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1. Introduction

The analysis of the dynamical behaviour of numerical methods for differential and integral equation
epidemic models has been a topic of interest [1–8], because it satisfies the need to have robust numerical
methods that share the same properties of the analytical solution. While most of the existing papers are
devoted to the simulation of specific models, here we consider the following general problem, which
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consists of a Volterra integro-differential system of 2M + 1 equations of the type

S ′i(t) = −βiS i(t)Vi(t),

ϕi(t) = ϕi0(t) + βi

∫ t

0
Ai(t − τ)S i(τ)Vi(τ) dτ,

P(t) = P0(t) +

∫ t

0
B(t − τ)

M∑
r=1

crϕr(τ) dτ,

(1.1)

where t ≥ 0, Vi(t) =
∑M

r=1 βirϕr(t) + αiP(t), and i = 1, . . . ,M. Here ϕi0(t), Ai(t), i = 1, . . . ,M, P0(t) and
B(t) are given continuous functions and αi, βi, ci, βir ≥ 0, i, r = 1, . . . ,M, are given constants. At time
t = 0 the value of S i(t), i = 1, . . . ,M, is S 0

i , given. The motivation for considering system (1.1) is that
it represents a general framework that includes a variety of epidemic mathematical models that, taking
into account the age of infection, involve memory terms. We report some examples where we give the
biological definitions of the variables and parameters.

I. An age-of-infection epidemic model is described in [9, p.139] by the following system

S ′(t) = −βS (t)ϕ(t),

ϕ(t) = ϕ0(t) + β

∫ t

0
A(t − τ)S (τ)ϕ(τ) dτ,

(1.2)

S (t) is the number of susceptibles and ϕ(t) is the total infectivity at time t, β > 0 is the rate of
effective contacts and A(τ) is the mean infectivity of members of population with infection age τ.
Moreover, ϕ0(t) represents the infectivity at time t of people who were infected before the initial
outbreak. The general model (1.1) reduces to (1.2), with M = 1, α1 = 0, β11 = 1, β1 = β, c1 = 0,
and B(t) = P0(t) = 0, for t ≥ 0.

II. A model with both symptomatic and asymptomatic infections is described in [10], by the following
system

S ′(t) = −
a
N

S (t)(ϕs(t) + ϕa(t)),

ϕs(t) = ϕs
0(t) +

a
N

∫ t

0
f (t − τ)As(t − τ)S (τ)(ϕs(τ) + ϕa(τ)) dτ,

ϕa(t) = ϕa
0(t) +

a
N

∫ t

0
(1 − f (t − τ))Aa(t − τ)S (τ)(ϕs(τ) + ϕa(τ)) dτ.

(1.3)

Model (1.3) traces the evolution of the epidemics by distinguishing the infectivity functions of
symptomatic and asymptomatic people, being ϕs(t) the former and ϕa(t) the latter. Thus, an anal-
ogous distinction is made for the known functions ϕs

0(t) and ϕa
0(t), which describe the contribution

to the total infectivity of people who got infected before the initial time. Here, N > 0 is the total
size of the population, a > 0 is the average number of contacts made by a member per unit of time
and f (t) ∈ (0, 1) is the probability for an individual to become symptomatic after the infection.
Furthermore, As(τ) and Aa(τ) represent the mean infectivity of symptomatic and asymptomatic
individuals with infection age τ, respectively. System (1.3) corresponds to the general model (1.1)
with M = 2, αi = 0, βi j = 1, βi = a

N , ci = 0, for i, j = 1, 2 and S 1(t) = S 2(t) = S (t), ϕ1(t) = ϕs(t),
ϕ2(t) = ϕa(t), A1(t) = f (t)As(t), A2(t) = (1 − f (t))Aa(t) and B(t) = P0(t) = 0, for t ≥ 0.
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III. An age of infection epidemic model in a multi-group heterogeneous populations is proposed in
[11]. The system, when the state space is discrete and the population is divided into M subgroups
of sizes N1, . . . ,NM, reads

S ′i(t) = −aiS i(t)
M∑
j=1

pi j
ϕ j(t)
N j

,

ϕi(t) = ϕi0(t) + ai

∫ t

0
Ai(t − τ)S i(τ)

M∑
j=1

pi j
ϕ j(τ)

N j
dτ,

(1.4)

i = 1, . . . ,M. Here, in group i, S i(t) represents the number of susceptible members and ϕi(t) is the
infectivity at time t, ϕi0(t) is the infectivity at time t of members who were infected before time 0,
and Ai(τ) is the mean infectivity of individuals of group i with infection age τ. Furthermore, ai ≥ 0
is the contact rate for members of group i, and pi j is the fraction of contacts made by a member of
group i with a member of group j. Referring to the notations in [11, 12], the general model (1.1)
reduces to (1.4), with αi = 0, βi j =

pi j

N j
, βi = ai, ci = 0, for i, j = 1, . . . ,M and B(t) = P0(t) = 0, for

t ≥ 0.

IV. In [13] the virus shedding epidemic model is studied

S ′i(t) = −βiS i(t)P(t),

ϕi(t) = ϕi0(t) + βi

∫ t

0
Ai(t − τ)S i(τ)P(τ) dτ,

P(t) = P0(t) +

∫ t

0
Γ(t − τ)(r1ϕ1(τ) + r2ϕ2(τ)) dτ,

(1.5)

i = 1, 2, where P(t) is the pathogen shed by infected individuals of each group at a rate r1 and r2,

respectively. Here, βi, i = 1, 2, are the contact rates, A1(τ) and A2(τ) are the mean infectivity of
individuals in group 1 and 2 at age of infection τ and Γ(τ) is the fraction of pathogen remaining
τ time units after having been shed by an infectious individual (see also [14, p. 168] in case of
homogeneous mixing). The general model (1.1) reduces to (1.5), with M = 2, αi = 1, βi j = 0,
ci = ri, i, j = 1, 2 and B(t) = Γ(t), for t ≥ 0.

Since numerical simulations are of fundamental importance in the process of understanding the dy-
namic and the asymptotic behaviour of the system, we focus on the construction of a numerical model
that preserves the global properties of the continuous problem. In the literature, there have been several
investigations looking at numerical approximations of integral and integro-differential equations whose
solutions remain bounded or converge to zero, including [15–21]. Here we concentrate on the general
system (1.1) where, under suitable assumptions on the known parameters, S i(t) tends, as t → +∞, to
a limit S i(∞), which is the solution of a known nonlinear limiting equation. In case of the epidemic
models listed above and in many other cases (see for example [22, 23] and references therein), S i(∞)
is the final size, one of the most relevant parameters in the description of the epidemic. We focus on
a numerical method for (1.1) and we are interested to prove that, for any positive value of the size h
of the discretization, the limit of the numerical approximation, S∞i (h), exists and turns out to be the
solution of an analogous nonlinear limiting equation. Furthermore, we show that S∞i (h) tends to S i(∞),
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as h vanishes. The convergence as h → 0 is an obvious property that a numerical method must satisfy
while integrating over a limited range, but it is not at all guaranteed and, in general, difficult to prove
for the asymptotic solution.

Then, an important feature of our investigation is that it directly shows, under suitable conditions
on the integro-differential system, that the discrete model has properties which ensure its solutions to
behave asymptotically as the continuous ones. The numerical investigation is performed on a general
discrete system obtained approximating (1.1) by non-standard finite differences. Then, the stability
analysis, consisting in a comparative study of the behaviour of the analytical and the numerical solu-
tions, is carried out in significant cases (that is (1.2)–(1.5)) and can be extended to other models, that
fall into the form (1.1).

In this viewpoint, we say that the numerical scheme is coherent with the continuous problem and
system (1.1) can be considered as a test problem for proving such coherence.

Here we assume that the given functions in (1.1) belong to C[0,+∞) ∩ L1[0,+∞), and that:

Assumptions A for i = 1, . . . ,M :

• αi ≥ 0, βir ≥ 0, r = 1, . . . ,M,
• S 0

i = S i(0) > 0, ϕi0(t) ≥ 0, Ai(t) ≥ 0, t ≥ 0,

and

• P0(t) ≥ 0, B(t) ≥ 0, t ≥ 0.

Assumptions B there exist positive constants ϕ0,max, P0,max, Amax, and B̄ such that:

• ϕ0(t) ≤ ϕ0,max, P0(t) ≤ P0,max, t ≥ 0,
• Ai(t) ≤ Amax, i = 1, . . . ,M, t ≥ 0,
• h

∑∞
n=0 B(nh) ≤ B̄, h > 0.

Assumptions C there exist positive constants Ā, ϕ̄0, P̄0 such that for h > 0:

• h
∑+∞

n=0 Ai(nh) ≤ Ā, i = 1, . . . ,M,
• h

∑+∞
n=0 ϕ0i(nh) ≤ ϕ̄0, i = 1, . . . ,M,

• h
∑+∞

n=0 P0(nh) ≤ P̄0.

Observe that the third of Assumptions B and the Assumptions C have the form h
∑+∞

n=0 Q(nh) ≤ Q̄,
h > 0, with Q ∈ L1[0,+∞) and Q̄ > 0, which is certainly accomplished when, for example, the
function Q′(t) ∈ L1[0,+∞) (see [19]) or when (usually true in realistic situations) Q(t) is definitely
non-increasing.

A generalization to the results in [9, 13, 14] implies that:

• under the Assumptions A, S i(t) is positive and non-increasing, ϕi(t) ≥ 0, for i = 1, . . . ,M, and
P(t) ≥ 0;
• if in addition Assumptions B hold, then S i(t), ϕi(t), i = 1, . . . ,M and P(t) are bounded;
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• limt→+∞ ϕi(t) = 0 and limt→+∞ S i(t) = S i(∞), where S i(∞) satisfies the limiting algebraic system
Ri(x) = 0, i = 1, . . . ,M, where

Ri(x) = log
(
S 0

i

xi

)
− βiαi

∫ +∞

0
P0(t) dt − βi

M∑
r=1

(
βir + αicr

∫ +∞

0
B(t) dt

)
·

(
S 0

r

(
1 −

xr

S 0
r

) ∫ +∞

0
Ar(t) dt +

∫ +∞

0
ϕ0r(t) dt

)
= 0,

(1.6)

with x = (x1, . . . , xM), if a solution to (1.6) exists.

The paper is organized as follows. In the next section we present a numerical method based on
a nonlocal discretization to solve the general system (1.1) and we prove the basic non-negativity and
boundedness properties of the numerical solution under the Assumptions A and B on the known func-
tions. These results hold for any value of the size h > 0 of the discretization. In Section 3 we give
some preliminary results that are used in Section 4, where the numerical asymptotic solution is shown
to be the root of a nonlinear system of algebraic equations. Here we prove that this solution is unique
and that it converges to its analytical counterpart as the stepsize h → 0. In Section 5 we present some
cases of interest in epidemic models and apply the theory developed in the previous sections in order
to study the coherence of the numerical method with the epidemic models. Furthermore, we show the
results of some simulations performed. Finally, in Section 6 we conclude the paper with some remarks.

2. Numerical method

Define a stepsize h > 0, and an uniform mesh {tn = nh, n = 0, 1, . . .}. Our numerical approach to
solve the nonlinear system (1.1) is the following finite difference scheme

S n+1
i = S n

i − hβiS n+1
i Vn

i ,

ϕn+1
i = ϕi0(tn+1) + hβi

n∑
j=0

Ai(tn+1− j)S
j+1
i V j

i ,

Pn+1 = P0(tn+1) + h
n∑

j=0

B(tn+1− j)
M∑

r=1

crϕ
j
r,

(2.1)

n = 0, 1, . . . , where Vn
i =

∑M
r=1 βirϕ

n
r + αiPn, and i = 1, . . . ,M. Here S 0

i = S i(0), ϕ0
i = ϕi0(0), and

P0 = P0(0) are given. Furthermore, S n
i ≈ S i(tn), ϕn

i ≈ ϕi(tn), for i = 1, . . . ,M, and Pn ≈ P(tn),
for n = 0, 1, . . . . We say that the method (2.1) is non-standard since the nonlinear terms in (1.1)
are approximated in a nonlocal way. A pseudocode implementation of the numerical method (2.1) is
reported with the Algorithm 1.

The following results, concerning non-negativity and boundedness, hold.

Theorem 2.1. Consider equation (2.1) with Assumptions A, then the solution sequences {S n
i }n∈N0 ,

{ϕn
i }n∈N0 , i = 1, . . . ,M and {Pn}n∈N0 , are non-negative, ∀h > 0. Furthermore, the sequence {S n

i }n∈N0 ,

i = 1, . . . ,M, is positive and non-increasing.

Proof. We proceed by induction to prove that the statement S n
i > 0, ϕn

i ≥ 0, Pn ≥ 0, holds for all
n ∈ N0, h > 0 and 1 ≤ i ≤ M. The case n = 0 is true because the initial values are non-negative and
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Algorithm 1: Nonlocal finite difference scheme for (1.1)
Inputs: h,T,M, {S 0

i }
M
i=1, {ϕi0(t)}Mi=1, P0(t), {Ai(t)}Mi=1, B(t), {βi}

M
i=1, {βir}

M
i,r=1, {αi}

M
i=1, {ci}

M
i=1

Outputs: (t0, . . . , tn̄), {(S 0
i , . . . , S

n̄
i )}Mi=1, {(ϕ

0
i , . . . , ϕ

n̄
i )}Mi=1, (P

0, . . . , Pn̄)
1 n̄← dT/he
2 t0 ← 0, P0 ← P0(0)
3 for 1 ≤ i ≤ M do
4 ϕ0

i ← ϕi(0)

5 for 1 ≤ i ≤ M do
6 V0

i ←
∑M

r=1 βirϕ
0
r + αiP0

7 for 0 ≤ n ≤ n̄ − 1 do
8 tn+1 ← (n + 1) h
9 for 1 ≤ i ≤ M do

10 S n+1
i ←

S n
i

1+hβiVn
i

11 ϕn+1
i ← ϕi0(tn+1) + hβi

∑n
j=0 Ai(tn+1− j)S

j+1
i V j

i

12 Pn+1 ← P0(tn+1) + h
∑n

j=0 B(tn+1− j)
∑M

r=1 crϕ
j
r

13 Vn+1
i ←

∑M
r=1 βirϕ

n+1
r + αiPn+1

V0
i =

∑M
r=1 βirϕ

0
r + αiP0 ≥ 0, i = 1, . . . ,M. Consider n ≥ 1 and assume that the properties are true for

each 0 ≤ j ≤ n − 1. It follows that V j
i ≥ 0, for 0 ≤ j ≤ n − 1, therefore it is

S n
i =

S n−1
i

1 + hβiVn−1
i

> 0, i = 1, . . . ,M, (2.2)

and then, from (2.1), also ϕn
i ≥ 0, i = 1, . . . ,M and Pn ≥ 0. Furthermore, from (2.2), S n

i ≤ S n−1
i , for all

n ≥ 1 and i = 1, . . . ,M, which completes the proof. �

From the first equation of (2.1) it is

S n+1
i =

S 0
i∏n

j=0(1 + hβiV
j

i )
,

and this leads to the following equation for the asymptotic numerical solution S∞i (h),

log
S 0

i

S∞i (h)
=

+∞∑
n=0

log
(
1 + hβiVn

i
)
, (2.3)

where S∞i (h) = limn→∞ S n
i , for any fixed stepsize h > 0, which exists since the sequence {S n

i }
+∞
n=0 is

non-increasing, for each 1 ≤ i ≤ M.

Theorem 2.2. Consider equation (2.1) with Assumptions A and B, then the solution sequences {S n
i }n∈N0 ,

{ϕn
i }n∈N0 , i = 1, . . . ,M and {Pn}n∈N0 , are bounded, ∀h > 0.
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Proof. From Theorem 2.1, {S n
i }n∈N0 is a non-increasing sequence, thus it is bounded from above by S 0

i ,

i = 1, . . . ,M. Consider ϕn
i , from the first equation and the second equation of (2.1), it is

ϕn
i ≤ ϕ0,max + Amax(S 0

i − S n+1
i ) ≤ ϕ0,max + AmaxS 0

i .

Finally, the inequality

Pn ≤ P0,max + B̄
M∑

r=1

cr

(
ϕ0,max + AmaxS 0

r

)
,

directly follows from the assumptions and the third equation in (2.1). �

As already pointed out in the previous section, the time-continuous solution to (1.1) is non-negative
and bounded and the proposed numerical solution algorithm preserves boundedness and nonnegativity
unconditionally with respect to time step size.

In order to study the convergence of the numerical method, we assume that the known functions are
continuously differentiable on [0,T ], with T < +∞, and we investigate the behaviour of the local trun-
cation error (see [24] for the definition). Here, we consider the case of M = 1, since the generalization
to M > 1 is straightforward. In this case, the local truncation error of the discretization in (2.1) reads,
for T = n̄h and n = 0, . . . , n̄,

δn(h) =

∫
tn

0


−β1S 1(τ)V1(τ)

β1S 1(τ)V1(τ)A1(tn − τ)
c1B(tn − τ)ϕ1(τ)

 dτ − h
n−1∑
j=0


−β1S 1(t j+1)V1(t j)

β1S 1(t j+1)V1(t j)A1(tn− j)
c1B(tn− j)ϕ1(t j)

 . (2.4)

By the mean value theorem∫
tn

0


−β1S 1(τ)V1(τ)

β1S 1(τ)V1(τ)A1(tn − τ)
c1B(tn − τ)ϕ1(τ)

 dτ =

n−1∑
j=0

∫
t j+1

t j




−β1S 1(τ + h)V1(τ)
β1S 1(τ + h)V1(τ)A1(tn − τ)

c1B(tn − τ)ϕ1(τ)

 − h


−β1S ′(τ + θ jh)V1(τ)

β1S ′(τ + θ jh)V1(τ)A1(tn − τ)
c1B(tn − τ)ϕ1(τ)


 dτ,

with θ j ∈ (0, 1), j = 0, . . . , n − 1. Moreover, due to the convergence properties of the rectangular
quadrature rule (see, for instance, [25]), the bound∥∥∥∥∥∥∥∥∥

∫
t j+1

t j


−β1S 1(τ + h)V1(τ)

β1S 1(τ + h)V1(τ)A1(tn − τ)
c1B(tn − τ)ϕ1(τ)

 dτ − h


−β1S 1(t j+1)V1(t j)

β1S 1(t j+1)V1(t j)A1(tn− j)
c1B(tn− j)ϕ1(t j)


∥∥∥∥∥∥∥∥∥ ≤ Ch2,

holds for each 0 ≤ j ≤ n − 1, with C > 0, independent of h. It then follows from (2.4) that

‖δn(h)‖ ≤ n̄Ch2 + h
n̄−1∑
j=0

∫
t j+1

t j

∥∥∥∥∥∥∥∥∥


−β1S ′(τ + θ jh)V1(τ)
β1S ′(τ + θ jh)V1(τ)A1(tn − τ)

c1B(tn − τ)ϕ1(τ)


∥∥∥∥∥∥∥∥∥ dτ,

for each n = 0, . . . , n̄. Hence
max
0≤n≤n̄
‖δn(h)‖ ≤ C̃h, (2.5)

Mathematical Biosciences and Engineering Volume 20, Issue 7, 11656–11675.



11663

being C̃ a positive constant not depending on h.
Denote by

En(h) =
[
. . . , S i(tn) − S n

i , . . . , ϕi(tn) − ϕn
i , . . . , P(tn) − Pn

]T
∈ R2M+1,

the global error of the discretization (2.1). The following theorem, that we prove by standard tech-
niques, provides sufficient conditions for the convergence of the numerical method.

Theorem 2.3. Assume that the given functions Ai(t), i = 1, . . . ,M and B(t), describing problem (1.1),
are continuously differentiable on an interval [0,T ] and that {S n

i }n∈N0 , {ϕ
n
i }n∈N0 , {P

n}n∈N0 are the approx-
imations to the solution of (1.1), defined by (2.1). Let h = T/n̄, with n̄ positive integer, then

lim
h→0

max
0≤n≤n̄

‖En(h)‖ = 0.

Furthermore, the order of convergence is 1.

Proof. We prove the result for M = 1, since the generalization to M > 1 is straightforward. In this
case, the time-continuous system (1.1) reads

S 1(tn)
ϕ1(tn)
P(tn)

 =


S 1(0)
ϕ10(tn)
P0(tn)

 +

∫
tn

0


−β1S 1(τ)V1(τ)

β1S 1(τ)V1(τ)A1(tn − τ)
c1B(tn − τ)ϕ1(τ)

 dτ

=


S 1(0)
ϕ10(tn)
P0(tn)

 + h
n−1∑
j=0


−β1S 1(t j+1)V1(t j)

β1S 1(t j+1)V1(t j)A1(tn− j)
c1B(tn− j)ϕ1(t j)

 + δn(h),

and subtracting (2.1) from it leads to the global error

En(h) = δn(h) + h
n−1∑
j=0


−β1 0 0

0 β1A1(tn− j) 0
0 0 c1B(tn− j)



S 1(t j+1)V1(t j) − S j+1

1 V j
1

S 1(t j+1)V1(t j) − S j+1
1 V j

1
ϕ1(t j) − ϕ

j
1

 , (2.6)

for n = 0, . . . , n̄. Furthermore, for each j = 0, . . . , n − 1,

|S 1(t j+1)V1(t j) − S j+1
1 V j

1 | = |S 1(t j+1)(V1(t j) − V j
1) + V j

1(S 1(t j+1) − S j+1
1 )| ≤ K(‖E j(h)‖ + ‖E j+1(h)‖),

hence, from (2.6),

‖En(h)‖ ≤ ‖δn(h)‖ + hK̃
n−1∑
j=0

(‖E j(h)‖ + ‖E j+1(h)‖),

with K and K̃ positive constants depending on the parameters of the problem but not on h. Therefore,
for a sufficiently small h,

‖En(h)‖ ≤
‖δn(h)‖
1 − hK̃

+ h
2K̃

1 − hK̃

n−1∑
j=0

‖E j(h)‖, n = 0, . . . , n̄.

Finally, the Gronwall discrete inequality yields (see, for instance [24, p.101]),

‖En(h)‖ ≤
max0≤n≤n̄ ‖δ

n(h)‖
1 − hK̃

+ h
2K̃(S 0

1 + ϕ0
1 + P0)

1 − hK̃

 exp
(

2K̃T
1 − hK̃

)
,

for n = 0, . . . , n̄. Then, from (2.5), the result follows. �
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3. Preliminary results

In this section we prove some preliminary results needed to describe the asymptotic behaviour of
the solution to system (2.1).

Lemma 3.1. Consider system (2.1), for i = 1, . . . ,M, it is

+∞∑
n=0

Vn
i = αi

+∞∑
n=0

P0(tn) +

M∑
r=1

βir + αicrh
+∞∑
n=1

B(tn)

 S 0
r

(
1 −

S∞r (h)
S 0

r

) +∞∑
n=1

Ar(tn) +

+∞∑
n=0

ϕ0r(tn)

 .
Proof. Summing from 0 to ∞ in the last equation of (2.1), interchanging the order of summation and
adding to both members P(0) = P0, it is

+∞∑
n=0

Pn =

+∞∑
n=0

P0(tn) +

M∑
r=1

crh
+∞∑
n=1

B(tn)
+∞∑
n=0

ϕn
r .

The same can be done for the second equation of (2.1), where taking into account that, from the first
of (2.1) it is hβr

∑+∞
j=0 S j+1

r V j
r = S 0

r − S∞r (h), we have

+∞∑
n=0

ϕn
r = (S 0

r − S∞r (h))
+∞∑
n=1

Ar(tn) +

+∞∑
n=0

ϕ0r(tn), (3.1)

for any r = 1, . . . ,M. Combining the previous expressions with

+∞∑
n=0

Vn
i = αi

+∞∑
n=0

Pn +

M∑
r=1

βir

+∞∑
n=0

ϕn
r , i = 1, . . . ,M,

we get the result. �

Theorem 3.1. Consider equation (2.1) with Assumptions A, B and C, then there exists 0 < V̄ < +∞,

such that h
∑+∞

n=0 Vn
r < V̄ .

Proof. From Lemma 3.1, for i = 1, . . . ,M, it is

h
+∞∑
n=0

Vn
i ≤ αiP̄0 +

(
max

r=1,...,M
βir + B̄αi max

r=1,...,M
cr

) Ā
M∑

r=1

S 0
r + Mϕ̄0

 .
�

4. Asymptotic behavior of the numerical solution

The results of Section 2 ensure that the approximation of the solution to (1.1), obtained by (2.1), un-
conditionally retains the basic properties of the model. Here, we investigate the asymptotic properties
and prove that the limit of the numerical solution behaves exactly as its continuous counterpart.

First of all, we observe that from Assumptions C and (3.1), for each positive h,

h
+∞∑
n=0

ϕn
i ≤ (S 0

i − S∞i (h))Ā + ϕ̄0 < +∞, thus lim
n→+∞

ϕn
i = 0, i = 1, . . . ,M. (4.1)
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Define, for x = (x1, . . . , xM), h > 0 and i = 1, . . . ,M,

Ri(x, h) = log
(
S 0

i

xi

)
− βiαiUi(h)h

+∞∑
n=0

P0(tn) − βiUi(h)
M∑

r=1

βir + αicrh
+∞∑
n=1

B(tn)


·

S 0
r

(
1 −

xr

S 0
r

)
h

+∞∑
n=1

Ar(tn) + h
+∞∑
n=0

ϕ0r(tn)

 .
(4.2)

Here, Ui(h) is given by

Ui(h) =

∑+∞
n=0 log (1 + hβiVn

i )
hβi

∑+∞
n=0 Vn

i

, i = 1, . . . ,M. (4.3)

We observe that, due to (4.3), the relation (2.3) is equivalent to

log
S 0

i

S∞i (h)
− Ui(h)

hβi

+∞∑
n=0

Vn
i

 = 0, i = 1, . . . ,M.

Hence, by substituting in it the expression of
∑+∞

n=0 Vn
i from Lemma 3.1, it is clear that for any fixed

h > 0, the asymptotic numerical solution S∞i (h), i = 1, . . . ,M, is a root of the nonlinear system of
equations

Ri(x(h), h) = 0, i = 1, . . . ,M, (4.4)

if a solution to (4.4) exists.
In order to show that S∞i (h) tends to S i(∞), as h→ 0, we need the following result.

Lemma 4.1. Consider equation (2.1) with Assumptions A, B and C, then, for Ui(h) defined in (4.3), it
is

lim
h→0

Ui(h) = 1, i = 1, . . . ,M. (4.5)

Proof. From its definition and Lemma 3.1, Vn
i , i = 1, . . . ,M, n ≥ 0, is bounded by a constant inde-

pendent of h. This implies that limh→0 hVn
i = 0, uniformly with respect to h. In this situation, we are

allowed to proceed as in the proof of [19, Theorem 4.3] to get (4.5). �

Now we want to prove that system (4.4) has a unique solution for h > 0, so we consider a general
nonlinear algebraic system,

Γi(x1, . . . , xM) = 0, i = 1, . . . ,M, (4.6)

for which the following result holds.

Theorem 4.1. Denote by D =
∏M

i=1 Di, with Di = (ai, bi], i = 1, . . . ,M. Let Γi : D → R, i = 1, . . . ,M,
be a twice continuously differentiable function and assume that, for each i = 1, . . . ,M and any fixed

(x1, . . . , xi−1, xi+1, . . . , xM) ∈
M∏

j=1, j,i
D j,

a) Γi(x1, . . . , xi−1, ζ, xi+1, . . . , xM) admits at least one zero in Di;

b) limζ→a+
i

Γi(. . . , xi−1, ζ, xi+1, . . . ) > 0 and Γi(. . . , xi−1, bi, xi+1, . . . ) < 0;
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c) ∂x jΓi(x) > 0, for all x ∈ D, i, j = 1, . . . ,M and i , j;

d) ∂2
x j xk

Γi(x) ≥ 0, for all x ∈ D and j, k = 1, . . . ,M.

Then, system (4.6) has a unique solution in D.

Proof. We proceed by induction on M. Choose M = 2. Let x1 ∈ D1, then from a), b) and d), Γ2(x1, ζ)
has a unique zero ξ2 = ξ2(x1) ∈ D2,with ∂x2Γ2(x1, ξ2) < 0. Therefore, taking in account the arbitrariness
of x1 in D1, from the implicit function theorem, ∀x ∈ D1, there exists a unique z(x) ∈ D2 such that
u2(x) := Γ2(x, z(x)) ≡ 0. Since u′2(x) ≡ 0 and u′′2 (x) ≡ 0, using assumption c) and the fact that a), b) and
d) imply ∂x2Γ2(x, z(x)) < 0, we conclude that z′(x) > 0 and z′′(x) ≥ 0. Now, we exploit the function
z(x) to build a solution to system (4.6) with M = 2.
For an arbitrary α0 ∈ D1, let α1 ∈ D1 be the unique root of the function Γ1(ζ, z(α0)). If α1 = α0, then
(α0, z(α0)) is a solution to (4.6) with M = 2. Otherwise we can suppose, with no loss of generality, that
α0 < α1. It follows that z(α0) < z(α1) and, from c), 0 = Γ1(α1, z(α0)) < Γ1(α1, z(α1)). Thus Γ1(ζ, z(α1))
has a unique zero α2 ∈ D1, for which α0 < α1 < α2. Similar arguments lead to an increasing sequence
{αn}n∈N ⊂ D1, such that

∀n > 0, Γ1(αn+1, z(αn)) = 0, α = lim
n→+∞

αn, and Γ1(α, z(α)) = Γ2(α, z(α)) = 0.

Hence, (α, z(α)) ∈ D is a solution to system (4.6), with M = 2.
To prove its uniqueness, we consider another solution (β, γ) ∈ D and define the function u1 : x ∈ D1 →

Γ1(x, z(x)). Since Γ2(β, γ) = 0, it follows that γ = z(β) and u1(β) = 0 = u1(α). Since u1 is convex and,
from b), it admits a unique zero β = α, then the solution to (4.6) for M = 2 is unique.
Now assume that the result holds for any M − 1 dimensional system satisfying a)–d). Consider M > 2,
proceeding as in the previous case, for each (x1, . . . , xM−1) ∈

∏M−1
j=1 D j, there exists a unique function

z(x1, . . . , xM−1) such that
ΓM(x1, . . . , xM−1, z(x1, . . . , xM−1)) = 0,

∂xiz(x1, . . . , xM−1) > 0 and ∂2
x2

i
z(x1, . . . , xM−1) ≥ 0, i = 1, . . . ,M − 1. (4.7)

Define, for i = 1, . . . ,M − 1, the functions

ui(x1, . . . , xM−1) = Γi(x1, . . . , xM−1, z(x1, . . . , xM−1)). (4.8)

Now we want to prove that assumptions a)-d) are true for the M − 1 dimensional system

ui(x1, . . . , xM−1) = 0, i = 1, . . . ,M − 1, (4.9)

which is equivalent to (4.6). Regarding the assumption a), we need to prove that, for each fixed

(x1, . . . , xi−1, xi+1, . . . , xM−1) ∈
M−1∏

j=1, j,i
D j, the function

ui(x1, . . . , xi−1, ζ, xi+1, . . . , xM−1)

has a zero in Di, i = 1, . . . ,M − 1. For the theorem assumptions, given α0 ∈ Di, there exists a unique
α1 ∈ Di, such that

Γi(x1, . . . , xi−1, α1, xi+1, . . . , xM−1, z(x1, . . . , xi−1, α0, xi+1, . . . , xM−1)) = 0.

Mathematical Biosciences and Engineering Volume 20, Issue 7, 11656–11675.



11667

If α0 = α1, we get the result. Otherwise, proceeding as in the M = 2 case, we construct a monotone
sequence {αn}n∈N such that α = limn→+∞ αn ∈ Di and ui(x1, . . . , xi−1, α, xi−1, . . . , xM−1) = 0 holds.
Furthermore, b), c) and d) immediately follow from the hypotheses of the theorem, from (4.7) and
from (4.8). Therefore, induction hypotheses assure that there exists a unique λ ∈

∏M−1
i=1 Di, root of the

system (4.9). It follows that (λ, z(λ)) is a solution to the original system (4.6).
Finally, if (η, θ) is another solution of (4.6), with η ∈

∏M−1
i=1 Di and θ ∈ DM, then θ = z(η). Thus η solves

(4.9) and the uniqueness of its solution, that we have just proved, yields η = λ, which completes the
proof. �

Consider the nonlinear system (4.4) for h > 0, with Ri(x, h) defined in (4.2). The assumptions of
Theorem 4.1 apply to this system with Γi(x) = Ri(x, h) and Di = (0, S 0

i ], i = 1, . . . ,M. As a matter of
fact we analyze, for h > 0, i, j = 1, . . . ,M and i , j, the twice continuously differentiable function
Ri(x1, . . . , xi−1, ζ, xi+1, . . . , xM, h), with 0 < ζ ≤ S 0

i and 0 < x j ≤ S 0
j fixed. Since

lim
ζ→0+

Ri(x1, . . . , xi−1, ζ, xi+1, . . . , xM, h) = +∞, Ri(x1, . . . , xi−1, S 0
i , xi+1, . . . , xM, h) ≤ 0,

there exists 0 < S∞i (h) ≤ S 0
i , such that Ri(x1, . . . , xi−1, S∞i (h), xi+1, . . . , xM, h) = 0. Furthermore, for

each i, j = 1, . . . ,M, i , j, it is

∂x jRi(x, h) > 0, ∂2
x2

j
Ri(x, h) = 0, and ∂2

x2
i
Ri(x, h) = 1/x2

i .

Thus, according to Theorem 4.1, system (4.4) has, for each h > 0, a unique solution
(S∞1 (h), . . . , S∞M(h)), with 0 < S∞i (h) ≤ S 0

i , i = 1, . . . ,M, which is the asymptotic numerical solution.
Regarding the time-continuous model, we consider the nonlinear system

Ri(x) = 0, i = 1, . . . ,M, (4.10)

with Ri(x) defined in (1.6). It can be easily seen that the assumptions of Theorem 4.1 are accomplished
and then the asymptotic analytical solution S i(∞), i = 1, . . . ,M, to (1.1) is the unique solution of (4.10),
with 0 < S i(∞) ≤ S 0

i , i = 1, . . . ,M.
In order to investigate the relation between the asymptotic properties of the numerical solution as

h→ 0 and of the time-continuous solution, we assume that

lim
h→0

h
+∞∑
n=1

Ai(tn) =

∫ +∞

0
Ai(t) dt, lim

h→0
h

+∞∑
n=1

B(tn) =

∫ +∞

0
B(t) dt,

lim
h→0

h
+∞∑
n=1

ϕ0i(tn) =

∫ +∞

0
ϕ0i(t) dt,

(4.11)

for each h > 0 and i = 1, . . . ,M. The conditions in (4.11) are true, for instance, if the involved functions
are ultimately non-increasing, or if their derivatives belong to L1[0,+∞) (see [19]).

As the stepsize h vanishes, we expect that the asymptotic numerical solution converges to the con-
tinuous one. In fact, we apply the following result.

Theorem 4.2. Consider a bounded subset D of RM, and a function

Φ : D × [0,+∞)→ RM,

satisfying:
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a) Φ(w, h), continuous for each (w, h) ∈ D × [0,+∞);

b) equation Φ(w, h) = 0, has at least one solution w̄(h) ∈ D, ∀h ∈ [0,+∞);

c) equation Φ(w, h) = 0 has a unique solution for h = 0, namely w̄ = w̄(0) ∈ D.

Then limh→0 w̄(h) = w̄.

Proof. Straightforward extension of [26, Theorem 3.5] to the case of functions defined on open sets.
�

The vector function R(x, h) = (R1(x, h), . . . ,RM(x, h)), with Ri defined in (4.2), satisfies all the as-
sumptions of Theorem 4.2, in D = (0, S 0

1]×. . .×(0, S 0
M].Now, if (4.11) holds, the system corresponding

to h = 0 is given by (4.10). Therefore, this result establishes a connection between the asymptotic nu-
merical solution S∞i (h), i = 1, . . . ,M and the solution S i(∞), i = 1, . . . ,M of the nonlinear system
(4.10), thus emphasizing that the limit of S∞i (h), i = 1, . . . ,M, for h→ 0 exists and

lim
h→0

lim
n→+∞

S n
i (h) = lim

h→0
S∞i (h) = S i(∞), i = 1, . . . ,M. (4.12)

5. Case studies and numerical experiments

As we have emphasized in Section 1, system (1.1) represents a general theoretical setting which
includes a variety of epidemic models in the literature. In this context, the nonlinear system (4.10)
is the final size relation for the epidemic and system (4.4) represents the discrete final size relation
corresponding to the numerical solution. From this point of view, Sections 3 and 4 analyze how the
qualitative properties of the model are preserved when the system is integrated by the numerical scheme
(2.1). We focus here on four cases of interest, which act as test cases in our analysis. Due to Theorems
2.1 and 2.2, the numerical solution remains non-negative and bounded for any value of the stepsize
h > 0, this guarantees that the epidemic is correctly simulated by method (2.1). The asymptotic
analysis of the previous section applies to show that also the long time behaviour is preserved since
the numerical final size converges, as h → 0, to the final size of the epidemic. This is also clear in the
figures, which represent the results of the numerical experiments for each test model considered. For
our experiments we choose illustrative test equations and we use the non-standard method (2.1).

• The age-of-infection epidemic model described in [9, p. 139] by the system (1.2). Here, in case
ϕ0(t) = (N − S 0)A(t), being N the constant size of the population, the final size of the epidemic
S (∞) is the unique root of the nonlinear equation (see for example [9])

log
S 0

x
− R0

(
1 −

x
N

)
= 0, (5.1)

where R0 = βN
∫ +∞

0
A(t)dt is the basic reproduction number. Given the identifications of the

parameters in I, the nonlinear system (4.10) corresponds to system (5.1) (see [27,28] for a general
discussion on the meaning and on the analytical and numerical computation of R0). For this model
the numerical method (2.1) reduces to the non-standard numerical scheme proposed in [19] and
the nonlinear equation (4.4) represents the relation for the numerical final size of the epidemic
S∞(h) as obtained in that paper. In [19] it is proved that limh→0 S∞(h) = S (∞), provided that this
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limit exists. In Section 4, Theorem 4.2, we have proved that, in fact, this limit exists since, under
the above mentioned assumptions on A(t), (4.11) holds. So, Theorem 4.2 completes the analysis
made in [19] and we can assert that the numerical method is asymptotically coherent with (1.2).
Figure 1 shows the result when integrating problem (1.2) for t ∈ [0, 100], when the infectivity
function has a low regularity (see [29] for reference on this problem)

A(t) =



0 0 ≤ t ≤ τa,
(t − τa)(τh − t)

(τb − τa)(τh − τe)
τa < t < τb,

τh − t
τh − τe

τb ≤ t < τh,

0 t ≥ τh.

(5.2)

We have set the parameters β = 10−4, τe = 12, τa = 14, τb = 16, τh = 19, and we have used
S 0 = 49950, N = 50000, and stepsize h = 0.1. We see that the numerical solution behaves
coherently with the theoretical findings. The dot at the left end point of the integration interval is
the value for S (∞) obtained by solving the nonlinear equation (5.1) through the Matlab routine
fzero. This value is S (∞) = 148.83. The value S∞(h) obtained by running the method (2.1) in
the interval [0, 1000], with h = 10−3, is 149.97 and the accuracy in the approximation improves
linearly as the stepsize h→ 0. Furthermore, in compliance with (4.1), the endpoint approximation
of ϕ is numerically zero. Other numerical tests are reported in [19].

0 10 20 30 40 50 60 70 80 90 100

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
10

4

Figure 1. Problem (1.2)-(5.2): numerical solution for S (t) (solid line), ϕ(t) (dashed line)
and S (∞) value (dot), with β = 10−4, τe = 12, τa = 14, τb = 16, τh = 19. S 0 = 49950,
N = 50000, stepsize h = 0.1.
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• The model (1.3) with both symptomatic and asymptomatic infections in [10]. In this case the final
size of the epidemic S (∞) is the root of the nonlinear equation

log
S 0

x
− F

(S 0 − x
N

)
−

a
N

(∫ +∞

0
ϕs

0(t) dt +

∫ +∞

0
ϕa

0(t) dt
)

= 0, (5.3)

where F = a
∫ +∞

0
f (t)As(t) dt + a

∫ +∞

0
(1− f (t))Aa(t) dt, is considered to be finite. System (5.3) is

equivalent to (4.10) with the parameters specified in II. Hence, the findings of Section 4 provide
a uniqueness result for S (∞) as the only root in (0, S 0] of (5.3). Furthermore, the convergence
relation (4.12) confirms the numerical method (2.1) as a reliable tool to predict the asymptotic
behaviour of the epidemic and the total number of symptomatic and asymptomatic patients. These
considerations extend the investigation of [10]. As an example, we integrate problem (1.3) with

As(t) = πs(t)Bs(t), Bs(t) = exp(−
√

t/2), πs(t) = 5γ(t; 1, 2),
Aa(t) = πa(t)Ba(t), Ba(t) = (1 + 0.6t)−1, πa(t) = γ(t; 3, 2),
ϕs

0(t) = (N − S 0)As(t), ϕa
0(t) = (N − S 0)Aa(t), f (t) = 0.783, t ≥ 0,

(5.4)

where

γ(t; k, θ) =
tk−1θ−ke−t/θ∫ +∞

0
xk−1e−x dx

,

is the gamma probability density function. The number of symptomatic and asymptomatic indi-
viduals at time t, I s(t) and Ia(t), respectively, satisfy the system

I s(t) = I s
0(t) +

a
N

f
∫ t

0
Bs(t − τ)S (τ)(ϕs(τ) + ϕa(τ)) dτ,

Ia(t) = I s
0(t) +

a
N

(1 − f )
∫ t

0
Ba(t − τ)S (τ)(ϕs(τ) + ϕa(τ)) dτ.

(5.5)

Because of the absence of demographic turnover, the number of recovered people, at time t, is
R(t) = N − (S (t) + Ia(t) + I s(t)). Figure 2 shows the approximation of S (t) by (1.1), as well as
the approximations of I s(t), Ia(t) and R(t) computed, for n ≥ 0, by the same nonlocal technique
employed in (2.1).
• The multi-group heterogeneous populations model (1.4) proposed in [11]. The nonlinear system

for the final sizes S i(∞), of the epidemic in group i, i = 1, . . . ,M, is

log
S 0

i

xi
− ai

M∑
j=1

pi j

N j

(
(S 0

j − x j)
∫ +∞

0
A j(t) dt +

∫ +∞

0
ϕ j0(t) dt

)
= 0. (5.6)

System (4.10), with the parameter specifications in III, corresponds to the final size system (5.6).
In Figure 3 we report the numerical solution to equation (1.4), when the population of size N =

1000 is divided in 2 subgroups of sizes N1 = 0.1N and N2 = 0.9N, respectively. We consider
ϕi0(t) = (Ni − S 0

i )Ai(t), i = 1, 2 and we choose S 0
1 = 99, S 0

2 = 899, a1 = 5, a2 = 10, p11 = 0.4,
p12 = 0.6, p21 = 0.5, p22 = 0.5, and

A1(t) = A2(t) =
1

σ
√

2π
e−

(t−µ)2

2σ2 , µ = 0.2, σ = 3µ. (5.7)
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Figure 2. Problem (1.3)-(5.4): numerical solution for S (t) (solid line), S (∞) (dot), R(t)
(dashdotted line), I s(t) (dashed line) and Ia(t) (dotted line) with N = 104, S 0 = 9 · 103, a = 1,
f = 0.783, and stepsize h = 0.1.

In order to check the asymptotic properties of the numerical solution, we have solved problem
(1.4) by (2.1) on a large interval many times, each time halving the value of the stepsize h.
Then we have used the numerical solution at the end point of the integration interval to evaluate
the expression (5.6). This procedure gives a measure for the errors in approximating S i(∞),
which are listed in Table 1, where it is clear that the numerical final size converges linearly to the
corresponding continuous one.

Table 1. Problem (5.6)-(5.7): error values for the numerical final size.

h Error on final size
0.05 0.56
0.025 0.30

0.0125 0.15
0.00625 0.08

• The virus shedding epidemic model (1.5) studied in [13]. Here we assume that ϕi0 =
∫ t

−∞
Ai(t −

s)S (s)P(s)ds, i = 1, 2 and P0(t) =
∫ t

−∞
Γ(t − s)(r1ϕ1(s) + r2ϕ2(s))ds, are known functions respec-

tively of the form ϕi0(t) = (Ni − S 0
i )Ai(t), and P0(t) = P0Γ(t). In this case the final size relation for

S i(∞), i = 1, 2, is the following

log
S 0

i

xi
− βi

(
R1

(
1 −

x1

N1

)
+ R2

(
1 −

x2

N2

)
+ P0

∫ +∞

0
Γ(t)dt

)
= 0, (5.8)

i = 1, 2. For each group, Ni (i = 1, 2) are the sizes and

Ri = riNi

∫ +∞

0
Ai(t) dt

∫ +∞

0
Γ(t) dt,

are the basic reproduction numbers. Moreover, under the conditions in IV, system (4.10) corre-
sponds to the nonlinear system (5.8), which has a unique solution because of Theorem 4.1. The
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Figure 3. Problem (5.6)-(5.7): numerical solution for S i(t) (solid line), S i(∞) (dot), ϕi(t)
(dashed line), group i = 1, 2, with S 0

1 = 99, S 0
2 = 899, a1 = 5, a2 = 10, p11 = 0.4, p12 = 0.6,

p21 = 0.5, p22 = 0.5, and stepsize h = 0.1.

numerical results are shown in Figure 4 for

A1(t) = A2(t) =
1

σ
√

2π
e−

(t−µ)2

2σ2 , µ = 0.2, σ = 3µ, Γ(t) =
1

(1 + t)2 , (5.9)

N1 = 200, N2 = 300, S 0
1 = 199, S 0

2 = 298, P0 = 2, β1 = 0.015, β2 = 0.03, r1 = 0.1, r2 = 1.
Again a convergence of order one of the numerical final size S∞i (h), i = 1, 2, to the one given by
the model (1.5), can be experimentally observed.

6. Concluding remarks

Problem (1.1) and the corresponding discrete system (2.1) represent a general framework to study
and compare the qualitative behaviour of the analytical solution of some epidemic models, currently
of interest in the scientific community, and its numerical approximation. The numerical solution is
obtained by a non-standard discretization of the nonlinear terms in the system, and agrees with the
analytical solution in many important qualitative aspects. Both the behaviour at finite time and the
asymptotic properties of the solution are preserved for any value of the stepsize h > 0. Furthermore,
it is proved that the asymptotic numerical solution is the unique root of a nonlinear system, and that
it converges to the analytical one as h → 0. The system of equations (1.1) includes, in its general
form, some of the well known age-of-infection epidemic models in the literature. In general, the study
carried out in this paper can be regarded as a stability numerical investigation on a class of epidemic
problems that act as test equations. The role of the test equations here can be considered from two
different points of view. First of all, since the proposed method preserves the qualitative peculiarities
of the continuous solution, it can be considered reliable also for its quantitative evaluation and so the
numerical solution can answer crucial questions such as the peak of the epidemic represented by (1.1).
From another point of view, the aforementioned characteristics of the method make it reasonable to
expect that it will behave well even on more complex problems, not included in (1.1), such as models
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Figure 4. Problem (1.5)-(5.9): numerical solution for S i(t) (solid line), ϕi(t) (dashed line),
P(t) (dashdotted line), group i = 1, 2, and values of S∞i (dot), with S 0

1 = 199, S 0
2 = 298,

P0 = 2, β1 = 0.015, β2 = 0.03, r1 = 0.1, r2 = 1. Stepsize h = 0.1.

with death for disease or with time-varying coefficients [30], where the theory needs simulation to
describe the dynamics of the epidemic. The issue of time-varying coefficients represents an interesting
point to investigate in a future work within the framework of the general model (1.1).
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