.03 × 10-4)+ 
2.90 × 100

1.9999 × 10-1 
(2.93 × 10-4)+ 

2.82 × 100  

1.9933 × 10-1

(1.26 × 10-3) 

DTLZ6 
Mean 
Std 

t-test 

1.9777 × 10-1 
(5.93 × 10-4)- 
-3.96 × 101  

1.1171 × 10-2

(2.84 × 10-2)- 
-3.69 × 101

2.0104 × 10-1

(6.44 × 10-5)- 
-2.96 × 101

2.1274 × 10-2 
(5.40 × 10-2)- 
-1.84 × 101  

2.0241 × 10-1

(2.45 × 10-4) 

DTLZ7 
Mean 
Std 

t-test 

2.8117 × 10-1 
(6.97 × 10-4)+ 

2.50 × 101  

7.6676 × 10-2

(3.95 × 10-2)- 
-4.11 × 100

2.6686 × 10-1

(2.16 × 10-2)+ 
1.96 × 101

9.9443 × 10-2 
(7.65 × 10-2)≈ 
-1.12 × 100* 

1.1678 × 10-1

(3.61 × 10-2) 

+/-/≈ 4/10/8 0/16/6 6/7/9 3/15/4 — 
w/l/t 10/4/8 16/0/6 7/6/9 15/2/5 — 

Best/all 3/22 0/22 5/22 2/22 11/22 
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Table 5. IGD values of RMMOPSO and four MOEAs on the test problems. 

Problem IGD DGEA SPEAR NSGAIII MOEAD RMMOPSO 

ZDT1 
Mean 
Std 

t-test 

1.1363 × 100 
(2.75 × 10-1)- 
-2.26 × 101 

1.7660 × 10-1

(2.07 × 10-2)- 
-4.60 × 101

1.0782 × 10-1

(1.99 × 10-2)- 
-2.90 × 101

1.9691 × 10-1 
(8.01 × 10-2)- 
-1.33 × 101  

2.4244 × 10-3

(7.53 × 10-4) 

ZDT2 
Mean 
Std 

t-test 

9.2561 × 10-1 
(3.24 × 10-1)- 
-1.56 × 101 

3.7997 × 10-1

(1.08 × 10-1)- 
-1.92 × 101

1.9485 × 10-1

(4.91 × 10-2)- 
-2.16 × 101

5.8771 × 10-1 
(3.96 × 10-2)- 
-8.11 × 101  

1.3945 × 10-3

(5.22 × 10-4) 

ZDT3 
Mean 
Std 

t-test 

1.0075 × 100 
(2.38 × 10-1)- 
-2.31 × 101 

1.4680 × 10-1

(1.77 × 10-2)- 
-4.38 × 101

9.4964 × 10-2

(1.27 × 10-2)- 
-3.87 × 101

1.6968 × 10-1 
(6.52 × 10-2)- 
-1.39 × 101  

4.5011 × 10-3

(1.63 × 10-3) 

ZDT4 
Mean 
Std 

t-test 

8.0212 × 100 
(6.75 × 100)≈ 
-2.14 × 100 

2.0580 × 100

(5.43 × 10-1)+ 
6.00 × 100

2.7014 × 100

(9.01 × 10-1)+ 
4.61 × 100

5.6541 × 10-1 
(2.64 × 10-1)+ 

9.00 × 100 

5.1690 × 100

(2.79 × 100) 

ZDT6 
Mean 
Std 

t-test 

1.1013 × 10-1 
(5.79 × 10-1)- 
-1.04 × 100* 

1.1084 × 100

(2.28 × 10-1)- 
-2.66 × 101

1.4945 × 100

(2.51 × 10-1)- 
-3.26 × 101

8.2892 × 10-2 
(2.56 × 10-2)- 
-1.76 × 101  

3.6063 × 10-4

(1.81 × 10-4) 

UF1 
Mean 
Std 

t-test 

6.5662 × 10-1 
(1.67 × 10-1)- 
-1.79 × 101 

1.4615 × 10-1

(2.48 × 10-2)- 
-7.69 × 100

1.3682 × 10-1

(2.61 × 10-2)- 
-5.38 × 100

3.0491 × 10-1 
(8.66 × 10-2)- 
-1.23 × 101  

1.1080 × 10-1

(4.63 × 10-3) 

UF2 
Mean 
Std 

t-test 

1.6841 × 10-1 
(2.29 × 10-2)- 
-2.00 × 101 

7.1925 × 10-2

(6.39 × 10-3)+ 
7.13 × 100

8.1022 × 10-2

(6.53 × 10-3)≈ 
1.01 × 100*

2.1673 × 10-1 
(6.80 × 10-2)- 
-1.08 × 101 

8.2546 × 10-2

(5.08 × 10-3) 

UF3 
Mean 
Std 

t-test 

5.6896 × 10-1 
(4.51 × 10-2)- 
-1.67 × 101 

4.3462 × 10-1

(1.29 × 10-2)- 
-7.47 × 100

4.7955 × 10-1

(1.05 × 10-2)- 
-1.25 × 101

3.3448 × 10-1 
(2.74 × 10-2)+ 

3.03 × 100  

3.6552 × 10-1

(4.90 × 10-2) 

UF4 
Mean 
Std 

t-test 

1.2331 × 10-1 
(8.05 × 10-3)- 
-1.83 × 101 

8.5101 × 10-2

(2.44 × 10-3)≈ 
-1.61 × 100*

9.5530 × 10-2

(2.88 × 10-3)- 
-7.50 × 100

1.1512 × 10-1 
(5.38 × 10-3)- 
-1.68 × 101 

8.2298 × 10-2

(9.22 × 10-3) 

UF5 
Mean 
Std 

t-test 

3.0200 × 100 
(5.43 × 10-1)- 
-1.69 × 101 

1.1509 × 100

(1.95 × 10-1)≈ 
2.04 × 10-1*

1.5571 × 100

(3.93 × 10-1)- 
-4.69 × 100

1.5342 × 100 
(2.54 × 10-1)- 
-5.68 × 100  

1.1471 × 100

(2.73 × 10-1) 

UF6 
Mean 
Std 

t-test 

2.3373 × 100 
(7.09 × 10-1)- 
-1.45 × 101 

6.7727 × 10-1

(7.05 × 10-2)- 
-1.50 × 101

7.2245 × 10-1

(1.44 × 10-1)- 
-9.63 × 100

7.3243 × 10-1 
(3.02 × 10-1)- 
-4.87 × 100 

4.6209 × 10-1

(3.43 × 10-2) 

UF7 
Mean 
Std 

t-test 

7.4769 × 10-1 
(1.37 × 10-1)- 
-2.69 × 101 

1.7861 × 10-1

(7.00 × 10-2)- 
-8.33 × 100

1.9157 × 10-1

(7.23 × 10-2)- 
-9.04 × 100

4.2625 × 10-1 
(1.66 × 10-1)- 
-1.17 × 101  

7.1205 × 10-2

(9.59 × 10-3) 

UF8 
Mean 
Std 

t-test 

7.3446 × 10-1 
(1.49 × 10-1)- 
-1.46 × 101 

3.1992 × 10-1

(1.77 × 10-2)≈ 
-9.63 × 10-1*

3.3593 × 10-1

(2.93 × 10-2)- 
-2.30 × 100

5.1992 × 10-1 
(2.57 × 10-1)- 
-4.39 × 100  

3.0972 × 10-1

(5.52 × 10-2) 

UF9 
Mean 
Std 

t-test 

8.0198 × 10-1 
(1.38 × 10-1)- 
-2.69 × 101 

4.8175 × 10-1

(5.04 × 10-2)- 
-3.71 × 101

5.0013 × 10-1

(5.64 × 10-2)- 
-3.52 × 101

5.4953 × 10-1 
(7.33 × 10-2)- 
-3.12 × 101  

1.2163 × 10-1

(1.68 × 10-2) 

UF10 
Mean 
Std 

t-test 

4.2516 × 100 
(8.32 × 10-1)- 
-1.12 × 101 

1.7890 × 100

(3.18 × 10-1)+ 
3.99 × 100

2.4296 × 100

(3.79 × 10-1)≈ 
-1.63 × 100*

7.2705 × 10-1 
(7.60 × 10-2)+ 

1.55 × 101  

2.2367 × 100

(5.26 × 10-1) 

DTLZ1 
Mean 
Std 

t-test 

1.2668 × 101 
(8.52 × 100)+ 

4.19 × 100 

8.5037 × 10-1

(3.05 × 10-1)+ 
2.45 × 101

8.5788 × 10-1

(3.08 × 10-1)+ 
2.44 × 101

3.1106 × 10-1 
(2.25 × 10-1)+ 

2.52 × 101  

1.9967 × 101

(4.27 × 100) 

DTLZ2 
Mean 
Std 

t-test 

1.1805 × 10-1 
(1.91 × 10-2)- 
-2.25 × 101 

4.2696 × 10-2

(1.27 × 10-3)- 
-6.05 × 100

4.0043 × 10-2

(6.86 × 10-4)- 
-3.09 × 100

3.9928 × 10-2 
(9.88 × 10-4)-  
-2.92 × 100 

3.7415 × 10-2

(4.61 × 10-3) 

DTLZ3 
Mean 
Std 

t-test 

9.8444 × 101 
(6.02 × 101)+ 

7.24 × 100 

3.3413 × 101

(1.01 × 101)+ 
3.57 × 101

3.4262 × 101

(8.45 × 100)+ 
3.66 × 101

1.5235 × 101 
(9.44 × 100)+ 

4.05 × 101  

1.8253 × 102

(2.05 × 101) 

DTLZ4 
Mean 
Std 

t-test 

4.1712 × 10-1 
(1.22 × 10-1)- 
-2.63 × 100 

4.5025 × 10-2

(1.71 × 10-3)+ 
1.04 × 101

5.7736 × 10-2

(9.14 × 10-2)+ 
8.44 × 100

4.9665 × 10-1 
(3.07 × 10-1)- 
-2.76 × 100  

3.2503 × 10-1

(1.47 × 10-1) 

DTLZ5 
Mean 
Std 

t-test 

5.8093 × 10-2 
(1.10 × 10-2)- 
-2.68 × 101 

2.2298 × 10-2

(1.64 × 10-3)- 
-5.07 × 101

7.1455 × 10-3

(7.41 × 10-4)- 
-1.27 × 101

2.0524 × 10-2 
(6.44 × 10-4)- 
-7.09 × 101  

4.0912 × 10-3

(1.09 × 10-3) 

DTLZ6 
Mean 
Std 

t-test 

2.1512 × 100 
(8.40 × 10-1)- 
-1.40 × 101 

1.3604 × 10-1

(8.09 × 10-2)- 
-9.19 × 100

6.6437 × 10-2

(1.22 × 10-1)- 
-2.97 × 100

1.0376 × 10-1 
(2.41 × 10-1)- 
-2.35 × 100  

3.3970 × 10-4

(1.28 × 10-4) 

DTLZ7 
Mean 
Std 

t-test 

4.1484 × 100 
(1.19 × 100)- 
-1.76 × 101 

2.0463 × 10-1

(3.90 × 10-2)≈ 
1.27 × 100*

1.7948 × 10-1

(5.45 × 10-2)≈ 
1.87 × 100*

1.1470 × 10-1 
(1.40 × 10-2)+ 

3.56 × 100  

2.5548 × 10-1

(2.16 × 10-1) 

+/-/≈ 2/19/1 6/12/4 4/15/3 6/16/0 — 
w/l/t 19/2/1 12/6/4 15/4/3 16/6/0 — 

Best/all 0/22 2/22 0/22 6/22 14/22 
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Table 6. HV values of RMMOPSO and four MOEAs on the test problems. 

Problem HV DGEA SPEAR NSGAIII MOEAD RMMOPSO 

ZDT1 
Mean 
Std 

t-test 

7.9416 × 10-3 
(2.35 × 10-2)- 
-1.66 × 102 

4.9320 × 10-1

(2.18 × 10-2)- 
-5.72 × 101

5.8014 × 10-1

(2.48 × 10-2)- 
-3.12 × 101

5.2439 × 10-1 
(6.38 × 10-2)- 
-1.69 × 101  

7.2117 × 10-1

(1.05 × 10-3) 

ZDT2 
Mean 
Std 

t-test 

7.0841 × 10-3 
(2.06 × 10-2)- 
-1.17 × 102 

7.9051 × 10-2

(4.41 × 10-2)- 
-4.57 × 101

2.1458 × 10-1

(3.75 × 10-2)- 
-3.40 × 101

8.4184 × 10-2 
(1.09 × 10-2)- 
-1.82 × 102 

4.4726 × 10-1

(6.11 × 10-4) 

ZDT3 
Mean 
Std 

t-test 

3.5314 × 10-2 
(5.15 × 10-2)- 
-6.00 × 101 

5.0988 × 10-1

(2.66 × 10-2)- 
-1.84 × 101

5.3817 × 10-1

(9.87 × 10-3)- 
-3.27 × 101

5.5518 × 10-1 
(6.32 × 10-2)- 
-3.86 × 100 

5.9974 × 10-1

(2.97 × 10-3) 

ZDT4 
Mean 
Std 

t-test 

9.1149 × 10-3 
(4.28 × 10-2)≈ 
1.17 × 100* 

0.0000 × 100

(0.00 × 100)≈ 
/

0.0000 × 100

(0.00 × 100)≈ 
/

1.7626 × 10-1 
(1.48 × 10-1)+ 

6.53 × 100 

0.0000 × 100

(0.00 × 100) 

ZDT6 
Mean 
Std 

t-test 

3.7474 × 10-1 
(7.13 × 10-2)- 
-1.29 × 100* 

0.0000 × 100

(0.00 × 100)- 
-1.29 × 104

0.0000 × 100

(0.00 × 100)- 
-1.29 × 104

2.8021 × 10-1 
(2.99 × 10-2)- 
-2.04 × 101 

3.9158 × 10-1

(1.66 × 10-4) 

UF1 
Mean 
Std 

t-test 

8.8175 × 10-2 
(7.47 × 10-2)- 
-3.46 × 101 

5.0339 × 10-1

(3.49 × 10-2)- 
-9.09 × 100

5.1215 × 10-1

(3.47 × 10-2)- 
-7.79 × 100

4.1410 × 10-1 
(4.42 × 10-2)- 
-1.82 × 101 

5.6253 × 10-1

(7.04 × 10-3) 

UF2 
Mean 
Std 

t-test 

5.1377 × 10-1 
(2.86 × 10-2)- 
-1.97 × 101 

6.2759 × 10-1

(7.54 × 10-3)+ 
4.92 × 100

6.1528 × 10-1

(9.10 × 10-3)≈ 
-1.82 × 100*

5.5446 × 10-1 
(3.00 × 10-2)- 
-1.15 × 101 

6.1891 × 10-1

(6.05 × 10-3) 

UF3 
Mean 
Std 

t-test 

1.2136 × 10-1 
(2.30 × 10-2)- 
-1.88 × 101 

2.2431 × 10-1

(1.16 × 10-2)- 
-7.06 × 100

1.8614 × 10-1

(1.06 × 10-2)- 
-1.23 × 101

2.9865 × 10-1 
(4.11 × 10-2)+ 

2.14 × 100 

2.7652 × 10-1

(3.88 × 10-2) 

UF4 
Mean 
Std 

t-test 

2.7610 × 10-1 
(8.39 × 10-3)- 
-1.96 × 101 

3.2433 × 10-1

(2.82 × 10-3)- 
-2.62 × 100

3.1283 × 10-1

(4.02 × 10-3)- 
-7.29 × 100

2.8476 × 10-1 
(5.76 × 10-3)- 
-1.80 × 101  

3.3056 × 10-1

(1.27 × 10-2) 

UF5 
Mean 
Std 

t-test 

0.0000 × 100 
(0.00 × 100)≈ 
-1.00 × 100* 

1.6169 × 10-4

(8.86 × 10-4)≈ 
6.57 × 10-1*

0.0000 × 100

(0.00 × 100)≈ 
-1.00 × 100*

0.0000 × 100 
(0.00 × 100)≈ 
-1.00 × 100*  

2.8623 × 10-4

(1.57 × 10-3) 

UF6 
Mean 
Std 

t-test 

0.0000 × 100 
(0.00 × 100)- 
-2.17 × 101 

1.5703 × 10-2

(1.47 × 10-2)- 
-1.00 × 101

6.1301 × 10-3

(9.00 × 10-3)- 
-1.57 × 101

5.0616 × 10-2 
(6.63 × 10-2)≈ 
-8.02 × 10-2* 

5.1605 × 10-2

(1.30 × 10-2) 

UF7 
Mean 
Std 

t-test 

1.7740 × 10-2 
(3.19 × 10-2)- 
-7.17 × 101 

3.5741 × 10-1

(5.54 × 10-2)- 
-1.18 × 101

3.3347 × 10-1

(7.53 × 10-2)- 
-1.05 × 101

2.4652 × 10-1 
(9.18 × 10-2)- 
-1.38 × 101  

4.8059 × 10-1

(1.52 × 10-2) 

UF8 
Mean 
Std 

t-test 

2.4664 × 10-2 
(3.16 × 10-2)- 
-3.41 × 101 

1.8345 × 10-1

(3.03 × 10-2)- 
-1.41 × 101

2.3852 × 10-1

(4.27 × 10-2)- 
-5.61 × 100

1.6184 × 10-1 
(5.74 × 10-2)- 
-1.10 × 101  

2.9136 × 10-1

(2.90 × 10-2) 

UF9 
Mean 
Std 

t-test 

6.1597 × 10-2 
(5.51 × 10-2)- 
-5.35 × 101 

2.6277 × 10-1

(5.00 × 10-2)- 
-3.80 × 101

2.4701 × 10-1

(4.90 × 10-2)- 
-4.02 × 101

2.7605 × 10-1 
(4.56 × 10-2)- 
-3.96 × 101  

6.4377 × 10-1

(2.27 × 10-2) 

UF10 
Mean 
Std 

t-test 

0.0000 × 100 
(0.00 × 100)≈ 

/ 

0.0000 × 100

(0.00 × 100)≈ 
/ 

0.0000 × 100

(0.00 × 100)≈ 
/

3.3581 × 10-2 
(2.22 × 10-2)+ 

8.28 × 100  

0.0000 × 100

(0.00 × 100) 

DTLZ1 
Mean 
Std 

t-test 

0.0000 × 100 
(0.00 × 100)≈ 

/ 

1.1162 × 10-2

(4.39 × 10-2)+ 
1.39 × 100*

5.2965 × 10-3

(2.36 × 10-2)≈ 
1.23 × 100*

2.8916 × 10-1 
(3.19 × 10-1)+ 

4.97 × 100 

0.0000 × 100

(0.00 × 100) 

DTLZ2 
Mean 
Std 

t-test 

4.2151 × 10-1 
(3.09 × 10-2)- 
-2.47 × 101 

5.5659 × 10-1

(1.92 × 10-3)- 
-5.84 × 100

5.6184 × 10-1

(1.82 × 10-3)≈ 
-1.29 × 100*

5.6070 × 10-1 
(2.71 × 10-3)- 
-2.17 × 100  

5.6332 × 10-1

(6.01 × 10-3) 

DTLZ3 
Mean 
Std 

t-test 

0.0000 × 100 
(0.00 × 100)≈ 

/ 

0.0000 × 100

(0.00 × 100)≈ 
/ 

0.0000 × 100

(0.00 × 100)≈ 
/ 

0.0000 × 100 
(0.00 × 100)≈ 

/  

0.0000 × 100

(0.00 × 100) 

DTLZ4 
Mean 
Std 

t-test 

1.9455 × 10-1 
(9.43 × 10-2)- 
-1.05 × 101 

5.5270 × 10-1

(3.27 × 10-3)+ 
1.24 × 101

5.5353 × 10-1

(3.96 × 10-2)+ 
1.05 × 101

3.4716 × 10-1 
(1.57 × 10-1)≈ 

-2.08 × 100  

4.1147 × 10-1

(6.23 × 10-2) 

DTLZ5 
Mean 
Std 

t-test 

1.4825 × 10-1 
(1.57 × 10-2)- 
-1.78 × 101 

1.8612 × 10-1

(1.43 × 10-3)- 
-3.79 × 101

1.9662 × 10-1

(5.51 × 10-4)- 
-1.08 × 101

1.8831 × 10-1 
(1.37 × 10-3)- 
-3.24 × 101  

1.9933 × 10-1

(1.26 × 10-3) 

DTLZ6 
Mean 
Std 

t-test 

8.8033 × 10-3 
(3.65 × 10-2)- 
-2.91 × 101 

1.0503 × 10-1

(4.53 × 10-2)- 
-1.18 × 101

1.6161 × 10-1

(4.25 × 10-2)- 
-5.26 × 100

1.5901 × 10-1 
(5.61 × 10-2)- 
-4.24 × 100  

2.0241 × 10-1

(2.45 × 10-4) 

DTLZ7 
Mean 
Std 

t-test 

1.7629 × 10-5 
(9.66 × 10-5)- 
-1.77 × 101 

1.9927 × 10-1

(1.23 × 10-2)+ 
1.19 × 101

2.0667 × 10-1

(1.95 × 10-2)+ 
1.20 × 101

2.2835 × 10-1 
(1.05 × 10-2)+ 

1.63 × 101  

1.1678 × 10-1

(3.61 × 10-2) 

+/-/≈ 0/17/5 4/14/4 2/13/7 5/13/4 — 
w/l/t 16/0/6 14/3/5 13/2/7 14/5/3 — 

Best/all 0/22 1/22 1/22 5/22 14/22 
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In addition to the IGD indicator, HV is also used to further evaluate the comprehensive 
performance of RMMOPSO. As can be seen from the best HV values in Table 4, RMMOPSO 
obtained 11 best HV values on 22 test problems, while the number of the best HV values obtained by 
NMPSO, MPSOD, MMOPSO, and SMPSO are 3, 0, 5, and 2, respectively. Moreover, according to 
the statistical results of Wilcoxon rank sum test and t-test in Table 4, RMMOPSO is significantly 
superior to the comparison algorithms on most test problems. Therefore, it can be seen from Table 4 
that RMMOPSO and the selected MOPSOs still have a strong competitiveness when the HV 
indicator is used to measure comprehensive performance of the algorithms. 

4.4.2. Comparisons with four existing MOEAs 

Tables 5 and 6 respectively show the mean and standard deviation of the IGD and HV values of 
RMMOPSO and four MOEAs on 22 test problems. Similarly, the Wilcoxon rank sum test and 
two-tailed t-test are used at the significance level of 05.0 to test for significant differences 
between the results. Additionally, the best IGD and HV values for each test problem are shown in 
bold. The ‘/’ in Table 6 indicates that the standard deviations of the two compared arrays are 0, and 
the t values cannot be calculated. 

As can be seen from Table 5, the comprehensive performance of the proposed RMMOPSO is 
significantly better than the four compared MOEAs among the 22 test problems. According to the 
results of Wilcoxon rank sum test, RMMOPSO and comparison algorithms DGEA, SPEAR, 
NSGAIII, and MOEAD perform significantly better than these algorithms in 19, 12, 15, and 16 of 
the 22 comparisons, respectively, and obtained similar results in 1, 4, 3, and 0. Similarly, from the 
statistical results of t-test in the penultimate row of Table 5, RMMOPSO is significantly better than 
the comparison algorithms DGEA, SPEAR, NSGAIII, and MOEAD on 19, 12, 15, and 16 test 
problems, respectively. It can be seen from the best IGD values in the table that RMMOPSO obtains 
14 best IGD values on 22 test problems, while the number of the best IGD values obtained by DGEA, 
SPEAR, NSGAIII, and MOEAD are 0, 2, 0, and 6 respectively. It can be observed that when the IGD 
indicator is used to measure the comprehensive performance of the algorithm, RMMOPSO 
outperforms the four comparison algorithms. NSGAIII and DGEA do not perform the best on any of 
the selected test problems, because the strategy of NSGAIII reference-based non-dominated ranking 
and the strategy of DGEA adaptive offspring generation cannot improve the performance of the 
algorithm to a great extent, which is slightly worse than other algorithms. Therefore, from the overall 
analysis of the IGD indicator, it can be found that the comprehensive performance of RMMOPSO on 
the 22 test problems is better than the other four comparison algorithms, because the reverse 
multi-leaders strategy proposed in this paper significantly improves the search ability of RMMOPSO 
and can effectively balance the convergence and diversity of the algorithm. 

As shown in Table 6, the comparison results using the HV indicator are similar to those using 
the IGD indicator. RMMOPSO also obtains 14 best HV values on 22 test problems, while DGEA, 
SPEAR, NSGAIII, and MOEAD obtain 0, 1, 1, and 5 best HV values, respectively. Therefore, it can 
be seen from Table 6 that RMMOPSO has a better comprehensive performance than the other four 
MOEAs when the performance of the algorithm is measured by the HV indicator. 
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4.5. Intuitive comparisons of graphics  

4.5.1. Comparisons with four existing MOPSOs 

In order to visually compare the stability of each algorithm on three suites of benchmark 
problems, ZDT, UF, and DTLZ. Figure 4 shows the statistical box plots of the IGD values 
distribution obtained by the RMMOPSO and other four MOPSOs running independently for 30 
times on some test problems, where 1, 2, 3, 4, and 5 on the horizontal coordinate of these box plots 
are successively represented as NMPSO, MPSOD, MMOPSO, SMPSO, and RMMOPSO, and the 
vertical coordinate represents the IGD value of each algorithm. The smaller the gap between the 
upper and lower quartiles of the box plot is, and the flatter the box is, indicating that the experimental 
data is more concentrated and the stability is better. The symbol “+” in the box plots represents the 
abnormal value in the data. As you can see from these figures, Figure 4 shows a comparison 
consistent with Table 3. Compared with other four comparison algorithms, there are fewer abnormal 
values in the experimental data of RMMOPSO, and the boxes of RMMOPSO in most of the test 
problems are flatter and the IGD values are smaller, which indicates that the performance of 
RMMOPSO is more remarkable than other four algorithms in terms of both the solution results and 
the stability of the algorithm. 

In order to compare the convergence and distribution of the algorithms more intuitively and 
observe whether they really converge to the approximate PF. The Figures 5 and 6 show the 
distribution of the non-dominated solution sets of RMMOPSO and NMPSO, MPSOD, MMOPSO, 
and SMPSO on the two-objective test problem ZDT2 and the three-objective test problem UF9, 
respectively. As can be seen from Figure 5, on the two-objective test problem ZDT2, only NMPSO, 
MMOPSO, and RMMOPSO can fully converge to the true PF, but NMPSO and MMOPSO 
distribution is not very uniform, while other two algorithms have poor performance in convergence 
and distribution. It can be observed from Figure 6 that on the three-objective test problem UF9, 
several comparison algorithms have poor performance in convergence and distribution, and most of 
the non-dominated solutions obtained by RMMOPSO can fully converge to true PF. In conclusion, 
RMMOPSO has better performance in convergence and distribution than other algorithms. 

Finally, the convergence speed is also an important indicator to compare the performance of 
algorithms. Figure 7 shows the IGD convergence trajectories obtained by RMMOPSO and the four 
MOPSOs on the two-objective test problems ZDT2, UF7, and the three-objective test problem UF9 
evaluated for 10000 times. As can be seen from the figures that RMMOPSO has the fastest 
convergence speed and is significantly better than other four comparison algorithms.  

4.5.2. Comparisons with four existing MOEAs 

Figure 8 shows the statistical box plots of the IGD value distributions obtained by RMMOPSO 
and the other four MOEAs running independently for 30 times on some test problems, which is used 
to visually compare the stability of each algorithm on these test problems, where 1, 2, 3, 4, and 5 on 
the abscissa of the box plots are successively represented as DGEA, SPEAR, NSGAIII, MOEAD, 
and RMMOPSO, and the ordinate represents the IGD value of each algorithm. As shown in Figure 8, 
the comparison results are consistent with Table 5. As can be seen from Figure 8, although the 
stability of RMMOPSO on UF4, UF5, UF8, and DTLZ2 are not as good as that of other algorithms, 
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the IGD values of RMMOPSO are smaller than them. Furthermore, in most test problems, the 
experimental data of RMMOPSO has fewer abnormal values, its boxes are relatively flat, and the 
IGD values are smaller. It shows that the performance of RMMOPSO has obvious advantages over 
the other four MOEAs in both the solution results and the stability of the algorithm. 

 

 (a)                   (b)                (c) 

 

(d)                  (e)                (f) 

 

(g)                  (h)                 (i) 

 

(j)                  (k)                 (l) 

 

 (m) 

Figure 4. Box statistical plots of IGD values of five algorithms on different test problems. 
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(a)                      (b)                      (c) 

                           
(d)                       (e) 

Figure 5. Approximate PF of the five algorithms on the ZDT2 test problem. 

 

(a)                      (b)                    (c) 

 
 (d)                     (e) 

Figure 6. Approximate PF of the five algorithms on UF9 test problem. 

 

0 0.2 0.4 0.6 0.8 1 f
1

0

0.2

0.4

0.6

0.8

1
ZDT2

True PF
NMPSO

0 0.2 0.4 0.6 0.8 1 f
1

0

1

2

3

4

5

6

ZDT2

True PF
MPSOD

0 0.2 0.4 0.6 0.8 1 f
1

0

0.2

0.4

0.6

0.8

1
ZDT2

True PF
MMOPSO

0 0.2 0.4 0.6 0.8 1 f
1

0

0.2

0.4

0.6

0.8

1
ZDT2

True PF
SMPSO

0 0.2 0.4 0.6 0.8 1 f
1

0

0.2

0.4

0.6

0.8

1

1.2
ZDT2

True PF
RMMOPSO

0.2

0.5

0.4

11

0.6

 f
2

 f
1

UF9

21.5

0.8

2 3

1

2.5 4

True PF
NMPSO

2

2 2

4

4

UF9

 f
2

 f
1

6

46

8

8 610

True PF
MPSOD

0.2
0.4
0.6

22

0.8

UF9

 f
1

 f
2

1
1.2

44

1.4

66

True PF
MMOPSO

0.5

1

2

UF9

2

1.5

 f
1

4

 f
2

4 66 88

True PF
SMPSO

0
0 0

0.5

UF9

0.5

 f
2  f

1

1

1

1
1.5 2

True PF
RMMOPSO



11754 

Mathematical Biosciences and Engineering  Volume 20, Issue 7, 11732–11762. 

 
(a)                     (b)                       (c) 

Figure 7. IGD convergence trajectories of RMMOPSO and four MOPSOs on ZDT2, 
UF7 and UF9. 

In the same way, in order to visually compare the convergence and diversity of each algorithm, 
Figures 9 and 10 show the approximate PFs of RMMOPSO, DGEA, SPEAR, NSGAIII, and 
MOEAD on the two-objective test problem ZDT2 and the three-objective test problem UF9, 
respectively. As can be seen from Figure 9, on two-objective test problem ZDT2, only RMMOPSO 
can fully converge to the true PF, while the other four algorithms performed poorly in both 
convergence and distribution. It can be observed from Figure 10 that on the three-objective test 
problem UF9, although some non-dominated solutions of the four comparison algorithms converge 
to the true PF, most of them fail to converge and have poor distribution; only RMMOPSO has a 
relatively good convergence and distribution. To sum up, RMMOPSO has advantages over other 
algorithms in terms of convergence and distribution. 

Next, we compare the convergence speed between the proposed RMMOPSO and the other four 
MOEAs on the two-objective test problems ZDT2, UF7, and the three-objective test problem UF9. 
Figure 11 shows the IGD convergence trajectories obtained by evaluating each algorithm on ZDT2, 
UF7, and UF9 for 10000 times. As can be seen from the figures, RMMOPSO has the fastest 
convergence speed, which is significantly better than the other four comparison algorithms.   

In summary, from the box plot, the PF diagram, and the convergence trajectory diagram, the 
proposed RMMOPSO had a better comprehensive performance compared with the selected 
competitive algorithms, especially on the benchmark suites ZDT and UF. Therefore, it has superior 
advantages than the other comparison algorithms in solving the most complex multi-objective 
optimization problems. 

4.6. Overall performance of RMMOPSO 

As shown in Tables 7 and 8, in order to further compare the overall performance of RMMOPSO 
with all comparison algorithms, we also rank the average IGD and HV values of RMMOPSO and all 
comparison algorithms on the 22 test problems. Generally speaking, the smaller and more frequent 
ranking indicates the better overall performance of the algorithm. For instance, in Table 7, the rank 1 
value of RMMOPSO is 11, which indicates that when RMMOPSO and all comparison algorithms 
are compared on 22 test problems, RMMOPSO achieves 11 best IGD values. In addition, we also use 
the Friedman test [44] to calculate the average ranking of all algorithms. The numbers with the most 
rank 1 and the best average ranking in the tables are shown in bold. It can be seen from Table 7 and 
Table 8 that the final ranking of the proposed RMMOPSO is the first in both the average IGD value 
and the HV value, and the number of rank 1 is also the most. This indicates that RMMOPSO can 
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obtain a better convergence and diversity solutions when solving the most MOPs. Therefore, it has a 
better advantage than other algorithms in solving MOPs. 

 

(a)                  (b)                  (c) 

 

(d)                  (e)                  (f) 
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(m)                 (n) 

Figure 8. Box statistical plots of IGD values of five algorithms on different test problems. 
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Figure 9. Approximate PF of the five algorithms on the ZDT2 test problem. 
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Figure 10. Approximate PF of the five algorithms on UF9 test problem. 
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(a)                      (b)                     (c) 

Figure 11. IGD convergence trajectories of RMMOPSO and four MOEAs on ZDT2, 
UF7 and UF9. 

Table 7. Frequency of ranks of IGD of RMMOPSO and 8 comparison algorithms on 22 
problems. 

Algorithm Rank1 Rank2 Rank3 Rank4 Rank5 Rank6 Rank7 Rank8 Rank9 
Average 
Ranking

Final 
ranking

NMPSO 1 2 6 4 2 4 2 1 0 4.32 4 
MPSOD 0 0 0 2 4 2 6 7 1 6.68 8 

MMOPSO 2 11 2 2 3 2 0 0 0 2.95 2 
SMPSO 1 1 1 1 3 2 7 6 0 6.09 7 
DGEA 0 0 0 0 0 2 1 3 16 8.50 9 
SPEAR 2 4 3 4 4 1 3 1 0 4.09 3 

NSGAIII 0 0 7 7 4 2 1 0 1 4.41 5 
MOEAD 5 2 1 0 1 5 2 4 2 5.05 6 

RMMOPSO 11 2 2 2 1 2 0 0 2 2.91 1 

Table 8. Frequency of ranks of HV of RMMOPSO and 8 comparison algorithms on 22 
problems. 

Algorithm Rank1 Rank2 Rank3 Rank4 Rank5 Rank6 Rank7 Rank8 Rank9 
Average 
Ranking

Final 
ranking

NMPSO 3 3 10 5 0 1 0 0 0 3.52 3 
MPSOD 0 1 3 0 4 3 3 7 1 6.77 8 

MMOPSO 4 9 4 3 1 0 1 0 0 3.07 2 
SMPSO 1 3 4 1 1 3 6 3 0 5.50 7 
DGEA 0 2 2 0 0 1 1 2 14 8.00 9 
SPEAR 0 3 5 1 7 1 2 3 0 5.18 5 

NSGAIII 0 2 4 5 4 5 1 1 0 5.18 6 
MOEAD 4 2 2 3 1 2 5 3 0 4.93 4 

RMMOPSO 10 4 5 0 0 2 1 0 0 2.84 1 

4.7. Effectiveness of the QRBL mechanism 

In order to verify the effectiveness of the proposed algorithm using the QRBL mechanism to 
initialize population, we set an experiment to compare RMMOPSO with its variant RMMOPSO_NQ, 
where RMMOPSO_NQ represents RMMOPSO without using the QRBL mechanism to initialize 
population. The parameter settings of this experiment are the same as the above experiments. 
RMMOPSO and RMMOPSO_NQ are independently run for 30 times on each of the three suits 
benchmark problems to obtain the statistical means and standard deviations (standard deviations in 
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parentheses) of the IGD indicator. The comparison results are shown in Table 9, and the best IGD 
value on each test problem is shown in bold. As can be seen from Table 9, RMMOPSO significantly 
outperforms RMMOPSO_NQ on most test problems, and obtains 17 best IGD values on a total of 22 
test problems. The above experiment verifies that the QRBL mechanism plays an important role in 
the initialization process of RMMOPSO. This is because the quasi-reflected point of a point is more 
likely to be close to the optimal solutions than the point itself. Introducing the QRBL mechanism into 
the initial population of MOPSO not only ensures randomness of the initial population of the 
algorithm, but also improves operation efficiency and optimization speed of the algorithm. 

Table 9. The IGD results of RMMOPSO and its variant RMMOPSO_NQ. 

Problem RMMOPSO_NQ RMMOPSO Problem RMMOPSO_NQ RMMOPSO 

ZDT1 
2.7118 × 10-3 

(8.74 × 10-4) 

2.4244 × 10-3 

(7.53 × 10-4) 
UF7 

6.8097 × 10-2 

(9.03 × 10-3) 

7.1205 × 10-2 

(9.59 × 10-3) 

ZDT2 
1.8708 × 10-3 

(1.30 × 10-3) 

1.3945 × 10-3 

(5.22 × 10-4) 
UF8 

3.4222 × 10-1 

(5.82 × 10-2) 

3.0972 × 10-1 

(5.52 × 10-2) 

ZDT3 
3.8673 × 10-3 

(1.32 × 10-3) 

4.5011 × 10-3 

(1.63 × 10-3) 
UF9 

1.2357 × 10-1 

(7.74 × 10-3) 

1.2163 × 10-1 

(1.68 × 10-2) 

ZDT4 
7.4147 × 100 

(4.48 × 100) 

5.1690 × 100 

(2.79 × 100) 
UF10 

2.3529 × 100 

(4.87 × 10-1) 

2.2367 × 100 

(5.26 × 10-1) 

ZDT6 
3.5416 × 10-4 

(1.73 × 10-4) 

3.6063 × 10-4 

(1.81 × 10-4) 
DTLZ1

1.9466 × 101 

(4.19 × 100) 

1.9967 × 101 

(4.27 × 100) 

UF1 
1.1255 × 10-1 

(4.20 × 10-3) 

1.1080 × 10-1 

(4.63 × 10-3) 
DTLZ2

4.1152 × 10-2 

(6.12 × 10-3) 

3.7415 × 10-2 

(4.61 × 10-3) 

UF2 
1.0385 × 10-1 

(1.10 × 10-2) 

8.2546 × 10-2 

(5.08 × 10-3) 
DTLZ3

1.8562 × 102 

(1.13 × 101) 

1.8253 × 102 

(2.05 × 101) 

UF3 
3.8276 × 10-1 

(6.32 × 10-2) 

3.6552 × 10-1 

(4.90 × 10-2) 
DTLZ4

2.6749 × 10-1 

(7.30 × 10-2) 

3.2503 × 10-1 

(1.47 × 10-1) 

UF4 
8.4892 × 10-2 

(9.80 × 10-3) 

8.2298 × 10-2 

(9.22 × 10-3) 
DTLZ5

4.3817 × 10-3 

(1.07 × 10-3) 

4.0912 × 10-3 

(1.09 × 10-3) 

UF5 
1.2948 × 100 

(3.23 × 10-1) 

1.1471 × 100 

(2.73 × 10-1) 
DTLZ6

3.8972 × 10-4 

(2.73 × 10-4) 

3.3970 × 10-4 

(1.28 × 10-4) 

UF6 
4.6394 × 10-1 

(2.93 × 10-2) 

4.6209 × 10-1 

(3.43 × 10-2) 
DTLZ7

2.7982 × 10-1 

(2.36 × 10-1) 

2.5548 × 10-1 

(2.16 × 10-1) 

Best/all 2/11 9/11 Best/all 3/11 8/11 

5. Conclusions 

In order to achieve a balance between convergence and diversity and to improve the overall 
performance of the algorithm, a multi-objective particle swarm optimization with reverse 
multi-leaders is proposed. The convergence strategy of the global ranking and the diversity strategy 
of the mean angular distance are put forward to update the convergence and diversity archives, 
respectively. Therefore, the convergence of the algorithm is improved, and the diversity of the 
population is maintained. At the same time, the global leaders are selected by the proposed reverse 
selection method, which can lead the particles to quickly fly to the true PF. In addition, the 
information fusion strategy is further applied to the update of pbest to improve the convergence of 
the algorithm. Finally, a new particle velocity updating method combines two global leaders to guide 
the flight of particles in the population. In this way, the performance of RMMOPSO is enhanced, and 
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the balance between the convergence and diversity is effectively achieved. 
In the simulation experiments, RMMOPSO is compared with selected advanced MOPSOs and 

competitive MOEAs on three suites of benchmark problems. The experimental results also verify 
that RMMOPSO has an improved comprehensive performance and can better balance the 
convergence and diversity.  
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