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Abstract: Most kidney cancers are kidney renal clear cell carcinoma (KIRC) that is a main cause of 
cancer-related deaths. Polygenic risk score (PRS) is a weighted linear combination of phenotypic 
related alleles on the genome that can be used to assess KIRC risk. However, standalone SNP data as 
input to the PRS model may not provide satisfactory result. Therefore, Transcriptional risk scores (TRS) 
based on multi-omics data and machine learning models were proposed to assess the risk of KIRC. 
First, we collected four types of multi-omics data (DNA methylation, miRNA, mRNA and lncRNA) 
of KIRC patients from the TCGA database. Subsequently, a novel TRS method utilizing multiple omics 
data and XGBoost model was developed. Finally, we performed prevalence analysis and prognosis 
prediction to evaluate the utility of the TRS generated by our method. Our TRS methods exhibited 
better predictive performance than the linear models and other machine learning models. Furthermore, 
the prediction accuracy of combined TRS model was higher than that of single-omics TRS model. The 
KM curves showed that TRS was a valid prognostic indicator for cancer staging. Our proposed method 



11677 

Mathematical Biosciences and Engineering  Volume 20, Issue 7, 11676–11687. 

extended the current definition of TRS from standalone SNP data to multi-omics data and was superior 
to the linear models and other machine learning models, which may provide a useful implement for 
diagnostic and prognostic prediction of KIRC. 

Keywords: kidney renal clear cell carcinoma; diagnosis; transcriptional risk score; multi-omics data; 
XGBoost 
 

1. Introduction  

Kidney Renal Clear Cell Carcinoma (KIRC) is a highly frequent subtype of renal cancer with 
increasing incidence and death rates [1]. Effective prediction methods are of great significance in the 
prevention and treatment of KIRC. Recently, many genetic loci have been identified as markers of 
kidney cancer susceptibility through genome-wide association studies (GWAS). Some risk prediction 
methods based on GWAS have been proposed [2]. Polygenic risk scores (PRS), such as LDpred [3] 
showed great prospect in improving prediction for complicated disease risk. These studies suggest that 
PRS is effective in predicting the incidence of site-specific cancers and can be incorporated into mass 
screening and prevention strategies. For example, in coronary artery disease risk prediction, the PRS 
was able to identify more at-risk patients than standard single gene tests [4]. The PRS also showed 
good predictive performance for other diseases, such as type II diabetes and breast cancer. 

However, the PRS only assessed the genetic risk of an individual without considering environmental 
exposures, while the phenotype may also change due to life-styles or external factors [5]. Besides, medical 
ethics and privacy hinder the public acquisition of SNP data. High-throughput sequencing technologies 
have been used to generate a large amount of publicly available omics data that can map the combined 
effects of genetic, environmental and lifestyle factors [6–9]. The application of multi-omics data may 
provide new insights into cancer risk prediction [10]. Linear statistical models are usually utilized in 
the existing PRS method for calculating the effect sizes of genetic variations [11–13]. However, the 
linear statistical models have certain limitations and can only be applied when specific conditions are 
satisfied [14]. Advanced machine learning models [15,16] can explain the nonlinear relationship 
between multiple variables and may improve the accuracy of risk prediction. 

We employed multi-omics data and XGBoost algorithm to establish a transcriptional risk score 
(TRS) for KIRC. The results show that our proposed method surpasses the traditional linear models 
and other ML models. In the end, our proposed approach potentially may help to assess the risk of 
KIRC patients. 

2. Materials and methods 

2.1. Materials 

The datasets in this study were downloaded from The Cancer Genome Atlas (TCGA, 
https://portal.gdc.cancer.gov/) project [17]. The Cancer Genome Atlas (TCGA) project provides multi-
omics sequencing and microarray data for a variety of cancers, as well as clinical data for each 
corresponding sample. We finally selected four kinds of omics datasets which included 1895 cancer 
samples and 375 normal samples in total. The following four kinds of omics datasets on KIRC were 
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included in our experiments: DNA methylation data, miRNA-seq data, mRNA expression and lncRNA 
expression. On the basis of previous study [18], the first and second stages are labeled as early-stage, 
and the third and fourth stages are labeled as late-stage. The patients used in our study ranged in age 
from 26 to 90 years. 

For DNA methylation, the CpG sites with the highest negative correlation with gene expression were 
retained [19] and the CpG sites with missing values were removed in order to guarantee the high quality 
of datasets [20]. For miRNA, mRNA and lncRNA [21], we excluded samples with more than 20% of 
missing values and normalized the datasets using the minimum-maximum ratio method with a 
mapping range of 0 to 1. In addition, to develop TRS models, we matched the samples having all four 
kinds of omics data simultaneously (DNA methylation, miRNA, mRNA and lncRNA), and obtained a 
core dataset including 315 tumor samples and 24 normal samples. 

2.2. Construction of TRS 

2.2.1. Overview of TRS model 

Multi-omics data and KIRC status were applied to establish two TRS models based on different 
phenotypes. In the first model, we labeled normal (control) and tumor (case) samples as 0 and 1, 
respectively. In the second model, we labeled normal, early tumor (stages I and II) and advanced tumor 
samples (stages III and IV) as 0, 1 and 2, respectively. The above-mentioned two TRS models were 
defined as case-control TRS and cancer stage TRS, respectively. The TRS can assess individual risk 
and improve the diagnosis of KIRC. In addition, as recent studies have found that cancer stage is highly 
correlated with prognosis [22], accurate construction of TRS with cancer-stage status is helpful to 
predict the prognosis of KIRC. The framework of TRS model is shown in Figure 1. We also provided 
a python program for this method (https://github.com/lab319/Muti_Omics_TRS). 

2.2.2. TRS based on linear models and other machine learning models 

In order to verify the effectiveness and reliability of XGBoost model, we compared the 
machine learning models using omics data, and did not compare the methods based on GWAS 
summary statistics such as LDpred [3], Lassosum [23] etc. The machine learning methods include: 
minimax concave penalty (MCP) [12], least absolute shrinkage and selection operator (LASSO) [24], 
elastic net [25] and support vector regression (SVR) [26]. Similar to the TRS approach based on the 
XGBoost model, each omics dataset is employed as an input to these models and the corresponding 
phenotype as output. 



11679 

Mathematical Biosciences and Engineering  Volume 20, Issue 7, 11676–11687. 

 

Figure 1. Schematic overview of the framework for constructing TRS model based on 
multiple omics data. The dataset of KIRC was split into two groups as training dataset and 
testing dataset based on 5-fold cross validation. We constructed TRS model by using MCP, 
LASSO, elastic net, SVM and XGBoost based on the training dataset. The hyper-
parameters of five models were optimized using bayesian optimization and 3-fold cross 
validation. The TRS of testing dataset was predicted by the optimized model. The 
predictive performance of final models was evaluated with R2 and AUC score. 

2.2.3. Model training and evaluation 

To ensure the robustness and stability of the model, this study used the 5-fold cross-validation 
method to conduct experiments. Cross validation can also be called rotation estimation. It is a common 
statistical analysis method to verify the performance of prediction models and can effectively avoid 
the occurrence of overfitting. In the cross-validation process, the omic dataset was randomly divided 
into five complementary folds. Each fold is taken as the test set, the remaining folds are taken as the 
training set to train the model. Bayesian optimization [27] and 3-fold inner cross-validation were 
applied to optimize the hyperparameters of TRS models in each training dataset. Finally, for cancer-
stage trait, we evaluated the performance of different methods in the test dataset using Pearson 
correlation (R2). For case-control trait, we assessed the performance of different methods using area 
under curve (AUC). 

2.3. Combination model 

In order to further upgrade the prediction performance of our method, we constructed a new model 
based on the TRS of each omics dataset [28]. After the processing and matching steps for raw data, we 
obtained a core dataset including 315 tumor samples and 24 normal samples. The TRS based on four 
kinds of omics datasets was used as a new biological variable for the combined model. Then, we 
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constructed the combination model using the XGBoost model. Similarly, the above methods are used 
to perform hyper-parameters optimization and predictive performance evaluation. 

3. Results 

3.1. Data characteristics 

In this study, we collected cancer tissue samples and normal tissue samples from the TCGA 
database. Table 1 lists the amounts of normal samples, cancer samples, biological variables and the 
sample size of each cancer stage in the original samples. After the processing and matching steps for 
raw data, we obtained a core dataset including 315 tumor samples and 24 normal samples. In addition, 
this paper also collected clinical information of patients including gender, race, age, tumor staging 
information, survival time and survival state. Patients whose tumor staging information is “stage I” 
and “stage II” are considered as early tumor patients. Patients with tumor staging information of “stage 
III” and “stage IV” are regarded as advanced tumor patients. Detailed clinical data of KIRC patients 
are shown in Table 2. 

3.2. Predictive performance of TRS 

In the case-control status, we use AUC score to evaluate the predictive accuracy of our model and 
other ML models. The histograms of AUC score for five different methods on four kinds of omics 
datasets were shown in Figure 2a. Compared with the baseline method SVR, the experiment results 
show that MCP performs poorly on four kinds of omics datasets, with a mean AUC score decreases 
of 13.91%. XGBoost performs well on four kinds of omics datasets with an average AUC score 
improvement of 5.85%. Elastic net is superior to SVR on 3 out of 4 datasets and the AUC score 
increases by 0.2%. 

Identically, in the cancer-stage status, Figure 2b shows that MCP does not perform well on the 
four omics data sets and the average R2 drops by 18.45% in comparison to the baseline method Lasso. 
SVR outperforms Lasso in three of the four data sets, with an average R2 improvement of 4.83%. 
XGBoost performs well on four omics datasets with an average R2 improvement of 6.13%. Elastic net 
is superior to MCP on 3 out of 4 datasets and the R2 increases by 3.06%. Furthermore, the results show 
methylation data obtain better results than other omics data. 

The results suggest that XGBoost surpasses other methods with an average AUC score of 0.928, 
which is 5.85%, 5.94%, 5.61% and 20.56% higher than SVR, Lasso, Elastic net and MCP for case-
control status, respectively. Likewise, compared with the case-control status, XGBoost outperforms 
other assessment methods with an average R2 of 0.494, which is 1.23%, 6.24%, 3.13% and 30.34% 
higher than SVR, Lasso, Elastic net and MCP for cancer-stage status, respectively. Overall, the results 
show that our model has acquired better accuracy when using multiple omics data to predict patients’ 
disease risk. 
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Table 1. The description of KIRC datasets from TCGA. 

Omic type 
Total of early-stage and late-

stage tumor samples 

Total of tumor 

samples 

Total of normal 

samples 

Total of biological 

variables 

DNA 

methylation 

Early-stage 190 
319 160 15,837 

Late-stage 129 

miRNA 
Early-stage 315 

516 71 417 
Late-stage 201 

mRNA 
Early-stage 351 

530 72 17,630 
Late-stage 179 

lncRNA 
Early-stage 339 

530 72 8268 
Late-stage 191 

Common 

sample 

Early-stage 186 
315 24  

Late-stage 129 

Note: The total of tumor samples is not equal to the sum of the early-stage and the late-stage samples, because some tumor 

samples have unknown kidney renal clear cell carcinoma stage. 

Table 2. The detailed information of clinical data for KIRC. 

Clinical data type Amount Percentage (%) 

Gender 
male 346 64.4 

female 191 35.6 

Race 

white man 466 86.8 

Black or African 

American 
56 10.4 

Asian 8 1.5 

unknown 7 1.3 

Age (years) 
average value 61 — 

range 26–90 — 

Tumor staging 
early stage 326 61.0 

late stage 208 39.0 

State of existence 
survive 361 67.2 

death 176 32.8 

3.3. Predictive performance of TRS based on combination model 

We analyzed the predictive performance of the TRS combination model. The combination model 
shows the best predictive performance, outscoring all TRS methods mentioned in this article on the 
core datasets (Figure 2c,d). The results indicate that the combination model is superior to other 
prediction methods with AUC score of 0.976 for case-control status, which is 13.58%, 9.96%, 20.34% 
and 7.89% higher than the average predictive accuracy of DNA methylation, mRNA, miRNA and 
lncRNA, respectively. Further, the combination model largely enhances the predictive accuracy of 
the cancer-stage status with R2 of 0.547 by increasing the average R2 values 9.07%, 17.29%, 18.79% 
and 17.81%, respectively. In addition, compared to the model that achieves the best PA among other 
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TRS models, the R2 and AUC score of combination model are improved by 3.01% and 4.05%, 
respectively. In summary, the combination model can achieve better prediction accuracy. 

 

Figure 2. Predictive performance of MCP, LASSO, elastic net, SVR and XGBoost in four 
kinds of omics datasets. (a) Comparison results of multiple omics datasets for case-control 
status. (b) Comparison results of multiple omics datasets for cancer-stage status. (c) 
Comparison results of multiple omics datasets and combination model for cancer-stage 
status. (d) Comparison results of multiple omics datasets and combination model for case-
control status. 



11683 

Mathematical Biosciences and Engineering  Volume 20, Issue 7, 11676–11687. 

3.4. Prevalence of KIRC 

The main purpose of this section describes the risk stratification results for the case-control 
status and explores whether the prevalence of different groups has different effects on the prevention 
of KIRC [29]. Based on the combination model of TRS, KIRC patients were divided into 10 increasing 
strata and the prevalence of each stratum was calculated (Figure 3a). 

In the core datasets, the prevalence is 30% in the first stratum, then reaches 100% in the other 
stratum. The large variation in a certain stratum is due to the relatively accurate prediction of KIRC 
risk in the case-control status by our proposed method. Prevalence trend diagram also shows that an 
individual of high TRS has greater KIRC risk than an individual of low TRS. 

 

Figure 3. (a) The prevalence curve of TRS for case-control status. The sample size of 10 
strata was equal and the prevalence of KIRC increased along with the TRS. The 1st stratum 
can be regarded as a low-risk TRS stratum and the 2nd to 10th stratum as a high-risk 
stratum. (b) The KM survival curve of KIRC patients in the high-risk and low-risk groups. 
We divided patients into high-risk and low-risk groups basing on the 50th TRS. The 
patients within low-risk group have better prognoses than those within high-risk group. 
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3.5. Prognosis prediction of kidney renal clear cell carcinoma 

In this section, we aim to explore whether the TRS for cancer-stage status contributes to the 
prognosis of KIRC patients. First, 339 KIRC patients at the 50th percentile were divided into high-risk 
group and low-risk group according to TRS, which was calculated according to the combination model. 
Next, we generated a Kaplan-Meier curve (KM curve) [30] using each patient’s survival time and 
status at the end of survival time. Obviously, the high-risk patients have statistically significantly worse 
prognoses (Figure 3b). The results indicate that the TRS on cancer stage forecasts may provide an 
effective prognostic tool for KIRC patients.  

4. Discussion 

In this paper, we proposed a novel TRS method for KIRC using multi-omics data and XGBoost 
model. The results based on single omics model indicate that our method has promising prediction 
performance than the existing linear models and other ML models. It is noticed that the combination 
of the four types of molecular data can obtain encouraging TRS results for both case-control and 
cancer-stage status. At the same time, the prediction results of 5-fold cross validation certify the 
robustness and dependability of the proposed method. In addition, by analyzing the prevalence trend 
between TRS and disease risk of KIRC, the results support the clinical understanding and application 
of TRS in KIRC. Eventually, we also found that our derived TRS can improve prognosis in patients 
with renal cancer. 

Previous studies on the diagnosis and prognosis of KIRC focused mostly on the research of 
individual-level genotype data (SNPs) or gene expression profiling using traditional models. For 
example, Wei et al. used an SNPs-based approach to predict the recurrence risk of renal cell carcinoma, 
improving the accuracy of the prediction and investigating the factors influencing its accuracy [31]. 
Several studies have reported that gene expression patterns can distinguish histological subtypes of 
RCC, such as conventional ccRCCs, papillary types 1 and 2 carcinomas [32]. These studies obtained 
significant individual-level genetic risk of KIRC. Moreover, some studies have developed prognostic 
models to evaluate disease risk by utilizing gene expression data and clinical information. For instance, 
Wang et al. established an immune-related prognostic score based on 22 breast cancer cohorts 
consisting of a total of 6415 samples [33]. Similarly, Yang et al. investigated tumor-infiltrating 
lymphocytes in a large cohort of ovarian cancer patients and found that high expression levels of 
immune-related genes were associated with better prognosis in high-grade serous carcinomas [34]. In 
contrast to these studies, our investigation utilizes XGBoost algorithm and multi-omics data to 
construct a transcriptional risk score (TRS) model for estimating the risk of kidney renal clear cell 
carcinoma. In the first phenotype(case-control) analysis of our study, we obtain an AUC of 0.976 using 
the combination model. Therefore, the TRS based on multi-omics data and XGBoost improves the 
accuracy of KIRC prediction and extends the current definition of TRS from SNP data to genomics 
and transcriptomics data. 

The present study has several strengths. Given the advantages of XGBoost model, this method 
may minimize the common noise and enhance the generalization ability of the model [35]. In addition, 
our study uses multiple omics data to construct KIRC TRS considering the interaction of genetic and 
environmental factors, which could provide higher prediction accuracy. Ultimately, other 
transcriptome data including lncRNA, mRNA and miRNA are important regulatory molecules for gene 
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function, which play a vital role in the pathogenesis and treatment of diseases [36–38]. 
Although our present study uses multi-omics data for risk prediction with good predictive 

performance, it still has some limitations. First, the data used in the TRS method were mainly obtained 
from individuals of European ancestry (the white race accounting for 86.7% of the total sample size). 
Therefore, our findings may not be applicable to individuals of other descents. Second, the amount of 
KIRC data (339) used in the experiment is small, which may affect the prediction accuracy of TRS 
model. In our study, there are significantly more tumor samples than normal samples, which may lead 
to the decrease of TRS model performance. Third, this study lacks an independent validation dataset. 
Since it is hard to collect datasets that contain four kinds of omics data, as well as necessary clinical 
information. In addition, in the prediction results (Figure 2c), the prediction accuracy of the combined 
model is only slightly better than the methylation result, we elucidate it with the following reasons. 
The limited type of omics data (DNA methylation, miRNA, mRNA and lncRNA) can only generate 
four single-omics TRS features for the combined model, which may not provide sufficient information 
to greatly improve the prediction performance. The small sample size of the core dataset is also an 
important factor that may affect the prediction accuracy. In the future, one of our efforts is to apply our 
TRS model to analyze other phenotypes of KIRC using larger and balanced multiple omics datasets. 
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