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Abstract: We propose a fractional order model for human papillomavirus (HPV) dynamics, including
the effects of vaccination and public health education on developing cervical cancer. First, we discuss
the general structure of Caputo fractional derivatives and integrals. Next, we define the fractional HPV
model using Caputo derivatives. The model equilibrium quantities, with their stability, are discussed
based on the magnitude of the reproduction number. We compute and simulate numerical solutions
of the presented fractional model using the Adams-Bashforth-Moulton scheme. Meanwhile, real data
sourced from reports from the World Health Organization is used to establish the parameters and com-
pute the basic reproduction number. We present figures of state variables for different fractional orders
and the classical integer order. The impacts of vaccination and public health education are discussed
through numerical simulations. From the results, we observe that an increase in both vaccination rates
and public health education increases the quality of life, and thus, reduces disease burden and suffering
in communities. The results also confirm that modeling HPV transmission dynamics using fractional
derivatives includes history effects in the model, making the model further insightful and appropriate
for studying HPV dynamics.
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1. Introduction

Human papillomavirus (HPV) is one of the most common sexually transmitted diseases and is a
major cause of cervical cancer [1]. It is reported that more than 80% of the sexually active popula-
tion in the world has HPV. In 2018, there were about 43 million HPV infections, many among young
people [1]. In the 1970s, it was established to be a necessary etiologic agent for cervical cancer in
epidemiological and molecular investigations [2]. There are in excess of two hundred different sorts of
HPV, with forty of them being high-risk types that may infect the throat, mouth and vaginal area [3].
When the human body is exposed to HPV, the immune system normally protects the body from the
virus. The virus, on the contrary, may persist for years in a small number of people, causing certain
cervical cells to transform into cancer cells. Because HPV is sexually transmitted, its prevalence in the
population steadily increases during the first years of sexual activity among young adults. HPV 16 and
18 variants are the most common high-risk types of HPV, and usually do not result in any noticeable
symptoms, even though they cause most of the cervical cancer worldwide [4]. Cervical cancer is one of
the most common cancers among women globally, with an estimated 342,000 deaths in 2020 [4]. Sig-
nificantly, the World Health Organization (WHO) reports that about 90% of all new cases and deaths
worldwide in 2020 occurred in low- and middle-income countries (LMICs) [5]. Due to their socioeco-
nomic status, nutrition, education, early-stage sexual engagement, and numerous sexual partners, most
low- and middle-income countries have a significant cervical cancer burden and morbidity. This bur-
den can be reduced significantly by HPV vaccination, screening and treatment of pre-cancer lesions.
If diagnosed early and treated promptly, cervical cancer can be cured [5].

To minimize the spread of any infection, control strategies are often required to be put in place.
HPV vaccination, sensitization, abstinence, condom use, screening and treatment of pre-cancerous
lesions are some of the most commonly used control strategies [1]. While other strategies prevent
HPV spread, vaccination and public health education protect women from being infected with HPV,
and significantly reduce the risk of developing genital warts and HPV-related cervical cancer later in
life. Vaccination programs are successful in lowering HPV infection rates, thereby reducing associated
complications. In the literature, it is reported that there are four HPV vaccines available to prevent
infection with high-risk strains [4]. In the human body, these vaccines last for prolonged periods of
time and their protection remains high with no evidence of decreasing over time [6]. In order to rid of
HPV in society, public health officials are strongly encouraging women to vaccinate against HPV. We
also use the fact that, in most cases, our bodies can produce antibodies to fight HPV and clear the virus
within one to two years of infection. It is reported in the literature that, in most cases, HPV goes away
without treatment [6]. As such, it is common to contract and clear HPV completely without one ever
knowing that they had it. Also, there are insufficiently small amounts of data on whether or not women
can be re-infected with HPV types that they were exposed to earlier in their life.

To investigate disease propagation in communities, mathematical models tracing disease dynamics
have been developed to predict trajectories that these diseases may take in the future. Such predictions
are important to health officials and government health regulatory agencies because they give direction,
so that necessary steps are taken to avoid further suffering. Most disease models involve integer-order
differential equations, and they are accurate in making these predictions. To improve these predictions,
fractional-order models have been introduced to model disease dynamics. Fractional derivatives have
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the advantage that the dynamics of real-life problems can be captured better at any moment. They are
also an appropriate technique to analyze the memory and hereditary properties of different physical and
biological processes [7–11]. Due to the memory properties of fractional differential equations models,
previous information is integrated into these systems. In turn, more accurate model predictions are
achieved [10, 12].

This manuscript uses Caputo fractional derivatives to model HPV dynamics, considering the ef-
fect of vaccination and public health education on overall disease progression. The motivation to use
fractional derivatives to model HPV dynamics comes from the fact that it is reported in the literature
that modeling disease dynamics using fractional derivatives is insightful and appropriate. We use the
Caputo fractional derivative description because its implementation is easy and for constants, as the
Caputo derivative is zero. Caputo derivatives are also advantageous in that the Caputo fractional op-
erator allows for the implementation of standard integer order initial conditions [10, 13]. Standard
properties of such as the boundedness, uniqueness, existence and stability of steady-state solutions are
presented and analyzed in terms of the basic reproduction number. We solve the HPV fractional model
using the generalized Adams-Bashforth-Moulton numerical method. The advantage of this method
over other methods is that it is significantly more stable. The obtained numerical results indicate that
studying the HPV dynamics in fractional order provides more insights into disease propagation in so-
ciety. Particularly, we discuss how vaccination rates and public health education (through the contact
rate between individuals) affect disease propagation in society.

The manuscript is ordered as follows: Section 2 gives some basics and preliminaries for Caputo
fractional derivatives. Section 3 provides the development of the HPV Caputo fractional model. Model
properties, such as its positivity and boundedness, are presented in Section 4. Section 5 discusses the
model steady states and their stability. The Adams-Bashforth-Moulton scheme is utilized in solving
the developed HPV fractional model in Section 6. Section 7 discusses the numerical results obtained
to validate theoretical and analytical studies. Lastly, Section 8 concludes the key results found in this
study.

2. Basic concepts of fractional order derivatives

This section introduces some principal concepts of Caputo fractional order integrals and derivatives.

Definition 1. Suppose x ∈ C([0, b],R+), where b > 0. The fractional integral of order α > 0 of a
function x(t) is given by [14, 15]

Iαx(t) =
1

Γ(α)

∫ t

0
(t − τ)α−1x(τ) dτ, t > 0. (2.1)
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Definition 2. Suppose x ∈ C1([0, b],R+), where b > 0. The Caputo fractional derivative of order α > 0
of x(t) is given by [10, 14, 16]

CDα
t x(t) = In−αDnx(t) =


1

Γ(n − α)

∫ t

0
(t − τ)n−α−1 dn

dτn x(τ) dτ, n − 1 < α < n,(
d
dt

)n

x(t), α = n,
(2.2)

where n is a positive integer. The Caputo operator CDα
t is advantageous for differential equations with

initial values [10]. Normally, these initial values are given as CDα
t x(0) = di, i = 1, 2, 3, ..., n.

The operator CDα
t meets the following properties:

(i) CDα
t Iαx(t) = x(t)

(ii) Iα CDα
t x(t) = x(t) −

n−1∑
ϑ=0

x(ϑ)(a)
ϑ!

(t − a)ϑ, t > a.

Next, the definition of Caputo fractional derivatives is applied to the human papillomavirus model.

3. HPV model formulation

The total human population is split into five sub-populations according to disease status: susceptible
(S ), vaccinated (V), HPV infected (I), cancerous (C) and recovered (R), such that

N(t) = S (t) + V(t) + I(t) + C(t) + R(t). (3.1)

The model considers the transmission dynamics of HPV, which is predominantly transmitted
through sexual intercourse. People enter the susceptible class through birth and immigration denoted
by Λ. A portion of the susceptibles is vaccinated at rate ν, and progresses to class V . The transmission
rate β models the rate at which susceptibles become infected with HPV. The natural mortality rate is
modeled by µ, γ depicts the natural recovery rate, κ models the progression rate of HPV infected to
developing cancer of the cervix, δ models cervical cancer induced mortality rate and φ models the rate
at which people become susceptible again after losing their immunity. We use the bi-linear incidence
rate βS I to explore the dynamics of HPV. Using the bi-linear incidence, we have that per unit time, new
case numbers become saturated within the total population. Table 1 gives a summary of the parameters
and state variables. Figure 1 presents a graphical representation of HPV dynamics.

In developing this model, we assume that the vaccine does not wane off for the period under con-
sideration. Hence, the movement from class S to V is unidirectional. The developed model does
not have a treated class because, at this time, there is no cure for HPV, although its symptoms can
be treated [6]. The slight possibility that women can be re-infected with HPV types that they were
exposed to earlier in their life warrants that the developed model should consider re-infection of the
recovered individuals. Hence, the progression from class R to S .

Mathematical Biosciences and Engineering Volume 20, Issue 7, 11605–11626.



11609

Table 1. Model state variable and parameter descriptions.

State variables Description
S(t) susceptible to HPV
V(t) vaccinated for HPV
I(t) HPV infected
C(t) cancerous individuals
R(t) recovered from HPV
Parameters Description
Λ recruitment rate
β transmission rate
ν rate of vaccination
µ rate of natural mortality
δ cervical cancer induced mortality rate
γ natural recovery rate
φ rate of progression to susceptible from recovered
κ rate of progression to the cancerous state from HPV infected

From the SVICR compartmental model in Figure 1, we obtain the nonlinear system

dS
dt

= Λ − βS I + φR − (ν + µ)S ,

dV
dt

= νS − µV

dI
dt

= βS I − (κ + γ + µ)I,

dC
dt

= κI − (δ + µ)C,

dR
dt

= γI − (φ + µ)R,


(3.2)

subject to

S (0) = S 0 ≥ 0, V(0) = V0 ≥ 0, I(0) = I0 ≥ 0, C(0) = C0 ≥ 0, R(0) = R0 ≥ 0. (3.3)

Using the Caputo fractional definition, we translate model (3.2) to a fractional differential equations
(FDE) system of order α as

CDα
t S (t) = Λ − βS I + φR − (ν + µ)S

CDα
t V(t) = νS − µV

CDα
t I(t) = βS I − (κ + γ + µ)I

CDα
t C(t) = κI − (δ + µ)C

CDα
t R(t) = γI − (φ + µ)R


, (3.4)

where 0 < α < 1. Note that when α = 1, model (3.4) reduces to the integer model (3.2). Since system
(3.4) traces the human population, all parameters and state variables are positive for all t. We use
fractional-order instead of integer-order systems because, when modeling real-life dynamics, FDEs
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can minimize errors that arise from neglected parameters [10, 17]. In the sections that follow, we
explore the HPV dynamics of the model (3.4).

Figure 1. Dynamic of HPV transmission and its effect on cervical cancer.

4. Positivity and boundedness of solutions

Denote Φ =
{
x(t) ∈ R5

+ : x(t) ≥ 0
}

and let x(t) = [S (t),V(t), I(t),C(t),R(t)]T . Recall the generalized
mean value theorem, and consider the corollary below to prove the positivity of solutions.

Lemma 1 (Generalized Mean Value Theorem [18, 19]). Suppose that x(t) ∈ C[a, b] and the Caputo
derivative CDα

t x(t) ∈ C(a, b] for 0 < α ≤ 1, then we have

x(t) = x(a) +
1

Γ(α)
CDα

t x(ξ)(t − a)α (4.1)

with 0 ≤ ξ ≤ t for t ∈ (a, b].

Remark 1. Suppose x(t) ∈ C[0, b] and the Caputo derivative CDα
t x(t) ∈ C(0, b] for 0 < α ≤ 1. From

Lemma 1, if CDα
t x(t) ≥ 0 for t ∈ (0, b), then the function x(t) is non-decreasing, and if CDα

t x(t) ≤ 0
for t ∈ (0, b), then the function x(t) is non-increasing for all t ∈ [0, b].

Theorem 1. Let (S ,V, I,C,R) be a solution of system (3.4) subject to initial conditions (3.3) on t > 0,
and let Φ =

{
(S ,V, I,C,R) ∈ R5

+ : 0 < N(t) ≤ Λ
µ

}
. The set Φ is positively invariant and attractive for the

dynamics modeled using the system (3.4).

Proof. The proof of theorem 1 follows from theorem 4.1 of Naik et al. [10], and theorem 3.1 and
remark 3.2 of Lin [20].

5. Model steady states

Usually, disease models have at least one endemic equilibrium (EE) and a disease-free equilibrium
(DFE). The reproduction number is utilized to derive the stability of these equilibrium points. We
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define the reproduction number in the next subsections. If we set the left-hand side of the system (3.4)
to zero, the equilibrium points are obtained, i.e.,

CDα
t S (t) = 0

CDα
t V(t) = 0

CDα
t I(t) = 0

CDα
t C(t) = 0

CDα
t R(t) = 0


. (5.1)

5.1. Disease free equilibrium

The DFE, (E0), of model (3.4) is

E0 =
(
S 0,V0, I0,C0,R0

)
=

(
Λ

µ + ν
,

νΛ

µ(µ + ν)
, 0, 0, 0

)
. (5.2)

Dynamics of the HPV model (3.4) are described on the basis of the reproduction number. The
average number of infected contacts per sick person is known as the basic reproduction number or basic
reproductive ratio (denoted by R0). A value of R0 greater than one at the population level indicates that
an infection will continue to spread within susceptible hosts in the absence of environmental changes
or outside influences [21, 22]. Using the Van den Driessche and Watmough [23] approach of the next
generation matrix, we determine R0 for model (3.4) as follows. We let X = [I C V S R]T , then rewrite
the model (3.4) in the matrix form

dX
dt

= F (X) −V(X),

where F (X) contains the new infection term andV(X) contains the remaining transition terms, and are
given by

F (X) =


βIS

0
0
0
0


and V(X) =


(κ + γ + µ)I
−κI + (µ + δ)C
−νS + µV

−Λ + βS I − φR + (µ + ν)S
−γI + (φ + µ)R


.

The infection compartments are I and C. The Jacobian matrices of F (x) and V(x) at the disease-free
equilibrium point E0 are

F =

[
βS 0 0

0 0

]
and V =

[
κ + γ + µ 0
−κ δ + µ

]
.

Hence, the basic reproduction number for model (3.4) is computed as

R0 =
βΛ

(γ + κ + µ)(µ + ν)
. (5.3)

Theorem 1. The HPV model (3.4) is locally asymptotically stable (LAS) at E0 whenever R0 < 1 and
unstable, otherwise.
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Proof. The Jacobian matrix of system (3.4) evaluated at the equilibrium point E0 is given as

JE0 =



−(µ + ν) 0 −
βΛ

µ + ν
0 φ

ν −µ 0 0 0

0 0
βΛ

µ + ν
− (κ + γ + µ) 0 0

0 0 κ −(δ + µ) 0
0 0 γ 0 −(φ + µ)


. (5.4)

Matrix (5.4) has five distinct negative eigenvalues given by −µ, −(µ + ν), −(δ + µ), −(φ + µ), and
−(γ + κ + µ)(1 − R0). All the eigenvalues are negative if R0 < 1. Hence, the DFE E0 is locally stable if
R0 < 1.

5.2. Endemic equilibrium

Any equilibrium point where I(t) , 0 is defined as the endemic equilibrium (EE). Define EE of
system (3.4) as

E∗ =
(
S ∗,V∗, I∗,C∗,R∗

)
, (5.5)

where

S ∗ =
γ + κ + µ

β
,

V∗ =
ν(γ + κ + µ)

βµ
,

I∗ =
(µ + φ)(µ + ν)(γ + κ + µ)(R0 − 1)

β(γµ + (κ + µ)(µ + φ))
,

C∗ =
κ(µ + φ)(µ + ν)(γ + κ + µ)(R0 − 1)
β(δ + µ)(γµ + (κ + µ)(µ + φ))

,

R∗ =
γ(µ + ν)(γ + κ + µ)(R0 − 1)
β(γµ + (κ + µ)(µ + φ))

.

E∗ exists if and only if R0 > 1. Therefore, we summarize this finding in the lemma below.

Lemma 2. A unique EE, for model (3.4) exists only if R0 > 1; otherwise, it is non-existent.

Theorem 2. If R0 > 1, then the EE point E∗ is locally asymptotically stable.

Proof. Computing the Jacobian of the model (3.4) at E∗, one obtains

JE∗ =


−βI∗ − (µ + ν) 0 −βS ∗ 0 φ

ν −µ 0 0 0
βI∗ 0 βS ∗ − (κ + γ + µ) 0 0
0 0 κ −(δ + µ) 0
0 0 γ 0 −(φ + µ)


. (5.6)

Mathematical Biosciences and Engineering Volume 20, Issue 7, 11605–11626.



11613

The matrix JE∗ has negative eigenvalues −µ, −(δ + µ) and the remaining eigenvalues are the ones of
the sub-matrix

J1 =


−βI∗ − (µ + ν) −βS ∗ φ

βI∗ βS ∗ − (κ + γ + µ) 0
0 γ −(φ + µ)

 . (5.7)

The characteristic polynomial of J1 is

P3(λ) = λ3 + a2λ
2 + a1λ + a0, (5.8)

where

a2 = βI∗ + 2µ + ν + φ (5.9)
a1 = βI∗(γ + κ + 2µ + φ) + (µ + ν)(µ + φ) (5.10)
a0 = βI∗(γµ + (κ + µ)(µ + φ)). (5.11)

The Routh-Hurwitz criteria [Theorem 4.4, [24]] reveals that all roots of the polynomial P3(λ) are
negative or have negative real part if, and only if,

a0 > 0, a2 > 0, a2a1 > a0.

From the endemic equilibrium E∗ in (5.5), we have that if R0 > 1, then I∗ > 0. Thus, a0 > 0 and a2 > 0
if I∗ > 0. Next, we show that a2a1 > a0 (i.e. a2a1 − a0 > 0) when R0 > 1. With a simple expansion, we
obtain

a2a1 − a0 = β2I2
∗ (γ + κ + 2µ + φ) + (µ + ν)(µ + φ)(2µ + ν + φ)

+ βI∗
(
γ(µ + ν + φ) + κ(µ + ν) + 4µ2 + 3µν + 4µφ + 2νφ + φ2

)
.

From E∗ , I∗ > 0 when R0 > 1. We then conclude that a2a1 − a0 > 0 whenever R0 > 1. Therefore, the
EE point E∗ is locally stable when R0 > 1.

6. Numerical method

This section describes the Adams-Bashford-Moulton scheme narrated by Naik et al. [10] to solve
the system of general fraction Eq (3.4) numerically. Codes and simulations were carried out in Matlab
R2019b [25] and Wolfram 9.0 [26] to support the theoretical findings.

6.1. Adams-Bashforth-Moulton technique

Firstly, the Adams-Bashforth-Moulton scheme, which may be utilized to approximate solutions of
systems, such as, nonlinear system (3.4), is described. Without loss of generality, consider

CDα
t x(t) = f (t, x(t)), 0 ≤ t ≤ T, (6.1)
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subjected to
x j(0) = x j

0, j = 0, 1, 2, . . . [α] − 1. (6.2)

Using the Caputo derivative property (ii.) and definition of a fractional integral, we operate Eq
(6.1) with this integral operator setting the lower limit a = 0. We find the solution x(t) by solving the
equation below (similar to the Volterra integral equation):

x(t) =

[α]−1∑
j=0

x j
0

j!
t j +

1
Γ(α)

∫ t

0
(t − τ)α−1 f (τ, x(τ)) dτ. (6.3)

Set the step-size h = T
N so that tn = nh and n = 0, 1, 2, . . . ,N ∈ Z+ for 0 ≤ t ≤ T . We may then

utilize the Adams–Bashforth-Moulton scheme to integrate Eq (6.3). Equation (6.3) is discretized as

xh(tn+1) =

[α]−1∑
j=0

x j
0

j!
t j
n+1 +

hα

Γ(α + 2)
f (tn+1, x

p
h(tn+1)) +

hα

Γ(α + 2)

n∑
q=0

aq,n+1 f (tq, xh(tq)), (6.4)

where

aq,n+1 =


nα+1 − (n − α)(n + α)α, if q = 0,
(n − q + 2)α+1 + (n − q)α+1 − 2(n − q + 1)α+1, if 0 < q ≤ n,
1, if q = n + 1,

(6.5)

and the predicted value xp
h(tn+1) is given by

xp
h(tn+1) =

[α]−1∑
j=0

x j
0

j!
t j
n+1 +

1
Γ(α)

n∑
q=0

bq,n+1 f (tq, xh(tq)), (6.6)

where
bq,n+1 =

hα

α
((n + 1 − q)α − (n − q)α) . (6.7)

Since xh(tp) approximates x(tp), the error estimate is

max
q=0,1,2,...,m

|x(tp) − xh(tp)| = O(hp), (6.8)

in which p = min(2, 1 + α).

6.2. Implementing the numerical scheme to the fractional HPV model

We then use the Adams-Bashforth-Moulton technique to find the approximate solution of the non-
linear HPV model system (3.4). The numerical scheme is derived from (6.4) and is given by

S (tn+1) = S 0 +
hα

Γ(α + 2)
fS (tn+1, S p(tn+1),V p(tn+1), I p(tn+1),Cp(tn+1),Rp(tn+1))

+
hα

Γ(α + 2)

n∑
q=0

aq,n+1 fS

(
tq, S (tq),V(tq), I(tq),C(tq),R(tq)

)
,
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V(tn+1) = V0 +
hα

Γ(α + 2)
fV (tn+1, S p(tn+1),V p(tn+1), I p(tn+1),Cp(tn+1),Rp(tn+1))

+
hα

Γ(α + 2)

n∑
q=0

aq,n+1 fV

(
tq, S (tq),V(tq), I(tq),C(tq),R(tq)

)
,

I(tn+1) = I0 +
hα

Γ(α + 2)
fI (tn+1, S p(tn+1),V p(tn+1), I p(tn+1),Cp(tn+1),Rp(tn+1))

+
hα

Γ(α + 2)

n∑
q=0

aq,n+1 fI

(
tq, S (tq),V(tq), I(tq),C(tq),R(tq)

)
,

C(tn+1) = C0 +
hα

Γ(α + 2)
fC (tn+1, S p(tn+1),V p(tn+1), I p(tn+1),Cp(tn+1),Rp(tn+1))

+
hα

Γ(α + 2)

n∑
q=0

aq,n+1 fC
(
tq, S (tq),V(tq), I(tq),C(tq),R(tq)

)
,

R(tn+1) = R0 +
hα

Γ(α + 2)
fR (tn+1, S p(tn+1),V p(tn+1), I p(tn+1),Cp(tn+1),Rp(tn+1))

+
hα

Γ(α + 2)

n∑
q=0

aq,n+1 fR

(
tq, S (tq),V(tq), I(tq),C(tq),R(tq)

)
,

where

S p(tn+1) = S 0 +
1

Γ(α)

n∑
q=0

bq,n+1 fS

(
tq, S (tq),V(tq), I(tq),C(tq),R(tq)

)
,

V p(tn+1) = V0 +
1

Γ(α)

n∑
q=0

bq,n+1 fV

(
tq, S (tq),V(tq), I(tq),C(tq),R(tq)

)
,

I p(tn+1) = I0 +
1

Γ(α)

n∑
q=0

bq,n+1 fI

(
tq, S (tq),V(tq), I(tq),C(tq),R(tq)

)
,

Cp(tn+1) = C0 +
1

Γ(α)

n∑
q=0

bq,n+1 fC
(
tq, S (tq),V(tq), I(tq),C(tq),R(tq)

)
,

Rp(tn+1) = R0 +
1

Γ(α)

n∑
q=0

bq,n+1 fR

(
tq, S (tq),V(tq), I(tq),C(tq),R(tq)

)
.

Furthermore, the functions fi

(
tq, S (tq),V(tq), I(tq),C(tq),R(tq)

)
, i = S ,V, I,C,R are computed as

follows,

fS

(
tq, S (tq),V(tq), I(tq),C(tq),R(tq)

)
= Λ − βS (t)I(t) + φR(t) − (ν + µ)S (t), (6.9)

fV

(
tq, S (tq),V(tq), I(tq),C(tq),R(tq)

)
= νS (t) − µV(t), (6.10)

fI

(
tq, S (tq),V(tq), I(tq),C(tq),R(tq)

)
= βS (t)I(t) − (κ + γ + µ)I(t), (6.11)

fC
(
tq, S (tq),V(tq), I(tq),C(tq),R(tq)

)
= κI(t) − (δ + µ)C(t), (6.12)
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fR

(
tq, S (tq),V(tq), I(tq),C(tq),R(tq)

)
= γI(t) − (φ + µ)R(t). (6.13)

Likewise, the functions

fS (tn+1, S p(tn+1),V p(tn+1), I p(tn+1),Cp(tn+1),Rp(tn+1)),
fV (tn+1, S p(tn+1),V p(tn+1), I p(tn+1),Cp(tn+1),Rp(tn+1)),
fI (tn+1, S p(tn+1),V p(tn+1), I p(tn+1),Cp(tn+1),Rp(tn+1)),
fC (tn+1, S p(tn+1),V p(tn+1), I p(tn+1),Cp(tn+1),Rp(tn+1)),
fR (tn+1, S p(tn+1),V p(tn+1), I p(tn+1),Cp(tn+1),Rp(tn+1)),

are calculated using Eqs (6.9)–(6.13), respectively, at tn+1 points for n = 1, 2, 3, . . .m. We, thus, present
numerical simulation in the next section.

7. Numerical results and discussion

We utilize the Adams-Bashford-Moulton described in Section 6 to solve the model (3.4). As a case
study, the values of parameters are sourced from the Indian Council of Medicinal Research [27] and the
International Agency for Research on Cancer [28] under the World Health Organization database. In
foraging for the HPV vaccination rate ν in the literature, we found that vaccine coverage remains very
low in low and middle-income countries that also lack high-quality screening programmes. We could
not find actual vaccination rates for most low and middle-income countries. Thus, for the baseline
simulation cases, we assume ν = 0.40, based on the vaccination rates reported for Asia [29]. In the
subsequent sections where we project the vaccination impact, we vary this ν. Table 2 lists the baseline
parameter values used for the simulations.

Table 2. Parameter values for the HPV model (3.2).

Parameter Values (year)−1 Source
Λ 9.016228 [30]
µ 0.0141784 [30]
δ 0.108696 [28]
β 0.00556 Assumed
κ 0.05714 [31, 32]
γ 0.9 [4]
φ 0.25 Assumed
ν 0.4 Estimated based on data in [29]

Table 3 presents the initial values used for the simulations. The table presents data for women in
India aged above 15 years. According to the HPV and related disease report in India, about 483.5
million women are at risk for cervical cancer [33]. In the absence of real data, the compartment V
is assumed to be 168.7584 million at t = 0. To simulate the disease dynamics of HPV for the case
where the reproduction number is less than unity, we assume that β = 0.00556. For the given data in
Table 2, R0 ≈ 0.124609 was estimated as the basic reproduction number. To simulate the case where
R0 > 1, we assume β = 0.0556. In this case, R0 ≈ 1.24609 was estimated as the basic reproduction
number. This implies that the disease will persist in the population until other intervention strategies
are introduced to reduce the current reproduction number.
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Table 3. Initial values (in millions) used in the simulations.

S (0) V(0) I(0) C(0) R(0)

483.5 168.7584 29.819 0.0991 5

7.1. Simulations

In this subsection, we illustrate numerical simulations of the fractional model (3.4). We present
plots of the state variables for different fractional values. The fractional order α considered varies from
α = 0.75 to α = 1, as depicted in Figure 2. Note that when α = 1, we have the classical integer order
model.

Figure 2 depicts a modest change in the evolution of the various population classes. As indicated in
Figure 2, α varies from α = 0.75 to α = 1. From the plots, we observe that the system memory effect
is increasing when α is decreased from unity. Figure 2 indicates that, as the memory effects increase,
the infection grows slowly, resulting in the number of those infected with HPV being higher for longer.
Generally, due to a lack of knowledge of HPV transmission dynamics, there is always a time lag in
identifying HPV-exposed individuals. This results in an increase in the HPV undiagnosed population,
continued progression of HPV in the population, an increase in the HPV-infected population and,
consequently, an increase in those diagnosed with cervical cancer. In contrast, being aware of HPV
and its transmission dynamics makes susceptible individuals take precautionary measures, such as
getting vaccinated and other behavioural changes to avoid infection. These measures result in slowing
down HPV progression in the population.

Note that each state variable keeps a similar trend as α changes in Figure 2, even though their actual
values are a little dissimilar. In Figure 2a, the plots of S (t) decrease over time, and finally converge to
DFE point S 0 = 21.7689. Figure 2b indicates that V(t) trajectories are increasing with t and converge
to DFE value V0 = 614.144. The graphs of I(t), C(t) and R(t) in Figure 2c–e are first increasing with t
and then their path changes; decreasing till convergence to the DFE point I0 = 0, C0 = 0 and R0 = 0,
respectively. Comparing these plots, we observe that whenever I(t) , 0, then the other subpopulations
are nonzero as well.

Figure 3 displays HPV dynamics for the case where R0 > 1. In this case, E∗ exists and is locally
stable. The trajectories of state variables keep the same trend as α is varied. The trajectories eventually
converge to the endemic equilibrium E∗ = (17.4698, 492.855, 14.8856, 6.92221, 50.7121). Further-
more, Figure 4 shows the existence of attractors for various α for the case when R0 < 1. The attractors
indicate that each population class exists and enters a state where it remains unchanged, indefinitely.

In summary, we observe that the state variables quickly converge to equilibrium when α increases.
This makes us deduce that derivative order α captures knowledge or experience of past HPV dynamics.
The results of the fractional-order model provide us with more degrees of freedom when compared with
integer-order models that reflect memory effects much less accurately. The presented fractional-order
numerical findings are richer than what an integer-only model would provide.

Next, we look into the effects of vaccination and education on the model in reducing disease spread.
We focus to determine the disease dynamics by varying the vaccination rate, ν. To quantify education
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(a) (b)

(c) (d)

(e)

Figure 2. Dynamics of HPV model (3.4) for various fractional order α using parameters
Table 2.

effects, we vary the β, which might be interpreted as the contact rate between the HPV-infected and
susceptible individuals.
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(a) (b)

(c) (d)

(e)

Figure 3. Dynamics of HPV model (3.4) for various fractional order α for the case R0 > 1.
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(a) (b)

(c) (d)

Figure 4. Some attractors of model (3.4) for various fractional order α.

7.2. Vaccination

The effect of the vaccination rate ν on the population dynamics is presented in Figures 5 and 6.
Figures 5 and 6 show plots of I and C for ν = 0.2 and ν = 0.8, respectively, and different fractional order
values. We observe that, for a fixed ν and different fractional orders, memory effects are increasing as
the derivative order is decreased. Increasing the fractional order from 0.75 to 1 results in a decrease in
the equilibrium values of the I and C populations. We also observe that, for ν = 0.8, both the I(t) and
C(t) curves peak at lower values when compared to the curves when ν = 0.2. In Figure 7, we observe
that, for a given fractional order, increasing ν causes a decrease in equilibrium values of those infected
with HPV and those who developed cervical cancer. From these plots, we conclude that increasing the
vaccination rate has a desired positive effect in reducing the number of people infected with HPV, as
well as those who proceed to the cancerous class. Another way to determine the impact of ν of total
HPV dynamics is to check how ν affects the reproduction number R0. From Eq (5.3), we observe that
lim
ν→1
R0 = 0. Thus, increasing ν reduces R0. The plot of R0 versus ν is a downward sloping curve that

converges to zero as ν→ 1.
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(a) (b)

Figure 5. Effect of ν = 0.2 on HPV dynamics (3.4) for various fractional order α.

(a) (b)

Figure 6. Effect of ν = 0.8 on HPV dynamics (3.4) for various fractional order α.

(a) (b)

Figure 7. Effect of ν on the I and C fractional dynamics (3.4) for a fixed fractional order α.
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7.3. Behavioral change

Being educated on HPV transmission dynamics leads to behavioural changes, such as practising
safe sex by using condoms and early diagnosis if exposed to the infection. Public health education
plays a critical role in reducing disease spread in populations. We quantify this by simulating the I and
C population for different values of β. Figures 8 and 9 plots I and C for β = 0.00456 and β = 0.00756,
respectively. Figure 9 indicates that increasing β results in significant changes in the trajectories of
I and C for different fractional orders. Increasing the contact rate between the S and I results in an
increase in the number of HPV and cancer-infected populations for a long time. We observe that
the population classes peak at higher values in Figure 9 compared to Figure 8. A comparison of the
two figures shows that by reducing β, we can control the spread of the disease. Also, these figures
indicate that, for a fixed β, the memory effects also increase as the fractional order is decreased. As
α increases from 0.75 to 1, the trajectories of I and C quickly converge to their equilibrium values.
For a fixed fractional order, the amount of HPV-infected people and those diagnosed with cervical
cancer are shown in Figure 10. The amounts increase quite significantly when the contact rate between
the infected and susceptibles increases. Consequently, reducing any sexual activity could be vital in
preventing the further spreading of infection. Likewise, another way to determine the impact of β
of total HPV dynamics is to check how β affects the reproduction number R0. From Eq (5.3) and
parameter values in Table 2, we observe that lim

β→1
R0 = 22.4118. This means that increasing β results in

an increase in R0.

(a) (b)

Figure 8. Effect of β = 0.00456 on HPV dynamics (3.4) for various fractional order α.

8. Conclusions

This manuscript investigates a new fractional HPV model by considering the effects of vaccina-
tion and public health education in a community. At first, we developed an ordinary derivative HPV
model, and, thereafter, modified it into fractional order by using Caputo fractional derivatives. Model
basic properties, such as existence, positivity and boundedness of solutions, were discussed. We also
discussed the model stability, and the parameters were estimated based on real data. The basic repro-
duction number was calculated to be R0 ≈ 1.24609, which is true for most countries where vaccination
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(a) (b)

Figure 9. Effect of β = 0.00756 on HPV dynamics (3.4) for various fractional order α.

(a) (b)

Figure 10. Results showing the effect of β on the I and C fractional dynamics (3.4) for a
fixed fractional order α.

and other intervention strategies have not been efficiently implemented. Thereafter, we solved the frac-
tional model using the Adam-Bashforth-Moulton method and carried out model simulations to validate
the theoretical results. As such, various graphs for various fractional orders were presented. We ex-
amined the effects of vaccination rate and public health education on disease propagation. The two
could be targeted by public health officials to reduce the disease burden on communities, as well as
for the eradication of HPV. Therefore, this study provides useful information that may greatly help in
eradicating HPV, and, consequently, cervical cancer, in communities as soon as possible. For future
studies, control strategies like abstinence, reducing the number of sexual partners, healthy lifestyles,
early cancer screening, and treatment could be examined to determine their impact on HPV dynamics
and cervical cancer.
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