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Abstract: We develop a mathematical model for the transmission of brucellosis in sheep taking into
account external inputs, immunity, stage structure and other factors. We find the the basic reproduction
number R0 in terms of the model parameters, and prove the global stability of the disease-free equi-
librium. Then, the existence and global stability of the endemic equilibrium is proven. Finally, sheep
data from Yulin, China are employed to fit the model parameters for three different environmental in-
fection exposure conditions. The variability between different models in terms of control measures are
analyzed numerically. Results show that the model is sensitive to the control parameters for different
environmental infection exposure functions. This means that in practical modeling, the selection of
environmental infection exposure functions needs to be properly considered.
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1. Introduction

Brucellae are Gram-negative coccobacilli causing brucellosis, a serious chronic zoonotic infectious
disease. The World Organization for Animal Health classifies brucellosis as a notifiable infectious dis-
ease category I, and China classifies it as a category II infectious disease [1]. In China, the main sources
of the disease are cattle, sheep and pigs, with brucellosis being the most transmissible, pathogenic and
dangerous disease in sheep. Brucellae are resistant to external factors such as dryness and cold, but not
to moisture and heat, and die immediately after boiling. Commonly used disinfectants can kill brucel-
lae within a few hours [2]. Brucellosis may be transmitted directly way through the gastrointestinal
and respiratory tracts, the genitourinary tract, and infections of damaged or undamaged skin and mu-
cous membranes. There is also an indirect channel of infection through direct contact or contact with
the secretions and excretions of diseased animals [3, 4]. It is estimated that the disease is endemic in
humans and animals in more than 170 countries and territories, with more than 500,000 new cases of
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brucellosis worldwide each year [5].
Studying the spread of infectious diseases using dynamical models is an important avenue of re-

search that can provide referable advice for disease control. Of course, when building a model, it is
important to include the transmission pattern of the disease, especially the main transmission routes.
In the study of brucellosis, the indirect transmission pathway of the bacteria from the environment is
a non-negligible part of brucellosis transmission, so the exposure infection function of environmental
infection needs to be determined in the modeling analysis. A simple model of Brucella transmission
that takes into account both routes of transmission may be written as

dS
dt = A + αS − [β1g(s, I) + β2S f (W)] − dS ,
dI
dt = [β1g(s, I) + β2S f (W)] − dI,
dW
dt = kI − (δ + ηl)W,

(1.1)

where S (t), I(t),W(t) represents the susceptible flock, the infected flock, and the concentration of bac-
teria in the environment, respectively. The parameter α denotes the birth rate, A is the recruitment rate
of the flock, g(s, I) is the contact infection function between susceptible and infected sheep, f (w) is
the environmental exposure function, and d is the mortality rate of the flock per unit time. Sheep with
brucellosis spread Brucella in the environment at rate k and environmental Brucella had a mortality
rate δ. The number of disinfection per unit time is l. The efficiency of each disinfection is η.

One of the things that we are more interested in is how the environmental exposure function may be
described. Li et al. [6] proposed a dynamicak model of brucellosis in sheep consideredin the environ-
mental indirect infection. They used three common environmental exposure functions, which are also
present in the literature:

Case 1. Standard incidence: f (W) = W
N [6];

Case 2. Incidence of saturation: f (W) = W
W+ε1

[7–9];
Case 3. Incidence of mass action: f (W) = W

M [10–16].
Here, ε1 and M are scaling factors for the Brucella concentration in the environment.

In ref [6], the authors compared three forms of environmental exposure functions using real data,
and indicate the first environmental exposure function as the proper choice. The second environmental
exposure function was used by Li et al. [8] to develop a sheep-human Brucella infection model, with
particular attention to the role of ewe flocks in disease transmission. Meng et al. [12] used the third
environment exposure function to develop a multi-stage dynamic model. Sun et al. [16] used the third
environmental exposure function to develop a five-step model of brucellosis transmission based on
model (1.1), taking into account vaccination as well as latent period transmission. In fact, the third
environmental exposure function is the most used in current literature. Looking at the results obtained
so far from a dynamical point of view, the behavior of the models resulting from using the three
above environmental exposure functions is relatively similar. The existence and stability of disease-
free equilibrium and endemic equilibrium points are determined by the critical values, i.e., the basic
reproduction number R0.

The spread of brucellosis in sheep has actually some specific characteristics. Sheep are managed
as domestic animals, so there are some human factors involved, e.g., addition of new sheep, slaughter
of adult sheep, environmental disinfection and testing, trapping and killing of infected sheep, etc. In
addition, sheep brucellosis has a very obvious stage structure [17], i.e., the probability of lambs being
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infected by brucellosis in sheep is very low, while adult sheep are easily infected. Morevover, owing
to the growing demand for dairy and meat products, large scale live sheep trading and trafficking
activities are increasing. Due to lack of disease prevention awareness and lax management, some
infected sheep are introduced from outside to the original farming area and spread the disease. Based
on the presence of these factors, we here develop a model of brucellosis transmission considering stage
structure, external inputs and immune control. In order to describe environmental exposure, unlike
in other works, we take an abstract function. Our goals include to study of the transmission pattern
of brucellosis and to propose control measures, as well as to examine whether the use of different
environmental infection exposure functions has a significant effect on the selection and the strength of
the possible control measures.

This paper is structured as follows. In Section 2, we introduce our models and a unified abstract
expression for the environmental exposure function. In Section 3, the stability and persistence of the
models are investigated. In Section 4, numerical simulations of our models are performed, and the
sensitivities of the models resulting from using three different environmental exposure functions are
analyzed and compared. Finally, Section 5 closes the paper with some concluding remarks.

2. Mathematical model

Sheep are divided into four classes: susceptible young sheep S j(t), susceptible adult sheep S a(t),
immune sheep V(t) and infected sheep I(t). Let W(t) denote the density of Brucella in the environment,
S 0(t) the quantity of slaughter sheep, and f (W) the environmental infection exposure function. We also
assume that the introduction rate of external sheep per unit time is A, the birth rate of sheep is α, which
is limited by the natural mortality rate of sheep d. The probability of external introduction into the
infected flock is C, the conversion rate of lambs to adults is m, and the immune loss rate is λ. The
ratio of infection rate in adult sheep to lambs is denoted by ε, and te slaughter rate by r. Sheep with
brucellosis spread Brucella in the environment at rate k and environmental Brucella had a mortality
rate δ. The number of disinfection per unit time is l, and the efficiency of each disinfection is η. Direct
infection rate is β1, indirect infection rate is β2.

Figure 1. Transmission diagram of brucellosis.
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Some assumptions are embedded in our model:
1) Brucellosis in the exposure period is hardly detected, hence, we ignore this period in the sheep

population.
2) Once the ewes are infected with brucellosis, they will not be able to reproduce.
3) All parameters above are non-negative and 0 < α < d < 1, 0 ≤ C ≤ 1, 0 < ε, r < 1.

According to the flow chart of transmission (see Figure 1), the dynamics of brucellosis is modeled as
follows

dS j

dt = (1 −C)A + α[V(t) + S a(t)] − (d + m)S j(t) − ε{β1S j(t)I(t) + β2S j(t) f [W(t)]},
dS a
dt = mS j(t) + λV(t) − {β1S a(t)I(t) + β2S a(t) f [W(t)]} − rS a(t) − θS a(t) − dS a(t),

dI
dt = CA + ε{β1S j(t)I(t) + β2S j(t) f [W(t)]} + β1S a(t)I(t) + β2S a(t) f [W(t)] − (d + e)I(t),
dV
dt = θS a(t) − (λ + d)V(t) − rV(t),
dS 0
dt = r[V(t) + S a(t)],

dW
dt = kI(t) − (δ + ηl)W(t).

(2.1)

The non-negative functions f (W) and W are differentiable. Based on the three common forms of f (W),
we assume that the function f (W) has the following properties.

(H1) f (W) ≥ 0 with equality if and only if W = 0;
(H2) f (W) is monotone nondecreasing with W;
(H3) f (W)

W is monotone nonincreasing.

Lemma 1. Supposing all parameters are non-negative and 0 < α < d < 1, 0 ≤ C ≤ 1, 0 < ε, r < 1,
then the closed set

Ω ={(S j(t), S a(t), S 0(t), I(t),V(t),W(t))|S j(t), S a(t), S 0(t), I(t),V(t),W(t) ≥ 0, S 0(t) ≤ r
A

d − α
,

0 ≤ S j(t) + S a(t) + I(t) + V(t) ≤
A

d − α
,W(t) ≤

kA
(d − α)(δ + ηl)

}.
(2.2)

is a positive invariant set of the model (2.1) if system (2.1) satisfied initial conditions S j(0) > 0,
S a(0) > 0, S 0(0) > 0, I(0) > 0, V(0) > 0, W(0) > 0.

Proof. Let N(t) = S j(t) + S a(t) + I(t) + V(t), it is easy to obtain

dN
dt
≤ A + α[V(t) + S a(t)] − dN(t) − eI(t) ≤ A − (d − α)N(t),

then we have

lim
t→∞

supN(t) ≤
A

d − α
. (2.3)

Hence, we have that S a(t),V(t) are bounded. Suppose 0 < V(t) + S a(t) ≤ M0 ≤
A

d−α , then we have

dS 0

dt
= r[S a(t) + V(t)] ≤ rM0.
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It follows that there is a sufficiently large T such that the following expression holds when t ≥ T > 0:

0 ≤ S 0(t) ≤ rM0 − [rM0 − S 0(T )]e−(t−T ),

then, when t → ∞, we get

lim
t→∞

supS 0(t) ≤ rM0 ≤ r
A

d − α
. (2.4)

According to the last equation of model (2.1), we have

dW
dt

= kI(t) − (δ + ηl)W(t) ≤ k
A

d − α
− (δ + ηl)W(t),

then we have

lim
t→∞

supW(t) ≤
kA

(d − α)(δ + ηl)
. (2.5)

By (2.3)–(2.5), we arrive at (2.2), i.e., the solutions of model (2.1) are non-negative for all time t > 0
and all solutions are uniformly bounded. The region Ω is a positive invariant. The proof is completed.

3. Dynamical behavior of virus transmission

In fact, according to the formulation of model (2.1), it can be seen that S 0 is not related to the rest
of the variables. We may consider the following equivalent model to describe the dynamics of disease
transmission:

dS j

dt = (1 −C)A + α[V(t) + S a(t)] − (d + m)S j(t) − ε{β1S j(t)I(t) + β2S j(t) f [W(t)]},
dS a
dt = mS j(t) + λV(t) − {β1S a(t)I(t) + β2S a(t) f [W(t)]} − rS a(t) − θS a(t) − dS a(t),

dI
dt = CA + ε{β1S j(t)I(t) + β2S j(t) f [W(t)]} + β1S a(t)I(t) + β2S a(t) f [W(t)] − (d + e)I(t),
dV
dt = θS a(t) − (λ + d)V(t) − rV(t),
dW
dt = kI(t) − (δ + ηl)W(t).

(3.1)

3.1. Basic reproduction number and disease-free equilibrium

If C = 0, it is easy to get the disease-free equilibrium (DFE) E0 = (S 0
j , S

0
a, 0,V

0, 0), from the
equations 

A + α[V(t) + S a(t)] − (d + m)S j(t) − εβ2S j(t) f (0) = 0,
mS j(t) + λV(t) − β2S a(t) f (0) − rS a(t) − θS a(t) − dS a(t) = 0,
θS a(t) − (λ + d)V(t) − rV(t) = 0.

(3.2)

In particular, we have the following theorem

Theorem 2. If C = 0 and 0 < α < d < 1, the model (3.1) has one disease-free equilibrium E0 =

(S 0
j , S

0
a, 0,V

0, 0), where

S 0
j =

A(d + r)
d2 + (d − α)m + r(d + m)

,
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S 0
a =

Am(λ + d + r)
[d2 + (d − α)m + r(d + m)](d + r + λ + θ)

, (3.3)

V0 =
Amθ

[d2 + (d − α)m + r(d + m)](d + r + λ + θ)
.

We derive the basic reproduction number of system (3.1) using the next generation matrix method
formulated by Diekmann et al. [18, 19]. We order the infection variables first by disease state, only
needing the vector X(t) = (I(t),W(t))T . Then, considering the following auxiliary system: dI

dt = ε[β1S j(t)I(t) + β2S j(t) f (W(t))] + β1S a(t)I(t) + β2S a(t) f (W(t)) − (d + e)I(t),
dW
dt = kI(t) − (δ + ηl)W(t).

(3.4)

According to the recipe of van den Driessche and James, the Watmough [20] matrices F and V are
given by

F =

(
εβ1S 0

j + β1S 0
a εβ2S 0

j f
′

(0) + β2S 0
a f
′

(0)
0 0

)
, V =

(
d + e 0
−k δ + ηl

)
. (3.5)

Here f
′

(0) is the derivative of f (W(t)) with respect to W(t) at disease-free equilibrium. The basic
reproduction number is defined as the spectral radius of the nonnegative matrix FV−1 which is given
by

FV−1 =

 εβ1S 0
j +β1S 0

a

d+e +
k[εβ2S 0

j f
′
(0)+β2S 0

a f
′
(0)]

(d+e)(δ+ηl)

εβ2S 0
j f
′
(0)+β2S 0

a f
′
(0)

δ+ηl

0 0

 . (3.6)

Therefore

R0 = ρ(FV−1) =
εβ1S 0

j + β1S 0
a

d + e
+

k[εβ2S 0
j f
′

(0) + β2S 0
a f
′

(0)]

(d + e)(δ + ηl)
= Ri

0 + Re
0. (3.7)

where Ri
0 =

εβ1S 0
j +β1S 0

a

d+e and Re
0 =

k[εβ2S 0
j f
′
(0)+β2S 0

a f
′
(0)]

(d+e)(δ+ηl) are the partial reproduction numbers due to
environment-to-individual and individual-to-individual transmission, respectively.
Notice that

S 0
a =

m(λ + d + r)
(r + d)(d + r + λ + θ)

S 0
j , q1S 0

j . (3.8)

and thus R0 can be written as

R0 = (ε + q1)S 0
j

β1 + k
(δ+ηl)β2 f

′

(0)

(d + e)
. (3.9)

If we now insert the expression S 0
j =

A(d+r)
d2+(d−α)m+r(d+m) in the above equation, we arrive at

R0 =
Am(λ + d + r) + εA[(λ + d + r)(θ + d + r) − θλ]

(d + m)[(λ + d + r)(θ + d + r) − θλ] − mα(d + r + λ + θ)

β1 + k
(δ+ηl)β2 f

′

(0)

(d + e)
. (3.10)
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3.2. Stability of disease-free equilibrium

Theorem 3. If the assumptions (H1)–(H3), 0 < α < d < 1 and C = 0, then the disease-free equilibrium
of model (3.1) is globally asymptotically stable in the region Ω if R0 < 1 and unstable if R0 > 1.

Proof. By using assumptions (H1) and (H3), we have

f (W)
W
≤ lim

W→0

f (W)
W

= lim
W→0

f (W) − f (0)
W − 0

= f
′

(0). (3.11)

Thus by (3.11), we have f
′

(0)W ≥ f (W). Hence, for model (3.4), denoting X(t) = (I(t),W(t))T , it is
easy to prove that

dX
dt
≤ (F − V)X(t). (3.12)

Let b ≥ 0 be the left eigenvector of the nonnegative matrix V−1F, which satisfies bV−1F = R0bT , and
define the Lyapunov function L = bT V−1X(t). Taking derivative of L and use (3.3) we arrive at

dL
dt

= bT V−1 dX
dt
≤ bT V−1(F − V)X(t) = bT V−1FX(t) − bT X(t) ≤ (R0 − 1)bT X(t). (3.13)

Then dL
dt ≤ 0 fpr R0 < 1. Let Ω∗ = {(S j(t), S a(t), I(t),V(t),W(t)) ∈ X(t)| dL

dt = 0}, we have dL
dt = 0 if

R0 = 1. This implies that X(t) = 0, i.e., I(t) = 0,W(t) = 0. Therefore, the largest invariant set of Ω∗ is
the singleton E0. According to LaSalle’s invariance principle [21], E0 is globally asymptotically stable
in the region Ω.

Obviously, if R0 > 1 and X(t) > 0, then (R0 − 1)bT X(t) > 0. In this case, there must exist a small
enough neighborhood of E0 in which dL

dt > 0 holds. Therefore, E0 is unstable. The proof is completed.

3.3. Endemic equilibrium points

Theorem 4. If the assumptions (H1)–(H3) and 0 < α < d < 1 hold,
(a) if 0 < C < 1, the model (3.1) has a unique endemic equilibrium E∗ = (S ∗j , S

∗
a, I
∗,V∗,W∗);

(b) if C = 0 and R0 > 1, the model (3.1) has a unique endemic equilibrium E∗ = (S ∗j , S
∗
a, I
∗,V∗,W∗);

(c) if C = 0 and R0 ≤ 1, the model (3.1) has no endemic equilibrium.
(d) if C = 1, the model (3.1) has a boundary point (0, 0, A

d+e , 0,
Ak

(d+e)(δ+ηl) ), and has no endemic
equilibrium E∗.

Proof. The endemic equilibrium of model (3.1) satisfies the following equilibrium equations:

(1 −C)A = −α(V∗ + S ∗a) + (d + m)S ∗j + ε[β1S ∗j I
∗ + β2S ∗j f (W∗)],

mS ∗j + λV∗ = [β1S ∗aI∗ + β2S ∗a f (W∗)] + θS ∗a + dS ∗a + rS ∗a,

(d + e)I∗ = CA + ε[β1S ∗j I + β2S ∗j f (W∗)] + β1S ∗aI + β2S ∗a f (W∗),
θS ∗a = (λ + d + r)V∗,
kI∗ = (δ + ηl)W∗.

(3.14)

Thus, we have

W∗ =
k

δ + ηl
I∗,
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V∗ =
Am(1 −C)θ

Q
,

S ∗a =
Am(1 −C)(λ + d + r)

Q
,

S ∗j =
A(1 −C)(λ + d + r)[d + θ + r − λθ

λ+d+r + β1I∗ + β2 f (W∗)]
Q

, (3.15)

where

Q = (λ + d + r){d + m + ε[β1I∗ + β2 f (W∗)]}[d + θ + r −
λθ

λ + d + r
+ β1I∗ + β2 f (W∗)]

− mα(λ + d + r + θ).
(3.16)

From the third equation of (3.14) and Eq (3.15), we also obtain that S ∗a should satisfy

S ∗a =
−CA + (d + e)I∗

β1I∗ + β2 f (W∗)
−
εA(1 −C){(λ + d + r)[θ + d + r + β1I∗ + β2 f (W∗)] − λθ}

Q
. (3.17)

Assuming I as the independent variable and S a as the dependent variable, we may write the two
following functional expressions

S a =
Am(1 −C)(λ + d + r)

Q
, F1(I), (3.18)

S a =
−CA + (d + e)I

H(I)
−
εA(1 −C){(λ + d + r)[θ + d + r + H(I)] − λθ}

Q
, F2(I). (3.19)

where H(I) = β1I + β2 f (W) = β1I + β2 f ( kI
δ+ηl ). Since f (W) is a monotonic function of W, H(I) is an

increasing function. Moreover

F
′

1(I) =
−Am(1 −C)(λ + d + r)2H

′

(I)H(I)ε(λ + d + r)
Q2

+
−Am(1 −C)(λ + d + r)H

′

(I)[ε(d + r)(λ + d + r + θ) + (d + m)(λ + d + r)]
Q2 .

(3.20)

It is now clear that F
′

1(I) < 0 for all I ∈ Γ. In other words, F1(I) decreases monotonically in Γ.
The derivative of F2(I) is

F
′

2(I) =
CAH

′

(I) + (d + e)H(I) − (d + e)IH
′

(I)
H2(I)

+
ε(1 −C)A[mα(λ + r + d)(λ + r + d + θ)H

′

(I)]
Q2

+
ε(1 −C)A{εH

′

(I)[(λ + r + d)(θ + d + r + H(I)) − λθ]2}

Q2 .

(3.21)
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By noticing that

(d + e)H(I) − (d + e)IH
′

(I)

=(d + e)[β1I + β2 f (W)] − (d + e)I[β1 + β2 f
′

(
kI

δ + ηl
)

k
δ + ηl

]

=(d + e)β2[ f (W) − I f
′

(
kI

δ + ηl
)

k
δ + ηl

].

(3.22)

and ( f (W)
I )

′

≤ 0, ( I
f (W) )

′

=
f (W)−I f

′
( kI
δ+ηl )

k
δ+ηl

f 2(W) ≥ 0 for all I ∈ Γ, we have that F
′

2(I) > 0.
Let

G(I) = F1(I) − F2(I). (3.23)

This means that

G(I) =
CA − (d + e)I

H(I)

+
Am(1 −C)(λ + d + r) + εA(1 −C){(λ + d + r)[θ + d + r + H(I)] − λθ}

Q
.

(3.24)

Thus, we have G
′

(I) = F
′

1(I) − F
′

2(I) < 0. G(I) is a monotonically decreasing function when
0 < I < A

d−α . If the function G(I) has a zero point, it must be unique. This means that if model (3.1)
has a positive equilibrium point, it must be unique. Let us now address the value of the G function at
G( A

d+e ) and G(0+). First we consider G( A
d+e ),

G(
A

d + e
) =

(C − 1)A
H(I)

+
Am(1 −C)(λ + d + r) + εA(1 −C){(λ + d + r)[θ + d + r + H(I)] − λθ}

Q
.

(3.25)

Next, consider G( A
d+e ) as a function on C, say J(C). Then J(1) = 0, and

J
′

(C) =
−Am(λ + d + r) − εA{(λ + d + r)[θ + d + r + H(I)] − λθ}

Q
+

A
H(I)

=
P

[d + m + εH(I)]{(λ + d + r)[H(I) + d + θ + r] − λθ} − mα(λ + d + r + θ)
1

H(I)
.

(3.26)

where

P = A[d + m + εH(I)]{(λ + d + r)[H(I) + d + θ + r] − λθ} − mAα(λ + d + r + θ)
− Am(λ + d + r)H(I) − εA{(λ + d + r)[θ + d + r + H(I)] − λθ}H(I)
= A(d + m){(λ + d + r)[H(I) + d + θ + r] − λθ
− Amα(λ + d + r + θ) − Am(λ + d + r)H(I)
= Am(λ + d + r)[d − α + H(I) − H(I)] + Am{(λ + d + r)(θ + r) − λθ − αθ}
+ Ad{(λ + d + r)[H(I) + d + θ + r] − λθ}.

(3.27)
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Since d > α, we havet p > 0, i.e., J
′

(C) > 0. If 0 ≤ C < 1, J(C) < J(1) = 0 always holds. Therefore
G( A

d+e ) < 0. When C = 1, G( A
d+e ) = 0.

Let us now focus on the sign of G(0). There are three cases: 0 < C < 1, C = 1 and C = 0.
Case1 0 < C < 1. Noticing that H(0) = 0, we have I → 0, G(0) → +∞, i.e., ∃δ1 > 0 s.t. as

I ∈ (0, δ1), G(I) > 0 holds. The function G(I) has a unique zero point between 0 and A
d+e .

Case2 C = 1. G( A
d+e ) = 0, and G(I) is a monotonically decreasing function when 0 < I < A

d−α .
The function G(I) has thus a unique zero point at I = A

d+e , and model (3.1) has only one boundary
equilibrium point (0, 0, A

d+e , 0,
Ak

(d+e)(δ+ηl) ).
Case3 C = 0. We have

lim
I→0

G(I) =
Am(λ + d + r) + εA{(λ + d + r)[θ + d + r] − λθ}

[d + m]{(λ + d + r)[d + θ + r] − λθ} − mα(λ + d + r + θ)
+ lim

I→0

−(d + e)I
H(I)

.

Since
lim
I→0

−(d + e)I
H(I)

= lim
I→0

−(d + e)
β1 + β2 f ′(W) k

δ+ηl

=
−(d + e)

β1 + β2 f ′(0) k
δ+ηl

,

lim
I→0

G(I) =
Am(λ + d + r) + εA{(λ + d + r)[θ + d + r] − λθ}

[d + m]{(λ + d + r)[d + θ + r] − λθ} − mα(λ + d + r + θ)
+

−(d + e)
β1 + β2 f ′(0) k

δ+ηl

=
d + e

β1 + β2 f ′(0) k
δ+ηl

(R0 − 1).
(3.28)

Thus G(0+) > 0 if and only if R0 > 1. The function G(I) has a unique zero point between 0 and A
d+e

if R0 > 1. When R0 = 1 or R0 < 1, there are no zero points for G(I). The proof is completed.

Remark. From the above proof, it can be seen that the model (3.1) does not have a disease-free equi-
librium point when 0 < C ≤ 1. When C = 0, the disease-free equilibrium point exists if and only if
R0 ≤ 1. When C = 1, the model (3.1) has only one boundary equilibrium point.

Next we prove the global stability of the endemic equilibrium point. For the sake of convenience,
we omit the t-dependence and use S j, S a, I, V , W to denote S j(t), S a(t), I(t), V(t), W(t). The following
lemma will be useful later.

Lemma 5. [22] Supposing that assumptions (H1)–(H3) hold,

F(W) = φ(
f (W)
f (W∗)

− φ(
W
W∗

) ≤ 0,

where φ is defined by φ(x) = x − 1 − ln(x).

Theorem 6. Assuming (H1)–(H3) and 0 < α < d < 1, the endemic equilibrium E∗ of system (3.1) is
globally asymptotically stable if any one of the following conditions holds: (a) 0 < C < 1; (b) C = 0
and R0 > 1.

Proof. For model (3.1), we construct the following Lyapunov function:

L =b1(S j − S ∗j + S ∗j ln
S j

S ∗j
) + b2(S a − S ∗a + S ∗a ln

S a

S ∗a
) + b3(I − I∗ + I∗ ln

I
I∗

)

+ b4(V − V∗ + V∗ ln
V
V∗

) + b5(W −W∗ + W∗ ln
W
W∗

),
(3.29)
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where

b1 = b2 = b3 = 1, b4 = b′4 + b′′4 =
λV∗

θS ∗a
b2 +

dV∗

θS ∗a
b2,

b5 = b′5 + b′′5 =
1

kI∗
[b1εβ2S ∗j f (W∗) + b2β2S ∗a f (W∗)].

(3.30)

The derivative of L, according to (3.7), is

dL
dt

=
dS j

dt
(1 −

S ∗j
S j

) +
dS a

dt
(1 −

S ∗a
S a

) +
dI
dt

(1 −
I∗

I
) + b4

dV
dt

(1 −
V∗

V
) + b5

dW
dt

(1 −
W∗

W
). (3.31)

Moreover, we have that:

dS j

dt
(1 −

S ∗j
S j

) =(d + m)S ∗j(1 −
S j

S ∗j
)(1 −

S ∗j
S j

)

+εβ1I∗S ∗j(1 −
S jI
S ∗j I∗

)(1 −
S ∗j
S j

) + εβ2S ∗j f (W∗)(1 −
S j f (W)
S ∗j f (W∗)

)(1 −
S ∗j
S j

)

+αS ∗a(
S a

S ∗a
− 1)(1 −

S ∗j
S j

) + αV∗(
V
V∗
− 1)(1 −

S ∗j
S j

).

(3.32)

dS a

dt
(1 −

S ∗a
S a

) =(r + θ + d)S ∗a(1 −
S a

S ∗a
)(1 −

S ∗a
S a

)

+β1I∗S ∗a(1 −
S aI
S ∗aI∗

)(1 −
S ∗a
S a

) + β2S ∗a f (W∗)(1 −
S a f (W)
S ∗a f (W∗)

)(1 −
S ∗a
S a

)

+mS ∗j(
S j

S ∗j
− 1)(1 −

S ∗a
S a

) + λV∗(
V
V∗
− 1)(1 −

S ∗a
S a

).

(3.33)

dI
dt

(1 −
I∗

I
) =CA(1 −

I
I∗

)(1 −
I∗

I
)

+εβ1S ∗j I
∗(

S jI
S ∗j I∗

−
I
I∗

)(1 −
I∗

I
) + εβ2S ∗j f (W∗)(

S j f (W)
S ∗j f (W∗)

−
I
I∗

)(1 −
I∗

I
)

+β1S ∗aI∗(
S aI
S ∗aI∗

−
I
I∗

)(1 −
I∗

I
) + β2S ∗a f (W∗)(

S a f (W)
S ∗a f (W∗)

−
I
I∗

)(1 −
I∗

I
).

(3.34)

b4
dV
dt

(1 −
V∗

V
) = b4θS ∗a(

S a

S ∗a
−

V
V∗
−

S aV
S ∗aV∗

+ 1)

= λV∗(
S a

S ∗a
−

V
V∗
−

S aV
S ∗aV∗

+ 1) + dV∗(
S a

S ∗a
−

V
V∗
−

S aV
S ∗aV∗

+ 1).

(3.35)

b5
dW
dt

(1 −
W∗

W
) = b5kI∗(

I
I∗
−

W
W∗
−

W∗I
WI∗

+ 1) = (b
′

5 + b
′′

5)kI∗(
I
I∗
−

W
W∗
−

W∗I
WI∗

+ 1).
(3.36)
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Let us now introduce the quantities

A1 = εβ1S ∗j I
∗(1 −

S jI
S ∗j I∗

)(1 −
S ∗j
S j

) + εβ2S ∗j f (W∗)(1 −
S j f (W)
S ∗j f (W∗)

)(1 −
S ∗j
S j

)

+ εβ1S ∗j I
∗(

S jI
S ∗j I∗

−
I
I∗

)(1 −
I∗

I
) + εβ2S ∗j f (W∗)(

S j f (W)
S ∗j f (W∗)

−
I
I∗

)(1 −
I∗

I
)

= εβ1S ∗j I
∗(2 −

S ∗j
S j
−

S j

S ∗j
) + εβ2S ∗j f (W∗)(2 −

S ∗j
S j
−

I
I∗
−

S jI∗ f (W)
S ∗j I f (W∗)

−
S j f (W)
S ∗j f (W∗)

+
f (W)
f (W∗)

)

≤ εβ1S ∗j I
∗(2 −

S ∗j
S j
−

S j

S ∗j
) + εβ2S ∗j f (W∗)(

f (W)
f (W∗)

− ln
f (W)
f (W∗)

−
I
I∗

+ ln
I
I∗

)

≤ εβ2S ∗j f (W∗)(
f (W)
f (W∗)

− ln
f (W)
f (W∗)

−
I
I∗

+ ln
I
I∗

).

(3.37)

A2 = β1I∗S ∗a(1 −
S aI
S ∗aI∗

)(1 −
S ∗a
S a

) + β2S ∗a f (W∗)(1 −
S a f (W)
S ∗a f (W∗)

)(1 −
S ∗a
S a

)

+ β1S ∗aI∗(
S aI
S ∗aI∗

−
I
I∗

)(1 −
I∗

I
) + β2S ∗a f (W∗)(

S a f (W)
S ∗a f (W∗)

−
I
I∗

)(1 −
I∗

I
)

= β1I∗S ∗a(2 −
S ∗a
S a
−

S a

S ∗a
) + β2S ∗a f (W∗)(2 −

S ∗a
S a
−

I
I∗
−

S aI∗ f (W)
S ∗aI f (W∗)

−
S a f (W)
S ∗a f (W∗)

+
f (W)
f (W∗)

)

, β1I∗S ∗a(2 −
S ∗a
S a
−

S a

S ∗a
) + B.

(3.38)

A3 = λV∗(
V
V∗
− 1)(1 −

S ∗a
S a

) + (r + θ)S ∗a(1 −
S a

S ∗a
)(1 −

S ∗a
S a

) + λV∗(
S a

S ∗a
−

V
V∗
−

S aV
S ∗aV∗

+ 1)

= λV∗(2 −
S aV∗

S ∗aV
−

S ∗aV
S aV∗

) + [(r + θ)S ∗a − λV∗](2 −
S a

S ∗a
−

S ∗a
S a

)

≤ [(r + θ)S ∗a − λV∗](2 −
S a

S ∗a
−

S ∗a
S a

).

(3.39)

A4 = mS ∗j(
S j

S ∗j
− 1)(1 −

S ∗a
S a

) + mS ∗j(1 −
S j

S ∗j
)(1 −

S ∗j
S j

) = mS ∗j(1 −
S ∗j
S j
−

S jS ∗a
S aS ∗j

+
S ∗a
S a

)

= [(r + θ + d)S ∗a − λV∗ + β1S ∗aI∗ + β2S ∗a f (W∗)](1 −
S ∗j
S j
−

S jS ∗a
S aS ∗j

+
S ∗a
S a

)

= [(r + d)S ∗a + (d + r)V∗ + β1S ∗aI∗ + β2S ∗a f (W∗)](1 −
S ∗j
S j
−

S jS ∗a
S aS ∗j

+
S ∗a
S a

).

(3.40)

A5 = dS ∗j(1 −
S j

S ∗j
)(1 −

S ∗j
S j

) + CA(1 −
I
I∗

)(1 −
I∗

I
) = dS ∗j(2 −

S j

S ∗j
−

S ∗j
S j

) + CA(2 −
I
I∗
−

I∗

I
)

≤ 0,
(3.41)
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which allow us to rewrite the derivative as

dL
dt

= A1 + A2 + A3 + A4 + A5

+ dS ∗a(1 −
S a

S ∗a
)(1 −

S ∗a
S a

) + αS ∗a(
S a

S ∗a
− 1)(1 −

S ∗j
S j

) + αV∗(
V
V∗
− 1)(1 −

S ∗j
S j

)

+ dV∗(
S a

S ∗a
−

V
V∗
−

S aV
S ∗aV∗

+ 1) + b5kI∗(
I
I∗
−

W
W∗
−

W∗I
WI∗

+ 1)

≤ A1 + B + β1I∗S ∗a(2 −
S ∗a
S a
−

S a

S ∗a
) + [(r + θ)S ∗a − λV∗](2 −

S a

S ∗a
−

S ∗a
S a

)

+ [(r + θ + d)S ∗a − λV∗ + β1S ∗aI∗ + β2S ∗a f (W∗)](1 −
S ∗j
S j
−

S jS ∗a
S aS ∗j

+
S ∗a
S a

)

+ b5kI∗(
I
I∗
− ln

I
I∗

+ ln
W
W∗
−

W
W∗

)

+ dS ∗a(1 −
S a

S ∗a
)(1 −

S ∗a
S a

) + αS ∗a(
S a

S ∗a
− 1)(1 −

S ∗j
S j

) + αV∗(
V
V∗
− 1)(1 −

S ∗j
S j

)

+ dV∗(
S a

S ∗a
−

V
V∗
−

S aV
S ∗aV∗

+ 1)

= A1 + B + (3 −
S a

S ∗a
−

S ∗j
S j
−

S jS ∗a
S aS ∗j

)[(d + r)S ∗a + (d + r)V∗ + β1S ∗aI∗]

+ β2S ∗a f (W∗)(1 −
S ∗j
S j
−

S jS ∗a
S aS ∗j

+
S ∗a
S a

) + b5kI∗(
I
I∗
− ln

I
I∗

+ ln
W
W∗
−

W
W∗

)

+ αS ∗a(
S a

S ∗a
− 1)(1 −

S ∗j
S j

) + αV∗(
V
V∗
− 1)(1 −

S ∗j
S j

)

+ dV∗(
S a

S ∗a
−

V
V∗
−

S aV
S ∗aV∗

+ 1)

≤ A1 + b5kI∗(
I
I∗
− ln

I
I∗

+ ln
W
W∗
−

W
W∗

) + B + β2S ∗a f (W∗)(1 −
S ∗j
S j
−

S jS ∗a
S aS ∗j

+
S ∗a
S a

)

+ (3 −
S a

S ∗a
−

S ∗j
S j
−

S jS ∗a
S aS ∗j

)(dS ∗a + dV∗) + αS ∗a(
S a

S ∗a
− 1)(1 −

S ∗j
S j

) + αV∗(
V
V∗
− 1)(1 −

S ∗j
S j

)

+ dV∗(
S a

S ∗a
−

V
V∗
−

S aV
S ∗aV∗

+ 1).

(3.42)

Noticing that

B + β2S ∗a f (W∗)(1 −
S ∗j
S j
−

S jS ∗a
S aS ∗j

+
S ∗a
S a

)

= β2S ∗a f (W∗)(3 −
I
I∗
−

S aI∗ f (W)
S ∗aI f (W∗)

−
S a f (W)
S ∗a f (W∗)

−
S ∗j
S j
−

S ∗aS j

S aS ∗j
+

f (W)
f (W∗)

)

≤ β2S ∗a f (W∗)(
f (W)
f (W∗)

− ln
f (W)
f (W∗)

−
I
I∗

+ ln
I
I∗

).

(3.43)
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and

d(3 −
S a

S ∗a
−

S ∗j
S j
−

S jS ∗a
S aS ∗j

)(S ∗a + V∗) + αS ∗a(
S a

S ∗a
− 1)(1 −

S ∗j
S j

) + αV∗(
V
V∗
− 1)(1 −

S ∗j
S j

)

+ dV∗(
S a

S ∗a
−

V
V∗
−

S aV
S ∗aV∗

+ 1)

= (d − α)S ∗a(3 −
S a

S ∗a
−

S ∗j
S j
−

S jS ∗a
S aS ∗j

) + αS ∗a(2 −
S aS ∗j
S ∗aS j

−
S jS ∗a
S aS ∗j

)

+ dV∗(4 −
V
V∗
−

S aV∗

S ∗aV
−

S ∗j
S j
−

S jS ∗a
S ∗jS a

) + αV∗(
V
V∗
− 1)(1 −

S ∗j
S j

)

= (d − α)S ∗a(3 −
S a

S ∗a
−

S ∗j
S j
−

S jS ∗a
S aS ∗j

) + αS ∗a(2 −
S aS ∗j
S ∗aS j

−
S jS ∗a
S aS ∗j

)

+ (d − α)V∗(4 −
V
V∗
−

S aV∗

S ∗aV
−

S ∗j
S j
−

S jS ∗a
S ∗jS a

) + αV∗(3 −
S aV∗

S ∗aV
−

S jS ∗a
S aS ∗j

−
VS ∗j
V∗S ∗j

) ≤ 0.

(3.44)

Then, we have

dL
dt
≤ εβ2S ∗j f (W∗)(

f (W)
f (W∗)

− ln
f (W)
f (W∗)

−
I
I∗

+ ln
I
I∗

) + b
′

5kI∗(
I
I∗
− ln

I
I∗

+ ln
W
W∗
−

W
W∗

)

+β2S ∗a f (W∗)(
f (W)
f (W∗)

− ln
f (W)
f (W∗)

−
I
I∗

+ ln
I
I∗

) + b
′′

5kI∗(
I
I∗
− ln

I
I∗

+ ln
W
W∗
−

W
W∗

)

=εβ2S ∗j f (W∗)(
f (W)
f (W∗)

− ln
f (W)
f (W∗)

−
I
I∗

+ ln
I
I∗

) + εβ2S ∗j f (W∗)kI∗(
I
I∗
− ln

I
I∗

+ ln
W
W∗
−

W
W∗

)

+β2S ∗a f (W∗)(
f (W)
f (W∗)

− ln
f (W)
f (W∗)

−
I
I∗

+ ln
I
I∗

) + β2S ∗a f (W∗)kI∗(
I
I∗
− ln

I
I∗

+ ln
W
W∗
−

W
W∗

)

=εβ2S ∗j f (W∗)(
f (W)
f (W∗)

− ln
f (W)
f (W∗)

+ ln
W
W∗
−

W
W∗

) + β2S ∗a f (W∗)(
f (W)
f (W∗)

− ln
f (W)
f (W∗)

+ ln
W
W∗
−

W
W∗

)

=[εβ2S ∗j f (W∗) + β2S ∗a f (W∗)](
f (W)
f (W∗)

− ln
f (W)
f (W∗)

+ ln
W
W∗
−

W
W∗

)

=[εβ2S ∗j f (W∗) + β2S ∗a f (W∗)][Φ(
f (W)
f (W∗)

) − Φ(
W
W∗

)].

(3.45)
According to Lemma 5, we have dL

dt ≤ 0. On the other hand dL
dt = 0 holds if and only if

(S j, S a, I,V,W) = (S ∗j , S
∗
a, I
∗,V∗,W∗). From Lyapunov’s Direct Method, one concludes that E∗ =

(S ∗j , S
∗
a, I
∗,V∗,W∗) is globally asymptotically stable if it exists. The proof is completed.

Remark. From the above theorem, it can be seen that endemic equilibrum is globally asymptotically
stable iff it exist.

Theorem 7. Supposing that assumptions (H1)–(H3), 0 < α < d < 1 and C = 1 hold, the boundary
equilibrium point E1 = (0, 0, A

d+e , 0,
Ak

(d+e)(δ+ηl) ) of system (3.1) is globally asymptotically stable.

Proof. For model (3.1), we construct the following Lyapunov function:

L1 = a1S j + a2S a + a3(I − I1 + I1 ln
I
I1

) + a4V + a5(W −W1 + W1 ln
W
W1

), (3.46)
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where

a1 = a2 = a3 = a4, a5 =
A

kI1
a3. (3.47)

The derivative of L1 along model is

dL1

dt
= a1

dS j

dt
+ a2

dS a

dt
+ a3

dI
dt

(1 −
I1

I
) + a4

dV
dt

+ a5
dW
dt

(1 −
W1

W
). (3.48)

Moreover, we have that

a1
dS j

dt
= a1{α(V + S a) − (d + m)S j − ε[β1S jI + β2S j f (W)]},

a2
dS a

dt
= a2{mS j + λV − [β1S aI + β2S a f (W)] − (r + θ + d)S a},

a3
dI
dt

(1 −
I1

I
) = a3(1 −

I1

I
){A + ε[β1S jI + β2S j f (W)] + β1S aI + β2S a f (W) − dI − eI},

= a3(1 −
I1

I
){ε[β1S jI + β2S j f (W)] + β1S aI + β2S a f (W)} + a3A(1 −

I1

I
)(1 −

I
I1

),

a4
dV
dt

= a4[θS a − (λ + d + r)V],

a5
dW
dt

(1 −
W1

W
) = a5(1 −

W1

W
)[kI − (δ + ηl)W] = a5kI1(

I
I1
−

W
W1
−

W1I
WI1

+ 1).

(3.49)

Thus

dL1

dt
= a1αV + a1αS a − a1(d + m)S j − a1εβ1S jI − a1εβ2S j f (W)

+ a2mS j + a2λV − a2β1S aI − a2β2S a f (W) − (r + θ + d)a2S a

+ a3εβ1S jI + a3εβ2S j f (W) + a3β1S aI + a3β2S a f (W)

− a3εβ1S jI1 − a3β1S aI1 − a3
I1

I
[εβ2S j f (W) + β2S a f (W)]

+ a4θS a − a4(λ + d + r)V + Aa3(2 −
I
I1
−

I1

I
) + a5kI1(

I
I1
−

W
W1
−

W1I
WI1

+ 1)

= [a1α − (r + θ + d)a2 + a4θ − a3β1I1]S a + [a1α + a2λ − a4(λ + d + r)]V
+ [−a1(d + m) + a2m − a3εβ1I1]S j + β1S aI(−a2 + a3) + β2S a f (W)(−a2 + a3)

+ εβ1S jI(−a1 + a3) + εβ2S j f (W)(−a1 + a3) − a3β2S j f (W)
I
I1
− a3β2S a f (W)

I
I1

+ Aa3(2 −
I
I1
−

I1

I
) + a5kI1(

I
I1
−

W
W1
−

W1I
WI1

+ 1)

≤ Aa3(3 −
I1

I
−

W
W1
−

W1I
WI1

) ≤ 0.

(3.50)

We get dL
dt ≤ 0. And dL

dt = 0 holds if and only if I = I1, W = W1. From Lyapunovs Direct Method, the
boundary equilibrium point E1 is globally asymptotically stable if it exists. The proof is completed.
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4. Numerical results

In this section, we first study the dynamics of the model using the value of parameters from refer-
ences [6,12] as well as hypothetical data. We then fit the model to real data provided by our collabora-
tors about sheep infections in the Yulin region of China from 2005 to 2014. Finally, we perform some
numerical analysis to assess the effects of the control measures using different environmental infection
functions.

4.1. Dynamics of the model

Taking f (W) = W
N as an example, the parameters are selected as in Table 1. In this paper all the pa-

rameters are measured in years,in addition to environmental disinfection frequency units is times/year.

Table 1. Values of parameters.

Parameter Range Value Origin

α 0–0.015 0.015 assumption
m 0–2 1.06 [19]
d 0–1 0.25 [20]
ε 0–1 0.4 assumption
e 0.2–0.3 0.25 [20]
λ 0–1 0.4 [10]
θ 0.05–0.15 0.1 [10]
k 10–20 16 [20]
δ 0–0.9 0.6 [10]
η 0.5–0.75 0.6 [10]
l 1–4 2 assumption
r 0–1 0.0328 assumption

We assume that the initial values are S j(0) = 1860, S a(0) = 1845, I(0) = 110, V(0) = 1185, W(0) = 50
and the exposure infection rates are given by β1 = 0.000038, β2 = 0.0000135.

Example 1: Let C = 0, A = 3000, e = 0.25, then R0 = 0.7455 < 1. Figure 2 shows that the
disease-free equilibrium point of the model is globally asymptotically stable.

Example 2: Let C = 0, A = 3000, e = 0.05, then R0 = 1.24244 > 1. The presence and stability of
the positive equilibrium point in Figure 3 can be observed.

Example 3: Let C = 0.03, at this point, the endemic equilibrium point is always present and globally
stable, which is independent of whether R0 is larger than one or not.
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(A) Disease-free equilibrium is stable when C = 0, R0 < 1. (B) Endemic equilibrium is stable when C = 0, R0 > 1.

(C) Endemic equilibrium is stable when C = 0.03, R0 < 1. (D) Endemic equilibrium is stable when C = 0.03, R0 > 1.

Figure 2. Dynamic behavior of model (3.1).

4.2. Data fitting

In order to simulate real-world situations, one set a specific environmental exposure function. The
results of the previous Sections show that the three commonly used environmental exposure functions
lead to consistent results for the dynamics of the model. A question however arises abut the sensi-
tivity the models employing different exposure functions with respect to control parameters In order
to facilitate the comparison, we use flock data from Yulin, China and establish a common range of
variations.

Using the statistical bulletin of national economic and social development of Yulin City [from the
website of Yulin municipal government (www.yl.gov.cn)], we obtain the stock and slaughter of sheep
for each year from 2005 to 2014, and combined with the annual infection rate of sheep, we get the
number of infected sheep, see the Figure below.
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1) infected sheep 2) stocking and slaughter sheep

Figure 3. Annual stocking, slaughter, and brucellosis-infected sheep in elmwood,
from 2005 to 2014.

We use the least square method to estimate the parameters. Through DEDiscover software (DEDis-
cover is a general-purpose tool to perform simulation), we fit each of the three cases to find a combi-
nation of parameters that is closer to the actual results. The fit parameters can be seen in Tables 2–4.
Figure 4 illustrates the results of the three fits against the actual data, and show the good quality of the
fits. The sum of squared residuals for all three sets of parameters is about 0.044. Using the method of
Akaike information criterion (AIC) [23, 24] to compare the three models, we get AIC1 = −162.832,
AIC2 = −162.401, AIC3 = −162.609. Case 1 is more suitable for the data, but the three values do not
differ much.

Table 2. The fitting parameters of model (2.1), case 1.
Parameteres estimated Value Standard error CI Low Bound CI High Bound p-value t-statistc
A 56.4259 0.313 55.7545 57.0973 5.7578e-25 180.2584
C 0.0511 0.0024 0.0460 0.0562 3.8467e-12 21.5719
α 0.0763 0.0085 0.0579 0.0946 3.7566e-07 8.9233
β1 0.0025 1.0611e-04 0.0022 0.0027 1.4638e-12 23.1552
β2 0.0047 0.0018 8.5601e-04 0.0086 0.0203 2.6181
d 0.3976 0.0025 0.3923 0.4029 3.0768e-24 159.9128
δ 0.3327 0.0244 0.2804 0.3850 1.7633e-09 13.6483
e 0.5082 0.0114 0.4838 0.5326 1.6559e-16 44.7058
ε 0.9967 0.0331 0.9256 1.0677 4.0378e-14 30.0711
k 17.5393 0.2112 17.0862 17.9923 2.9419e-20 83.0345
l 1.4690 0.0598 1.3407 1.5973 6.5367e-13 24.5603
λ 0.1496 0.0123 0.1233 0.1758 7.5555e-09 12.2009
m 0.9912 0.0525 0.8787 1.1037 2.3150e-11 18.8982
r 0.0328 37793e-04 0.0320 0.0336 1.5785e-201 86.8174
θ 0.0501 0.0076 0.0339 0.0664 1.1311e-05 6.6307
η 0.1416 0.0214 0.0957 0.1876 1.1722e-05 6.6089
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Table 3. The fitting parameters of model (2.1), case 2 (β2 = 0.000089823).
Parameteres estimated Value Standard error CI Low Bound CI High Bound p-value t-statistc
A 12.2853 0.2742 11.6972 12.8734 1.6061e-16 44.8041
C 0.1904 0.0072 0.1749 0.2059 2.5258e-13 26.3226
α 0.1353 0.0082 0.1178 0.1529 1.3772e-10 16.5493
β1 0.0022 1.6176e-04 0.0019 0.0026 1.4636e-09 13.8439
d 0.2625 0.0122 0.2364 0.2887 3.9324e-12 21.5371
δ 0.4176 0.0394 0.3332 0.5020 4.4754e-08 10.6080
e 0.3992 0.0223 0.3512 0.4471 4.9353e-11 17.8659
ε 0.4917 0.0835 0.3127 0.6708 3.9362e-05 5.8899
ε1 0.4270 0.0229 0.3778 0.4762 2.8413e-11 18.6135
k 19.3771 0.4363 18.4414 20.3129 1.8132e-16 44.4150
l 2.4550 0.3113 1.7873 3.1227 1.6182e-06 7.8858
λ 0.4027 0.0330 0.3320 0.4735 7.5501e-09 12.2016
m 0.9990 0.0290 0.9368 1.0612 6.1839e-15 34.4425
r 0.0324 1.5958e-04 0.0321 0.0328 1.0809e-25 203.1440
θ 0.0505 0.0116 0.0256 0.0755 6.7570e-04 4.3425
η 0.9073 0.0551 0.7890 1.0256 1.4868e-10 16.4547

Table 4. The fitting parameters of model (2.1), case 3 (β1 = 0.000038).
Parameteres estimated Value Standard error CI Low Bound CI High Bound p-value t-statistc
A 63.0960 0.6672 61.6651 64.5270 4.7739e-21 94.5722
C 0.0499 0.0028 0.0439 0.0559 5.1580e-11 17.8074
M 1.0807 0.1112 0.8422 1.3193 1.3344e-07 9.7152
α 0.0773 0.0069 0.0626 0.0921 2.1972e-08 11.2233
β2 6.7353e-04 8.8527e-05 4.8366e-04 8.6340e-04 2.4445e-06 7.6083
d 0.3936 0.0066 0.3795 0.4078 2.9666e-18 59.6700
δ 0.9913 0.0575 0.8679 1.1147 8.0195e-11 17.2316
e 0.6220 0.0537 0.5068 0.7373 1.4805e-08 11.5770
ε1 0.8998 0.0638 0.7630 1.0365 1.1364e-09 14.1134
k 13.7981 0.4110 12.9166 14.6797 8.8192e-15 33.5705
l 3.8894 0.2323 3.3911 4.3877 1.1816e-10 16.7400
λ 0.4033 0.0358 0.3265 0.4800 2.0793e-08 11.2722
m 0.6428 0.0173 0.6057 0.6799 2.1942e-15 37.1164
r 0.0350 2.8065e-04 0.0344 0.0356 9.7852e-23 124.8799
θ 0.0504 0.0053 0.0391 0.0618 1.6581e-07 9.5449
η 0.7207 0.0690 0.5727 0.8686 5.4081e-08 10.4489

In order to put the three sets of values in a unified coordinate system, we used logarithmic values
and then compared them. From Figure 4, we conclude that in three cases, there is no obvious difference
in the simulation results.
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(a) Case1. (b) Case2. (c) Case3.

Figure 4. Fitting results against actual data. N, S 0, I denote the number of livestock, slaugh-
ter, and infected sheep, respectively.

4.3. Simulation analysis of model sensitivity to parameters

In this section, we numerically compare and analyze results from the perspective of disease control.
Our main concern is to assess how sensitive are the different environmental infection exposure func-
tions to control measures. If the magnitude of the variation is comparable, then we can choose the first
form containing fewer parameters. However, if the variations are larger, then we are also reminded that
the formulation of the environmental infection pathway is something that needs to be chosen carefully
in the modeling stage.

(A) Case1. (B) Case2. (C) Case3.

Figure 5. Comparison among the reductions in the number of infected sheep by adjusting
the magnitude of parameter C by 50%.

The following control measures are investigated:
1) Improve source management efforts of sheep to control the inflow of diseased sheep.
2) Increase culling of diseased sheep to reduce the infection base.
3) Standardize the disinfection of the environment to reduce the risk of environmental infection.
Based on the assumed values of the model parameters, we then change the control parameters in the

above strategies to achieve a reduction in the number of infected sheep (I). Obviously, some of these
parameters need to be increased (such as e and l) and some need to be decreased (such as β2 and C).

Mathematical Biosciences and Engineering Volume 20, Issue 7, 11688–11712.



11708

Here, we consider a 50% range of parameter changes to analyze the changes in the number of infected
sheep.

(A) Case1. (B) Case2. (C) Case3.

Figure 6. Comparisno among the reductions the environmental exposure to infection by
adjusting the magnitude of parameter β2 by 50%.

(A) Case1. (B) Case2. (C) Case3.

Figure 7. Comparison among the numbers of culled infected sheep by adjusting the param-
eter magnitude e by 50%.

In the above plots, we use a superimposed quantized visualization to show the range and the magni-
tude of the variationa of I across the parameter range. This facilitates the comparison of three models.

As can be seen in Figures 5–8, all the control measures lead to a decrease in the number of infected
sheep. However, the dynamics of the model is different for the three functions. In particular, the
magnitude of the change of I with the parameters is different. The effects of parameters C and e is not
much different in the three cases, whereas for parameter β2, the magnitude of change in I is significantly
greater in case 3 than in the first two cases, with case 2 being almost insensitive. Concerning parameter
l, case 2 remains insensitive, whereas in case 3 the number of infected sheep can be reduced by 50% of
the initial value, while this is not possible in the first two cases. For case 2, we scaled the upper limit
of the environmental exposure rate to 0.0078 and scaled the environmental modulation parameter ε1 to
a range of values of (0, 150). As it can be seen in Figure 9, the magnitude of the change in I is small
and still reflects the insensitivity to the environmental modulation parameter.
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(A) Case1. (B) Case2. (C) Case3.

Figure 8. Comparison among the average number of disinfections per year by adjusting the
parameter magnitude l by 50%.

(A) I. (B) W.

Figure 9. Quantile plots of the number of infected sheep and the magnitude of the environ-
mental virulence load versus the variation with β2 ∈ (0, 0.0078) and ε1 ∈ (0, 150).

5. Conclusions

In this paper, a stage-specific dynamic model of brucellosis in sheep has been suggested and an-
alyzed. Due to the constant input of infected sheep, there is no disease-free equilibrium point in the
model, which means that Brucella is always transmitted in the flock. Numerical simulationz show that
the following measures can effectively reduce the scale of the epidemic and control the occurrence
of brucellosis: 1) Strengthen the monitoring of imported individuals; 2) Disinfect the environment
regularly; 3) Once infected sheep are found, they should be promptly slaughtered.

Looking at the index parameters of the fitting for the three models, we have found that case l
is closer to actual data, and this is consistent with the conclusions of reference [6]. If the second
environmental exposure function is chosen, for C = 0, our results are consistent with the results of
reference [8]. If the third environmental exposure function is chosen our results are consistent with
those of reference [12] for C = 0. However, when 0 < C < 1, we have found that the epidemic
of persists because a disease-free equilibrium points does not exist. In particular, when C = 1, the
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disease-free equilibrium point, and the positive equilibrium point do not exist. On the contrary, there
exists a boundary equilibrium point with global asymptotic stability, which corresponds to a situation
in which all sheep are eventually infected.

Although the dynamical behavior is similar for the three environmental exposure functions, we have
found that the sensitivity may be considerably different. Results from numerical simulations for cases
1 and 2 have shown that the number of infections is not much affected by changes in the environmental
control parameters. On the contrary, in case 3 the sensitivity is significant. In particular, in the third
case it is possible to achieve a control goal to reduce the number of infections to less than half of the
initial value.

In the literature about infections by Brucellae, specific functional expressions of environmental in-
fections have been.employed and pathways of environmental infection are considered. However, little
attention has been paid to the variability exhibited by the different environmental functional expres-
sions. To fill this gap, we have compared those common forms and found that their differences have
a significant effect on the selection of optimal control methods. Our results clearly show that different
function expressions yield different optimal control results, and that the expressions of environmental
infection pathwayswe should be chosen carefully.

In this paper we have adopted a relatively simple ODE model for the spread of brucellosis virus
in sheep, unifying the results of the analysis of the dynamical behavior of the environmental expo-
sure function under certain characteristics. However, in practice, there is a certain time delay from
exposure to the virus to infection with the virus, and this phenomenon is more common in disease
transmission including pathogenic infections [25–28]. Then whether different environmental infection
exposure functions will show greater variability under the infectious disease model of delayed infection
or delayed distribution will be the next step of our research.
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